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Complex multiparameter models such as in climate science, economics, systems biology,

materials science, neural networks and machine learning have a large-dimensional space of

undetermined parameters as well as a large-dimensional space of predicted data. These

high-dimensional spaces of inputs and outputs pose many challenges. Recent work with a

diversity of nonlinear predictive models, microscopic models in physics, and analysis of large

datasets, has led to important insights. In particular, it was shown that nonlinear fits to data in

a variety of multiparameter models largely rely on only a few stiff directions in parameter

space. Chapter 2 explores a qualitative basis for this compression of parameter space

using a model nonlinear system with two time scales. A systematic separation of scales is

shown to correspond to an increasing insensitivity of parameter space directions that only

affect the fast dynamics. Chapter 3 shows with the help of microscopic physics models that

emergent theories in physics also rely on a sloppy compression of the parameter space where

macroscopically relevant variables form the stiff directions. Lastly, in chapter 4, we will learn

that the data space of historical daily stock returns of US public companies has an emergent

simplex structure that makes it amenable to a low-dimensional representation. This leads to

insights into the performance of various business sectors, the decomposition of firms into

emergent sectors, and the evolution of firm characteristics in time.
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CHAPTER 1
CHAPTER 1: INTRODUCTION

There are three key ways that are employed in order to mathematically distill the essence

of a phenomenon, and each one is tied to a different chapter in this dissertation:

1. phenomenological or predictive modeling,

2. application or development of a theory, and

3. statistical analysis of large sets of observations or experimental data.

Regardless of the means, the end goal is to attain an understanding that is comprehensive

and in accord with other known facts. The success of science and engineering bears

testimony to the efficacy of these methods, but what makes these ways of making progress

possible? How is it that the complicated nature yields to often concise and comprehensible

mathematical descriptions?

A central theme in this dissertation is the following: Typical nonlinear, multi-parameter

models from a variety of areas of science, as well as large-scale statistical analysis algorithms

are successful because the datasets they describe often effectively have surprisingly low

dimensionality. The development that follows in this dissertation will support the claim that

only a few directions in parameter space are sufficient to account for most of the variation

seen in the general observed data, while other directions are often insignificant.

Each of the following sections of this chapter incrementally adds to a big-picture context in

1



which this thesis is set. Each section has a subsection with a high-level overview of a different

chapter that will follow later.

1.1 PHENOMENOLOGICAL OR PREDICTIVE MODELS

calculating Hv2 and related quantities are found in Methods.
Dataset S1 includes Hv2 for each model.)

The principal axes of the ellipsoids are the eigenvectors of
H

v2 , and the width of the ellipsoids along each principal axis
is proportional to one over the square root of the
corresponding eigenvalue. The narrowest axes are called
‘‘stiff,’’ and the broadest axes ‘‘sloppy’’ [20]. The eigenvalue
spectra for the models in our collection are shown in Figure
1B (each normalized by its largest eigenvalue). In every case,
the eigenvalues span many decades. All but one span more
than 106, indicating that the sloppiest axes of the ellipsoids
illustrated in Figure 1A are generally more than 1,000 times
as long as the stiffest axes. In each spectrum the eigenvalues
are also approximately evenly spaced in their logarithm;
there is no well-defined cutoff between ‘‘important’’ and
‘‘unimportant’’ parameter combinations.

The Hessian matrix is a local quadratic approximation to
the generally nonlinear v2 function. Principal component
analysis of extensive Monte Carlo runs in the Brown et al.

model, however, indicates that the sloppiness revealed by Hv2

is indicative of full nonlinear v2 function [20].
Along with their relative widths, the degree to which the

principal axes of the ellipsoids are aligned to the bare
parameter axes is also important. We estimated this by
comparing the ellipsoids’ intersections Ii with each bare
parameter axis i and projections Pi onto each bare parameter
axis i. If Ii / Pi ¼ 1, then one of the principal axes of the
ellipsoids lies along bare parameter direction i. Figure 1C
plots the I / P spectrum for each model. In general, very few
axes have I / P ’ 1; the ellipses are skewed from single
parameter directions.
Naively, one might expect the stiff eigenvectors to embody

the most important parameters and the sloppy directions to
embody parameter correlations that might suggest removable
degrees of freedom, simplifying the model. Empirically, we
have found that the eigenvectors often tend to involve
significant components of many different parameters; plots
of the four stiffest eigenvectors for each model are in Text S1.

Figure 1. Parameter Sensitivity Spectra

The quantities we calculate from Hv2 are illustrated in (A), while (B) and (C) show that all the models we examined have sloppy sensitivity spectra.
(A) Analyzing Hv2 corresponds to approximating the surfaces of constant model behavior change (constant v2) as ellipsoids. The width of each principal
axis is proportional to one over the square root of the corresponding eigenvalue. The inner ellipsoid’s projection onto and intersection with the h1 axis
are denoted by P1 and I1, respectively.
(B) Plotted are the eigenvalue spectra of Hv2 for our collection of systems biology models. The many decades generally spanned indicate that the
ellipses have a very large aspect ratio. (The spectra have each been normalized by their largest eigenvalue. Not all values are visible for all models.)
(C) Plotted is the spectrum of I / P for each parameter in each model in our collection. Generally very few parameters have I / P ’ 1, suggesting that the
ellipses are skewed from the bare parameter axes. (Not all values are visible for all models.)
The models are plotted in order of increasing number of free parameters and are: (a) eukaryotic cell cycle [28], (b) Xenopus egg cell cycle [29], (c)
eukaryotic mitosis [30], (d) generic circadian rhythm [31], (e) nicotinic acetylcholine intra-receptor dynamics [32], (f) generic kinase cascade [33], (g)
Xenopus Wnt signaling [34], (h) Drosophila circadian rhythm [35], (i) rat growth-factor signaling [21], (j) Drosophila segment polarity [36], (k) Drosophila
circadian rhythm [37], (l) Arabidopsis circadian rhythm [2], (m) in silico regulatory network [25], (n) human purine metabolism [38], (o) Escherichia coli
carbon metabolism [39], (p) budding yeast cell cycle [40], (q) rat growth-factor signaling [41].
doi:10.1371/journal.pcbi.0030189.g001
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Figure 1.1: Hessian eigenvalues for seventeen systems biology models taken from [1]. The
distribution reaches extremely small values indicating that the cost is significantly
insensitive to many directions in parameter space. These eigenvalues are squares of the
singular values of the Jacobian J
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Predictive models in fields such as climate science, ecology, economics, neuroscience,

systems biology, etc. are often complicated due to multiple nonlinear interactions among many

constituent variables. For example, a typical systems biology model will include many coupled

differential equations each describing an evolution law for gene concentrations ~y as a function
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of time. Experimental data d
i

is measured at times t
i

with an error of measurement �
i

to

which the model ~y(t) = f(~✓, t) is fit with parameters ~✓. Seventeen models of these kinds have

been previously analyzed [1] by Gutenkunst and colleagues in the Sethna group; in each case,

the Hessian H
µ⌫

= @
µ

@
⌫

C of the least-squares cost function C =

1
2

P
i

(f(~✓, t
i

)� d
i

)

2/�2
i

,

evaluated at the best fit has eigenvalues that are roughly geometrically distributed over

many decades (fig. 1.1). The group also found the same “sloppy” character for many other

models [4, 8] such as radioactive decay, variational wave function of quantum mechanics,

neural networks, and even general polynomial fits to data.

Figure 1.2: Schematic of the mapping between parameter and data space. The sloppy
directions in parameter space map to small regions in behavior space as the predictions
remain largely unchanged. The stiff directions on the other hand map to long thin
hyper-ribbons due to the sensitivity of these directions.

In the case of predictive models, the ubiquity of sloppiness has been traced down [4] to

hyper-ribbon structures (fig. 1.2) of the data (behavior) space manifold associated with

these models. These hyper-ribbons have widths that are also geometrically spaced, and

their curvatures and boundaries have special properties that using interpolation theorems

were shown to be typical features of multi-parameter models. The observation that the

manifold widths and Hessian eigenvalues were related suggested that sloppiness is not just a

consequence of the chosen parameterization of the model: while the eigenvalues change
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depending on model parameterization, the manifold widths are intrinsic to the model manifold.

In addition, manifold boundaries correspond to physically relevant limits such as the extreme

values that parameters can meaningfully have. Recent work utilizing this geometry has

led to a scheme for systematically coarsening nonlinear models [16]. The success of this

scheme and its possibly general applicability is fundamental evidence of the intrinsic low

dimensionality of models with otherwise many parameters.

A different approach to understand the origins of sloppiness is a more qualitative one. For

the variety of behaviors seen in nonlinear systems, one can systematically perturb the

dynamics to target the behavior of interest, and probe the consequences on the resulting

Hessian spectrum. The second-order van der Pol equation is a particularly convenient

case-in-point where a single parameter alters the inherent separation of scales in the

dynamics.

1.1.1 THE VAN DER POL OSCILLATOR EXAMPLE

Chapter 2 of this dissertation is based on the analysis of the van der Pol oscillator. The van

der Pol equation x00 � µ(1� x2
)x0

+ x = 0 has been extensively deployed in physical and

biological sciences as a predictive model of relaxation oscillations in electrical circuits with

vacuum tubes [17, 18], action potentials of neurons [19, 20], and plate dynamics in a seismic

fault [21]. It is indeed a prototypical example of a system with two time scales in its dynamics

which have a ratio long/short = µ. We will examine the structural susceptibility1 of van der Pol

dynamics to perturbations in the dynamics as time scales are separated.

1The notion of susceptibility in dynamical systems is new but is inspired by its use in physics where it is used
to measure the effect on free energy f of infinitesimal perturbation of fields ✓

µ

. Susceptibilities g

µ⌫

= @

2
µ⌫

f . For
a dynamical system, fitting cost is like the free energy of physics and therefore, @2

µ⌫

C is what we refer to as
structural susceptibility (Hessian of cost w.r.t. parameters).
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An extension of the van der Pol equation that incorporates additional parameters

selectively affecting the slow and fast parts of the dynamics is developed and utilized. As the

scales separate, two classes of parameters become distinct as stiff and sloppy directions in

the dynamics. The former only affect the slow manifold of the dynamics whereas the latter

affect the jump in the dynamics. Sloppiness is seen to be enhanced as the scales separate,

suggesting that the presence of multiple time scales in the dynamics is one of the reasons

why nonlinear systems are sloppy [6].

1.2 EMERGENT THEORIES

Despite complexity on microscopic scales, physics theories have emergent behavior that is

largely independent of the complicated dynamics of the constituent atoms or quantum fields.

For example, our very complete phenomenological description of the subatomic world known

as ‘The Standard Model’ is hardly informed by the more fundamental theory for which string

theory is a candidate. At another level, the theory of superconductivity makes absolutely no

use of The Standard Model even though it would presumably give a sufficient description of a

superconductor’s constituents. This kind of hierarchy is pervasive across physics; a schematic

representation of this in condensed matter and high energy physics is shown in figure 1.3.

The continuum limits and renormalization group (RG) methods of physics show—at least

in principle—how a micro-level physics theory can be coarsened to yield a universal theory

applicable at longer length or time scales. RG is a procedure for systematically coarsening

and rescaling a system to reveal the underlying, dominant interactions; with continuum limits,

the microscopic complexity relevant only at short time and/or length scale is dissolved and a

simpler description emerges.
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Figure 1.3: Hierarchies in physics. Left: Theories in high-energy physics form a nested hierarchy.
Each theory is derived from a more fundamental, unified theory, describing behavior at
higher energy scales (demanding bigger particle accelerators). The unified theory
explains key parameters in the derived theory: quantum chromodynamics and the
electroweak theory tell you the masses of the nuclei and electron. Right: Theories in
condensed-matter physics form a nested hierarchy. Each theory emerges from a
more microscopic and complicated theory ’below’ it, providing a simpler and more
beautiful description. The emergent theory compresses the microscopic details into a few
governing parameters that efficiently describe the behavior at longer distances, longer
times, and lower temperatures.

Many of the practical implications of RG and continuum limits are identical to those of the

sloppiness discussed earlier. Models show weak dependence of macroscopic observables

(defined at long length and time scales) on microscopic details. They thus have a smaller

effective model dimensionality than their microscopic parameter space. This is shown formally

with analysis using microscopic versions of two physics models, the Ising model and the

diffusion equation, where the emergent behavior is already well-understood using RG and

continuum limits respectively.
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1.2.1 THE ISING MODEL AND DIFFUSION EQUATION

Chapter 3 of dissertation shows that the emergent theories of physics implicitly exploit the

same hierarchical hyper-ribbon structure in their model manifolds that was seen earlier in

sloppy models. This structure is seen to develop as microscopic observables from two

model systems are coarsened in analyses for both. In the case of the Ising model of

ferromagnetism, the Hamiltonian H(�) = �J
P

{i,j} �i

�
j

� h
P

i

�
i

has only two-parameters,

a coupling constant J and a magnetic field h, yet it describes a vast variety of systems at

their self-similar critical points. Similarly, the diffusion equation governing many stochastic

processes, u
t

= Du
xx

+ V u
x

+R, has only three parameters, a diffusion constant D, an

average drift V and a particle creation rate R. In both cases, the microscopic complexity is

subsumed in these few parameters.

With a multi-parameter extension of the Ising model, and a hopping model of diffusion,

chapter 3 provides an information theory-based approach to model condensation as seen

using RG and continuum limits. In the case of Ising, J and h emerge to be the stiff parameters,

whereas for diffusion, combinations corresponding to R, V and D are stiff. These physics

models are not sloppy when observations are measuring microscopic level details or

fluctuations, however when observations are coarse (on a macro scale) but parameters are

microscopic, it is then that a low-dimensional representation is manifest in the analysis.

The similarity of sloppy hierarchies in emergent physics theories with other areas of

science, clarifies the connection between the universality that arises in systems under the

purview of the RG and the success of modeling more generally. Many models work not

because they are microscopically correct, but because of a hyper-ribbon structure. They can

be quantitatively correct even if their microscopic details are incomplete, or even wrong. Just

as we can understand a superconductor without appealing to the details of its constituent
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atoms, we can understand the behavior of a signal transduction cascade without knowing all

of the interaction partners of its components [22].

1.3 BIG DATA OR E-SCIENCE

Recent years have witnessed an increasing focus on the use of data and advanced analytics

by businesses and researchers alike [23]. The algorithms of machine learning or artificial

intelligence are allowing for statistical analysis and solutions to problems in ways that are not

accessible by more traditional means employed in science. Apple Inc.’s speech recognition

system (Siri) [24], Google Inc.’s self-driving car [25], IBM Corp.’s natural language processing

computer (Watson) [26], and Netflix Inc.’s movie-rating prediction method [27] are among

well-known services and products that use these algorithms and leverage massive scale

datasets for statistical insights. As discussed next, there is compelling and increasing

evidence that these algorithms either implicitly or explicitly exploit emergent low-dimensional

structures in the data space.

Machine learning algorithms come under two broad buckets [28]:

• Supervised learning algorithms are trained with labeled input, and perform classification

or regression on unlabeled items. A majority of the neural network algorithms are

supervised; an example is shown in figure 1.4.

• Unsupervised learning algorithms such as clustering, hidden Markov models, manifold

learning, matrix factorization, etc., are applied on unlabeled data to discover structure or

relationships in data. A typical matrix factorization scheme R
ts

= E
tf

W
fs

, for example,

will reduce the dimensionality of the original t⇥ s matrix as a product of two matrices of

sizes t⇥ f and f ⇥ s. Depending on the application, dataset and constraints, f is
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Figure 1.4: Eigenvalues of a digit-reconstruction neural network map. Top: A sample of five
scanned handwritten digits from the MNIST database [2]. Middle: Reconstruction of the
images in the top row using a trained four-layer auto-encoder neural network. Bottom:
Eigenvalues of the reconstruction map show a sloppy spectrum (every 10th eigenvalue is
shown). This figure was generated with data kindly provided by Hayden et al. [3].

generally user-specified so that (t⇥ f + f ⇥ s) ⌧ t⇥ s. A movie-rating prediction can

be based on this scheme when applied to a sparse matrix of known ratings R
um

for

users u and movies m. R can be factorized in dense E
uf

and dense W
fm

, so that

R ⇠ EW . The matrix EW =

˜R can then be interpreted as a rating prediction because

(a). it is dense, (b). R and ˜R agree where former is non-zero.

In general, one has very little guidance about which machine learning method or

algorithm is best suited for an arbitrary problem. As we shall see with an example of stock
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market returns, the choice of method or algorithm can be made in a principled manner by

understanding the inherent structure in the dataset of interest.

1.3.1 STOCK MARKET RETURNS

Chapter 4 presents an analysis of daily price returns of 705 US public companies’ stock prices

for a 20-year period spanning 1993-2013 that consists of a total of 5000 time points (one for

each of the ⇠250 business days/year). The matrix of returns R
ts

at times t for stocks s thus

has more than 3.5 million entries. A large dense matrix can be rank-reduced in a number of

ways, and the common practice is to factorize using the singular value decomposition

(SVD). We will see in chapter 4 that the space of stock price returns has an emergent,

low-dimensional hyper-tetrahedral (simplex) structure which inspires a more meaningfully

constrained factorization.

The algorithm constructs a factor matrix of f time series, E
tf

in a purely unsupervised

manner, and due to the geometry of the low-dimensional manifold considered here, each

column of E (i.e. every basis vector) corresponds closely to a business sector (group of

companies in closely related business lines). Via constraints, E is itself represented as a

combination of “archetype stocks”, of companies that can be considered to define a sector.

These emergent sectors, which we call canonical sectors are comprised of a combination of

(automatically) selected stocks so that E
tf

= R
ts

C
sf

with a relatively sparse C.

