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Abstract. We present an algorithm running in time O(n logn) which decides if a
wreath-closed permutation class Av(B) given by its �nite basis B contains a �nite number
of simple permutations. The method we use is based on an article of Brignall, Ru²kuc
and Vatter [9] which presents a decision procedure (of high complexity) for solving this
question, without the assumption that Av(B) is wreath-closed. Using combinatorial,
algorithmic and language theoretic arguments together with one of our previous results
on pin-permutations [6], we are able to transform the problem into a co-�niteness problem
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1 Introduction

Permutation classes were �rst introduced in the literature by Knuth in [11],
where the class of permutations sortable through one stack is character-
ized as the permutations avoiding the pattern 231. This result has been
the starting point of the study of permutation classes and pattern-avoiding
permutations in combinatorics. The study of permutation classes has been
mostly interested in enumeration questions as testi�ed by the survey [10]
and its references. The predominance of the counting questions certainly
�nds an explanation in the Stanley-Wilf conjecture, stating that the enu-
meration sequence (sn)n of any (non trivial) permutation class is at most
simply exponential in the length n of the permutations (as opposed to n! in
general). This conjecture has been proved by Marcus and Tardos in 2004
[12], and this result can be considered as one of the �rst general results on
permutation classes, that is to say a result that deals with all permutation
classes. More recently, some other general results dealing with wide families
of permutation classes have been described [3, 4, 5, 8, 9, 13]. In particular,
Albert and Atkinson [3] proved some su�cient conditions for the generating
function S(x) =

∑
snx

n of a class to be algebraic. This is also the direc-
tion chosen in this article, where we are interested in describing an e�cient
algorithm to decide the �niteness of the number of simple permutations in
a class, for any wreath-closed permutation class.

To be more precise, in a series of three articles [8, 7, 9] Brignall et al.
prove that it is decidable to know if a permutation class of �nite basis con-
tains a �nite number of simple permutations, which is a su�cient condition
for the generating function to be algebraic. Every algorithm involved in
this decision procedure is polynomial except the algorithm deciding if the
class contains arbitrarily long proper pin-permutations.

In [6] a detailed study of pin-permutations is performed. We use some
of the properties of the simple pin-permutations established in [6] to give
a polynomial-time algorithm for the preceding question in the restricted
case of wreath-closed permutation classes, that is to say the classes of per-
mutations whose bases contain only simple permutations. More precisely,
we give a O(n log n) algorithm to decide if a �nitely based wreath-closed
class of permutations Av(π(1), . . . , π(k)) contains a �nite number of simple
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permutations where n =
∑
|π(i)|. A key ingredient of this procedure is the

transformation of a containment relation involving permutations into a fac-
tor relation between words. As a consequence deciding the �niteness of the
number of proper pin-permutations is changed into testing the co-�niteness
of a regular language given by a complete deterministic automaton.

The paper is organized as follows. We �rst recall basic de�nitions and
known results that will be used in the sequel. In Section 3 we establish,
in the special case of simple patterns and proper pin-permutations, some
links between pattern containment relation on permutations and factor re-
lation between words. Finally Section 4 is devoted to the presentation of a
polynomial algorithm deciding the �niteness of the number of proper pin-
permutations contained in a wreath-closed permutation class.

2 Background

2.1 De�nitions

We recall in this section a few de�nitions about permutations, pin represen-
tations and pin words. More details can be found in [8, 9, 6]. A permutation
σ ∈ Sn is a bijective function from {1, . . . , n} onto {1, . . . , n}. We either
represent a permutation by a word σ = 2 3 1 4 or its diagram (see Figure 1).
A permutation π = π1π2 . . . πk is a pattern of a permutation σ = σ1σ2 . . . σn,
and we write π ≤ σ if and only if there exist 1 ≤ i1 < i2 < . . . < ik ≤ n
such that σi1 . . . σik is order isomorphic to π. We also say that σ involves or
contains π. If π is not a pattern of σ we say that σ avoids π. A permutation
class Av(B) � where B is a �nite or in�nite antichain of permutations called
the basis � is the set of all permutations avoiding every element of B. A
permutation is called simple if it contains no block, i.e. no mapping from
{i, . . . , (i + l)} to {j, . . . , (j + l)}, except the trivial ones corresponding to
l = 0 or i = j = 1 and l = n − 1. Wreath-closed permutation classes have
been introduced in [3] in terms of substitution- or wreath-product of per-
mutations. This original de�nition is not crucial to our work, and we prefer
to de�ne them by the characterization proved in [3]: a permutation class
Av(B) is said to be wreath-closed when its basis B contains only simple
permutations.

