View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by CiteSeerX

The Effect of Developer-Specified Explanations for
Permission Requests on Smartphone User Behavior

Joshua Tan', Khanh Nguyen?, Michael Theodorides®, Heidi Negron-Arroyo*,
Christopher Thompson®, Serge Egelman’, David Wagner?*

'North Dakota State University, joshua.tan@ndsu.edu
2University of California, Riverside, knguy068 @ucr.edu
3University of California, Berkeley, {theodorides,cthompson,egelman,daw} @cs.berkeley.edu
“University of Puerto Rico, Mayagiiez, heidi.negron1 @upr.edu

ABSTRACT

In Apple’s iOS 6, when an app requires access to a protected
resource (e.g., location or photos), the user is prompted with a
permission request that she can allow or deny. These permis-
sion request dialogs include space for developers to option-
ally include strings of text to explain to the user why access
to the resource is needed. We examine how app developers
are using this mechanism and the effect that it has on user be-
havior. Through an online survey of 772 smartphone users,
we show that permission requests that include explanations
are significantly more likely to be approved. At the same
time, our analysis of 4,400 iOS apps shows that the adoption
rate of this feature by developers is relatively small: around
19% of permission requests include developer-specified ex-
planations. Finally, we surveyed 30 iOS developers to better
understand why they do or do not use this feature.

Author Keywords
Smartphones; Privacy; Access Control; Usability

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces; D.4.6 Operating Systems: Security and Protection

INTRODUCTION

In 2012, the number of smartphone users crossed 1 billion,
and that number is expected to double by 2015 [26]. Smart-
phones allow third party apps to access sensor data (e.g., lo-
cation, photos, etc.) and personal information (e.g., address
book contacts, calendar appointments, etc.) in order to cre-
ate rich user experiences and subsidize costs through targeted
advertising. To empower users to make informed choices
about how their data is used, each smartphone platform has
a method for allowing users to grant permission for an app to
access certain types of data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2014, April 26-May 1, 2014, Toronto, Ontario, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2557400

"Scout" Would Like to Access
Your Calendar

Let Scout check for entries with
location info to help you get to
appointments on time.

Don't Allow oK

Figure 1. A calendar permission request for the Scout app including a
developer-specified purpose string explaining the reason for the request.

In Apple’s iOS 6 (released in September 2012), permission
request dialogs appear at runtime whenever an app first re-
quests access to any of the following six resources: the
user’s geophysical location, address book contacts, photos
and videos, calendars, reminders, and Bluetooth pairing [3].
To make these requests more understandable to users, devel-
opers can optionally specify a purpose string to explain why
an app needs access to a particular resource. Figure 1 shows
an example of a calendar request with such a purpose string.

We studied the effects of developer-specified purpose strings
through three different experiments. First, we performed an
online experiment on 772 smartphone users to measure their
willingness to grant access to protected resources. We ob-
served that on average, the rate at which participants approved
permission requests increased by 12% when purpose strings
were present. Surprisingly, the actual content of the pur-
pose strings did not have an observable effect (i.e., partici-
pants were significantly more likely to approve requests that
included purpose strings, regardless of what those requests
said). Second, we performed an analysis of 4,400 iOS apps
to measure how many are taking advantage of this feature and
whether there are any trends with regard to developers’ text
choices. Finally, we performed a qualitative survey of 30 iOS
developers to examine their opinions of this feature, includ-
ing why they choose (or choose not) to use it. Taken together,
our experiments show that purpose strings can lead users to
grant more requests (even if they do not convey useful infor-
mation), but few apps employ them, due to developers being
unaware of the feature or its impact on user behavior.

https://core.ac.uk/display/24066058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BACKGROUND AND RELATED WORK

Research has shown that with regard to mobile device se-
curity and privacy, malicious apps are rare [17]. A more
widespread threat appears to be apps that, possibly uninten-
tionally, access users’ personal data in ways that users neither
expect nor condone. Enck ef al. showed that there is system-
atic misuse of personal and phone identifiers stored on An-
droid smartphones [10]. Researchers have developed tech-
niques to track the flow of privacy-sensitive data and detect
when it leaves the device [9] and to identify overprivileged
applications [11]. Because users may weigh the trade-off
between privacy and functionality differently, many mobile
platforms allow users to decide whether third party apps can
access certain protected resources.

When choosing how to represent permission requests, plat-
form developers have essentially four mechanisms at their
disposal: automatically granted permissions, trusted UI com-
ponents, runtime warnings, and install-time warnings [14].
Android uses install-time warnings for all of its permission
requests. However, Felt et al. found that a majority of An-
droid users do not look at permissions during installation, and
very few could explain specific permissions when asked [12].