Using the property that every interior point of a convex set is a weighted-sum of the

corner points, the matrix W
fs

is constrained so that in R
ts

= E
ts

W
fs

each stock’s return is a

weighted sum of returns from the canonical sectors. For example, returns of stock of IBM,

which is conventionally listed as a tech firm in most financial indices, are most accurately
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described as a weighted sum of returns from the canonical tech (78%), canonical non-cyclical

(21%) and canonical utility (1%) sectors.
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CHAPTER 2
CHAPTER 2: STRUCTURAL SUSCEPTIBILITY AND SEPARATION OF

TIME SCALES IN THE VAN DER POL OSCILLATOR

2.1 ABSTRACT

This chapter describes an extension of the van der Pol oscillator as an example of a system

with multiple time scales to study the susceptibility of its trajectory to polynomial perturbations

in the dynamics. A striking feature of many nonlinear, multi-parameter models is an apparently

inherent insensitivity to large magnitude variations in certain linear combinations of parameters.

This phenomenon of “sloppiness” is quantified by calculating the eigenvalues of the Hessian

matrix of the least-squares cost function. These typically span many orders of magnitude. The

van der Pol system is no exception: Perturbations in its dynamics show that most directions in

parameter space weakly affect the limit cycle, whereas only a few directions are stiff. With this

study we show that separating the time scales in the van der Pol system leads to a further

separation of eigenvalues. Parameter combinations which perturb the slow manifold are stiffer

and those which solely affect the jumps in the dynamics are sloppier.

0This chapter describes previously published work [6]: R. Chachra, M. K. Transtrum, J. P. Sethna, Structural
Susceptibility and Separation of Time Scales in the van der Pol Oscillator. Phys. Rev. E 86 (Aug, 2012) 026712.
The present author chose the model system, performed the computational analysis, analyzed the results and
wrote the manuscript.
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2.2 INTRODUCTION

We will analyze the sensitivity of a multiple time scales dynamical system to perturbative

changes in its evolution laws. Rather than utilizing the traditional means of examining

the structural stability for probing qualitative changes to the attractor as a response

to perturbations, we study the structural susceptibility for quantifying the effects of the

perturbations on the time series1. More specifically, we ask how sensitive is the dynamical

system dz/dt = f(z) to infinitesimal changes of the form dz/dt = f(z) + a · g(z), for a family

of perturbations g(z) when the parameters a ! 0.

We introduce the new concept of “structural susceptibility” in dynamical systems, that is an

outgrowth of our group’s previous work on “sloppiness” in multiparameter systems wherein we

have found that data-fitting in a number of nonlinear, multiparameter models is only sensitive

to a few directions in parameter space at the best fit [1, 4, 29]. The key difference between

studying sloppiness and structural susceptibilities is that in the former, the parameters are

intrinsic to the system, i.e., there are no externally introduced changes in their evolution laws.

Nonetheless, the methodology we have developed for studying sloppy models is also suited

for studying structural susceptibilities of dynamical systems. Our approach cleanly isolates

and ranks the directions in parameter space in order of relevance to observed behavior, and

has previously led us to suggest improvements in experimental design [30], extract falsifiable

predictions from experiments [31], and develop faster minimization algorithms [32]. Others

have developed these ideas to suggest further improvements in experimental design [33] and

parameter estimation [34], to quantify robustness to parameter variations [35], and to set

1We employ the word structural in the same context as its usage in dynamical systems literature on structural
stability. The word susceptibility is inspired from physics wherein it is a measure of response to a perturbation
(such as an applied external field) quantified by the second-derivative of the free energy w.r.t. parameters. Since
cost is analogous to free energy (in that both are minimized), it is natural to call the response to perturbations in
dynamics, also quantified via second derivatives, as structural susceptibility
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confidence regions for predictions in multiscale models [36]. In this paper, we bring similar

ideas together to analyze sensitivities of time series to perturbations in dynamical systems.

We demonstrate the utility of our approach with application to a dynamical system with two

time scales—the van der Pol oscillator [18] which is a single parameter system and hence not

amenable to sloppy model analysis. Instead, by choosing appropriate perturbations g(z), we

calculate the susceptibility of its dynamics: We make perturbations on the attractor, and then

systematically increase the separation of time scales in its dynamics to show how it can

generally enhance the sloppiness in nonlinear systems.

2.3 MULTIPLE TIME SCALE DYNAMICS

Multiple time scales are often found in the solutions of dynamical systems [37]. Broadly

speaking, the defining criterion of these models is that the trajectory of one or more phase

variables has an identifiable fast piece such as a jump or a pulse and a slow piece where the

value of the variable doesn’t change quickly [38]. In two dimensions, these systems are

commonly studied in the contexts of slow-fast vector fields written as:

✏ẋ = X(x, y, ✏),

ẏ = Y (x, y, ✏)
(2.1)

where the parameter ✏ > 0 is small and dot indicates derivative with respect to time t.

For O(1) functions X and Y , and X 6= 0: ẋ = O(1/✏) and ẏ = O(1), so that ✏ is the ratio

of time scales in the system. On one extreme, the singular limit ✏ = 0 corresponds to a

differential algebraic system X = 0, Y = ẏ where the solutions of X = 0 comprise the

“critical manifold” close to which the flow in phase space is slow (the “slow manifold”). Similarly,

✏ = 1 corresponds to a limit where there is no separation of time scales, with a crossover at

intermediate values of ✏.
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Originally introduced in 1927, the van der Pol equation, ẍ� µ(1� x2
)ẋ+ x = 0, is a

well-studied example of a second-order, nonlinear system with multiple time scales in its

solution. Using the Liénard transformation y = x� x3/3� ẋ/µ, and redefining time t ! tµ,

the equation can be written as a two dimensional system [38, 39] given by:

µ�2ẋ = x� x

3

3 � y,

ẏ = x,
(2.2)

which has the same form as (2.1) with ✏ = µ�2. The global attractor of this dynamical system

is a structurally stable limit cycle with two time scales2.

The van der Pol system provides a convenient way to separate time scales by varying µ:

Small values of µ in the van der Pol system correspond to a small separation of time scales.

As evident from the second-order van der Pol equation, the trajectory of x(t) approaches that

of the harmonic oscillator as µ ! 0. At large values of µ, the system shows a separation of

time scales which increases with increasing µ. As shown in fig. 2.1 (b, c), with increasing µ,

the trajectory of x separates into a slow part that lies O(µ�2
) close to the phase space curve

given by ẋ = 0, i.e. the critical manifold y = x� x3/3, and a fast part which connects the two

branches of the slow flow. Likewise, the separation of time scales in y are associated with the

increasing sharpness of the kink in its trajectory.

We view the van der Pol system as one member of a multiparameter family of models

sharing a periodic cycle. The fact that with an increasing separation of time scales the

trajectory spends an increasing amount time on the slow manifold and a decreasing amount of

time on the jumps has important implications for distinguishing one model from another in the

limit of large separation of time scales. With increasing scale separation, one expects that the

2Incidentally, the set of equations (2.2) can also be considered a special case of the FitzHugh-Nagumo model
(See R. FitzHugh. Impulses and Physiological States in theoretical models of nerve propagation Biophys J.,
1(6):445, 1961) introduced three decades later as simplification of the Hodgkin-Huxley equations of neuronal
spikes in the squid giant axons, and is sometimes referred to as the Bonhoeffer-van der Pol model
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Figure 2.1: (a, d) Eigenvalues of the Hessian matrix of the cost of fitting at µ = 1 (left) and µ = 100

(right) for a multi-parameterized van der Pol discussed in section 2.5. (b, c top row) One
period of time series x(⌧ ) (dotted line), and y(⌧ ) (solid line), for 0 < ⌧ < 1, are shown for
µ = 1 and µ = 100 as function of time along with schematic error bars for the data-fitting
of the trajectory of variable y. (b, c bottom row) The orbit in xy plane (solid line) and the
critical manifold (dashed line) As µ ! 1, the orbit collapses onto the critical manifold
with the trajectory spending most of its time on the slow manifold and vanishingly short
on the jumps.

cost of fitting (the sum of squared-residuals) will be decreasingly sensitive to changes in the

jumps of the trajectory as they get progressively shorter in duration.

2.4 SLOPPINESS IN NONLINEAR FITS

In this section, we discuss the concepts of sloppiness and structural susceptibility in more

detail with examples as a prelude to the calculations. For time series z(t, a), a least-squares

fit to data d
i

minimizes a cost C =

1
2

P
i

(z(t
i

, a)� d
i

)

2/�2
i

in the space of system parameters
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which are collectively denoted as a. The discovery of sloppiness is essentially that the

eigenvalues of the Hessian of the cost with respect to parameters, H
↵�

= @2C/@a
↵

@a
�

, at

the best fit span many orders of magnitude. The larger and smaller eigenvalues correspond to

stiffer and sloppier directions respectively. For concreteness, consider a time series of a multi

parameter model, such as the one denoted by y(⌧) in fig. 2.1(b, top row). The error bars

schematically show the least-squares fit of y(⌧) and the sidebar (fig. 2.1(a)) shows the

eigenvalues of the corresponding Hessian matrix. Note the broad range of eigenvalues

(⇠ 10

11, corresponding to a factor of almost a million in parameter range)— a feature that

turns out to be typical in nonlinear fits.

Another vivid example of sloppiness in nonlinear models is provided by the well-established

formalism behind the characterization of the sensitivities of initial conditions using Lyapunov

exponents [40]. Consider dz/dt = f(z) as a model whose parameters are the initial conditions

a
↵

= z
↵

(0) and whose predictions are the final positions z
i

(t) at time t. At the best fit,

H
↵�

= (JTJ)
↵�

where J
i↵

= @z
i

(t)/@z
↵

(0) is the Jacobian of the sensitivities to perturbations

in the initial conditions. The Lyapunov exponents, which are defined to be the eigenvalues `
n

of L = lim

t!1 1/(2t) log(JTJ), utilize the same Hessian we would use in calculating the

sloppy model eigenvalues �
n

= exp(2t`
n

). The typical roughly equal spacing of Lyapunov

exponents naturally explains both the typical exponentially broad range of sloppy model

exponents and the associated roughly equal spacing of log(�
n

) for a model with initial

conditions as parameters.

Instead of the sensitivities with respect to the initial conditions or other intrinsic parameters,

we focus here on the sensitivity of the dynamics to changes in the dynamical evolution laws.

Therefore, for the remainder of this paper we will be interested in a cost function that measures

the square of the distance between two time series for the system dz/dt = f(z) + a · g(z)—
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one with perturbation a, z(t, a), and the other one with no perturbation, z(t, a = 0):

C =

1

2

Z
T

0

||z(t, a)� z(t, 0)||2 dt (2.3)

with the perturbing terms g
i

(z) giving a power series in the components of z. Further in the

manuscript, we will use this form of the cost to compute the susceptibility of the van der Pol

system and show how sloppiness is enhanced by increasing separation of time scales in the

van der Pol equations. This is in essence captured by fig. 2.1(a & d) where we show that an

increase in the van der Pol parameter µ from 1 to 100 produces roughly a million-fold increase

in the spread of eigenvalues.

2.5 SUSCEPTIBILITY OF VAN DER POL SYSTEM

We perturb the van der Pol system in (2.2) by adding a series of additional terms. There

is a long tradition in dynamical systems of studying equations of motion of polynomial

form [40, 41]; indeed, the theory of normal forms [41, 42] suggests that a broad range of

dynamical systems near bifurcations can be generically mapped into a polynomial form by a

nonlinear but smooth change of variables. Adding extra polynomial terms can be used to

‘unfold’ the qualitative behavior near bifurcations [42]. Here we focus on quantitative changes

far from bifurcations. In choosing our perturbations, we must cut off the polynomials at some

order. There are two ways in which we specialize our general susceptibility analysis to the two

time scale, periodic limit cycle of the van der Pol system. First, we choose the family of

perturbations of order 3N as follows:

µ�2ẋ = x� x

3

3 � y +
P

m+nN

a
m,n

(x� x

3

3 � y)mxn

ẏ = x.

This choice has two noteworthy features— (a) We have grouped the polynomial perturbations

so that, for m 6= 0 they vanish on the critical manifold, y = x� x3/3. That is, the parameters
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a
m,n

with m 6= 0 do not significantly affect the dynamics on the slow manifold; we call these

the “fast parameters” and correspondingly the a0,n are “slow parameters”. The parameter a1,0

duplicates the effect of µ and thus we omit it. Surely, the eigenvalue spectrum of the general

polynomial expansion, a
m,n

xmyn, behaves qualitatively similarly to the one presented here

but our parametrization greatly simplifies the analysis of the eigenvector perturbations.

(b) We only perturb the ẋ equation. Our choice corresponds to a general expansion of a

second-order equation, with the acceleration ÿ = ẋ written as a polynomial in the position y

and velocity ẏ = x. Perturbing both equations produces similar behavior.

Second, we modified the cost to focus on the limit cycle of the van der Pol system in two

ways— (a) by rescaling all trajectories in our analysis so that they have the same unit period,

and (b) by changing the initial condition3 so that the perturbed orbit and the unperturbed orbit

both start at y0 = (x0, y0) with y0 = 0. When we correct the period T by �T , initial conditions

y0 by �y0, and do an overall rescaling of the time variable t ! ⌧T , the cost functional for the

time series of y(⌧) at each µ takes the following form:

C(µ) =
1

2

Z 1

0

[y(⌧, a + �a, y0 + �y0, T + �T )� y(⌧, a, y0, T )]
2
d⌧ (2.4)

In principle, changes in both time series, x(⌧) and y(⌧) could be incorporated in the cost

function, but we get qualitatively similar results by keeping either or both variables. Choosing

to measure changes only in y(⌧ ) corresponds again to studying the second-order equation for

ÿ as an expansion in y and ẏ.

The susceptibilities are still given by the Hessian matrix at the best fit (a = 0):

H(µ)
↵�

=

@2C(µ)

@a
↵

@a
�

(2.5)

3Perturbations distort the dynamics so that the attractor and its period change. We addressed these issues by
setting the periods to unity, and by moving the initial conditions to the new attractor to remove any transients.
Alternatively, if we fit data over many periods without making the said changes, the parameter combinations
determining the period and phase would become stiff modes in our dynamics.
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Figure 2.2: Eigenvalues of Hessian matrix are shown here as a function of µ. The range 1  µ  100

corresponds to a ratio of time scales 1  ✏  10000. The five largest eigenvalues (solid
lines) correspond to stiff directions in the parameter space: these directions perturb the
slow manifold. The remainder (dashed lines) affect the transient part of the trajectory
which becomes smaller with an increasing separation of time scales and hence these
directions are decreasingly relevant.

which can be written out more completely as:

H(µ)
↵�

=

Z 1

0

✓
@y

@a
↵

+

@y

@y0

@y0

@a
↵

+

@y

@T

@T

@a
↵

◆
⇥
✓

@y

@a
�

+

@y

@y0

@y0

@a
�

+

@y

@T

@T

@a
�

◆
d⌧

Here, each of the two terms in the integral is to be interpreted as a Jacobian matrix, a

mapping from the finite dimensional parameter space to the infinite dimensional data space:

J
⌧↵

=

@y(⌧)

@a
↵

+

@y(⌧)

@y0

@y0

@a
↵

+

@y(⌧)

@T

@T

@a
↵

(2.6)

The sensitivity trajectories in the Jacobian, @y/@a
↵

, @y/@y0, and @y/@T , were computed

using the open source SloppyCell package [43, 44]. The expressions for the time invariant

quantities, @y0/@a↵ and @T/@a
↵

, were found by enforcing periodicity of the perturbed time

series denoted by y(⌧) ⌘ (x(⌧), y(⌧)) as follows:

y(⌧ = 0, a + �a, y0 + �y0, T + �T ) = y(⌧ = 1, a + �a, y0 + �y0, T + �T ),
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Taylor expansion of both sides of the previous equation leads to a vector equation:

�y0 =
@y
@T

����
⌧=1

�T +

@y
@a

����
⌧=1

�a +

@y
@y0

����
⌧=1

�y0,

from which both constants can be computed following the convention that the component

denoting the change in initial condition of y(⌧) in �y0 is set to zero. Now with the Jacobian

calculated, the Hessian at best fit is simply H = JTJ .

Stiff Sloppy Stiff Sloppy Stiff Sloppy 
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S
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w

 

Figure 2.3: Hessian eigenvectors are shown for µ = 1, 10, and 100. Each colored small square
shows the magnitude of an eigenvector component (the scale bar shown on the right).
Eigenvectors for each µ are sorted so that the stiffer ones appear on the left; individual
components are sorted so that “slow parameters” appear on the top. Note that with
increasing µ, the stiff and sloppy eigenvectors separate by parameters: The stiff
eigenvectors only have projections along the slow parameters which perturb the slow
manifold, whereas the sloppy directions have projections along the fast parameters which
mainly perturb the jumps.

2.5.1 EIGENVALUES AND EIGENVECTORS

We computed the Hessian matrix given by the previous equation at multiple values of µ for

N = 4 where there are 14 parameters. The spread of eigenvalues (fig. 2.2) increases as a

function of µ confirming that sloppiness increases with an increasing separation of time scales.

21



Not surprisingly5 the eigenvalues for µ = 1 already span 11 orders of magnitude, while for

µ = 100, we observe that the stiffest eigenvalue is 18 orders of magnitude larger than the

smallest one— the spread increases by 10

7 when µ increases to 100.

Taken together with the eigenvectors shown in fig. 2.3, some interesting facts come to

light: Fig. 2.2 shows that with increasing µ, the eigenvalues separate into two clusters of

closely related decay exponents. The largest N eigenvalues approach constants. The other

eigenvalues decay with power laws: two modes with exponents between �2 and �3 and the

remaining with exponents between �5 and �6. Similarly, fig. 2.3 shows that the eigenvectors

also separate into two groups with increasing µ: The stiffest directions are linear combinations

of the slow parameters whereas the sloppy directions are comprised of other parameters as

expected.