In the following we study wreath-closed classes with �nite basis. Note
that it is not a restriction for our purpose: from [3], when the basis is in�-
nite we know that the number of simple permutations in the class is in�nite.
Our goal is indeed to check whether a wreath-closed class contains a �nite
number of simple permutations, ensuring in this way that its generating
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function is algebraic [3]. As we shall see in the following, a class of par-
ticular permutations, called the pin-permutations, plays a central role in
the decision procedure of this problem. For this reason, we record basic
de�nitions and results related with these pin-permutations.

A pin in the plane is a point at integer coordinates. A pin p separates
- horizontally or vertically - the set of pins P from the set of pins Q if and
only if a horizontal - resp. vertical - line drawn across p separates the plane
into two parts, one of which contains P and the other one contains Q. A
pin sequence is a sequence (p1, . . . , pk) of pins in the plane such that no two
points lie in the same column or row and for all i ≥ 2, pi lies outside the
bounding box of {p1, . . . , pi−1} and respects one of the following conditions:

• pi separates pi−1 from {p1, . . . , pi−2}.

• pi is independent from {p1, . . . , pi−1}, i.e., it does not separate this
set into two non empty sets.

A pin sequence represents a permutation σ if and only if it is order isomor-
phic to its diagram. We say that a permutation σ is a pin-permutation if
it can be represented by a pin sequence, which is then called a pin repre-
sentation of σ. Not all permutations are pin-permutations (see for example
the permutation σ of Figure 1).

p1

p2
p3

p4

p5
p6

Figure 1: The permutation σ = 4 7 2 6 3 1 5, the pattern π = 4 6 2 3 1 5 and
a pin representation of π. 14L2UR (if we place p0 between p3 and p1) and
3DL2UR are pin words corresponding to this pin representation.

A proper pin representation is a pin representation in which every pin
pi, for i ≥ 3, separates pi−1 from {p1, . . . , pi−2}. A proper pin-permutation
is a permutation that admits a proper pin representation.

Remark 2.1 A pin representation of a simple pin-permutation is always
proper as any independent pin pi with i ≥ 3 creates a block corresponding
to {p1, . . . , pi−1}.



SIMPLE PERMUTATIONS IN A WREATH-CLOSED CLASS 123

Pin representations can be encoded by words on the alphabet {1, 2, 3, 4,
U,D,L,R} called pin words. Consider a pin representation (p1, . . . , pn)
and choose an arbitrary origin p0 in the plane such that it extends the pin
representation to a pin sequence (p0, p1, . . . , pn). Then every pin p1, . . . , pn
is encoded by a letter according to the following rules:

• The letter associated to pi is U -resp. D,L,R- if and only if pi sep-
arates pi−1 and {p0, p1, . . . , pi−2} from the top -resp. bottom, left,
right-.

• The letter associated to pi is 1 -resp. 2, 3, 4- if and only if pi is in-
dependent from {p0, p1, . . . , pi−1} and is situated in the up-right -
resp. up-left, bottom-left, bottom-right- corner of the bounding box
of {p0, p1, . . . , pi−1}.

This encoding is summarized by Figure 2. The region encoded by 1 is
called the �rst quadrant. The same goes for 2, 3, 4. The letters L,R,U,D
are called directions, while 1, 2, 3 and 4 are numerals. An important remark
is that the de�nition of pin words implies that they do not contain any of
the factors UU,UD,DU,DD,LL,LR,RL and RR.

3 D 4

R

1U2

L

Figure 2: Encoding of
pins by letters.

p1

p2

11

41

4R

21

31

3R

2U

3U

Figure 3: The two letters in
each cell indicate the �rst two
letters of the pin word en-
coding (p1, . . . , pn) when p0 is
taken in this cell.