Instead of presenting a list of all requested permissions at in-
stallation, some platforms (e.g., i0S, Windows Phone, and
Blackberry) show permission requests to the user at runtime,
when an app first requests a resource. While runtime requests
provide context to the user, a decade of usability research has
shown that users may become habituated to these warnings,
making them ineffective [2,6, 8,23,25]. Because habituation
increases with each warning exposure [15], researchers have
studied ways to minimize unnecessary warnings [24] and to
make important warnings more salient [5].

Capturing users’ app privacy preferences is challenging [4].
Consolvo et al. showed that smartphone users value why re-
questers want access and the amount of detail given in the re-
quests when deciding whether to disclose their locations [7].
Kelley et al. showed that users feel more comfortable sharing
information when given granular privacy settings than with
simple opt-in/opt-out mechanisms [14]. Sadeh et al. evalu-
ated interfaces to help users better specify their privacy pref-
erences by specifying rules and auditing disclosures [22]. Ex-
periments by Fisher et al. build on this by showing that users
do make decisions about which of their smartphone apps they
allow to access their locations [13]. They surveyed iOS users
and concluded that while users grant the majority of location
requests, most users deny at least one app access to location.
Felt et al. reported similar results: a majority claimed to have
declined installing an app because of its permissions [12].

Lin et al. studied users’ mental models of app behaviors [18].
They found that even when users read permission requests
and are aware of the resources an app uses, users still
have trouble understanding why certain resources are needed,
which makes it difficult for users to make informed decisions
based solely upon the permissions an app accesses. They also
found that participants were significantly more comfortable
when the purpose of resource requests was explained.

App Resource Purpose string

“Let Gmail use your contacts to autocomplete

Gmail Contacts . »
email addresses.
“In order to find your friends, we need to
Instagram Contacts send address book information to Instagram’s
servers using a secure connection.”
“This allows Instagram to share photos from
Instagram Photos your library and save photos to your camera
roll.”
“Let Scout check for entries with location
Scout Calendar . . T,
info to help you get to appointments on time.
“Easily drive to, search for, and share ETA
Scout Contacts . »
with the people who matter most to you.
“Your contacts will be transmitted to our
Snapchat Contacts . .
servers and used to find your friends.
. “because we want to give you news about
SPUN Location » gve y
where you are.
. . “Your location will be used to fetch nearby
Transit Location »
stops and routes.
Twitter Contacts “Have more fun with your friends on Twitter.”
Twitter Location Enjoy the Tyvmsr experience tailored to your
current location.
Flashlight Location F(.)r Comp.ass Mini Map to work pf’operly, lo-
cation services need to be enabled.
“RedLaser will use your location to search
RedLaser Location for product pricing and availability at nearby

stores.”

MapMyRun Location “To track your workouts please press OK.”

“This allows you to view and tag posts with

Vine Location . .
locations around you.

“Your current location will be used to find air-

Location ports and hotels near you.”

Expedia

Table 1. Pool of real apps and their requested permissions, as well as the
purpose strings that participants saw during the Purpose task.

In this paper, we examine developer-specified explanations
for resource requests. To the best of our knowledge, we are
the first to examine how this iOS feature influences user be-
havior, the extent of its adoption, and the reasons for why
developers choose to include or exclude these explanations.

USER BEHAVIOR

We performed an online experiment to determine whether
users are more likely to grant iOS 6 permission requests when
developer-specified explanations (i.e., “purpose strings”) are
present, whether users better understand the reasons for these
requests when purpose strings are present, and whether users
are more satisfied with their decisions.

Methodology

Our experiment involved three tasks. In the first two tasks,
participants viewed a screenshot of a real app with a purpose
string (the Purpose task) and a screenshot of a different real
app with its purpose string removed (the Control task). We
randomized the order of these two tasks. Each screenshot
was randomly selected from a pool of 15 permission request
screenshots (Table 1), taken from real apps and using real
purpose strings. We included logic so that no one saw screen-
shots from the same app for both tasks. Thus, these two tasks
allowed us to perform a within-subjects analysis of partici-
pants’ decision-making with and without purpose strings.

1. It helps me make a more effective decision about the sharing of my
information.

. It is useful.

. It gives me more control over the sharing of my information.

. It makes it easier to decide on the sharing of my information.

. It allows me to quickly decide on whether to share my information.

. It allows me to efficiently decide on whether to share my information.
. It addresses my concerns over the sharing of my information.

. I am satisfied with it.

. It makes me more comfortable deciding on whether to share my in-

formation.

10. 1t is clear and easy to understand.

11. The language used is simple and natural.

12. 1 feel like it is necessary for me to make an effective decision about
the sharing of my information.

NelleBEN Heo U RN NS E)

Table 2. Each participant answered 12 questions on a 7-point Likert
scale (“strongly agree” to “strongly disagree”). We took the average of
these 12 responses to create a “satisfaction score.”