We can understand the effect of perturbations in parameter combinations given by the

eigenvectors (called eigenparameters) ˆe
k

more clearly by observing their behavior in the data

space. The Jacobian transformation of (2.6) projects the eigenvectors to the data space:

�y
k

= J · ˆe
k

/
p
�
k

where �
k

corresponds to the kth largest eigenvalue. Defined this way,

these data space vectors, called eigenpredictions [4], �y
k

, are also orthonormal. Alternatively,

the eigenpredictions are the left singular vectors in the singular value decomposition of the

Jacobian (i.e. they are the columns of the unitary matrix U in J = U⌃V T [45]). As shown in

fig. 2.4 for µ = 1, 10 & 100 (top three rows), we learn from the eigenpredictions that the

stiff modes affect behavior both along the slow manifold and at the jumps. Moreover with

increasing µ, as the eigenvalues associated with the stiff directions approach constants

(fig. 2.2), so do the stiff eigenpredictions (fig. 2.4 rows 2, 3 columns (a) and (b)). The sloppy

modes on the other hand, affect the dynamics on the jumps only. The maximum amplitudes of

the (normalized) sloppiest eigenpredictions appears to increase roughly proportional to µ

5We understand this as sloppiness as arising due to the generalized interpolation argument [4].
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(corresponding to the jump duration of ⇠ µ�2). In the limit, these become �-functions and

derivatives concentrated at the jumps. Fig. 2.4 (bottom row) also shows the limit cycles

(eigencycles) with eigenparameter perturbations as phase space trajectories (x, y + ⌘ �y
k

) for

small ⌘.

2.6 DISCUSSION

In this paper, we have introduced a formalism we call “structural susceptibility” for analyzing

the quantitative dependence of dynamical systems to perturbations of the equations of

motion. It is a generalization of the Lyapunov exponents governing the dependence on initial

conditions. It is in the spirit of ‘unfolding’ methods of bifurcation theory. And finally, it exposes

the ubiquitous presence of broad range of sloppy eigendirections in parameter space— largely

unimportant to the dynamics. We used this method to study the role of time scale separation

in enhancing the sloppiness of the susceptibility spectrum in the particular case of the van der

Pol oscillator.

By extending the framework of our sloppy model analysis to systems where changes in

evolution laws are to be studied, our method offers a simple way to calculate the effects of

broad classes of perturbations. By studying the structural susceptibility of a dynamical system

with two time scales, the analysis presented here showed that sloppiness of nonlinear

systems is enhanced by separation of time scales in the dynamics. With increasing separation

of time scales in the van der Pol oscillator, the trajectory spends an increasing amount of time

on the slow manifold and a vanishingly small amount of time in the transition region. The

cost of perturbations is integrated over time and therefore we are unsurprised that the

perturbations that change the slow manifold will accrue the most cost and therefore manifest

as stiff modes of the Hessian matrix. The remaining directions are sloppy as they only affect
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the behavior at the jumps or the fast pieces. These perturbations manifest as �-functions and

their derivatives in the limit of µ ! 1, significantly affecting the phase-space trajectory,

but over only the fast times asymptotically ignored in the least-squares cost. It remains a

challenge to connect separation of time scales to parameter sensitivity in more complicated

systems, but the analogy of the van der Pol system’s behavior with other nonlinear physical

systems of interest is clear.

Many important dynamical systems have multiple time scales in their solutions: examples

include models in neuroscience (such as Hodgkin-Huxley model), systems biology or chemical

reaction systems (such as protein network models), and in engineering (such as models of

combustion, lasers, locomotion, etc.). Our analysis suggests that any system with multiple

time scales should become sloppier as the scales separate for the same reasons as we found

in the van der Pol: Some parameter combinations will only affect the fast dynamics, and lead

to sloppy modes. Perturbations which affect the slow dynamics will presumably accrue more

cost and be stiff.

More broadly, the sloppiness exposed by our structural susceptibility analysis has clear

implications for attempting to reconstruct the equations of motion from experimental data [46]

because parameter identification along any sloppy eigendirection will be relatively poorly

determined by the dynamics. This discovery has already influenced work on experimental

design optimization: estimating parameters is challenging [33, 47], but extracting predictions

without constraining parameters is straightforward [31]. We further anticipate that the concept

of structural susceptibility will be useful for studying systems with chaos, bifurcations and

phase transitions; quantifying the unfoldings of these systems may also be useful for gaining a

deeper understanding of the phenomena they model.
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Figure 2.4: Top three rows: Eigenpredictions �y

k

for k = 0, 3, 6, 9, 12 at µ = 1, 10 & 100 are
shown in solid red lines for stiff modes and dashed green for sloppy modes. These
curves show the response of perturbations if the parameters are changed infinitesimally
along the Hessian eigenvectors: A parameter change of norm ✏ along eigendirection n

will change the trajectories by �

n

✏ times the eigenpredicton. Dotted gray lines show
unperturbed van der Pol solution for comparison (y scale on the right hand side). As the
time scales separate, the amplitudes of the sloppiest eigenpredictions increase (roughly
in proportion to µ) getting increasingly concentrated at the jumps. Bottom row shows the
eigencycles for µ = 100 in solid red lines and green dashed lines corresponding to the
perturbations in row 3 (i.e. the new limit cycle for a perturbation of strength ✏ ⇠ 1/�

n

.
These curves show how the van der Pol orbit changes with perturbations along the
Hessian eigenvectors. Both the stiff and the sloppy modes change the orbit at the jumps
(occurring at the extrema in the dashed lines); the stiff modes also change behavior at
the slow manifold, whereas the sloppy modes only affect the jumps.
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CHAPTER 3
CHAPTER 3: PARAMETER SPACE COMPRESSION YIELDS

EMERGENT THEORIES OF PHYSICS

3.1 ABSTRACT

The microscopically complicated real world exhibits behavior that is comprehensible, often

yielding to simple yet quantitatively accurate descriptions. Predictions are possible despite

large uncertainties in microscopic parameters, in physics and in multiparameter models in

other areas of science. This chapter shows a connection between the two through an

examination of parameter sensitivities in a discrete diffusion model and a generalized Ising

model of ferromagnetism. In both cases, the emergence of an effective theory for long-scale

observables is linked to a compression of the parameter space quantified by the eigenvalues

of the Fisher Information Matrix. Strikingly similar compressions appear ubiquitously in models

taken from diverse areas of science, suggesting that the parameter space structure underlying

effective continuum and universal theories in physics also permits predictive modeling more

generally.

0The work described in this chapter was published [22] with the citation: B. B. Machta, R. Chachra, M. K.
Transtrum, J. P. Sethna. Parameter Space Compression Underlies Emergent Theories and Predictive Models
Science, 342, 604-607 (2013). A preliminary version of this chapter also appears in Machta’s dissertation [48].
The present author significantly contributed to the text and figures as seen in this chapter sections 3.1–3.6, in
addition to assisting Machta with computational implementation and analyses relevant to the Ising model.
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3.2 INTRODUCTION

The success of physics [49] and the comprehensibility of nature is owed to the hierarchical

character of scientific theories [50]. These theories of our physical world, ranging in

scales from the sub-atomic to the astronomical, model natural phenomena as if physics at

macroscopic length scales were almost independent of the underlying, shorter length scale

details. For example, understanding string theory or some other fundamental high energy

theory is not necessary for quantitatively modeling the behavior of superconductors that

operate in a lower energy regime. The fact that many lower level theories in physics can be

systematically coarsened (renormalized) into macroscopic effective models, establishes and

quantifies their hierarchical character. Moreover, a similar hierarchy of theories is also at play

in multiparameter models in other areas of science [46, 51–56]. Disparate as they may seem,

the key finding discussed in this chapter is that the hierarchy of theories in physics relies on

the same parameter space compression that is ubiquitous in general multiparameter models.

This suggests that even where model reduction cannot be systemically generated, a smaller

effective theory could still capture most of the observable behavior.

Recent studies of nonlinear, multiparameter models drawn from disparate areas in

science have shown that predictions from these models largely depend only on a few ‘stiff’

combinations of parameters [1, 8, 57]. This recurring characteristic (termed ‘sloppiness’)

appears to be an inherent property of these models and may be a manifestation of an

underlying universality. Indeed, many of the practical and philosophical implications of

sloppiness are identical to those of the renormalization group (RG) and continuum limit

methods of statistical physics: models show weak dependance of macroscopic observables

on microscopic details. They thus have a smaller effective model dimensionality than their

microscopic parameter space. To clarify their connection to sloppiness, we develop and
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apply an information theory based analysis to models where the continuum limit and the

renormalization group already give a quantitative explanation for the emergence of effective

models—a discrete model of diffusion and an Ising model of the ferromagnetic phase

transition. In both cases, our results show that at long time and length scales there is a

similar compression of the microscopic parameter space, where sensitive, or ‘stiff’ directions

correspond to the relevant macroscopic parameters (such as the diffusion constant in the

hopping model).

3.3 THE FISHER INFORMATION

The sensitivity of model predictions to changes in parameters is quantified by the Fisher

Information Matrix (FIM)1. The FIM forms a metric that converts parameter space distance into

a unique measure of distinguishability between a model with parameters ✓µ (for 1  µ  N )

and a nearby model with parameters ✓µ + �✓µ [58–60]). This divergence is given by

ds2 = g
µ⌫

�✓µ�✓⌫ where g
µ⌫

is the FIM defined by

g
µ⌫

= �
X

~x

P
✓

(~x)
@2

logP
✓

(~x)

@✓µ@✓⌫
. (3.1)

Here, P
✓

(~x) is the probability that a (stochastic) model with parameters ✓µ would produce

observables ~x. In the context of nonlinear least squares, g is the Hessian of �2, the sum of

squares of residuals of the data fit (derivation is shown in section A.1.1). Distance in this

metric space is a fundamental measure of distinguishability in stochastic systems. Sorted by

decreasing eigenvalues, eigenvectors of g describe progressively less important linear

combinations of parameters that govern system behavior. Previously, it was shown that in

nonlinear least squares models, the eigenvalues form a roughly geometrical sequence,

1A simple derivation is shown in section A.1
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reaching extremely small values in many models (fig. 3.1). Thus, the eigenvalues of the FIM

quantify parameter space compression: few ‘stiff’ eigenvectors in each model point along

directions where observables are sensitive to changes in parameters, while progressively

sloppier directions make little difference for observables. These sloppy parameters cannot be

inferred from data, and conversely, their exact values do not need to be known to quantitatively

understand system behavior [8]. To see how this relates to continuum models in physics, we

now turn to a ‘microscopic’ model of stochastic motion from which the diffusion equation

emerges.

3.4 DISCRETE DIFFUSION

The diffusion equation is the canonical example of a continuum limit. It governs behavior

whenever small particles undergo stochastic motion. Given translation invariance in space

and time, the complex microscopic collisions are subsumed into a dynamical equation for the

particle density, ⇢(r, ⌧ ), with only three coefficients: @
⌧

⇢(r, ⌧ ) = Dr2⇢� ~v ·r⇢+R⇢. Here

D is the diffusion constant, ~v is the drift, and R is the particle creation rate. Microscopic

parameters describing the particles and their environment enter into this continuum description

only through their effects on these three coefficients. To see this, consider a microscopic

model of stochastic motion on a discrete one-dimensional lattice of sites, with 2N + 1

parameters ✓µ, for �N  µ  N which describe the probability that in a discrete time step a

particle will hop from site j to site j + µ (fig. 3.2 inset). At the initial time, all particles are at

the origin, ⇢0(j) = �
j,0. The observables, ~x ⌘ ⇢

⌧

(j), are the densities of particles at some

later time ⌧ . After a single time step the distribution of particles is given by ⇢1(j) = ✓j . This

distribution depends independently on all of its parameters, thus the FIM is the identity,

g
µ⌫

= �
µ⌫

(the calculation shown in section 3.8.1). After a single time step, there is no
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Figure 3.1: Normalized eigenvalues of the Fisher Information Matrix (FIM) of various models.
The diffusion and Ising models are explored here. A radioactive decay model and a
neural network are taken from [4]. The systems biology model is a differential equation
model of a MAP kinase cascade taken from [5] and the adjoining band marked as
“Random” shows a typical eigenvalue spread from a Wishart random matrix of the
same size. The ‘Relaxation oscillation’ model is a modified Van der Pol system taken
from [6]. Eigenvalues of the genetic network describing ‘Circadian rhythm’ model [7] are
calculated in [1]. ‘Variational wave function’ eigenvalues are taken from Quantum Monte
Carlo simulations as Jastrow parameters are varied [8]. ‘Particle accelerator’ is a model
of beam shape simulated using the Tool for Accelerator Optics [9]. In all models, the
eigenvalues of the FIM are roughly geometrically distributed, with each successive
direction significantly less important for system behavior (only the first 8 decades
are shown). This means that inferring the parameter combination whose eigenvalue
is smallest shown would require ⇠ 10

8 times more data than the stiffest parameter
combination. Conversely, the least important parameter combination is

p
10

8 times less
important for understanding system behavior.

parameter space compression—each parameter is measured independently. When particles

take several time steps before their positions are observed, some parameter combinations

affect observable behavior more sensitively than others. At late times, the parameter
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combination that controls the particle creation rate, R, becomes the most sensitive as the

mean particle number changes exponentially with time. Further, combinations corresponding

to the drift ~v, and diffusion constant D, then emerge as the next most sensitive directions.

Finally, eigenvectors describing the skew, kurtosis and higher moments of the final distribution

become progressively less important, each with a higher negative power of time ⌧ (fig. 3.2,

section 3.8.1). This gives an information theoretic explanation for the wide applicability of the

diffusion equation. Any system with stochastic motion and conservation of particle number will

be dominated by the drift, ~v, if it is present (for example, particles falling through honey under

gravity), and by diffusion if the drift is constrained to be zero. Since the diffusion constant

cannot be removed for stochastic systems, there is never a need for higher terms to enter into

a minimalist continuum description. These results quantify a widely held intuition: one cannot

infer microscopic parameters, such as the bond angle of a water molecule, from a diffusion

measurement, and conversely it is unnecessary to have such knowledge to quantitatively

understand the long length and time behavior of diffusing particles in water.

3.5 ISING MODEL

Continuum models like the diffusion equation arise when fluctuations are only large on the

micro scale. Their success can be said to rely on the largeness and slowness of observables

when compared with the natural scale of fluctuations. However, RG methods clarify that

system behavior can be universal even when fluctuations are large on all scales, as occurs

near critical points and for quantum field theories. The Ising model is the simplest model

which exhibits these nontrivial fluctuations. Near its critical point, the Ising model predicts

fractal domains whose statistics are universal. That is, it not only describes magnetic

fluctuations in ferromagnets, but also the density fluctuations near a liquid-gas transition and
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Figure 3.2: FIM eigenvalues of a model of stochastic motion on a 1-D lattice. The seven
parameters describe probabilities of transitioning to nearby sites (bottom inset).
Observations are taken after a given number of time steps for the case where all
parameters take the value a

µ

= 1/7. Top row shows the resulting densities plotted at
times ⌧ = 1, 3, 5, 7. Bottom plot shows the eigenvalues of the FIM versus number of
steps. After a single time step, the FIM is the identity, but as time progresses, the
spectrum of the FIM spreads over many orders of magnitude. The first eigenvector
measures deviations in the net particle creation rate R from 0, the second measures a
net drift V in the density, and the third corresponds to parameter combinations that
change the diffusion constant D. Further eigenvectors describe parameter combinations
that do not affect these macroscopic parameters, but instead measure the skew (green),
kurtosis (purple), and higher moments of the resulting density (orange and brown).
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composition fluctuations near a liquid-liquid miscibility transition [62, 63]. Consider a two

dimensional square lattice Ising model where at every site a ‘spin’ takes a value of s
i,j

= ±1.

Observables are spin configurations (~x = {s
i,j

}) or subsets of spin configurations (~xn, as

defined below). The Ising model assigns to each spin configuration a probability given by its

Boltzmann weight, P
✓

(~x) = e�H✓(~x)/Z and the model is parametrized through its Hamiltonian

H
✓

(~x) = ✓µ�
µ

(~x). Parameters ✓↵� describe the coupling between spins and their neighbors

at coordinates (↵, �) away, so that �
↵�

(~x) =
P

i,j

s
i,j

s
i+↵,j+�

, while ✓0 is the external field

multiplying �0(~x) =
P

i,j

s
i,j

(see inset of fig. 3.3). We examine the vicinity of the nearest

neighbor Ising model in zero field, where ✓01 = ✓10 = �J and ✓ = 0 otherwise.

At the microscopic level, all spins are observable and the Ising FIM (derived in section

3.8.2) is a sum of 2 and 4-spin correlation functions that can be readily calculated using

Monte-Carlo techniques [64]. Near the critical point, it has two ‘relevant’ eigenvectors

with eigenvalues that diverge like the specific heat and magnetic susceptibility [65, 66].

These two large eigenvalues have no analog in the diffusion equation, and reflect the

presence of fluctuations at scales much larger than the microscopic lattice constant. The

remaining eigenvalues all take a characteristic scale given by the system size. The non-sloppy

clustering of the remaining eigenvalues is reminiscent of the spectrum seen in the diffusion

equation when viewed at its microscopic (time) scale. When observables are microscopic spin

configurations, the nearest neighbor Ising model is a poor description of a binary liquid, and

even of a ferromagnet.

To coarsen the Ising model (section 3.8.4), the observables are restricted to a subset of

lattice sites chosen via checkerboard decimation procedure (fig. 3.3 top row insets). The FIM

of equation A.5 is now measured using as our observables only those sites in a sub-lattice

decimated by a factor 2n, ~xn

= {s
i,j

}{i,j}2n. For example, after 1 level of decimation, this

corresponds to the black sites on the checkerboard, while after 2 steps, only sites {i, j} with
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even i and j remain. Importantly, the distribution is still drawn from the ensemble defined by

the original Hamiltonian defined on the full lattice. The calculation is implemented using

compatible Monte-Carlo [67].

The results from Monte-Carlo2 are presented for a 64⇥ 64 lattice at its critical point in

fig. 3.3. The irrelevant and marginal eigenvalues of the metric continue to behave much as the

eigenvalues of the metric in the diffusion equation, becoming progressively less important

under coarsening with characteristic eigenvalues. However, the large eigenvalues, dominated

by singular corrections, do not become smaller under coarsening; they are measured by their

collective effects on the large scale behavior, which is primarily informed by large distance

correlations. Later, we use RG analysis to explain the scaling of the FIM eigenvalues with

the coarse-graining level. The analysis clarifies that ‘relevant’ directions in the RG are

exactly those whose FIM eigenvalues do not contract on coarsening. They control the

large-wavelength fluctuations of the model and dominate the behavior provided that the

correlation length of fluctuations is larger than the observation scale.