To each pin word corresponds a unique pin representation, hence a
unique permutation but each pin-permutation of length greater than 1 has
at least 6 pin words associated to it. The reason is that for any pin rep-
resentation, there are 8 possible placements of p0 w.r.t. p1 and p2, among
which at least 6 give a possible pre�x of a pin word (see Figure 3 for an
example). On Figure 3, the two pre�xes 4R and 3R (resp. 2U and 3U) may
be excluded, when p3 is encoded by R or L (resp. U or D).

A strict (resp. quasi-strict) pin word is a pin word of length at least 2
that begins by a numeral (resp. two numerals) followed only by directions.
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Remark 2.2 Encodings of proper pin-permutations

a. Strict and quasi-strict pin words are the encodings of proper pin rep-
resentations.

b. However a pin-permutation is proper if and only if it admits a strict
pin word among its encodings.

The language SP of strict pin words can be described by the following
regular expression:

(1+2+3+4)
(
(ε+L+R)(U +D)

(
(L+R)(U +D)

)∗
+(ε+U +D)(L+R)

(
(U +D)(L+R)

)∗)
.

2.2 Some known results

In [9] Brignall et al. studied conditions for a class to contain an in�nite
number of simple permutations. Introducing three new kinds of permuta-
tions they show that this problem is equivalent to looking for an in�nite
number of permutations of one of these three simpler kinds.

Theorem 2.3 [9] A permutation class Av(B) contains an in�nite number
of simple permutations if and only if it contains either:

• An in�nite number of wedge simple permutations.

• An in�nite number of parallel alternations.

• An in�nite number of proper pin-permutations.

The de�nitions of the wedge simple permutations and the parallel al-
ternations are not crucial to our work, hence we refer the reader to [9] for
more details. What is however important for our purpose is to be able to
test whether a class given by its �nite basis contains an in�nite number of
permutations of these kinds. Alternations and wedge simple permutations
are well characterized in [9], where it is shown that it is easy to deal with
this problem using the three following lemmas.

Lemma 2.4 [9] The permutation class Av(B) contains only �nitely many
parallel alternations if and only if its basis B contains an element of every
symmetry of the class Av(123, 2413, 3412).
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Lemma 2.5 [9] The permutation class Av(B) contains only �nitely many
wedge simple permutations of type 1 if and only if B contains an element of
every symmetry of the class Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132,
4231, 4312).

Lemma 2.6 [9] The permutation class Av(B) contains only �nitely many
wedge simple permutations of type 2 if and only if B contains an element of
every symmetry of the class Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132,
4231, 4312).

With these lemmas, it is possible to decide in polynomial time whether
a class contains a �nite number of wedge simple permutations or of parallel
alternations. More precisely, we have:

Lemma 2.7 Testing whether a �nitely based class Av(B) contains �nitely
many parallel alternations (resp. wedge simple permutations of type 1, resp.
wedge simple permutations of type 2) can be done in O(n log n) time, where
n =

∑
π∈B |π|.

Proof. By Lemmas 2.4, 2.5 and 2.6, deciding if a class Av(B) contains a
�nite number of wedge simple permutations or parallel alternations is equiv-
alent to checking if there exists an element of B in every symmetric class
of special pattern avoiding permutation classes, where the bases are com-
posed only of permutations of length at most 4. From [2] checking whether
a permutation π avoids some patterns of length at most 4 can be done in
O(|π| log |π|). This leads to a O(n log n) algorithm for deciding whether
the numbers of parallel alternation and of wedge simple permutations in
the class are �nite. 2

In [9] Brignall et al. also proved that it is decidable to know if a class
contains a in�nite number of proper pin-permutations using language the-
oretic arguments. Analyzing their procedure, we can prove that it has an
exponential complexity due to the resolution of a co-�niteness problem for
a regular language given by a non-deterministic automaton. As said before
our goal in this paper is to solve this same problem in polynomial time for
the wreath-closed classes.