For the third task, we showed a screenshot of a fake app, Party
Planner, requesting access to the user’s contact list. This re-
quest featured a purpose string randomly selected from a pool
of 14 (Table 4). This task allowed us to perform a between-
subjects analysis of the effect of text choice in the purpose
strings, while also controlling for app familiarity (i.e., no par-
ticipant had previously interacted with our fictitious app).

For each of the three tasks, we included three pages of ques-
tions. On the first page, we displayed a screenshot of the app
followed by a detailed description of what the app does. We
then asked participants to type the name of the app and to
report whether or not they had previously used the app.

Each task’s second page showed a screenshot of one of
the aforementioned permission requests. When participants
viewed the Purpose task, the request featured a purpose string
from Table 1; when they viewed the Control task, no purpose
string was displayed; and when they viewed the Party Plan-
ner task, the purpose string was drawn at random from Ta-
ble 4. We asked, “if you click ‘OK, what information will
the app get access to?” They could select from ten multiple-
choice options, including “none of the above” and “I don’t
know.” We used this question to establish whether they had
studied the screenshot. Next, we asked three open-ended
questions: “Why do you believe the app is asking for access
to this information?”, “Do you believe that the app will use
this information for any other purposes? If so, what?”, and “Is
there any additional information you would like to be shown
in the dialog box? If so, what?” Two coders independently
tagged responses to look for common themes. Finally, we
asked whether they would allow the request.

On the third page of each task, participants rated 12 state-
ments about the permission request they had just viewed on
a 7-point Likert scale (Table 2). For each task, we averaged
each participant’s responses to all 12 statements, to create a
“satisfaction score.” While each statement was phrased posi-
tively, this is not a cause of bias because we only used these to
make relative comparisons between experimental conditions.

Our survey concluded with demographic questions, includ-
ing whether participants were iOS users. We recruited them
through Amazon’s Mechanical Turk, restricting participation

User Decision
Request Type n Allow Deny % Allow

Purpose Task 568 418 150 73.6%
Control Task 568 374 194 65.8%

Table 3. Participants’ decisions (within-subjects) to allow or deny a re-
quest based on whether or not it included a purpose string.

to smartphone users based in the U.S. who were 18 or older.
The entire experiment took approximately 15 minutes to com-
plete and we compensated participants $2.50 for their time.

Analysis

From the 826 responses that we received, we filtered out par-
ticipants who claimed not to own a smartphone, specified a
make/model that did not match a specified platform,' or wrote
gibberish for the open-ended questions. This left us with 772
responses. Overall, our sample was skewed male (65.5% of
772), with an average age of 28 (o = 8.1, ranging from 18 to
62), and 35.0% were iPhone users (58.9% used Android).

For each of the three tasks, participants named the app (open-
ended) and its requested resource (multiple-choice). Due to
some ambiguity, many chose a superset of the correct re-
source (e.g., they saw Twitter’s location request, but from
their familiarity with the app, they indicated that it would also
request their contacts). We therefore accepted supersets of the
correct responses. Based on the low reliability of these ques-
tions (Cronbach’s o = 0.64; i.e., getting one wrong was not
a predictor of getting others in subsequent tasks wrong), we
chose to filter participants out on a task-by-task basis. For
example, we removed those who could not name both the
Purpose task app and its requested resource from the Pur-
pose task analyses, but included them in the Party Planner
task analyses if they could correctly name that app and its re-
quested resource. This reduced the number of participants to
666 for the Party Planner task and 623 for the Purpose and
Control tasks. A technical error also caused some partici-
pants to be shown incorrect images in the Purpose and Con-
trol tasks, resulting in 568 participants in these conditions.?

Effect of Purpose Strings on Granting of Requests

When participants viewed purpose strings (i.e., the Purpose
task), they approved 73.6% of the requests, whereas when the
requests did not have purpose strings (i.e., the Control task),
they approved 65.8% of the requests (Table 3). A Wilcoxon
Signed Ranks test found this difference to be statistically sig-
nificant (Z = —3.569, p < 0.0005).

Examining Explanatory Factors

To determine whether the significant change in behavior was
due solely to the presence of the purpose strings or some other
factor, we examined whether there were any observable ef-
fects due to the ordering of the within-subjects tasks, partici-
pants’ familiarity with the specific apps in the first two tasks,
or their familiarity with iOS in general.

"We asked participants what platform they used at the beginning
of the survey (e.g., iPhone, Android, etc.) and then asked them to
specify the make/model in the demographics section at the end.

“Entirely removing these participants does not change our findings.