3.6 DISCUSSION

We have seen that neither the hopping model nor the Ising model are sloppy at their

microscopic scales. It is only upon coarsening the observables, either by allowing several time

steps to pass, or by only observing a subset of lattice sites, that a typical sloppy spectrum of

parameter combinations emerges. Correspondingly, multiparameter models such as in

systems biology and other areas of science are sloppy only when fit to experiments that probe

collective behavior— if experiments are designed to measure one parameter at a time, no

model compression can be expected [30, 33].

2Simulation details are discussed in 3.8.6.
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Figure 3.3: FIM eigenvalues of an Ising model of ferromagnetism. See text for definition;
13 parameters describe nearest and nearby neighbor couplings (bottom inset) and
a magnetic field. Observables are spin configurations of all spins on a sub-lattice
(dark sites in the insets of the top panel). The top panel shows one particular spin
configuration generated by the model, suitably blurred for step > 0 to the average
spin conditioned on the observed sub-lattice values. Some information about the
configuration, such as the typical size of fluctuations, is preserved under this procedure,
whereas other information like the nearest neighbor correlation amplitude is lost. The two
largest eigenvalues, whose eigenvectors measure reduced temperature t and the applied
field h do not decay substantially under coarsening. Further FIM eigenvalues shrink by a
factor of

p
2

�2�yi , where y

i

is the i

th RG exponent (section 3.8.3). This shrinkage
quantifies the information lost in each coarsening step.
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In the models examined here, there is a clear distinction between the short time or length

scale of the microscopic theory, and the long time or length scale of observables. As we

showed, sloppiness in these systems can be precisely traced to the ratio of these two

scales—an important small variable. On the other hand, in many other areas of science such

a distinction of scales cannot be made. However, the striking similarity in the parameter

sensitivities to those in physics lends perspective to the surprising power of mathematical

modeling despite parameter uncertainty.
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3.8 SUPPLEMENTARY INFORMATION

3.8.1 FISHER INFORMATION FOR DISCRETE DIFFUSIVE HOPPING

To calculate the density of particles at position j and time ⌧ , ⇢
⌧

(j), it is useful to introduce the

Fourier transform of the hopping rates, as well as the Fourier transform of the particle density
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at time ⌧

˜✓k =
NP

µ=�N

e�ikµ✓µ,

⇢̃k
⌧

=

1P
j=�1

e�ikj⇢
⌧

(j),

⇢
⌧

(j) = 1
2⇡

⇡R
�⇡

dkeikj ⇢̃k
⌧

.

(3.2)

In a time step the density distribution is convolved by the hopping rates. In Fourier space, this

is written as3

⇢̃k
⌧

=

˜✓k⇢̃k
⌧�1. (3.3)

Initially, all particles are at the origin ⇢0(j) = �
j,0, hence ⇢̃k0 ⌘ 1 and

⇢̃k
⌧

= (

˜✓k)⌧ ,

⇢
⌧

(j) =

1
2⇡

⇡R
�⇡

dkeikj(˜✓k)⌧ .
(3.4)

The Jacobian and metric at time ⌧ can now be written

J⌧

jµ

= @
µ

⇢
⌧

(j) = ⌧

2⇡

⇡R
�⇡

dkeik(j�µ)
(

˜✓k)⌧�1,

g⌧
µ⌫

=

⌧

2

2⇡

⇡R
�⇡

dkeik(µ�⌫)
(

˜✓k)⌧�1
(

˜✓�k

)

⌧�1.
(3.5)

Note that the metric now depends on ✓. The preceding formulae were used to calculate the

sloppy spectrum of the fig. 3.2. After many steps, the three stiffest eigendirections of g
µ⌫

become the three terms in the diffusion equation as discussed next.

The late time behavior of g⌧
µ⌫

is dominated by small k values appearing in the integrand of

equation 3.5. For small values of k

˜✓k = (1 +R)(1� ikV � k

2

2 (D + V 2
)) +O(k3

)

= (1 +R) exp(�ikV �D k

2

2 ) +O(k3
),

R =

P
µ

✓µ � 1

V =

1
1+R

P
µ

µ✓µ,

D =

1
1+R

P
µ

µ2✓µ � V 2.

(3.6)

3This is due to the convolution theorem. For example, see [61]
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In the preceding, note that the first two equations are identical up to second order in k, R is

the particle creation rate, V is the drift, and D is the diffusion constant. For the case where

the drift V = 0 and particle creation rate R = 0, at late times

g⌧
µ⌫

⇡ ⌧

2

2⇡

1R
�1

dkeik(µ�⌫)e�D⌧k

2

⇠ ⌧

2

(D⌧)1/2
e�(µ�⌫)2/4D⌧ .

(3.7)

Expanding this in powers of the small parameter (µ� ⌫)2/D⌧ gives

g⌧
µ⌫

⇠ ⌧ 2((D⌧)�1/2 � (D⌧)�3/2
(µ� ⌫)2/4 + · · · )

= ⌧ 2
1P
n=0

(�1)n(µ�⌫)2n

n!(4D⌧)n+1/2 .
(3.8)

Each term in the series contributes a single new non-zero eigenvalue which scales like

�
n

⇠ ⌧ 2
✓
D⌧

N2

◆�n�1/2

, n � 0. (3.9)

The corresponding eigenvectors are best understood by considering their projection onto

the observables and are proportional to the left singular vectors of J as v
L,n

= (1/�
n

)J
iµ

vµ
n

.

These are exactly the Hermite polynomials multiplied by a Gaussian with width 2� =

p
D⌧ .

Thus at late times, when the Gaussian goes to a constant in the range �N to N , the stiffest

eigendirection is proportional to the non-conservation of particle number R =

P
µ

✓µ � 1, the

second measures drift V =

1
1+R

P
µ

µ✓µ, and next is the diffusion constant, D. The next

terms are less familiar; those past n = 2 never appear in a continuum description, because

they are always harder to observe than the diffusion constant by a factor of the ratio of the

observation scale (
p
D⌧ ) to the microscopic scale (N ) raised to a negative integer power.

It is not possible for the diffusion constant, as defined here, to be zero while any higher

cumulants are non-zero, explaining why though drift and the diffusion constant both appear in

continuum limits, the physical parameter that describes the third cumulant does not. The next

eigendirection measures the skew of the resulting density distribution, while the next one

measures the distribution’s kurtosis, and so on. It is worth noting that careful observation of a
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particular ✓µ, somewhat analogous to knowing the bond-angle of a water molecule, would give

very little insight on the relevant observables. The exact eigenvalues, measured at steps

⌧ = 1–7 are plotted in fig. 3.2 for an N = 3 (seven parameter) model where ✓µ = 1/7 for all µ.

3.8.2 MEASURING THE ISING METRIC

The 2d square lattice Ising model discussed here has lattice sites 1 < i, j < L, and degrees

of freedom s
i,j

taking the values of ±1. The probability of observing a particular configuration

on the whole lattice (denoted by {s
i,j

}) is defined by a Hamiltonian H {s
i,j

} that assigns each

configuration of spins an energy (equation A.10). The usual nearest neighbor Ising model has

two parameters: a coupling strength J , and a magnetic field h defined through the equation

H({s
i,j

}) = J
X

i,j

(s
ij

s
ij+1 + s

ij

s
i+1j) + h

X

i,j

s
ij

. (3.10)

The Ising model discussed here generalizes this to a larger dimensional space of possible

models by including in its Hamiltonian the magnetic field ✓0, the usual nearest neighbor

coupling term, and 12 other nearby couplings parameterized by ✓↵�. Vertical and horizontal

couplings are also allowed to be different. In the form of equation A.10

H(x) =
P
↵,�

✓↵��
↵�

({s
i,j

}) + ✓h�
h

({s
i,j

}) ,

�

↵�

({s
i,j

}) =
P
i,j

s
ij

s
i+↵j+�

,

�

h

({s
i,j

}) =
P
i,j

s
ij

.

(3.11)

As discussed next, the FIM of this model is calculated along the line through parameter space

that describes the usual Ising model (✓01 = ✓10 = J and ✓↵� = 0 otherwise) with no magnetic

field (✓h = 0).

From equation A.11, the metric for the generalized Ising model, evaluated at the

nearest-neighbor standard zero-field point, can be written in terms of expectation values of
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observables as follows (except where necessary, the indices ↵� and h are condensed into a

single µ)

g
µ⌫

= @
µ

@
⌫

log z = h�
µ

�

⌫

i � h�
µ

i h�
⌫

i . (3.12)

Furthermore, given a configuration x = {s
i,j

}, �
µ

(x) is just a particular two point correlation

function (or the total sum of spins for �
h

) 4. The Wolff algorithm [68] was employed to

generate an ensemble of configurations x
p

= {s
i,j

}
p

, for 1 < p < M , for systems with L = 64

to estimate the distribution defined in equation 3.12. (Results were checked against exact

enumeration of all possible states on lattices up to L = 4.) Thus, for an ensemble of M lattice

configurations x
i

g
µ⌫

=

1

M2 �M

MX

p,q=1,p 6=q

�

µ

(x
p

)�

⌫

(x
p

)� �

µ

(x
q

)�

⌫

(x
p

). (3.13)

The results are plotted in fig. 3.4. Away from the critical point in the high temperature

phase (small �J), the results seem somewhat analogous to those found for the diffusion

equation viewed at its microscopic scale. All of the parameter eigendirections that control two

spin couplings (✓↵�) are roughly of similar distinguishability. However, as the critical point is

approached, the system becomes extremely sensitive both to ✓h and to a certain combination

of the ✓↵� parameters. This divergence has been previously shown for the continuum Ising

universality class [66] and for the nearest neighbor Ising model [69]. As discussed in the next

section, these two metric eigenvalues diverge with the scaling of the susceptibility (� ⇠ ⇠7/4,

whose eigenvector is ✓h) and specific heat (C ⇠ log(⇠), whose eigenvector is a combination

of ✓↵� proportional to the gradient of the critical temperature, @T
c

/@✓↵� ). From an information

theoretic point of view, these two parameter combinations seem to become particularly easy

to measure near the critical point because the system’s behavior becomes extremely sensitive

4
�

h

({s
i,j

}) =

P
i,j

s

i,j

is efficiently calculated for a given configuration {s
i,j

}. �

↵�

({s
i,j

}) is less
trivial: one defines the translated lattice s

0
i,j

(↵,�) = s

i+↵,j+�

, in terms of which we write �

↵�

({s
i,j

}) =P
i,j

s

i,j

s

0
i,j

(↵,�).
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to changes in field and temperature. The behavior of these two eigenvalues seems to have no

parallel in the diffusion equation viewed at its microscopic scale.
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Figure 3.4: Eigenvalues of the FIM versus J/J

c

. The enlarged 13 parameter Ising model of size
L = 64 is described in the text. Magnetic field h is taken to be zero. Two eigenvalues
become large near the critical point, each diverging with characteristic exponents
describing the divergence of the susceptibility and specific heat respectively. The other
eigenvalues vary smoothly as the critical point is crossed. Furthermore they take a
characteristic scale determined by the system size and are not widely distributed in log.
(In the phase separated region, �J > �J

c

we use the connected correlation function in
calculating g00. This corresponds to calculating eigenvalues in ‘infinitesimal field’. It
allows calculation of the FIM in the phase but arbitrarily close to the phase boundary at
which there is a net spontaneous magnetization. Without this the FIM would have one
spuriously large eigenvalue, quantifying the large symmetry breaking affect of an
arbitrarily small applied field.)

3.8.3 SCALING ANALYSIS OF THE ISING EIGENVALUE SPECTRUM

Monte Carlo results were also analyzed with renormalization group (RG) techniques focusing

on the critical region, close to the RG fixed point ✓0. After an RG transformation that reduces

lengths by a factor of b, the remaining degrees of freedom are described by an effective theory
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with parameters ✓0 related to the original ones by the relationship ✓0µ � ✓µ0 = T µ

⌫

(✓⌫ � ✓⌫0)

where5 T has left eigenvectors and eigenvalues given by eL
↵,µ

and by↵ . It is convenient to

switch to the so-called scaling variables, u
↵

=

P
µ

eL
↵,µ

✓µ, which have the property that under

a renormalization group transformation

u0
↵

= by↵u
↵

. (3.14)

It is also convenient to separate the free energy into a singular part and an analytic part so that

F (✓) = Af s

(u
↵

(✓)) + Afa

(u
↵

(✓)),

f s

= u
d/2y1
1 U(r0, ..., r↵),

r
↵

= u
↵

/u
y↵/y1
1 .

(3.15)

Here functions f are free energy densities, A is the system size and fa and U are both

analytic functions of their arguments. Notice that by construction the variables r do not

change under an RG transformation: the rescaling of component variables u
↵

and u1 cancel.

The FIM can be similarly divided into two pieces

g
µ⌫

= gs
µ⌫

+ ga
µ⌫

= �A@
µ

@
⌫

f s � A@
µ

@
⌫

fa,

gs
µ⌫

= A
P

↵,�

(

@r↵
@✓

µ

@r�

@✓

⌫ )(
@

@r

↵
@

@r

�U)
= A

P
↵,�

(

@u↵
@✓

µ

@u�

@✓

⌫ )u
�(y↵+y��d)/y1
1 (

@

@r

↵
@

@r

�U)
= A

P
↵,�

(

@u↵
@✓

µ

@u�

@✓

⌫ )(
@

@r

↵
@

@r

�U)⇠y↵+y��d,

ga
µ⌫

= A
P

↵,�

(

@u↵
@✓

µ

@u�

@✓

⌫ )
@

@u↵

@

@u�
fa

(3.16)

where ⇠ is the correlation length, which diverges like u
�1/y1
1 . By using the dimensionless r

variables for analysis of gs
µ⌫

, the singular behavior is isolated and expressed in powers of

⇠. Now fa is by assumption an analytic function at the critical point, and the coordinate

5Note that in this part of the analysis, the parameter vector ✓ is infinite dimensional, representing not only
long-range couplings but also multi-spin interactions and fields.
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changes u
↵

(

~✓) are analytic there, so ga
µ⌫

will have eigenvalues that are all of the same order

of magnitude, given by the area A:

�a

i

⇠ A. (3.17)

The singular behavior of gs
µ⌫

as the correlation length ⇠ ! 1 at the critical point controls its

eigenvalues. As shown in Appendix A, its eigenvalues scale as

�s

i

⇠ A⇠2yi�d. (3.18)

Hence the singular piece will dominate wherever 2y
i

� d � 0. In the 2d Ising model, this is

true for the magnetic field as it becomes the largest eigenvector e0 = ✓h (with y
h

= 15/8)

along with e1 = @
µ

u1 whose RG exponent is y1 = 1 (in the latter case 2y
i

� d = 0 so there is

a logarithmic divergence, as with the Ising model’s specific heat). The remaining eigenvectors

of g
µ⌫

are dominated by analytic contributions. These analytic contributions, just as in the

diffusion equation viewed at its fundamental scale, cause the corresponding eigenvalues to

cluster together at a characteristic scale and not exhibit sloppiness (though not necessarily to

be exactly the identity). This analysis agrees with the Monte Carlo results plotted in fig. 3.4.

3.8.4 MEASURING THE ISING METRIC AFTER COARSENING

The FIM after n steps of coarsening is g
µ⌫

= �h@
µ

@
⌫

log (P (xn

))i where xn

= {s
i,j

}for {i,j} in level n.

The levels are defined as follows: If n is even then {i, j} is in level n iff i/2n/2 and j/2n/2 are

both integers. If n is odd than {i, j} is in level n if and only if {i, j} is in level n� 1 and

(i+ j)/2n/2+1 is an integer6. The mapping to level n from level 0 (giving the configuration of

6The first level is thus a checkerboard, the second has only even sites, the third has a checkerboard of even
sites, etc.
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retained subset of spins) is denoted7 as xn

= Cn

(x). It will be useful to write P (xn

) in terms

of a restricted partition function

P (xn

) =

˜Z(xn

)/Z,

˜Z(xn

) =

P
x

exp(�H(x))�(Cn

(x) = xn

).
(3.19)

Here ˜Z(xn

) is the coarse-grained partition function conditioned on the sub-lattice at level n

taking the value xn, summing over the remaining degrees of freedom. The expectation value

of an operator defined at level 0 over configurations which coarsen to the same configuration

xn will be denoted as

{Q}
x

n =

P
x

Q(x)�(Cn

(x) = xn

) exp(�H(x))

˜Z(xn

)

. (3.20)

˜Z(xn

) can be treated like a partition function in the usual way. In particular, it is possible to

take parameter derivatives of the log of ˜Z(xn

) yielding familiar equations for cumulants

�@
µ

log(

˜Z(xn

)) = {�µ}
x

n

@
µ

@
⌫

log(

˜Z(xn

)) = {�µ

�

⌫}
x

n � {�µ}
x

n {�⌫}
x

n .
(3.21)

The calculation will also use nested brackets wherein an outer triangular bracket refers to

an expectation value over microscopic configurations and inner curly brackets denote an

expectation value in the set of configurations that coarsen to the same xn. Importantly, a

single curly bracket nested in a triangular bracket does not affect expectation values, as every

micro state x appears the same number of times in total. However, the presence of two curly

brackets in the same one does. For example:

h{�µ

�

⌫}
x

ni = h�µ

�

⌫i
h{�µ}

x

n {�⌫}
x

ni 6= h�µ

�

⌫i
(3.22)

7The mapping C

n

(x) here simply discards all of the spins that do not remain at level N , leaving an
L/2

n/2 ⇥ L/2

n/2 square lattice for even N and a rotated ‘diamond’ lattice for odd N . However, this formalism
would also apply to other schemes, such as the commonly used block-spin procedure.
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With these the FIM can be written as

gn
µ⌫

= �@
µ

@
⌫

⌦
log (P (xn

))

↵

= @
µ

@
⌫

log(Z)�
⌦
@
µ

@
⌫

log(

˜Z(Cn

(x)))
↵

= g
µ⌫

�
⌦�

�

µ

�

⌫

 
C

n(x)

↵
+

⌦�
�

µ

 
C

n(x)

�
�

⌫

 
C

n(x)

↵

=

⌦�
�

µ

 
C

n(x)

�
�

⌫

 
C

n(x)

↵
�
⌦�

�

µ

 
C

n(x)

↵⌦�
�

⌫

 
C

n(x)

↵
.