3 Pattern containment and pin words

In this section we show how to transform into a factor relation between
words the pattern containment relation of a simple permutation pattern in
a proper pin-permutation. More precisely, let Av(B) be a �nitely based
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wreath-closed class of permutations, that is to say such that its basis B is
�nite and contains only simple permutations. We prove that the set of strict
pin words corresponding to permutations that contain an element of B is
characterized as the set of all strict pin words whose images by a particular
bijection (denoted by φ in the sequel) contain some factors.

First recall the de�nition of the partial order � on pin words introduced
in [9].

Definition 3.1 Let u and w be two pin words. We decompose u in terms of
its strong numeral-led factors as u = u(1) . . . u(j), a strong numeral-led factor
being a sequence of contiguous letters beginning with a numeral and followed
by any number of directions (but no numerals). We then write u � w if w
can be chopped into a sequence of factors w = v(1)w(1) . . . v(j)w(j)v(j+1) such
that for all i ∈ {1, . . . , j}:

• if w(i) begins with a numeral then w(i) = u(i), and

• if w(i) begins with a direction, then v(i) is nonempty, the �rst letter of
w(i) corresponds to a point lying in the quadrant speci�ed by the �rst
letter of u(i), and all other letters in u(i) and w(i) agree.

This order is closely related to the pattern containment order ≤ on
permutations.

Lemma 3.2 [9] If the pin word w corresponds to the permutation σ and
π ≤ σ then there is a pin word u corresponding to π with u � w. Con-
versely if u � w then the permutation corresponding to u is contained in the
permutation corresponding to w.

In what follows, σ is a proper pin-permutation. So we can choose a
strict pin word w that encodes σ (see Remark 2.2 b.). As a consequence of
Lemma 3.2, checking whether a permutation π is a pattern of σ is equivalent
to checking whether there exists a pin word u corresponding to π with
u � w. Additionally, we show that when π is simple, we can associate
to each strict (resp. quasi-strict) pin word v = v1v2 . . . vn of π a word
φ(v) (resp. φ(v2 . . . vn)) that does not contain numerals and such that the
pattern involvement problem is equivalent to checking if φ(w) has a factor
of the form φ(v) for v strict or φ(v2 . . . vn) for v quasi-strict encoding π.

Definition 3.3 Let M be the set of words of length greater than or equal
to 3 over the alphabet L,R,U,D such that R,L is followed by U,D and
conversely.
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We de�ne a bijection φ from SP to M as follows. For any strict pin
word u ∈ SP such that u = u′u′′ with |u′| = 2, we set φ(u) = ϕ(u′)u′′ where
ϕ is given by:

1R 7→ RUR 2R 7→ LUR 3R 7→ LDR 4R 7→ RDR
1L 7→ RUL 2L 7→ LUL 3L 7→ LDL 4L 7→ RDL
1U 7→ URU 2U 7→ ULU 3U 7→ DLU 4U 7→ DRU
1D 7→ URD 2D 7→ ULD 3D 7→ DLD 4D 7→ DRD

For any n ≥ 2, the map φ is a bijection from the set SPn of strict
pin words of length n to the set Mn+1 of words of M of length n + 1.
Furthermore, it satis�es, for any u ∈ SP, ui = φ(u)i+1 for any i ≥ 2.

In the above table, we can notice that, for any u ∈ SP, the �rst two
letters of φ(u) are su�cient to determine the �rst letter of u (which is
a numeral). Thus it is natural to extend the de�nition of φ to words
of length 1 (that do not belong to SP by de�nition) by setting φ(1) =
{UR,RU}, φ(2) = {UL,LU}, φ(3) = {DL,LD} and φ(4) = {RD,DR},
and by de�ning consistently φ−1(v) ∈ {1, 2, 3, 4} for any v in {LU,LD,RU,
RD,UL,UR,DL,DR}.

Notice that our bijection consists of replacing the only numeral in any
strict pin word by two directions. Lemma 3.4 below shows that for each
strict pin word w, we know in which quadrant lies every pin of the pin
representation corresponding to w.

Lemma 3.4 Let w be a strict pin word and p the pin representation corre-
sponding to w. For any i ≥ 2, set

q(wi−1, wi) =

{
φ−1(wi−1wi) if i ≥ 3

φ−1(BC) if i = 2 and φ(w1w2) = ABC

Then for any i ≥ 2, q(wi−1, wi) is a numeral indicating the quadrant in
which pi lies with respect to {p0, . . . , pi−2}.