We first examined the effect of the within-subjects questions’
order (i.e., whether participants were more likely to allow a
request based on whether they saw the Purpose or Control
task first). We performed Fisher’s exact test to compare the
approval rates in the Purpose task (i.e., real apps with purpose
strings) between participants who saw this task first and those
who saw it after completing the Control task. We observed
no statistically significant differences (p < 0.481). Likewise,
we performed the same test on the Control task approval rates
and also observed no statistically significant differences (p <
0.244). This suggests that the difference in approval rates was
not due to task ordering or that participants deduced our goals
and acted to please us: participants had no chance to deduce
the stimulus until the second task (noticing that it added or
removed a purpose string), leaving their first task untainted by
demand characteristics. If participants were acting to please
us, those who performed the Control task first (unaware of
goal) would have behaved differently than participants who
performed this task second (aware of goal).

We randomly displayed apps drawn from the same pool in
the Purpose and Control tasks to prevent participants from
being more familiar with the app in one task than the other.
However, we also explicitly tested for this: we performed a
within-subjects comparison to see if participants were more
likely to report using the apps shown in requests contain-
ing purpose strings (25.5%) than the apps shown in requests
not containing purpose strings (26.4%). A Wilcoxon Signed
Ranks test found this difference to not be statistically signifi-
cant (Z = —0.333, p < 0.739); nor did we observe correla-
tions between allowing a request and app familiarity (Control:
¢ = 0.052, p < 0.217; Purpose: ¢ = 0.012, p < 0.778).
Thus, participants’ familiarity with the apps did not have an
observable effect on their behavior.

We explored the similar question of whether participants’ iOS
familiarity affected decisions to allow permission requests.
Neither of the first two tasks showed a significant difference
in approval rates between current users of iOS and those of
other platforms (Fisher’s exact test; Purpose: p < 0.769;
Control: p < 0.023; Bonferroni corrected o = 0.01). Thus,
we conclude that the presence of purpose strings was respon-
sible for the significant difference in behavior.

User Satisfaction and Comprehension

In order to measure participants’ level of satisfaction with
each request, we asked them to rate 12 statements (Table 2)
using a 7-point Likert scale (“strongly agree” to “strongly
disagree”). For each task, we calculated participants’ satis-
faction scores as the average of all 12 questions. We then
performed a within-subjects comparison of the satisfaction
scores during the Purpose task (u = 5.42) and the Con-
trol task (u = 4.97): we observed a statistically signifi-
cant difference (Wilcoxon Signed Ranks test; Z = —8.053,
p < 0.0005). This indicates that participants felt more posi-
tively about their experiences when they were presented with
requests containing purpose strings.

To examine why participants felt better about their decisions
when presented with purpose strings, we examined the re-
sponses to our three open-ended questions. First, we ob-

served that when viewing purpose strings, they were signif-
icantly less likely to say that they needed additional infor-
mation to make a decision: 57.5% said they did not need
additional information during the Purpose task versus only
43.6% during the Control task (Wilcoxon Signed Ranks test;
Z = —6.077, p < 0.0005). Surprisingly, purpose strings
did not observably help participants explain why their data
was being requested: 6.0% could not provide an explanation
for why their data was being requested during the Control
task versus 5.4% during the Purpose task (Wilcoxon Signed
Ranks test; Z = —0.438, p < 0.662).> Likewise, we discov-
ered that the purpose strings were unlikely to better communi-
cate whether personal data would be used for other purposes:
31.0% were uncertain during the Purpose task versus 32.7%
during the Control task, which was not statistically significant
(Wilcoxon Signed Ranks test; Z = —0.873, p < 0.383).

Thus, our data shows that while participants were signifi-
cantly more likely to allow requests when presented with pur-
pose strings and that they felt positively about these requests,
the purpose strings did not help them understand why their
data was being requested or how it might be used.

Choice of Text

We examined the Party Planner task data to better understand
how the specific text of a purpose string may influence par-
ticipants. The fictitious Party Planner’s purpose strings were
randomly drawn from Table 4. This allowed us to perform
between-subjects comparisons to examine the effects of the
specific text, while controlling for the app. We designed these
purpose strings to convey varying amounts of information.
“Contact access is required for this app to work properly”
was used as a control statement because it contains little in-
formation, whereas the other purpose strings contain vary-
ing amounts of information to explain why data is being re-
quested, how it will be used or stored, and whether it will be
used for other purposes. When viewing the control statement,
participants’ satisfaction scores were significantly lower than
they were when viewing the other statements (4.75 vs. 5.34;
Mann-Whitney U test; U = 13,377.0, p < 0.001). Though
despite this difference, we ultimately observed no differences
in behavior: Fisher’s exact test did not yield any statistically
significant differences between the approval rates of partici-
pants shown the control purpose string and those shown the
other purpose strings (p < 0.495).

ADOPTION

In the previous section, we showed that developer-specified
explanations for permission requests impact user behavior
and satisfaction. In this section we examine the adoption of
this feature by developers. We performed a combination of
automated and manual analysis to identify apps that requested
access to any of the six resources that require user approval,
and of these, what percentage included developer-specified
explanations for resource requests (i.e., “purpose strings”).
Finally, we examine trends in developers’ explanations.