(3.23)

Going from the first to the second line uses equation 3.19, going from the second to the third

uses equation 3.21 and going from the third to the fourth uses equation 3.22. The quantity
⌦�

�

µ

 
C

n(x)

�
�

⌫

 
C

n(x)

↵
can be measured by taking each member of an ensemble, x

q

, and

generating a sub-ensemble of x0
q,r

according to the distribution defined by

P (x0
q,r

|x
q

) =

P
x

exp(�H(x))�(Cn

(x0
q,r

) = Cn

(x
q

))

˜Z(Cn

(x
q

)))

. (3.24)

Techniques for generating this ensemble, using a form of ‘Compatible Monte Carlo’ [67] are

discussed in section 3.8.6. From an ensemble of M configurations, with x
q

taken from the

ensemble of full lattice configurations, and x
q,r

from the ensemble given by P (x0
q,r

|x
q

) for

each x
q

, the metric becomes

gn
µ⌫

=

1
(M)(M 02�M

0)

q=M r,s=M

0P
q,r,s=1r 6=s

⇣
�

µ

(x0
q,r

)�

⌫

(x0
q,s

) � 1
M�1

MP
p=1 p 6=q

�

µ

(x0
q,r

)�

⌫

(x0
p,s

)

⌘
.

(3.25)

The results of this Monte Carlo are presented for a 64⇥ 64 system at its critical point in

fig. 3.3. The analytic corrections to scaling are reduced under coarse-graining, revealing a

sloppy spectrum of marginal and irrelevant metric eigenvalues. These irrelevant and marginal

eigenvalues continue to behave much as the eigenvalues of the metric in the diffusion

equation, becoming progressively less important under coarsening with characteristic

eigenvalues. The large eigenvalues are dominated by singular corrections and do not become

smaller under coarsening, presumably because they are measured by their collective effects

on the large scale behavior measured from large distance correlations.
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3.8.5 EIGENVALUE SPECTRUM AFTER COARSE-GRAINING

The scaling of the FIM’s eigenvalues after coarsening can be estimated by using an RG-like

procedure that uses the following steps: (a) discarding the information in certain degrees of

freedom, (b) constructing an effective Hamiltonian for the remaining degrees of freedom in a

new parameter basis, (c) repeating the analysis for the metric’s eigenvalues in the parameter

coordinates of this new effective Hamiltonian, and (d) transforming back into the original

coordinates. It is helpful to contrast this approach to a usual RG calculation for a lattice Ising

model. In a usual RG calculation, information about certain degrees of freedom is discarded

as in (a) and, just as in (b), an effective theory is built that describes the behavior of the

remaining degrees of freedom. The approach described below departs from this usual

picture in that the goal is not to find this effective theory, but instead to calculate parameter

sensitivities of the original microscopic theory. To this end, steps (c) and (d) are added; the

effective theory is used only as an intermediate in calculating parameter sensitivities of the

original model.

After coarse-graining n times, each observation yields only the spins {i, j} remaining at

level n, xn

= {s
i,j

}
���
{i,j} in level n

. The probability of a given configuration of these spins xn can

be written in terms of a renormalized model as is typical in RG

P (xn

) =

exp (�Hn

(xn

))

Z(An, un

)

, (3.26)

where Hn is an effective Hamiltonian describing just those spins that are observable after n

coarse-graining steps. Hn has new parameters that can be expressed in terms of the scaling

variables defined in equation 3.14 with un

↵

= by↵nu
↵

. In addition, the area A of the system, in

lattice spacings, is reduced to8 An

= b�dnA, @un

↵

/@✓µ = by↵@u
↵

/@✓µ.

After rescaling, the entropy of the model is smaller by an amount �Sn from the original
8here, b =

p
2, d = 2
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model’s entropy. It is customary in RG analysis to subtract this constant from the Hamiltonian,

so as to preserve the free energy of the system after rescaling:

F n

= F n,s

+ F n,a

+�Sn

= F s

+ F a

= F (3.27)

The new model’s Hamiltonian is still linear in new parameters, allowing us to use the algebra

of equation A.11 if we remove the constant �S from the new Hamiltonian. This would, of

course, be an identical model, since the addition of a constant to the free energy does not

change any observables. Now expressing the metric for the new observables in terms of the

original parameters yields

gn
µ⌫

(✓) = @
µ

@
⌫

(F n,s

+ F n,a

) = @
µ

@
⌫

(F s

+ F a ��S). (3.28)

Analyzing the singular and analytic contributions to the FIM separately

gs,n
µ⌫

= @
µ

@
⌫

F n,s

= @
µ

@
⌫

F s

= gs
µ⌫

,

ga,n
µ⌫

= @
µ

@
⌫

F n,a

= b�dnA@
µ

@
⌫

fn,a

= b�dnA@u

n
↵

@✓

µ

@u

n
�

@✓

⌫ (
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The singular piece of the metric is maintained exactly because the singular part of the free

energy is preserved after an RG step. The implication is that the singular part of the free

energy contains long wave-length information. On the other hand, the analytic piece is smaller

by @
µ

@
⌫

�Sn. The matrix (
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fa

) should be smoothly varying, with n, depending

only the un which vary only small amount with n near the RG fixed point. Importantly, all of its

eigenvalues should continue to take a characteristic value. Thus, after rescaling n times (see

equations 3.17, 3.18 and Appendix A.2)

�n,s

i

⇠ A(⇠)2yi�d,

�n,a

i

⇠ Abn(2yi�d).
(3.30)
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To ensure that the Fisher information is strictly decreasing in every direction upon

coarsening9, ga
µ⌫

must be negative semidefinite in the subspace of scaling variables where

2y
i

� d > 0. For these relevant directions, �n

i

⇠ A⇠2yi�d � Ab2yi�dn, with i = 0, 1. Here,

the second term only becomes significant when bn ⇠ ⇠ (i.e. when the lattice spacing

is comparable to the correlation length). For irrelevant directions, or relevant ones with

0 < 2y
i

< d (corresponding to i � 2 in the Ising model), the analytic piece will eventually

dominate as the critical point is approached, yielding �
i

⇠ Ab2yi�d. These results are in

quantitative agreement with those plotted in fig. 3.3 assuming that the variables project onto

irrelevant and marginal scaling variables with leading dimensions of y = 0 (blue line in fig. 3.3),

y = �2 (green line) and y = �4 (purple line) consistent with the theoretical predictions for the

irrelevant eigenvalue spectrum made in [70].

This shrinkage of the FIM is reparameterization invariant in an important way. Although a

coordinate system can always be chosen in which the metric is locally the identity, the

shrinkage, which can be seen in any coordinate system, quantifies the contraction of the

invariant distance between nearby points as observables are coarsened. For example, if we

choose a coordinate system in which the metric is the identity when examining microscopic

observables, we find that the metric eigenvalues become widely spread after coarsening10.

It is helpful to contrast the results of this information geometry analysis to those of a more

standard RG one. Both can be used to explain the experimental findings of universality: a

wide class of microscopic models have identical macroscopic behavior. In an RG picture, one

9In each coarsening step g

n

µ⌫

� g

n+1
µ⌫

must be a positive semidefinite matrix. This is because no parameter
combinations can be more measurable from a subset of the data available at level n than from its entirety.

10Least-Squares models that do not have a concept of coarsening still have a reparameterization invariant
manifestation of sloppiness [4, 57]. These models are typically finite in extent, at least in most directions and
contain ’edges’ where some metric eigenvalues are zero and where parameters take extreme values (for
example a rate constant being either zero or infinity). Although a coordinate change can locally set the metric to
the identity, the reparameterization invariant shape of the manifold has a ‘hyper-ribbon’ structure, with a
geometric hierarchy of widths. It is unknown if the Ising model has a similar structure on coarsening.
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considers a hypothetical large dimensional space of possible Hamiltonians that includes

microscopically disparate systems (for example including both ferromagnets and binary fluids).

As the renormalization group proceeds the Hamiltonians of their effective models flow

towards the same saddle point. The Hamiltonian of this saddle point thus describes the

effective interactions of coarsened degrees of freedom. This explains how binary fluids and

ferromagnets could have similar effective models for the coarsened observables.

This same hypothetical large dimensional space of Hamiltonians can be considered from

an information theory perspective, by adding step (c), calculating the Fisher Information for the

effective Hamiltonian and (d), transforming back to microscopic coordinates. Information

geometry clarifies that the microscopic Hamiltonians describing binary fluids and ferromagnets

produce indistinguishable results for coarsened variables. Although the parameter space

distance between microscopic models for binary fluids and ferromagnets is quite large, the

‘proper distance’ between them defined through the FIM rapidly vanishes upon coarsening.

Models for ferromagnets and binary fluids (for which t and h values are identical) differ

from each other only along sloppy directions and hence their long-wavelength behaviors

become nearly identical. The evolution of the FIM under coarsening tracks the information

lost about microscopic details in these physics models. In this information geometry

picture of universality, the high dimensional parameter space manifold of systems near

Ising critical points collapses onto a two dimensional manifold when its observables are

coarsened. This analysis completes what might be seen as a trivial step in RG arguments for

universality—demonstrating that nearness in effective model space implies indistinguishability

of coarsened observables. The mapping from parameter space distance to metric distance in

the space of distinguishability clarifies some confusing points. For example, while FIM

distinguishability along relevant parameter directions remain roughly fixed under coarsening,

their parameter space distance appears to grow in a usual RG picture. Similarly considering
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an enlarged hypothetical parameter space likely explains why many models with sloppy FIMs,

for example in systems biology, can be predictive even when important components are

entirely absent from their microscopic models.

3.8.6 SIMULATION DETAILS

As described above, M = 10, 000–100, 000 independent members from each ensemble x
p

are

generated using the standard Wolff algorithm [68] implemented on 64⇥ 64 periodic square

lattices, and are used to calculate the FIM before coarsening.

A variation of the ‘Compatible Monte Carlo’11 method introduced in [67] was employed to

generate members of the coarse-grained ensemble defined by equation 3.24. In this method,

a Monte Carlo chain is run and any move proposing a switch to a configuration x0
p,r

for

which Cn

(x0
p,r

) 6= Cn

(x
p

) is rejected. For the mapping Cn

(x
p

) = Cn

(x
p,r

), the simplest

implementation equilibrates using Metropolis moves by proposing only the spins not in level n.

Additional tricks to speed up convergence are described below.

Consider the task of generating a random member x0
p,r

for a given x
p

at level 1. Because

the spins which are free to flip only couple with fixed spins, each one can be chosen

independently. As such, choosing each free spin according to its heat bath probability

generates an uncorrelated member x
p,r

of the ensemble defined by x
p

in a single step. This

idea can be further exploited to exactly calculate the contribution to a metric element at level 1

from a level 0 configuration x. In particular, replacing all of the spins that are not in level 1 with

11Ron, Swendsen and Brandt used this technique to generated large equilibrated ensembles close to the
critical point, essentially by starting from a small ‘coarsened’ lattice and iteratively adding layers to generate a
large ensemble.
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their mean field values defined by s̃
i,j

(x) = {s
i,j

}
C

n(x) leads to
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.
(3.31)

It is therefore possible to exactly calculate the level 1 quantities {�
µ

}
C

1(x){�⌫

}
C

1(x) for any

microscopic configuration x and the corresponding checkerboard configuration C1
(x). The

metric at level 1 can now be written

g1
µ⌫
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MP
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⌘
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Beyond level 1 it becomes necessary to use Compatible Monte Carlo. Because of the

independence of free spins at level 1, spins at all levels n � 1 only interact with spins that are

already absent at level 1. Therefore, the spins that are free at level 1 (termed the red sites of

the checkerboard) are left integrated out. The partition function for a level 1 configuration is

most conveniently written in terms of the number of up neighbors, nup

i,j

that each red site has

log

˜Z(C1(x)) =

P
i,j not in level 1

log (z(nup

i,j

)),

z(nup

) = cosh ((�J)(2� nup

)),
(3.33)

Additional spins that are not integrated out at level n are flipped using a heat bath algorithm

with the ratio of partition functions in an ‘up’ vs ‘down’ configuration used to determine the

transition probability. The probability of a spin (at level � 2) transitioning to ’up’ after being

proposed from the down state is given by zup
i,j

/(zup
i,j

+ zdown

i,j

) with

zup
i,j

=

P
{k,l} n.n. of {i,j}

z(nup

k,l

+ 1),

zdown

i,j

=

Q
{k,l} n.n. of {i,j}

z(nup

k,l

).
(3.34)

Equilibration is fast as there are effectively no correlations larger than the spacing between

fixed spins at level n. This allows generating an ensemble of lattice configurations at level

1, conditioned on the system coarsening to an arbitrary configuration at any level n > 1.
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Equation 3.25 is thus slightly modified to the following which was used to make fig. 3.3 for

data at level 2 and higher

gn
µ⌫

=

1
(M)(M 02�M

0)

q=M r,s=M

0P
q,r,s=1r 6=s

⇣
{�

µ

}
c

1(x0
q,r){�⌫

}
c

1(x0
q,s)

� 1
M�1

MP
p=1 p 6=q

{�
µ

}
c

1(x0
q,r){�⌫

}
c

1(x0
p,s)

⌘

(3.35)
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CHAPTER 4
CHAPTER 4: CANONICAL SECTORS AND EVOLUTION OF FIRMS

IN THE US STOCK MARKETS

4.1 ABSTRACT

A classification of companies into sectors of the economy is important for macroeconomic

analysis and for investments into the sector-specific financial indices or exchange traded

funds (ETFs). Major industrial classification systems and financial indices have so far largely

been developed by empirical methods with questionable objectivity and completeness. In this

paper, we show how a broad-level sector decomposition of stocks can be made objectively

through a machine learning approach that exploits the emergent low dimensional structure of

the space of historical stock price returns. The method automatically identifies emergent

“canonical sectors” in the market and assigns every stock a participation weight into each

sector. Lastly, by analyzing data from different periods at a time, we show how firms listed in

the market have evolved in their decomposition into sectors.

0The work described in this chapter is being prepared for publication in a journal as follows: R. Chachra, A. A.
Alemi, P. Ginsparg, J. P. Sethna. Canonical Sectors and Evolution of Firms in the US Stock Markets. The present
author initiated and defined the project, obtained the data, implemented the algorithms, analyzed the results and
wrote this report.
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4.2 INTRODUCTION

The performance of our economy is often understood in a reductionist way. This entails

decomposing the economy into its constituents and then learning how each performed

over a given period using the so-called economic indicators. These variables measure

unemployment rate, housing starts, consumer price index, gross domestic product, etc.

allowing for broad macroeconomic analysis and modeling.

In analogy to the broader economy, the performance of the stock markets is reported

similarly in terms of aggregated quantities with groups of stocks taken at once. A finer,

microlevel analysis quickly becomes impractical because of the plethora of listed stocks—as

of this writing, stocks from over 8000 US public companies are available for trading in various

markets. These include over 4500 securities listed on the three major domestic US exchanges:

NASDAQ, NYSE and NYSE MKT. For convenience of analysis and investment, stocks are

grouped into indices such as the market-wide Russell 3000 [71] and S&P 500 [72] comprising

stocks from diverse companies to reflect the entirety of the market, and sector-specific indices

such as Dow Jones Financials Index [73], CBOE Oil Index [74] and Morgan Stanley High-Tech

35 Index [75] that are more granular indicators of performance in individual named sectors.

In principle, a set of mutually exclusive and collectively exhaustive sector indices could

describe the overall stock market as a sum of parts, but for practical applications, this

approach is rife with ambiguities. First, to what sector does one assign a conglomerate or

diversified company such as General Electric that functions in a variety of businesses across

different sectors? Second, how does one account for the participation of non-conglomerates

outside their core sectors? For example, if a financial services company is deeply invested in

the pharmaceutical sector to an extent that such causal relationship is manifest in strongly

correlated returns of the two, should that company be considered part of a financial services’
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index or a healthcare one? Third, as economic environments or companies evolve, neither the

industrial sectors nor firms’ sector association remains static, so how does one account for the

dynamic nature of firms comprising an index?

Figure 4.1: Low-dimensional projection of the stock price returns data. Stock price returns are
projected onto a plane spanned by two stiff vectors from the SVD of the emergent
simplex corners as described in section 4.9.5. Each colored circle corresponds to one of
the 705 stocks in the dataset used in the analysis. Colors denote the sectors assigned to
companies by Scottrade [11] and the scheme is shown in fig. 4.9. The grey corners of
the simplex correspond to sector-defining prototype stocks, whereas all other circles are
given by a suitably weighted sum of these grey corners. Projections along other singular
vectors are shown in fig. 4.6.

The aforementioned technical issues must be resolved in manner that is grounded with a

theoretical framework built to describe the character and properties of the underlying entities.

A vast number of studies have previously aimed at finding structure and categories of
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stocks in financial markets with a variety of approaches. Recent numerical techniques have

included extensive use of the random matrix theory, principal component analysis or the

associated eigenvalue decomposition of the correlation matrix [12, 76–79], specialized

clustering methods [80–84] or time series analysis [85, 86], pairwise coupling analysis [87],

and even topic-modeling of returns [88]. While these methods have yielded important results,

a fundamental basis of macro-level analysis, resting upon emergent properties in the markets

has so far remained elusive.

In this paper, we demonstrate a new, holistic way of classifying stocks into industrial

sectors by utilizing the emergent structure of price returns data space. The method identifies

sectors in the market and assigns each stock weights denoting the extent to which its return

are comprised of emergent sector returns. Relying purely upon an unsupervised machine

learning analysis of historical time series of stock price returns, this method is an objective

way of understanding stocks solely through their returns. In the subsequent sections, we show

(a) the space of stock price returns has a hyper-tetrahedral (simplex) structure (fig. 4.1), each

cell of the simplex is populated by stocks of similar returns time series, (b) the corners of the

simplex correspond to emergent “canonical” sectors occupied by stocks of companies that are

prototypical (fig. 4.2), every other stock’s return decomposes into a weighted sum of returns

from the prototypical stocks (fig. 4.3), and (c) the participation weights of the companies are

dynamic and provide insights into their evolving nature (fig. 4.4).