Proof. It is obvious that q(wi−1, wi) is a numeral. The fact that it indicates
the claimed quadrant is proved by case examination, distinguishing the case
i ≥ 3 from i = 2.

If i ≥ 3, wi−1 and wi are directions. For example if wi−1 = L and
wi = U , then pi lies in the quadrant 2 and φ−1(LU) = 2.

If i = 2, wi−1 is a numeral and wi is a direction. For example if wi−1 = 1
and wi = L, then pi lies in the quadrant 2 and we have φ(1L) = RUL and
φ−1(UL) = 2. 2
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By Remarks 2.1 and 2.2 a., pin words encoding simple permutations are
either strict or quasi strict. We �rst show how to interpret � by a factor
relation in the case of strict pin words.

Lemma 3.5 For any strict pin words u and w, u � w if and only if φ(u) is
a factor of φ(w).

Proof. If u � w, as u is a strict pin word, writing u in terms of its strong
numeral-led factors leads to u = u(1), thus w can be decomposed into a
sequence of factors w = v(1)w(1)v(2) as in De�nition 3.1.

If v(1) is empty then w(1) begins with a numeral, w(1) = u(1) and u is a
pre�x of w. Consequently φ(u) is a pre�x of φ(w).

Otherwise i = |v(1)| ≥ 1 and w(1) begins with a direction. By De�nition
3.1, the �rst letter wi+1 of w(1) corresponds to a point pi+1 lying in the
quadrant speci�ed by u1 (the �rst letter of u

(1)), and all other letters (which
are directions) in u(1) and w(1) agree: u2 . . . u|u| = wi+2 . . . wi+|u|.

By Lemma 3.4, q(wi, wi+1) is the quadrant in which pi+1 lies, i.e.
u1 = q(wi, wi+1). Since |u| ≥ 2, by de�nition of q we have that φ(u) =
φ(q(wi, wi+1)wi+2 . . . wi+|u|) is a factor of φ(w).

Conversely if φ(u) is a factor of φ(w) then φ(w) = v φ(u) v′. If v is
empty then φ(u) is a pre�x of φ(w) thus u is a pre�x of w hence u � w.

If |v| = i ≥ 1 then by de�nition of φ, u2 . . . u|u| is a factor of φ(w) and
more precisely appears in φ(w) for indices from i + 3 to i + |u| + 1. This
means that u2 . . . u|u| = wi+2 . . . wi+|u|. Since i ≥ 1, wi+1 is a direction, and
we are left to prove that the point pi+1 corresponding to wi+1 lies in the
quadrant indicated by u1. By Lemma 3.4, pi+1 lies in quadrant q(wi, wi+1),
and we easily check that q(wi, wi+1) = φ−1(xy) where xy are the �rst two
letters of φ(u). Hence, we get that q(wi, wi+1) = u1, concluding the proof.

2

The second possible structure for a pin word corresponding to a simple
permutation is to begin with two numerals.

Lemma 3.6 Let u be a quasi strict pin word and w be a strict pin word. If
u � w then φ(u2 . . . u|u|) is a factor of φ(w) which begins at position p ≥ 3.

Proof. Decompose u into its strong numeral-led factors u = u(1)u(2). Notice
that u(2) = u2 . . . u|u|. Since u � w, w can be decomposed into a sequence of

factors w = v(1)w(1)v(2)w(2)v(3) satisfying De�nition 3.1. Moreover |w(1)| =
|u(1)| = 1 so w(2) contains no numerals thus v(2) is non-empty, the �rst
letter of w(2) corresponds to a point lying in the quadrant speci�ed by
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the �rst letter of u(2), and all other letters in u(2) and w(2) agree. Hence
w = v(1)w(1)vφ(u(2))v(3) where v is the pre�x of v(2) of length |v(2)| − 1.
Then φ(u(2)) is a factor of w which has no numeral thus φ(u(2)) is a factor
of φ(w) which begin at position p ≥ 3. 2

Lemma 3.7 Let u be a quasi strict pin word corresponding to a permuta-
tion π and w be a strict pin word corresponding to a permutation σ. If
φ(u2 . . . u|u|) is a factor of φ(w) which begins at position p ≥ 3 then π is a
pattern of σ.