3This question measured participants’ self-confidence on under-
standing the reasons for the request; we measured whether partic-
ipants could provide any reason, regardless of its correctness.

Purpose String Approval Rate
Control: “Contact access is required for this app to work properly.” 52.5% of 59
“Let Party Planner use your contacts to autocomplete email addresses.” 70.2% of 47
“To find friends, we’ll need to upload your contacts to Party Planner. Don’t worry, we’re not storing them.” 69.5% of 59
“Party Planner would like to access your address book to show you the cheapest attractions by your contacts’ location. We won’t use your 66.7% of 48
contact information for any other purposes.” ’

“Your contacts will be used to find your friends.” 65.5% of 58
“In order to find your friends, we need to send address book information to Party Planner’s servers.” 62.5% of 48
“Have more fun with your friends on Party Planner.” 58.7% of 46
“Easily search for and share event information with the people who matter most to you.” 57.5% of 40
“Your contacts will be uploaded to our secure server. This data is maintained securely and is not shared with another party.” 52.9% of 34
“Your contacts will be used to find your friends. They won’t leave your phone.” 51.5% of 33
“In order to find your friends, we need to send address book information to Party Planner’s servers using a secure connection.” 51.0% of 51
“Your contacts will be transmitted to our servers and used to find your friends.” 46.2% of 39
“Party Planner would like to access your address book to show you the cheapest attractions by your contacts’ location.” 45.5% of 55
“Party Planner would like to access your address book to show you the cheapest attractions by your contacts’ location and other purposes.” 38.8% of 49
Total: 56.8% of 666

Table 4. Pool of app purpose strings for the fictitious Party Planner app, as well as their associated approval rates. The first purpose string was used as
a control condition because it conveys no information about why the app is requesting access.

Methodology

We created a corpus of 4,400 free iOS 6 apps by download-
ing the top 200 apps for each of the 22 app categories in the
iTunes Store.* Estimating the total adoption rate across our
entire corpus took three steps. First, we calculated the numer-
ator by extracting purpose strings from each app’s plaintext
metadata file. Next, we calculated the denominator by per-
forming static analysis on the decrypted binaries to estimate
how many apps requested access to any of the six protected
resources (i.e., including those without purpose strings). Fi-
nally, we manually examined 140 apps to validate our results.

Purpose String Extraction

Applications for iOS have two parts, an encrypted bi-
nary (i.e., the executable, which is decrypted at run-
time) and unencrypted metadata files. Purpose strings are
optionally included in the latter (i.e., Info.plist or
InfoStrings.plist), known as a “property list” or
plist. We searched for these files within each app in our
corpus, recording any purpose strings that they contained.

In previous versions of iOS, developers had the option of
specifying a purpose string for location requests (though not
for other resources). Because the purpose string was passed
as a parameter to API calls in older versions, they are stored
encrypted and cannot easily be extracted (unlike when the
purpose strings are stored in plist files). For backwards
compatibility, iOS 6 still displays purpose strings specified
via this deprecated method, which means that only extracting
purpose strings from plist files will not yield all the possi-
ble purpose strings that a user is likely to encounter. We used
static analysis of the binaries to close this gap.

Static Binary Analysis

To measure adoption of purpose strings, we counted the num-
ber of apps for which developers had the opportunity to spec-
ify purpose strings. We performed static analysis on our cor-
pus of 4,400 apps to determine the number of apps that re-
quested access to any of the six protected resources.

*We collected this data during May 15-16, 2013.

iOS app binaries obtained from the iTunes App Store are
stored on the user’s device in encrypted form. We decrypted
the 4,400 apps by loading them onto a jailbroken iPhone and
used the iOS app decryption tool, Rasticrac [19]. We used
iOS 6.0.2 on the iPhone, which was the latest version for
which a jailbreak method was available. Any apps that re-
quired a newer version of iOS were excluded and replaced
with another app ranked in the top 200 for the same category.’

After decryption, we used the Unix strings tool to extract
function names. By searching for the names of the API func-
tions used to access the six protected resources, we could au-
tomatically determine whether a given app would access any
of those resources. Additionally, we also searched for the
method that is invoked when developers specify a location
purpose string using the deprecated API method. Although
we could not obtain the actual deprecated location purpose
strings using the strings tool alone, this method allowed
us to gain a more accurate understanding of total adoption.

Manual Testing

We were concerned that simply searching for function names
using our static analysis method might yield false positives.
For instance, if a request to access a user’s contacts is con-
tained within a section of unreachable code, our static anal-
ysis would indicate that this app requests access to contacts,
whereas in reality no such request would ever be made. Simi-
larly, if the set of function names we searched for was incom-
plete, our static analysis would report false negatives. There-
fore, we validated our static analysis results by performing
manual testing on a subset of apps in our corpus.