4.3 CANONICAL SECTORS AND PRICE RETURNS

Prior work [12] has made it clear that the high-dimensional space1 of stock price returns has a

low-dimensional representation. This implies that only a few dimensions in the space of price

1The dimension of data space is the length of the time series analyzed.
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returns have signal and the rest can be ascribed to random noise [89]. The key discovery of

the present work is that the low-dimensional representation of stock price returns has a

well-defined structure (discussed in section 4.9.5) that leads to new insights about individual

stocks and the industrial sectors of the economy. This structure is a hyper-tetrahedron (also

known as a simplex) that becomes apparent upon visualizing low-dimensional cross-sections

of the data as shown in figs. 4.1 and 4.6. A closer examination of the simplex further reveals

that each cell is populated by stocks of companies in similar or related business lines implying

that every cell corresponds to an identifiable segment of the economy. Moreover, in the

zero-centered simplex, data points located near the origin predominantly correspond to stocks

of conglomerates or diversified companies (e.g., GE, Walt Disney, 3M, etc.), whereas the

corners of every cell consist of companies that are prototypical of known sectors (Texas

Instruments (tech), Wells Fargo (financial), Kohl’s (retail), etc.). How many emergent sectors

are there in the market? The general problem of selecting a signal to noise ratio cutoff or a

truncation threshold in high-dimensional data does not always have a clear answer. As is the

case with stock price returns, the threshold is generally sensitive to sampling, but nonetheless

reasonably robust for qualitative results (section 4.9.3). The dataset used in this analysis

(section 4.9.1) consisted of two decades (1993-2013) of daily price returns from 705 US public

companies each with a mid-2013 market capitalization of $1 billion or higher, representing

a broad section of the economy in a period marked by major crises (section 4.9.1 has

more details). This data set has eight emergent sectors (section 4.9.7) which we name as

follows (the prefix c- signifies “canonical” and distinguishes these names from listed sectors

names more commonly used): c-cyclical (including retail), c-energy (including oil and gas),

c-industrial (including capital goods and basic materials), c-financial, c-non-cyclical (including
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c-real estate

c-industrialc-financial

c-utilityc-tech

c-energy

c-non-cyclical

c-cyclical

Figure 4.2: Emergent sector time series. Annualized cumulative log price returns of the eight
emergent sectors are shown. The time series capture all important features affecting
different sectors: dot-com bubble (c. 2000), the energy and financial crises of 2008.
Precise definitions is given in equation 4.3; other measures of sector dynamics are in fig.
4.8.

healthcare and consumer non-cyclical goods), c-real estate, c-technology, and c-utility2. The

prices returns (figs. 4.2 and 4.8) from these sectors show the performance of the different

industrial sectors of the economy, including major events that afflicted each such as the few

described below.

Dot-com bubble: The building-up of the speculative bubble spanning 1997-2000 and its

subsequent crash over two years that followed is clearly seen in the returns of the tech sector.

One also sees that the tech bubble was primarily contained within the tech companies’

ecosystem with only minor remnants elsewhere.

2Major industrial classification schemes (ICB [15], GICS [13], TRBC [14]) discretely separate the broad
economy into 10 major sectors roughly as follows: energy, materials, consumer cyclical, consumer non-cyclical,
financials, healthcare, industrial, technology, telecom and utilities [90].
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Energy crisis: In the period spanning 2003-2008, crude oil price witnessed a four-fold

increase (primarily ascribed to disruptions caused by Hurricane Katrina and Iranian nuclear

crisis), and then precipitously dropped following the onset of the global recession. Energy

stocks also plunged headlong.

Global financial crisis: The financial crisis of 2008 affected the entirety of the market, but

had particularly grave implications for the real-estate and the financial sectors.

4.4 CONSTITUENT FIRMS IN CANONICAL SECTORS

Canonical sector Business lines Prototypical examples

c-cyclical general and speciality retail, discretionary goods AutoZone, Kohl’s, Nordstrom

c-energy oil and gas services, equipment, operations Hess, Schlumberger

c-financial banks, insurance (except health) Citigroup, Wells Fargo, M&T Bank

c-industrial capital goods, basic materials, transport Dow Chemical Co., Goodyear

c-non-cyclical consumer staples, healthcare Pepsi, Procter & Gamble

c-real estate realty investments and operations Vornado Realty, Camden Property Trust

c-technology semiconductors, computers, comm. devices Intel, Motorola, Oracle

c-utility electric and gas suppliers Duke Energy, Edison International

Table 4.1: Canonical sectors and major business lines of primary constituent firms. Examples
provided are firms that are strongly associated to these sectors. A full list is available on
companion website [10].

As mentioned in the preceding section, eight sectors emerge in analysis of our dataset.

Here we list some high-level defining features of each of these sectors. This discussion that

follows is summarized in table 4.1.

Firms showing strong association to what we call c-cyclical sector include speciality and

general retail outlets; well known names include Best Buy, Kohl’s, Target, Tiffany, etc. The
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canonical sector c-energy firms are either integrated oil and gas firms (eg. Exxon), or are

involved in operations (eg. Hess), or provide services within this sector (eg. Halliburton).

c-financial sector firms include large and small banks, all kinds of insurance companies with

the notable exception of health insurance firms. Bank of America, Citigroup, Wells Fargo, etc.

strongly associate with this emergent sector. The c-industrial goods sector firms are involved

often specialized large-scale manufacturing of basic materials (paper products, chemicals

etc.) or capital goods (machineries); as example, Dow Chemical Company is strongly linked to

this sector. The c-non-cyclical sector is comprised of consumer staple goods (food, beverage)

but also healthcare firms. Coca-Cola, Kellogg, Pfizer, Merck and many other household

names are all members of this group. c-Real estate sector is almost exclusive linked to firms

with heavy real estate operations including real estate investment trusts, insurers, etc. The

c-tech sector primarily comprised of semiconductor, hardware, software and communication

equipment manufacturing firms such as Cisco, Intel, Oracle, Motorola, etc. Core c-utility

firms are in electric or gas supply business; examples include Duke Energy Corp., Edison

International, etc.

4.5 SECTOR DECOMPOSITION OF ALL FIRMS

Each stock return is modeled as a weighted combination of returns from the canonical

sectors. In matrix form this is written as: R
ts

= E
tf

W
fs

, where matrices R, E and W contain

(normalized log) returns at times t for stocks s, returns of the emergent sectors f , and

participation weights respectively. The latter are constrained so that for each stock, the

participation weights in multiple sectors add to unity. Calculations are described in the

sections 4.9.2 and 4.9.3. Here we discuss important insights in fig. 4.3.

Conglomerates decompose into their core constituents. For example, calculations show
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Figure 4.3: Canonical sector decomposition of stocks of selected companies. A complete set
of pictures for all 705 stocks is provided on the companion website [10]. Color scheme
shown on the right are used in figures throughout the paper except where noted.

that General Electric’s returns are comprised of four segments: c-financials, c-non-cyclical, c-

tech and c-cyclical, while 3M is in the business of c-industrial and c-non-cyclicals. Technology

companies such as Apple that sell mass-market consumer goods also have important fraction

in c-retail sector in addition to c-tech, whereas IBM having significant government contracts

and healthcare analytics products has a significant portion of c-non-cyclical returns. Telecom

companies, for example AT&T and Verizon, are generally classified under a separate major

category of their by many classification systems, yet the present analysis shows their returns

are described by a combination of c-non-cyclical and c-utility components. Returns of health

insurance providers such as Aetna, United Healthcare, etc. that are commonly classified as

financial services firms, are comprised of a major part c-non-cyclical and minor part of

c-financial sector. Defense contractors like Lockheed, Northrop Grumman, Raytheon that are
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primarily listed as capital goods companies have their returns comprised of a majority

c-non-cyclical component and only a smaller share of c-cyclical sector.

4.6 EVOLUTION OF SECTOR WEIGHTS

The sector decomposition of firms is by no means static. As companies grow, their business

foci often change. They may enter or leave different sectors through mergers, acquisitions,

spin-offs, new products or target customers. We used the decomposition analysis described

above with one-year overlapping windows of time (details in 4.9.3) to get insight into the

evolving nature of sector participation of firms.

Major events affecting companies in an idiosyncratic manner show clear signature in this

analysis. For example, Corning Inc. not traditionally a tech firm, suffered in the aftermath of

the dot-com crisis due to its reliance upon developing products and infrastructure for other

tech firms. As such, the company has since then drastically shifted toward tech after the

bubble burst.

Likewise, a growing company’s strategy shift is also seen in the analysis. For example, in

the early 1990s, Berry Petroleum grew within its home state of California through development

on properties that were purchased in the earlier part of 20th century. In 2003, the company

embarked on a transformation [91] by direct acquisition of light oil and natural gas production

facilities outside California. Fig. 4.4 shows a clear shift in the distribution of sector weights as

the company has moved more squarely toward c-energy and away from c-real estate.

Similarly, as Plum Creek Timber converted to a real estate investment trust (REIT) in the late

1990s [92], its sector weights have also significantly shifted toward c-real estate sector as

shown.
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Lastly, for stable and focused companies such as Pacific Gas & Electric or IBM (fig. 4.4),

one sees no significant shifts in sector weights. Wal-Mart’s returns, on the other hand,

have moved from significantly from c-cyclical to c-non-cyclicals (consumer staples) in

the post-financial crises years as shown. This is also true of other low-price consumer

commodities retailers such as Costco, but not true of higher price retailers such as Whole

Foods, Macy’s, etc.

95 98 01 04 07 10 13

Pacific Gas & Electric

Wal-MartPlum Creek Timber

Corning

US Steel

Berry Petroleum

IBM

95 98 01 04 07 10 13

Figure 4.4: Evolving sector participation weights. Results from the sector decomposition made
with rolling two-year Gaussian windows are shown for selected stocks. A complete set of
705 pictures is provided on the companion website [10]. Color scheme is as in fig. 4.3

4.7 DISCUSSION

The dataset we analyzed was comprised of daily returns for a 20 year period for 705 US

companies with $1 billion or or more in market capitalization. While only a small subset of the
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business are publicly traded and even fewer have market caps as high as a billion, our dataset

nonetheless represents an excellent segment of our economy by including a broad diversity of

firms and the conditions they witnessed in the previous two decades including at least three

major domestic crises and their aftershocks.

We first saw that space of stock price returns has a hyper-tetrahedral structure. This

structure is inherent in data and has emerged out of a multitude of microscopic interactions

(trades) between a plethora of participants. The simplex is not only a low-dimensional manifold

representation of this high-dimensional data, but it also has a meaningful sub-structure: Each

cell of the simplex is populated by stocks of companies in related businesses, and each corner

of the hyper-tetrahedron represents “pure types” of companies that are strongly associated

with one individual sector. Stocks populating the center of the tetrahedron are conglomerates

or diversified companies.

We further saw that the emergent structure is amenable to a matrix factorization

(“archetypal analysis”) that identifies the simplex corners as canonical sectors returns and

decomposes each stock time series as a weighted sum of returns from the emergent sectors.

This decomposition yielded new high-level insights about the nature of stocks returns and their

quantifiable participation across sectors, in addition to granular insights about specific firms,

revealing their exposure to returns from different sectors of the economy.

We also gained a vivid insight into the evolving character of the sector participation of

firms with different windows of time in the last two decades. As firms evolve and become

exposed to different industrial sectors, this information is represented in its stock price returns

which will show greater correlations with those industrial sectors. Therefore, any sector index

should account for the dynamic nature of constituent firms and rebalance the portfolio

allocation accordingly.
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Future work remains to address survivorship bias, effects of sampling at different

frequencies, and incorporating smaller market cap firms. The framework of understanding

stock returns via an emergent structure of their data space also suggests development of a

generative model. Lastly, investors and governments alike would benefit from the development

of new investable sector indices that measure the health of our industrial sectors in a more

principled manner as propounded in this study (section 4.9.8).
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4.9 SUPPLEMENTARY INFORMATION

4.9.1 DATASET PARTICULARS

A wealth of financial data is freely available online via multiple sources. For the analysis

described in this paper, we obtained names, tickers, listed-sectors and market caps of

US-based publicly traded companies from Scottrade [11]. The following criteria were applied

to company selection:

• July 2013 market capitalization over $1 billion.

• Registered domicile in US or Caribbean countries.

• Listed for trading on NASDAQ, NYSE, or NYSE MKT (formerly AMEX).
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• Continuously traded for 20 years (beginning mid-1993).

The search filters yielded a list of N = 705 tickers for which adjusted daily closing prices 3

were obtained from Yahoo! Finance [93] using their API; the rare cases of missing or corrupted

data points in the time series were replaced with linear interpolated values. A brief summary

of listed sectors and number of companies in each is provided in table 4.2 and a full list of

company names, tickers, market caps and listed-sector info is available on the companion

website [10].

Listed sector Companies

Basic materials 58

Capital goods 61

Consumer cyclical 41

Consumer non-cyclical 40

Energy 42

Financial (+Real estate) 138

Healthcare 53

Services (+Retail) 101

Technology 93

Telecom 6

Utility 57

Transport 15

TOTAL 705

Table 4.2: Listed sectors and number of companies dataset analyzed. Tickers for each company
were obtained from [11].

4.9.2 RETURNS FACTORIZATION AND SECTOR DECOMPOSITION

The general problem of matrix factorization has received considerable attention in recent

years and a variety of factorization algorithms have been developed with the goals of
3Prices at the end of every trading day, corrected for stock splits or dividend issues.
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dimensional reduction, classification or clustering. Examples include archetypal analysis

(AA) [94], heteroscedastic matrix factorization [95], binary matrix factorization [96], K-means

clustering [97], simplex volume maximization [98], independent component analysis [99],

non-negative matrix factorization (NMF) [100, 101] and its variants such as the semi- and

convex-NMF [102], convex hull NMF [103] and hierarchical convex NMF [104], among others.

Each method has a unique interpretation [105] and therefore, a successful application of any

of these methods is contingent upon the underlying structure of the data.

The hyper-tetrahedral structure of log price returns seen in our analysis motivates a

decomposition so that each stock returns is a weighted mixture of canonical sectors:

R
ts

= E
tf

W
fs

. (4.1)

Columns of E
tf

are the emergent sector time series (basis vectors) representing the n

corners of the hyper-tetrahedron, and W
fs

are the participation weights (W
fs

� 0) in sector f

so that
P

f

W
fs

= 1 for each stock s. The first factorization of this kind was developed in

1994 and named “archetypal analysis” (AA) [94], and improvements were proposed more

recently [106, 107]. The algorithm reduces dimensionality by representing each sample (here,

each stock) as convex combinations of extremes (called archetypes). The archetypes are the

columns in the basis matrix E
tf

and these can be found in multiple ways:

• Minimizing the squared error with convex constraints in factorization as originally

proposed [94].

• Making a convex hull of the dataset and choosing one or more of its vertices to

be basis vectors, but this method would have serious computational limitations in

high-dimensional data.

• Making a convex hull in low-dimensions and choosing one or more of its vertices to be

basis vectors [106].
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• Minimize after initializing with candidate archetypes that are alternatively guaranteed to

lie in the minimal convex set of the data. This technique was proposed in [107].

• Fitting the smallest possible hyper-tetrahedron on the dataset.

In all but the last case above, the archetypes are themselves chosen from the data:

E
tf

= R
ts

0C
s

0
f

, such that
P

s

0 C
s

0
f

= 1

4. The columns of the C matrix are shown in

figure 4.11.

In sum, AA is defined as a factorization with these properties:

R
ts

⇠ R
ts

0C
s

0
f

W
fs

,

C
s

0
f

� 0,
P

s

0 C
s

0
f

= 1,

W
fs

� 0,
P

f

W
fs

= 1,

(4.2)

in which one minimizes the square of the Frobenius matrix norm: ||R
ts

�R
ts

0C
s

0
f

W
fs

||2
F

.

4.9.3 CALCULATIONS AND CONVERGENCE

Numerical computations were performed using an in-house Python language implementation

of the principal convex hull analysis (PCHA) algorithm as described in [107]. For the full

dataset, the factorization R = EW , with E = RC as defined in eq. 4.2 converged in 35

iterations to a predefined tolerance value of �
SSE

< 10

�7, where �

SSE

is the average

difference in sum of square error per matrix element in R�EW from one iteration to the next.

The resulting columns of E
tf

are shown in fig. 4.8 (top row). Annualized cumulative log

returns obtained by summing in rows of E
tf

:

Q
f

(⌧) = 1p
250

t=⌧P
t=0

E
tf

. (4.3)

4A factorization with a relaxed version of this constraint, 1� � 
P

s

0 C
s

0
f

 1 + �, is described in [107]
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The time series Q
f

(⌧) are shown in fig. 4.2 and middle row of fig. 4.8. Weights W
fs

for

selected stocks are shown in fig. 4.3, the remainder are available on companion website [10].

In each canonical sector f , the component of weights for companies are shown in fig. 4.9.

The analysis of evolving sector weights was performed similarly, but with a sliding

Gaussian time window. We decomposed the local normalized log returns for each stock into

the canonical sectors determined from the entire time series. Each column (time series) of

the returns matrix R
ts

was multiplied with a Gaussian, G
µ

(⌧) = exp(� (⌧�µ)2

2⇥2502 ) of standard

deviation 250 centered at µ to obtain Rµ

ts

. With C
s

0
f

found using the full dataset5 as in eq. 4.2,

Rµ

ts

is factorized to obtain new weights W µ

fs

that describe sector decomposition of stocks in

that period focused at t = µ: Rµ

= Rµ

ts

0C
s

0
f

W µ

fs

. µ is increased in steps of 50 starting at

µ = 0 and ending at µ = 5000 and W µ is calculated at each µ with the corresponding Rµ.

These results are plotted in fig. 4.4 for a select group of companies, and the remainder are

available on the companion website [10].