Proof. Set u(2) = u2 . . . u|u|. Since φ(u(2)) is a factor of φ(w) which begins

at position p ≥ 3 then by Lemma 3.5, u(2) � w. Let p1 . . . pn be a pin
representation of w (which corresponds to σ) and Γ be the subset of points
corresponding to u(2), then Γ ⊆ {p3 . . . pn}. Let π′ be the permutation
corresponding to {p1} ∪ Γ, then π′ ≤ σ. We claim that π′ = π. Let i
be the quadrant in which p1 lies, and v = i u(2). Then v is a pin word
corresponding to π′. As u begins with two numerals, there is k ∈ {1, . . . , 4}
such that u = k u(2). It is easy to see that v and u encode the same
permutation, even if i 6= k. Hence π′ = π. 2

The set of pin words of any simple permutation π contains at most 64
elements. Indeed by Lemma 4.6 of [6] there are at most 8 pin representations
p of π �corresponding to the possible choices of (p1, p2)� and at most 8 pin
words for each pin representation (see Figure 3) so at most 64 pin words for
π.

We de�ne E(π) = {φ(u) |u is a strict pin word corresponding to π} ∪
{v ∈ M | there is a quasi strict pin word u corresponding to π and x ∈
{LU,LD,RU,RD} ] {UL,UR,DL,DR} such that v = xφ(u2 . . . u|u|)}.
For the second set, the �rst letter of φ(u2 . . . u|u|) determines the set in
which x lies.

By Remarks 2.1 and 2.2 a., the pin words of π are either strict or quasi
strict, therefore |E(π)| ≤ 64× 4 = 256.

Theorem 3.8 Let π be a simple permutation and w be a strict pin word
corresponding to a permutation σ. Then π � σ if and only if φ(w) avoids
the �nite set of factors E(π).

Notice that it is enough to consider only one strict pin word correspond-
ing to σ rather than all of them.
Proof. If π ≤ σ, then by Lemma 3.2, there is a pin word u corresponding
to π with u � w. By Remarks 2.1 and 2.2 a., u is a strict pin word or a
quasi strict pin word. If u is a strict pin word then, by Lemma 3.5, φ(u)
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is a factor of φ(w) so φ(w) has a factor in E(π). If u is a quasi strict pin
word then by Lemma 3.6, φ(u2 . . . u|u|) is a factor of φ(w) which begins at
position p ≥ 3. Let x be the two letters preceding φ(u2 . . . u|u|) in φ(w). As
φ(w) ∈M , xφ(u2 . . . u|u|) is a factor of φ(w) that belongs to E(π).

Conversely suppose that φ(w) has a factor v in E(π). If v ∈ {φ(u) |u
is a strict pin word corresponding to π} then by Lemma 3.5, there is a
pin word u corresponding to π with u � w so by Lemma 3.2, π ≤ σ.
Otherwise there is a quasi strict pin word u corresponding to π and x ∈
{LU,LD,RU,RD,UL,UR,DL,DR} such that v = xφ(u2 . . . u|u|) is a fac-
tor of φ(w). Thus φ(u2 . . . u|u|) is a factor of φ(w) which begins at position
p ≥ 3 and by Lemma 3.7, π ≤ σ. 2

Returning to our motivation with respect to the number of proper pin-
permutations in Av(B), the links between pattern containment relation and
pin words that we established yield Theorem 3.9.

Theorem 3.9 A wreath-closed class Av(B) has arbitrarily long proper pin-
permutations if and only if there exist words of arbitrary length on the al-
phabet {L,R,U,D} avoiding the set of factors ∪π∈BE(π) ∪ {LL,LR,RR,
RL,UU,UD,DD,DU}.