We selected the top 10 free apps in 14 categories, resulting in
140 apps. We used manual testing to record all resource re-
quests made by these 140 apps, and their associated purpose
strings, if any. If a purpose string was provided for a loca-
tion resource request, but no corresponding string was found
in its plist files, we deduced that this purpose string was
specified using the deprecated API method.

>The iTunes top 200 apps by category frequently changed, and so
we simply had to wait for replacement apps to appear.

Apps With

Purpose Resource Adoption
Resource Strings Requests Rate
Reminders 6 82 7.3%
Contacts 66 1,200 5.5%
Location 57 2,539 2.2%
Calendars 11 508 2.2%
Photo & Video 35 2,631 1.3%
Location (Deprecated) 548 2,539 21.6%
Any 660 3,486 18.9%

Table 5. Adoption rates by resource. Many apps were predicted to re-
quest multiple resources and some apps provided purpose strings for
multiple resources. The row labeled Location (Deprecated) lists the pur-
pose strings using the deprecated API method.

Analysis

Overall, of our corpus of 4,400 apps, we estimated that 3,486
(79.2%) request access to one or more of the six protected
resources. Of these, 660 apps (18.9% of 3,486) included
developer-specified explanations (i.e., “purpose strings”).
Our manual analysis of 140 apps corroborated these findings:
17.4% (16 of 92 apps that requested access to protected re-
sources) included purpose strings.

Adoption Rates

We combined our plist-specified purpose string data with
our static analysis predictions to determine the overall adop-
tion rate for developer-specified purpose strings in resource
requests. Table 5 depicts our results, classified by resource.®

Of the 140 apps that we tested manually, 92 requested access
to at least one of the six protected resources. We found that
16 apps (17.4% of 92; 95% CI: [10%,27%)]) included pur-
pose strings in these requests. Manual testing found no false
negatives in our static analysis: static analysis found every
resource request that we found through manual testing. Our
static analysis predicted that 130 of the 140 apps accessed
protected resources, but we were only able to confirm this
using manual testing for 92 apps. This indicates a false posi-
tive rate of up to 41%, which further suggests that the overall
purpose string adoption rate is likely higher than estimated in
Table 5 (because the denominator—the total number of apps
requesting access to protected resources—is likely smaller).
Data collected by Agarwal et al. support this hypothesis; the
percentages of 222,685 apps in their study found to access
the location and contacts resources were roughly one fourth
of those estimated by our static analysis [1].

Ad libraries may account for the large false positive rate.
Pearce et al. show that 46% of ad-supported Android apps
request permissions used only by ads [21]. We examined the
apps yielding false positives for evidence of 6 popular ad li-
braries and found evidence in 71% (27 of 38). When app de-
velopers include an ad library but do not target ads, targeting
methods appear as dead code in the app binaries. Our static
analysis would then predict a resource request that disagrees
with manual testing results, inflating the false positive rate.

®Bluetooth has been excluded since only three apps in our corpus
requested this resource, none of which included a purpose string.

Approximately 21.6% (548 of 2,539) of apps requesting loca-
tion data use the deprecated API to specify a purpose string,
whereas only 2.2% (57 of 2,539) use the new method. Across
all resources, 3.6% (125 of 3,486) of apps specify a purpose
string using the new method. This suggests that it is only a
matter of time before developers use the new method to com-
municate to users why their apps request these resources.

Purpose String Categories

We extracted 175 unique purpose strings specified in the
plist files of 125 apps. Multiple people each read through
all of the strings and then created a set of categories based
on the themes that they observed. Next, two coders indepen-
dently tagged each purpose string with one or more of the
following agreed-upon categories:

e User benefit. The purpose string describes how granting
permission to the request will benefit the user’s experience.

— “This allows Instagram to share photos from your li-
brary and save photos to your camera roll.”
— “Have more fun with your friends on Twitter.”

e Appropriate resource use. The purpose string promises or
guarantees that the accessed information will not be mis-
used, or that it will be used only for the described purposes.

— “We’ll include your old photos in Timehop! (Don’t
worry, photos won’t be uploaded or shared)”

— “So you can add them more easily. We’ll never misuse
them, promise!”

o Local/Non-local use. The purpose string explains whether
the accessed information will be used locally or uploaded.

— “To find family and friends, Voxer needs to send your
contacts to our server.”

— “To import photos to hidden albums or browse your
visible albums, CoverMe needs to access your cam-
era rolls. Your photos won’t be uploaded to CoverMe
servers.”

e Security. The purpose string describes how the accessed
information will be protected against unauthorized access.

— “Securely sync your contacts so we can help you find
more friends.”

— “AllTrails can securely and anonymously check your
contacts to see who else is using the app”

e Information sharing. The purpose string describes the pol-
icy for sharing information with third parties.