4.9.4 DIMENSIONALITY OF SPACE OF PRICE RETURNS

The stock price returns have a dimension given by number of returns in the dataset for each

stock. For the dataset used for the analysis described in this paper, 20 years of returns

amount to a dimensionality of 5001 (there are about 250 trading days per year). It is often the

case with large datasets that the effective dimensionality of the data space is much lower

when one filters out the noise. A number of dimensional reduction methods exist; the singular

value decomposition (SVD) [45] (c.f. principal component analysis) which is a deterministic

matrix factorization, is one of the most commonly used method. We discuss it in more detail in

5Fixed C corresponds to keeping the sector defining simplex corners fixed.
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order to draw a contrast with previous results, and to apply it for explaining some of our results.

First we introduce the following variables names and definitions.

Let matrices p̃
⌧s

and p
⌧s

represent prices and log prices respectively of stocks s at times ⌧ .

Log returns are then given by r
ts

= p(⌧+�)s � p
⌧s

6, where � is the interval length over which

returns are calculated. Define another matrix R
⌧s

of normalized log returns: with zero mean

and unit standard deviation, R
⌧s

= (r
⌧s

� hr
⌧s

i
⌧

)/�
s

, where �2
s

= hr
⌧s

� r
⌧s

i
⌧

� hr
⌧s

i2
⌧

is the

variance (squared volatility) of log returns.

Figure 4.5: Normalized distribution of singular values. Filled blue histogram corresponds to
distribution of singular values of returns from the dataset R

ts

—one notices a clear
separation of the hump-shaped bulk of singular values ascribed to random Gaussian
noise, and about 20 stiff singular values (the largest singular value ⇠952, corresponding
to the market mode is not shown). Pink line histogram outline shows the distribution of
singular values of a matrix of the same shape as R but containing purely random
Gaussian entries.

An SVD of R
ts

is matrix factorization [45] R
ts

= U
tf

⌃

ff

0V T

f

0
s

such that matrices U and V

6Assuming the standard lognormal distribution of stock price returns, log of price returns have a normal
distribution—a feature that makes them easily amenable to standard statistical analysis. The heavy tail
distribution assumption can be accommodated with more work.
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are orthonormal 7, ⌃ is a diagonal matrix of “singular values”. If the goal were purely of

rank-reduction, n entries of ⌃ can be chosen to lie above “noise threshold” are retained and

the rest truncated so that 0  f, f 0  n. This effectively reducing the dimension of R to n.

The choice of n can be informed by the distribution of singular values. The distribution of

singular values of a rectangular matrix A
xy

with purely Gaussian random entries (alternatively,

of the eigenvalues of a square matrix ATA) has a well characterized shape [108] and has

been previously used to filter noise from financial datasets [89]. As shown in the fig. 4.5, most

singular values of the returns matrix R are associated with the random noise, whereas only

⇠20 fall outside that cutoff8. The largest singular value of R
ts

corresponds to what we will

refer to as the “market mode” as this represents overall simultaneous rise and fall of stocks. In

the analysis presented in this paper, this mode has been filtered from the returns matrix by

projecting the R matrix into the subspace spanned by all non-market mode eigenvectors.

This is equivalent to filtering the market mode using simple linear regression (as done

commonly [12]), although more convenient.

4.9.5 LOW-DIMENSIONAL PROJECTIONS OF PRICE RETURNS

A key discovery of our work is that the high-dimensional space of stock returns has an

emergent low-dimensional hyper-tetrahedral (simplex) structure. One of the ways this

structure can be seen is projecting the dataset into stiff “eigenplanes”. Eigenplanes are

formed by pairs of right singular vectors from the SVD. Here, we construct an SVD of

the simplex corners, E
tf

= X
tk

Y ZT

kf

so that in a low-dimensional representation, simplex

7The rows of V T are also the eigenvectors of the stock-stock returns correlation matrix, ⇠
ss

0 ⇠ R

T

st

R

ts

. It
was previously reported that some components of the stiff eigenvectors of this stock-stock correlation matrix
loosely corresponded to firms belonging to the same conventionally identified business sector [12]

8The singular value bounds of a random Gaussian rectangular matrix of size ↵⇥ � can be shown to bep
↵±

p
�.
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corners are given by columns of Y ZT because Y ZT

kf

= XT

kt

E
tf

(in other words, XT

kt

is a

projection operator). We now note that the plots in fig. 4.6 are the projections of the dataset,

XT

kt

R
ts

= v
ks

. The rows of v taken in pairs form the axes of the projections in figs. 4.1 and 4.6.

With those plots, it becomes clear that the eigenplanes represent projections of a simplex-like

data into two-dimensions. Secondly, we note that the simplex structure becomes less clear as

one looks at planes corresponding to smaller singular value directions.

An alternative way is to visualize eigenplanes directly from the SVD from returns matrix

R
ts

(section 4.9.4), and project the simplex corners E
tf

in those planes. The resulting

projections (not shown) will be similar to the structures seen in fig. 4.6 but in a different basis.

Similarly, the results of the factorization can be seen in eigenplanes from the SVD of

E
tf

W
sf

= L
tk

MNT

ks

. These results (rows of MNT

ks

) are shown in fig. 4.7, where we notice

that the data is now perfectly residing in simplex region as expected due to constraints.

4.9.6 PROPORTION OF VARIATION EXPLAINED (PVE)

We measure the goodness of the returns decomposition R = EW by measuring the

proportion of variation explained (PVE) as follows:

PV E = 1� SSE/SST. (4.4)

Here, SSE is denotes the sum of square errors ||R� EW ||2
F

, and SST is the total sum of

squares ||R||2
F

. For the full dataset factorized according to eq. 4.2, we obtain PVE = 11.6%

using the equation above. To put this number is context for the returns dataset, one must

separate the variation in R ascribable to signal, and that to Gaussian fluctuations. The

SVD of R with singular values shown in fig. 4.5 provides a convenient way for doing so as

follows. Only 20 singular values (excluding the market mode) were above the cut-off that was
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predicted by the random matrix theory for a matrix of purely random Gaussian entries. For

any matrix M with elements m
ij

, the norm ||M ||2
F

=

P
i,j

m2
ij

=

P
i

s2
i

, where s
i

are the

singular values [45]. Thus, the fraction of intrinsic variation in R not attributable to noise is the

sum of squares of the 20 singular values (not including market mode) divided by SST,
P

i=20
i=1 s2

i

/||R||2
F

= 19.8%. Therefore, as a first approximation, the factorization of eq. 4.2

explains 11.6/19.8 = 59% of the total variation. We also note for completeness that if R is

rank-reduced to eight stiffest components found by SVD (not including market mode), then the

factorization of eq. 4.2 explains 85% of the the total variation in R with overall results in good

accord with the analysis presented here. This implies that sector decomposition information

was already contained in the stiff modes from SVD of R, however SVD is not the appropriate

tool for the decomposition.

4.9.7 DETERMINING THE NUMBER n OF CANONICAL SECTORS

It is an open problem to determine the effective dimensionality (optimal rank) of a general

dataset (matrix). One could select among models of different dimensions using statistical tests

such as the PVE discussed above, or information theory based criteria such as Akaike

Information Criterion (AIC) or the Bayesian Information Criterion (BIC), but the choice of the

selection criterion is itself generally made on an ad hoc basis. Therefore, the most direct

observation of results is also the most reliable. In the dataset used for analysis described

here, a factorization with n > 8 yielded results where both the emergent time series E
tf

and

weights in W
fs

showed qualitative signs of overfitting. The high-level results of factorization

with different values of n are discussed below.

• n = 9: Results were in good agreement to n = 8, except one resulting sector involved

participation from only 11 seemingly unrelated stocks (PVE= 12.4%).
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• n = 7: Results were similar to n = 8, except c-real estate and c-financial merged into

one canonical sector (PVE= 10.7%).

• n = 6: Results are similar to n = 7, except listed retail companies divide into c-cyclical

and c-non-cyclical sectors (PVE= 9.9%).

• n = 5: Results are similar to n = 6, except c-cyclical and c-non-cyclical merge into one

canonical sector (PVE= 8.7%).

• n = 4: Results are similar to n = 5, except c-energy and c-utility merge into one

canonical sector (PVE= 6.9%).

• n = 4: All sectors overlap and there is no clear separation of companies (PVE= 5.2%).

In general, a factorization analysis of the returns dataset would be sensitive to the

following factors and care must be taken in order to interpret results:

• Number of stocks in the dataset.

• Criteria applied for picking stocks.

• Period over which historical prices are obtained.

• Frequency at which returns are computed.

A robust macroeconomic analysis would therefore require a large number of stocks chosen

without sampling bias, with returns calculated over the period of interest and sensitivity

checked for frequency of returns calculation (In general, the number of time points should

exceed the number of stocks.). On the other hand, an equity fund manager faces a less

daunting task for an analysis that is limited the universe of her portfolio of stocks: either to find

its canonical sectors, or to analysis the exposure of her holdings to the core sectors of the

economy.
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4.9.8 CANONICAL SECTOR INDICES

The matrix C
sf

in decomposition in equation in eq. 4.2 represents how returns R of stocks s

must be combined to make canonical sector returns E
tf

= R
ts

C
sf

. Since an canonical sector

is defined as a combination of stocks, an investment in the sector f can made via buying a

basket of constituent stocks s in proportions given by C
sf

or through an index I
tf

:

I
tf

=

˜P
ts

0C
s

0
f

. (4.5)

where, ˜P are stocks prices suitably weighted by market cap or other divisor as common

practice for common indices [109]. An unweighted index of this kind is shown in bottom row of

fig. 4.8 for results corresponding to the analysis described in this paper. Conversely, a

pre-defined basket of stocks such as the S&P500 can be unbundled to find its exposure to the

canonical sectors. With an investment strategy employing longs and shorts at the same time

in correct proportions, it is conceivable to invest in, for example, the c-tech component of

S&P500.

The desirable features of an index include completeness, objectivity and investability [110].

The c-indices constructed using the ideas outlined here would not only be of value to

investors through investment vehicles such as ETFs, Futures, etc., but also serve as important

macroeconomic indicators.
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Figure 4.6: Low-dimensional projections of stock returns data. Each colored circle represents a
stock in our dataset is colored according to listed sectors scheme in fig. 4.9 according to
sectors assigned by Scottrade [11]. The first row is repeated from fig. 4.1. Black circles
represent are the archetypes found with our analysis. The (i, j)

th figure in the grid is a
plane spanned by singular vectors i and j + 1 (rows of XT

R) from the calculations
described in section 4.9.5. Projections after the factorization are shown in fig. 4.7.
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Figure 4.7: Cross-sections along eigenplanes of the factorized returns. Each colored circle
represents a stock in our dataset is colored according to scheme in fig. 4.3 based on the
primary sector association found after calculations described in this paper. Black circles
represent the archetypes found with our analysis. The (i, j)

th figure in the grid is a plane
spanned by singular vectors i and j + 1 (rows of MN

T ) from the calculations described
in section 4.9.5. Projections of raw data (before the factorization) are shown in fig. 4.6.
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c-techc-real estatec-non-cyclicalc-financial c-utilityc-energy c-industrialc-cyclical

Figure 4.8: Canonical sector time series. Top row: normalized log returns (columns of E
tf

),
middle row: cumulative log returns (same as fig. 4.2 as defined in equation 4.3, and
bottom row: unweighted price index of canonical sectors (eq. 4.5).
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Basic! Capital! Cyclical! Energy! Financial! Health! Non-cyclical!
Tech ! Telecom ! Utility ! Services! Real estate ! Retail! Transport!

c-real estate !

c-industrial!c-financial !

c-utility!c-tech !

c-energy!

c-non-cyclical !

c-cyclical !

Figure 4.9: Weight distribution in canonical sectors. Each of the eight subplots shows the
constituent participation weights of all 705 companies in an canonical sector (rows
of W

fs

). Stocks are colored by listed sectors as shown at the bottom. Listed sector
information was obtained from [11]. Y-axis range is from 0 to 1.
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market mode !

Basic! Capital! Cyclical! Energy! Financial! Health! Non-cyclical!
Tech ! Telecom ! Utility ! Services! Real estate ! Retail! Transport!

0! 100! 200 ! 300! 400 ! 500 ! 600 ! 700 !0! 100 ! 200! 300! 400 ! 500 ! 600 ! 700 !

Figure 4.10: Singular vectors V

T

fs

of SVD of returns R

ts

. The orthonormal right singular vectors
(rows of V T

fs

) of SVD of R
ts

are equivalent to the eigenvectors of the stock-stock
correlation matrix ⇠

ss

0 ⇠ R

T

R. Eight of these stiffest eigenvectors including the market
mode are shown in rows of two at a time. Each has 705 components corresponding to
stocks in an the dataset. The market mode with all components in the same direction
describes overall fluctuations in the market; it was excluded from the analysis described
in the paper. Previous work [12] has suggested that each eigenvector of the stock-stock
correlation matrix describes a listed sector, however as seen above, a more correct
interpretation is that each eigenvector is a mixture of listed sectors with opposite signs
in components. For example, the stiffest direction (after market mode) has positive
components in real estate and utility, but negative in tech. Less stiff eigenvectors
(including the last one shown here), do not contain sector-relevant information. Stocks
are colored by listed sectors as shown at the bottom. Listed sector information was
obtained from [11]. Y-axis range is from –0.5 to 0.3.
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c-real estate !

c-industrial!c-financial !

c-utility!c-tech !

c-energy!

c-non-cyclical !

c-cyclical !

0! 100! 200 ! 300! 400 ! 500 ! 600 ! 700 !0! 100 ! 200! 300! 400 ! 500 ! 600 ! 700 !

Basic! Capital! Cyclical! Energy! Financial! Health! Non-cyclical!
Tech ! Telecom ! Utility ! Services! Real estate ! Retail! Transport!

Figure 4.11: Canonical Sector Constituents (shown as columns of the C

sf

). C
sf

represents a
weighted combination stocks that defines of the canonical sector each of which has a
time series represented by E

tf

that is given by E

tf

= R

ts

C

sf

. The eight subplots show
the constituent participation component of stocks in each canonical sector f . Canonical
sectors are labeled on the plot; their names were chosen according to the listed
sectors of firms that comprise them. Noteworthy features seen above include the
co-association of listed sectors: basic, capital, transport and part of cyclicals into
industrial goods. Similarly, healthcare and non-cyclicals are coupled together in what
we call non-cyclicals. Canonical retail goes primarily with listed retail and cyclicals.
Stocks are colored by listed sectors as shown at the bottom. Listed sector information
was obtained from [11]. Y-axis range is from 0 to 0.05.
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APPENDIX A
MISCELLANEOUS RESULTS AND INFORMATION

Several individuals have contributed toward the results collected herein. Sections A.1, A.2 are

mostly due to Benjamin B. Machta and James P. Sethna. Section A.4 was written with the

assistance of Alexander A. Alemi.

A.1 FISHER INFORMATION MATRIX AS A METRIC ON PARAMETER

SPACE

This section gives an overview of the information theoretic approach used throughout [58,

111, 112] motivated by the following questions: how different are two probability distributions,

P1(x) and P2(x), and what is an appropriate measure of distance between them? Can one

test the hypothesis that a set of independent data points {x1, x2, ..., xN

} (unbeknownst to us

generated by P1) was instead generated by P2? The probability that P1 would have generated

the data is given by its likelihood:

P1({x1, x2, ...xN

}) =
Y

i

P1(xi

) = exp

 
X

i

logP1(xi

)

!
(A.1)

To determine which of two candidate models more probably generated this sequence of data,

one considers the log likelihood ratio:

�({x1, x2, ...xN

}) = log

✓
P1({x1, x2, ...xN

})
P2({x1, x2, ...xN

})

◆
(A.2)
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If � is large and positive (negative) than the data suggests P1 (P2). Alternatively, if � is close

to zero than either model could be valid and the data is inconclusive. How much data is

needed before one should expect that one model distinguishes itself? In a given distribution, �

is a stochastic variable. However, one can define the expectation value for �(x) in distribution

P1, giving the log likelihood per sample that an ensemble drawn from P1 could have instead

been drawn from P2.

This defines the Kullback-Liebler Divergence, D
KL

, a statistical measure of how

distinguishable P1 is from P2 from its data x [112, 113]

D
KL

(P1||P2) =

X

x

P1(x)�(x) =
X

x

P1(x) log

✓
P1(x)

P2(x)

◆
. (A.3)

Because D
KL

does not necessarily satisfy D
KL

(P1||P2) = D
KL

(P2||P1), it is not a mathe-

matically proper distance metric1. However, D
KL

becomes symmetric for two ‘nearby’ models.

For a continuously parameterized set of models P
✓

where ✓ is a set of N parameters ✓µ, the

infinitesimal D
KL

between models P
✓

and P
✓+�✓

is2

D
KL

(P
✓

, P
✓+�✓

) = g
µ⌫

�✓µ�✓⌫ +O�✓3, (A.4)

where g
µ⌫

is the Fisher Information Matrix (FIM), given by3

g
µ⌫

(P
✓

) = �
X

x

P
✓

(x)
@

@✓µ
@

@✓⌫
logP

✓

(x). (A.5)

1A distance measure should also satisfy some sort of generalized triangle inequality- at the very least
D(A,B) +D(B,C) � D(A,C) which is also not necessarily satisfied here.

2It is an interesting exercise to show that there is no term linear in �✓. The crucial step uses that P
✓

is a
probability distribution so @

µ

P
x

P

✓

(x) = 0.
3Although the KL-divergence is a common measure of statistical distinguishability among probability

distributions, it is not unique. In fact it is a member of a broader class of divergences known as the f-divergences,
which take the form D

f

(P1, P2) =
P

x

P1(x)f

⇣
P2(x)
P1(x)

⌘
for some function f(t) that is convex and satisfies

f(1) = 0. The KL-divergence therefore corresponds to the choice f(t) = � log(t). Other common choices are
f(t) = 2(1�

p
t), corresponding to the Hellinger Distance, and f(t) = |t� 1|, corresponding to the total

variation distance. For our purposes, this distinction is unimportant: the Fisher Information is the lowest order
contribution to any f-divergence for infinitesimally separated probability distributions.
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The quadratic form of the KL-divergence at short distances motivates using the FIM as a

metric on parameter space. The FIM is symmetric, positive-definite, and transforms like a

covariant rank-2 tensor under parameter transformations, endowing it with all the properties of

a Riemannian metric, the study of which is known as information geometry [58]. In fact, the

FIM is the unique natural Riemannian metric that is consistent with the additional structure

that each point specifies a probability distribution4.