Proof. The class Av(B) contains arbitrarily long proper pin-permutations if
and only if there exist arbitrarily long proper pin-permutations which have
no pattern in B. That is �making use of Theorem 3.8 and Remark 2.2 b.�,
if and only if there exist arbitrarily long strict pin words w such that φ(w)
avoids the set of factors ∪π∈BE(π), or equivalently if and only if there exist
words of arbitrary length on the alphabet {L,R,U,D} which avoid the set
of factors ∪π∈BE(π) ∪ {LL,LR,RR,RL,UU,UD,DD,DU}. 2

4 From the �niteness problem to a co-�niteness

problem

We are now able to give the general algorithm to decide if a wreath-closed
permutation class given by its �nite basis B contains a �nite number of
proper pin-permutations (see Algorithm 1).

In this algorithm, PB denotes the set of pin words that encode the per-
mutations of B, L(PB) the language of words on the alphabet {L,R,U,D}
which contain as a factor a word of ∪π∈BE(π) or one of the 8 words
LL,LR,RR,RL,UU,UD,DD andDU , A the automaton recognizing L(PB)
and Ac the automaton that recognizes the complementary language of
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L(PB) in {L,R,U,D}∗. Notice that Ac recognizes the words φ(w) for w a
strict pin word encoding a proper pin-permutation σ ∈ Av(B).

Algorithm 1: Deciding the �niteness of the number of proper pin-
permutations

input : a set B of simple permutations
output: boolean : true if and only if Av(B) contains only a �nite

number of proper pin-permutations

PB ←PinWords(B) // Determine the set of pin words

associated to the elements of B
A ← Automaton(L(PB)) // Build a complete deterministic

automaton recognizing L(PB)
if Ac contains an accessible and co-accessible cycle then

return false
else

return true

The �rst part of this algorithm relies on the function Pinwords (de-
scribed by Algorithm 2) which computes the pin words associated to a sim-
ple permutation. It uses the fact that the pin representations of a simple
permutation, when they exist, are always proper (see Remark 2.1), and that
from Lemma 4.3 in [6], the �rst two pins of a proper pin representation are
in knight position (i.e., in a con�guration like or one of its 3 symmetries
under rotation and re�ection). Next from two points in knight position, a
proper pin representation, if it exists, can be e�ciently computed using the
separation condition. Finally it remains to encode the pin representation
by pin words.

Lemma 4.1 Algorithm 2 computes the set of pin words encoding a simple
permutation σ in linear time with respect to the length n of σ.

Proof. Algorithm 2 can be decomposed into two parts. First, we count the
number of ordered pairs of points in knight position that should be smaller
than 48. Indeed from Lemma 4.4 of [6], if σ is a simple pin-permutation of
length n, in any of its pin representations (p1, . . . , pn), every unordered pair
of points {pi, pj} that is a knight contains at least one of the points p1, p2
or pn. As only 8 points can be in knight position with a given point, the
permutation σ has at most 24 unordered pairs of points in knight position,
hence at most 48 ordered pairs (pi, pj) that are knights.

Therefore given a simple permutation σ, we count the number of ordered
pairs of points in knight position. To do this, we take each point p of the
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Algorithm 2: Pinwords function

input : a simple permutation σ
output: The set P of pin words encoding σ

// Count the number of ordered pairs of points in knight

position

E ← ∅;
foreach σi do

E ← E
⋃
{(σi, σj) in knight position}

// If more than 48 pairs are found, σ is not a

pin-permutation

if |E| > 48 then
return ∅

// Otherwise each knight may be the beginning of a pin

representation of σ
P ← ∅;
foreach (σi, σj) ∈ E do

P ← P
⋃
{ pin words of the pin representation beginning with

(σi, σj)}
return P

permutation and we check if another point is in knight position with p. As
at most 8 cells can contain a point in knight position with p, this counting
part runs in time 8n.

If this number is greater than 48, σ is not a pin-permutation. Otherwise,
the second part of the algorithm computes, for each ordered pair of points in
knight position, the pin representation beginning with it (if it exists) and its
associated pin words. This can also be done in linear time as there is at most
one pin representation of σ beginning with a given ordered pair of points.
Indeed, because σ is simple, its pin representations are always proper (see
Remark 2.1). The pin representation starting with a given knight is then
obtained as follows. If (p1, . . . , pi) has already been computed then, since
the pin representation we look for is proper, pi+1 separates pi = σk from
previous points. It means that either it separates them vertically, and then
pi+1 = σk+1 or pi+1 = σk−1, or it separates them horizontally and then
its value must be σk ± 1. Therefore, if we compute σ−1 in advance (which
is easily done by a linear-time precomputation) we are allowed to �nd the
next point in a proper pin representation in constant time.