— “We use your location to help you find nearby dishes
and restaurants. We won’t ever share it.”

— “Call Bliss requires contact access so you can allow
callers. Your contacts remain confidential, Call Bliss
does not copy or share them.”

e Data storage. The purpose string explains whether the data
will or will not be stored, or addresses the storage duration.

— “WhatsApp copies your address book phone numbers
to WhatsApp servers to help you connect with other
WhatsApp users”

— “We take your privacy seriously and will never store
or share your contacts.”

Category # Strings % Strings
User benefit 172 98.3%
Appropriate resource use 24 13.7%
Local/Non-local use 15 8.6%
Security 8 4.6%
Information sharing 6 3.4%
Data storage 5 2.9%

Table 6. Categories of purpose strings found in our corpus. The cate-
gories were not mutually-exclusive.

“Vine” Would Like to Access
Your Contacts

[Text here]
Don’t Allow

Figure 2. Participants created purpose strings for two different requests.

Table 6 depicts the number of purpose strings that fell into
each category. Nearly all strings (98.3% of 175) mentioned
the benefits of granting access to the requested resource. The
second most common category was assurances against in-
appropriate resource use, with 13.7% of strings providing
this information. The categories were not mutually-exclusive
(i.e., many purpose strings fell into multiple categories).

DEVELOPER OPINIONS

We surveyed i0OS developers to determine if they were aware
of purpose strings, the reasons why they were or were not
using them, and the information they might include in them.

Methodology

To screen participants, we asked them how many iOS apps
they had previously developed and whether any were avail-
able in the iTunes store. Following this page, we provided
participants with an explanation and screenshot of a “purpose
string” and asked them if they had heard of this feature or
used it in any apps that they had developed. We asked them to
select all the resources that their apps utilize from a multiple-
choice list, which included the six protected resources. If ap-
plicable, we asked them to specify all the resources for which
they had written purpose strings. Based on participants’ pre-
vious responses, we asked them why they did or did not in-
clude purpose strings in their apps. Multiple coders catego-
rized the open-ended responses to determine the reasons why
developers choose to use purpose strings.

We examined the types of purpose strings developers write
by presenting participants with descriptions and screenshots
of two popular apps, Vine and Scout. We subsequently dis-
played screenshots of each app’s request for a user’s contacts,
using a placeholder for a purpose string (Figure 2); we asked
participants to write purpose strings for each of these re-
quests. Each app description included an explanation for how
the data would be used, adapted from each app’s real privacy
policy. The goal of the task was to observe how developers
would transform these descriptions into purpose strings:

Total developers surveyed 30 | 100%

Access a protected resource 28 | 93.3%
Aware of purpose strings 15 | 53.6%
Use purpose strings 7 | 46.7%
Do not use purpose strings 8 | 53.3%
Unaware of purpose strings 13] 46.4% |

Table 7. Developers’ use and awareness of purpose strings. For instance,
of the 28 developers who have written apps that request protected re-
sources, thirteen (46.4% of 28) were unaware of purpose strings.

e Vine: Our Services include several features to help you
find the accounts of people you already know. For exam-
ple, you may upload information from your address book or
connect your Vine account to your account on another ser-
vice such as Twitter. Vine will match the information you
provide with the contact information of other Vine users.
We do not retain your address book information after dis-
playing these matches.

e Scout: You can allow our application to access the data
stored in the address book and/or calendar on your mo-
bile device. Our applications may use data from your ad-
dress book to allow you to search for and navigate to the
addresses of your contacts and our applications may use
calendar entry data to provide you with reminders about
upcoming appointments and to provide navigation to the
locations of your appointments. We will only access this
data if you have given permissions for a particular Telenav
application to do so, and you can revoke such permissions
at any time by changing the settings on your mobile device.

Our survey concluded with open-ended questions to help us
confirm participants were iOS developers: the programming
languages used, the testing/debugging tools used, the number
of years developing iOS apps, and the target iOS versions.

We recruited participants through ads on StackOverflow” and
iPhoneDevSDK.® On StackOverflow, we placed our adver-
tisement on pages with tags related to i0S (““ios,” “i0s6,” “ios-
simulator,” or “ios-maps”), since these pages were likely to
be visited by iOS developers. Participants who completed the
survey were entered into a raffle for one of four $100 Amazon
gift cards. We required participants to have developed at least

one app that was approved for the iTunes App Store.

Analysis

Our survey was visited by 102 people, with 74 recruited from
StackOverflow and 14 from iPhoneDevSDK.? Of these, 53
people opted to not participate and 16 stated that they had not
developed iOS apps and were disqualified. Among the 33 par-
ticipants who submitted responses meeting our requirements,
three could not answer questions about the tools they use to
develop i0OS apps and were removed. This left us with 30
valid responses (91% of 33).