Information geometry provides a framework for understanding more generalized Bayesian

inference. It gives an immediate derivation of Jeffreys’ ‘uninformative’ prior [116]: the invariant

volume element in any Riemannian geometry is given by
p

det (g)d✓1d✓2 . . . d✓N . In a

Bayesian inference scheme, choosing a prior on parameter space equal to
p
det (g)/Z

ensures that model predictions are reparameterization invariant. The normalization constant,

Z, is the invariant volume of the manifold that quantifies the amount of information expected to

be gained from a single measurement of x.

The FIM is well defined for any models that predict stochastic data. The next sub-sections

derive the form of the FIM for two special cases used in this work, the case of Gaussian

models, and the case of exponential families familiar from statistical physics. The similarity of

parameter space structure in these seemingly very different classes of models suggests that it

is not an artifact of the particular choice of stochastic model employed.

4Riemannian metrics have more structure than other metric spaces since the metric tensor defines an inner
product on the tangent space at each point on the manifold. The FIM is the only inner product that is invariant
under specific probabilistically important mappings. The basic argument considers partitions on the domain of
the probability distribution, known as Markov mappings. Requiring that the inner product be invariant under these
mappings is a rigid constraint that is only satisfied by the FIM [114, 115]
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A.1.1 THE METRIC OF A GAUSSIAN MODEL

Nonlinear least squares models output a vector of data, yi0 (for 1 < i < M ), that is generated

assuming that the observations yi are normally distributed with widths �i around prediction

~y0(✓). The fitting ‘cost’ or sum of squared residuals is proportional to the negative log

likelihood (plus a constant), hence the probability distribution of data is

P
✓

(~y) ⇠ exp

 
�
X

i

(yi � yi0(✓))
2/2�i2

!
. (A.6)

Defining the Jacobian between parameters and scaled data as

J
iµ

=

1

�i

@yi0(✓)

@✓µ
, (A.7)

the Fisher Information Matrix for least squares problems is given by5 [4, 57]

g
µ⌫

=

X

i

J
iµ

J
i⌫

. (A.8)

The Euclidean distance between nearby points in prediction space

P
(�y

i

)

2
=

P
i,µ,⌫

⇣
@y

i

@✓

µ�✓µ @y

i

@✓

⌫�✓⌫
⌘

= g
µ⌫

�✓µ�✓⌫
(A.9)

is the metric tensor contracted with corresponding displacements �✓µ in parameter space.

Thus the FIM has a geometric interpretation: distance is locally the same as that measured by

embedding the model in the space of scaled data according to the mapping y0(✓) (it is

induced by the Euclidian metric in data space). This metric was shown to be sloppy in

seventeen models from the systems biology literature [1] and in several other contexts. See

fig. 3.1 and [8].

5This assumes that the uncertainty �

i does not depend on the parameters, and that errors are diagonal. Both
of these assumptions seem reasonable for a wide class of models if measurement error dominates. The more
general case is still tractable, but less transparent
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A.1.2 THE METRIC OF A STATISTICAL MECHANICAL MODEL

Exponential models familiar from statistical mechanics are defined by a parameter set ✓

dependent Hamiltonian H that assigns an energy to every possible configuration x. Each

parameter ✓µ controls the relative weighting of some function of the configuration, �
µ

(x),

which together define the probability distribution on configurations through the following (with

temperature and Boltzmann’s constant set to 1)

P (x|✓) = exp(�H
✓

(x))/Z,

Z(✓) = exp(�F (✓)) =
P
x

exp(�H
✓

(x)),

H
✓

(x) =

P
µ

✓µ�
µ

(x)

(A.10)

Here F is the Helmholtz free energy. Many models can be put into this exponential form.

For example, the 2d Ising model of section 3.5 has spins s
i,j

= ±1 on a square L ⇥ L

lattice with the configuration, x = {s
i,j

}, being the state of all spins. The magnetic field,

✓0 = h multiplies �0({si,j}) =
P

i,j

s
i,j

, and the nearest neighbor couplings, ✓01 = ✓10 = �J

multiplies �1({si,j}) =
P

i,j

s
i,j

s
i+1,j + s

i,j

s
i,j+1. This form is chosen for convenience in

calculating the metric, which is written [64, 66, 117]6

g
µ⌫

= h�@
µ

@
⌫

log(P (x))i ,
= h@

µ

@
⌫

H(x)i+ @
µ

@
⌫

log(z),

= @
µ

@
⌫

log(z) = �@
µ

@
⌫

F.

(A.11)

In the last equation we have taken advantage of the fact that the Hamiltonian is linear in

parameters ✓µ so that h@
µ

@
⌫

H(x)i = 0.

6Several seemingly reasonable metrics can be defined for systems in statistical mechanics and all give similar
results in most circumstances [66]. Most differences occur either for systems not in a true thermodynamic (N
large) limit, or for systems near a critical point. As far as we are aware, Crooks [64] was the first to stress that
the one used here can be derived from information theoretic principles, perhaps making it the most ‘natural’
choice. Crooks showed [64] that when using this metric ‘length’ has an interesting connection to dissipation by
way of the Jarzynski equality [118].
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A.2 DERIVATION OF FIM EIGENVALUES

Here we discuss the way the eigenvalues of the FIM scale near the Ising critical point, deriving

the results quoted in equation 3.18. Our formula for the FIM is given by

gs
µ⌫

= A
P
↵,�

(

@u

↵

@✓

µ
@u

�

@✓

⌫ )(
@

@r

↵
@

@r

�U)⇠y↵+y��d

= J↵

µ

ĝs
↵�

J�

⌫

(A.12)

where ĝs
↵�

is the metric tensor in the scaling variable coordinates u↵

(

~✓) for which the

renormalization-group flows expand by a factor by↵ , and J�

⌫

= @u�/@✓⌫ is the Jacobian

transforming the natural coordinates ✓⌫ to the scaling variable coordinates. Our job is to show

that the ordered eigenvalues �s

i

of gs scale like

�s

i

⇠ A⇠2yi�d (A.13)

(equation 3.18). To do so, we first demonstrate that the eigenvalues ˆ�
i

of the FIM ĝs in scaling

variable coordinates satisfies this bound, and then show that this scaling is preserved by the

transformation J to bare coordinates.

We make use of Weyl’s inequality for matrix eigenvalues, which implies that if B and

M are real, symmetric matrices and B �M is nonnegative definite, then each ordered

eigenvalue of B is greater than or equal to the corresponding one of M . Let us write

ĝs
↵�

= A⇠�d

✓
@

@r↵
@

@r�
U
◆
⇠y↵+y�

= A⇠�dEME (A.14)

where M
↵�

= @2U/@r↵@r� and E
�⇢

= �
�⇢

⇠y� . This form of ĝs is similar to that of matrices

studied in [8].

Let C be the maximum eigenvalue of M , and let B
↵�

= C�
↵�

, so in particular B �M is

nonnegative definite, and hence W T

(B �M)W � 0 for any vector W .
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Conclusion: (A ⇠�dEBE � ĝs) is nonnegative definite, and thus ĝs has sorted eigenvalues

ˆ�
i

 CA⇠2yi�d.

Argument: Because ĝs = A⇠�dEME, for any vector V ,

V T

(A⇠�dEBE� ĝs)V = V T

(A⇠�dE(B�M)E)V = A⇠�dW T

(B�M)E)W � 0, (A.15)

where W = EV = V E. Since B
↵�

= C�
↵�

and E
↵�

= ⇠y↵�
↵�

are diagonal, the sorted

eigenvalues of A⇠�dEBE are just CA⇠2yi�d, which by Weyl’s inequality bound the sorted

eigenvalues of ĝs.

We now need to transform from the scaling coordinates u↵ to the original coordinates ✓⌫ .

The mapping from scaling variable to bare coordinates is non-orthogonal. Let the eigenvector

of ĝs corresponding to ˆ�
i

be v̂
i

. Each scaling-coordinate eigenvector transforms to a vector in

parameter space,

V i

µ

=

X

↵

v̂↵
i

J↵

µ

=

X

↵

v̂↵
i

@u↵

@✓µ
. (A.16)

The V is are neither orthogonal nor normalized. The metric in parameter space can be written

as:

gs
µ⌫

=

1X

i=1

ˆ�
i

V i

µ

V i

⌫

(A.17)

Conclusion: The sorted eigenvalues of gs, the FIM matrix in the original coordinates, scale as

�
i

⇠ A⇠2yi�d.

Argument: Consider the truncated version of this matrix formed by adding just the first N

contributions:

gs,N
µ⌫

=

NX

i=1

ˆ�
i

V i

µ

V i

⌫

. (A.18)

It is positive semidefinite, with rank N . Also, gs,N+1 � gs,N is nonnegative definite, so

Weyl’s inequality tells us that the sorted eigenvalues of gs,N+1 are each greater than

or equal to those of gs,N , �i,N+1 > �i,N . As traces of matrices sum, we also have that
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P
i

�i,N+1 � �i,N

=

ˆ�
N+1|V N+1|2. This implies that all eigenvalues must increase, with none

increasing by more than ˆ�
N+1|V N+1|2. As the mapping from parameter space to scaling

variables is analytic at the critical point, the normalization factor |V |2 is order one (does not

diverge as ⇠ ! 1). Hence the eigenvalue �
i

in parameter space is a sum of positive terms

⇠ ˆ�
j

for j � i. Since by the Lemma ˆ�
j

 CA⇠2yj�d, as ⇠ ! 1 the dominant term will be ˆ�
i

,

so �
i

⇠ A⇠2yi�d.

A.3 DERIVATION OF ↵ AND � OF THE LINEAR REGRESSION

EQUATION

Let matrix D
st

describe returns of stocks s at times t with dimensions (S, T). The goal is to

write the return for each stock as sum of the total market return M
t

that is common to all

stocks (also known as a benchmark index), an outperformance coefficient ↵ and an error ✏.

Each stock couples of the market through a constant �.

D
st

= ↵
s

1

t

+ �
s

M
t

+ ✏
st

(A.19)

A.3.1 A NEW ELEMENTARY METHOD

The common way to derive expressions for ↵ and � is through a minimization of the sum of

the squares of errors ✏
st

. A more transparent way presented here fully utilizes two key ideas:

(1) ✏
st

= 0

s

, i.e. errors are distributed around 0 for each stock, and (2) cov(✏
st

,M
t

) = 0

s

, i.e.

error for each stock is statistically independent of the market return.
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To derive the expression for �, subtract the time average of both sides of the previous

equation from itself:

D
st

� hD
st

i1
t

= �
s

(M
t

� hM
t

i1
t

) + ✏
st

(A.20)

Right multiply both sides by M
t

� hM
t

i1
t

. Take mean again and solve for �, using

cov(✏
st

,M
t

) = 0 to get:

�
s

=

hD
st

M
t

i � hD
st

ihM
t

i
hM2

t

i � hM
t

i2 =

cov(D
st

,M
t

)

var(M
t

)

(A.21)

Take the time average of both sides of the first equation to get ↵ as a function of �:

↵
s

= hD
st

i � �
s

hM
t

i and then use expression of � from previous equation in terms of known

quantities.

A.3.2 THE STANDARD METHOD

To minimize the square error in the linear regression equation, we compute the residuals:

r2 =
X

s,t

(D
st

� ↵
s

1

t

� �
s

M
t

)

2 (A.22)

and start by finding the best ↵:

@r2↵
s

=

X

t

(D
st

� ↵
s

1

t

� �
s

M
t

) = 0 (A.23)

which gives:

T↵
s

=

X

t

[D
st

� �
s

M
t

]

↵
s

= hD
s

i � �
s

hMi. (A.24)

Here we have introduced the notation:

hAi ⌘ 1

T

X

t

A
t

. (A.25)
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Proceeding with � we have,

@r2�
s

= 0 =

X

t

(D
st

� ↵
s

1

t

� �
s

M
t

) (�M
t

) (A.26)

So that

�
x

⌦
M2
↵
= hD

s

Mi � ↵
s

hMi (A.27)

= hD
s

Mi � hMi (hD
s

i � �
s

hMi) (A.28)

�
s

�⌦
M2
↵
� hMi2

�
= hD

s

Mi � hD
s

i hMi (A.29)

(A.30)

Which gives

�
s

=

hD
s

Mi � hD
s

i hMi
hM2i � hMi2

(A.31)

Note that if we define

µ
t

⌘ M
t

� hMi 1
t

(A.32)

this simplifies a bit

�
s

=

hD
s

µi
hµ2i (A.33)

Now we can express our residual matrix

✏
xt

= D
xt

� ↵
x

1

t

� �
x

M
t

(A.34)

= D
xt

� (hD
x

i � �
x

hMi) 1
t

� �
x

M
t

(A.35)

= (D
xt

� hD
x

i 1
t

)� �
x

(M
t

� hMi) (A.36)

= d
xt

� µ
t

hµD
x

i
hµ2i (A.37)

where similar to µ, d is defined

d
st

⌘ D
st

� hD
s

i 1
t

(A.38)
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A.4 SVD OF CENTERED DATA

As discussed in previous section we can write our data as,

D
st

= ↵
s

1

t

+ �
s

M
t

+ ✏
st

(A.39)

where data D
st

is the data of dimension (S, T ). In the SVD of D:

D
st

=

X

f

U
sf

⌃

f

V T

ft

. (A.40)

The market mode M
t

is the largest singular vector:

M
t

⌘ V T

0t (A.41)

We will now discuss the how SVD changes with centering (removing the means).

d
st

= D
st

� hDi 1
t

(A.42)

=

X

f

U
sf

⌃

f

V T

ft

� 1

T

X

t

X

f

U
xf

⌃

f

V T

ft

(A.43)

=

X

f

U
sf

⌃

f

�
V T

ft

�
⌦
V T

f

↵
1

t

�
(A.44)

=

X

f

U
sf

⌃

f

vT
ft

(A.45)

where v are simply centering the time-like singular vectors:

vT
ft

⌘ V T

ft

�
⌦
V T

f

↵
1

t

(A.46)

therefore,

M
t

= V T

0t =) µ
t

= vT0t (A.47)
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Note that these centered singular vectors are not orthonormal anymore. So this is not a new

SVD precisely. We can see what has happened in this transformation:

✏
st

= d
st

� µ
t

hµD
s

i
hµ2i (A.48)

= d
st

� vT0t
h(vT0 )2i

1

T

X

t

D
st

vT0t (A.49)

= d
st

� vT0t
h(vT0 )2i

1

T

X

t,f

U
sf

⌃

f

V T

ft

vT0t (A.50)

= d
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� vT0t
h(vT0 )2i
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f

U
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⌃
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⌦
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�
(A.51)

✏
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= d
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= d
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(A.58)
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Calling this new vector W :
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If we compute the norm of these vectors, we discover
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So since the new vectors are not orthonormal, strictly speaking this is not the actual SVD that

results. Looking at the formulas above, it becomes clear that if we work with centered data,

the affect of the fitting procedure is trivial, it just removes the top singular vector and value,

without disturbing the rest of the fit in any way.
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Comparing the equations for ↵ (A.24) and � (A.31) we see that if the data were considered

centered we have:

↵
s

= hD
s

i � �
s

hMi = 0 (A.69)

�
s
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s

Mi � hD
s

i hMi
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(A.70)
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(A.72)

= U
s0⌃0 (A.73)

So that looking at equation (A.37), we see that the effect of the fitting procedure gives

D
st

= D
st

� U
s0⌃0V

T

0t (A.74)

A.5 THE MAJOR SECTOR CLASSIFICATION SYSTEMS

Industries are organized into groups for statistical purposes primarily based on their products

sold or services offered. Tables A.1, A.2, and A.3 describe the top-level divisions as defined

by major industrial classification systems.
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Sector Industry Groups

Energy Energy

Materials Materials

Industrials Capital Goods, Commercial & Professional Services,

Transport

Consumer Discretionary Automobiles & Parts, Durables & Apparel,

Hotels, Media, Retail

Consumer Staples Food & Drug, Food, Beverage & Tobacco,

Household & Personal

Financials Banks, Diversified Financials,

Insurance, Real Estate

Healthcare Healthcare Equipment & Services,

Pharmaceuticals & Biotech

IT Tech Equipment, Software & Software & Services,

Semiconductors

Telecommunication Telecommunication Services

Utilities Utilities

Table A.1: The S&P/MSCI Barra Global Industry Classification Standard (GICS) [13].

Economic Sector Business Sector (or Industry Group)

Energy (Coal, Oil & Gas, Related

Equipment & Services, Renewable Energy)

Basic Materials Chemicals, Minerals Resources, Applied Resources

Industrials Industrial Goods, Industrial Services,

Conglomerates, Transportation

Cyclical Automobiles & Parts, Cyclical Products

Cyclical Services, Retailers

Non-Cyclical Food & Beverage, Food & Drug Retail

Personal & Household Products and Services

Financials Banking & Investment, Insurance,

Real Estate, Investment Trust

Healthcare Health Services, Pharmaceuticals & Medical Research

Technology Tech Equipment, Software & IT Services

Telecommunication Telecommunication Services

Utilities (Electric, Natural Gas, Water & Other, Multiline)

Table A.2: The Thomson Reuters Business Classification (TRBC) [14].
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Industry Supersector (or Sector)

Oil & Gas (Oil & Gas Producers, Oil Equipment,

Services & Distribution, Alternative Energy)

Basic Materials Chemicals, Basic Resources

Industrials Construction & Materials, Industrial Goods & Services

Consumer Goods Automobiles & Parts, Food & Beverage,

Personal & Household Goods

Healthcare (Healthcare Equipment & Sevices,

Pharmaceuticals & Biotechnology)

Consumer Services Retail, Media, Travel & Leisure

Telecommunications (Fixed Line Telecom, Mobile Telecom)

Utilities Electricity, Gas, Water & Multiutilities

Financials Banks, Insurance, Real Estate, Financial Services,

Equity/Non-Equity Investment Instruments

Technology (Software & Computer Services, Hardware & Equipment)

Table A.3: The Dow Jones/FTSE Industry Classification Benchmark (ICB) [15].
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