Finally as at most 8 pin words (choice of the origin, see Figure 3) cor-
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respond to a given pin representation, computing all pin words can easily
be done in linear time from the pin representation. 2

Lemma 4.2 Algorithm 1 tests if a wreath-closed permutation class given by
its �nite basis B contains a �nite number of proper pin-permutations in
linear time with respect to n =

∑
π∈B |π|.

Proof. First according to Lemma 4.1 the Pinwords function applied to the
|B| patterns of the basis runs in total time O(n), and produces a set PB,
containing at most |B| · 48 · 8 words, whose lengths sum to O(n).

Next a complete deterministic automatonA recognizing L(PB) the set of
words having a factor in ∪π∈BE(π)∪{LL,LR,RR,RL,UU,UD,DD,DU}
can be built in linear time (w.r.t. n) using Aho-Corasick algorithm [1]. With
this construction the number of states of the resulting automaton is also
linear. The automaton Ac that recognizes the complementary language of
L(PB) in {L,R,U,D}∗ is obtained by exchanging �nal and non-�nal states
of the initial automaton A which is complete and deterministic. Then it
remains to test in the complete deterministic automaton Ac whether there
exists an accessible cycle from which a path leads to a �nal state (i.e., that is
co-accessible). Making use of a depth-�rst traversal, this step takes a linear
time. Hence checking if there exist arbitrarily long words on {L,R,U,D}
which avoid a �nite set of factors can be done in linear time � linear in the
sum of the lengths of the factors. Together with Theorem 3.9 this concludes
the proof. 2

The preceding results allow us to decide in linear time if a wreath-
closed permutation class given by its �nite basis contains arbitrarily long
proper pin-permutations. To end our proof, following the same steps as [9],
we must deal with wedge simple permutations and parallel alternations in
order to decide if the permutation class contains a �nite number of simple
permutations. These results are summarized in the following theorem:

Theorem 4.3 Let Av(B) be a �nitely based wreath-closed class of permu-
tations. Then there exists an algorithm to decide in time O(n log n) where
n =

∑
π∈B |π| whether this class contains �nitely many simple permutations.

Proof. From Theorem 2.3, we can look separately at parallel alternations,
wedge simple permutations and proper pin-permutations. For parallel al-
ternations and wedge simple permutations, Lemma 2.7 shows that testing if
their number in Av(B) is �nite can be done in O(n log n) time. The case of
proper pin-permutations can be solved with Algorithm 1. From Lemma 4.2
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checking if there exist arbitrarily long proper pin-permutations in a wreath-
closed permutation class can done in linear time � linear in the sum of the
lengths of the elements of the basis of the class � concluding the proof. 2

Conjecture. We strongly believe that Theorem 4.3 has a generalization to
all �nitely based permutation classes (and not only wreath-closed classes):
namely, we expect that the complexity of deciding whether a �nitely based
permutation class contains a �nite number of simple permutations is poly-
nomial, however of higher degree.

This complexity gap we foresee for this generalization and the growing
importance of wreath-closed classes in the permutation patterns �eld justify
to our eyes the interest of the result proved in this article. Furthermore, in
the general case the pattern relation on permutations cannot be translated
into a factor relation on the pin words that encode these permutations.
However the substitution decomposition of pin-permutations described in
[6] should allow us to obtain an e�cient recursive algorithm.

Open problem. By [3], containing a �nite number of simple permuta-
tions is a su�cient condition for a permutation class to have an algebraic
generating function. Our work allows to decide e�ciently whether the num-
ber of simple permutations in the class is �nite, but does not allow the
computation of the set of simple permutations in the class. Describing an
e�cient (polynomial?) procedure solving this question, and thereafter being
able to compute algorithmically the algebraic generating function associated
to the class, would be natural continuations of our work.
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