Developer Awareness

The results suggest that the vast majority of developers
could be using purpose strings: 28 developers (93.3% of 30)
claimed that the apps they currently have available in the

"http://stackoverflow.com/
8http://iphonedevsdk.com/
214 responses did not specify the referrer.

iTunes Store access at least one of the six protected resources
(Table 7). However, only 17 developers (56.7% of 30) in our
survey claimed to be aware of purpose strings. Of the devel-
opers who had requested a protected resource and were aware
of purpose strings, seven (46.7% of 15) reported having used
a purpose string; the two developers who did not access pro-
tected resources were nonetheless aware of purpose strings.

We found no relationship between developers’ awareness of
purpose strings and their years of experience developing iOS
apps nor the number of apps that they had developed, which
may suggest that lack of awareness is due to poor documenta-
tion of the feature, rather than developer inexperience. In the
remainder of this section we explore developers’ responses
to the open-ended questions, including why they chose to use
purpose strings (or not) and the themes that emerged from the
example purpose strings that they wrote.

Developer Attitudes

We asked the eight participants who claimed to not use pur-
pose strings, despite being aware of them and writing apps
that accessed protected resources, why they chose not to use
them. Two participants omitted responses to this question.
Two indicated that they intentionally do not use them because
they use separate messages within their apps to inform users:

e “We try to give the user a heads-up before that permission
dialog appears”

e “Because we include an entire screen explaining the pur-
pose ahead of requesting it.”

Similarly, the remaining four thought they were unnecessary:

e “Don’t think it’s necessary.”

e “Because the default description is good enough.”

e “In my case it seems obvious, but I will include a purpose
string in the next update.”

e “I haven’t had to.”

All seven of the participants who use purpose strings indi-
cated that they believed they are effective at communicating
why a resource is necessary. Examples included:

e “To make it clear to the user why a permission is being
requested, especially for non-obvious cases.”
e “To inform the user of why we are asking for permission.”

To gain insight into the types of information developers find
important in purpose strings, we examined the strings that
they provided for the Vine and Scout resource requests. Mul-
tiple coders categorized these strings according to the same
categories and methodology in the Adoption section (Ta-
ble 8). Every single purpose string explained why data
was being requested (two participants omitted Vine purpose
strings, while four omitted Scout ones). Examples included:

e “Contacts are used to find the people you want to share
your videos with.”

e “Granting permissions to your contacts will allow Scout to
search for and navigate to the addresses of your contacts.”

For Vine, it was common to also discuss the storage of users’
data. We suspect that this was because Vine’s privacy policy

Vine Scout
Category # Strings % Strings # Strings % Strings
User benefit 28 100% 26 100%
Data storage 7 25.0% 0 0%
Local /Non-local use 5 17.9% 0 0%
Appropriate use 3 10.7% 0 0%
Security 1 3.6% 0 0%
Information sharing 0 0% 0 0%

Table 8. Classification of developer-written purpose strings. Some
developer-written purpose strings fell into more than category.

(and therefore our description) included information about
how data will be used and stored, whereas Scout’s did not.
Some examples of these purpose strings included:

e “To quickly find your friends on vine and give you a better
experience, we need access to your contacts. All informa-
tion is safely sent and stored.”

e “Vine uses your contacts to let you share videos. We never
contact anyone without your permission, which can be re-
voked at any time.”

The results of our developer survey suggest that the main rea-
son developers do not use purpose strings is simply due to
lack of awareness, which also explains why we observed so
many deprecated API functions (see Adoption section). That
said, a majority of developers believe that it is important for
users to understand why their information is being requested,
even if they choose to notify them through in-app methods
rather than with purpose strings.

DISCUSSION

In this section, we discuss what our findings mean in terms
of the impact of purpose strings on users and how develop-
ers might be encouraged to make privacy information more
apparent to users. We conclude with the limitations of our
experiments and future work.

Influence on User Understanding and Behavior

Although users grant resource requests with purpose strings
more often than those without, there does not appear to be
much change in their behavior as a function of the specific
text used within a purpose string. In our user survey, requests
with purpose strings were granted or denied independently of
whether the purpose string contained useful information.

A possible explanation for this effect may be similar to what
Langer et al. found in experiments where people asked to cut
in line while making photocopies: people were significantly
more amenable when the requester provided any explanation,
regardless of whether or not that explanation was actually
relevant to the request [16]. In the case of purpose strings,
simply having something that looks like an explanation may
make users more compliant with the request. Another pos-
sibility is that the inclusion of a purpose string distorts the
look and feel of the request dialog enough to break habitua-
tion; that is, it might not matter what the request says, simply
that it looks different from previous requests. However, if
this were the case, we would expect to see a correlation with
whether users were existing iOS users, which we did not.

Improving Developer Utilization

Despite not observing any effects on behavior based on the
choice of text, we observed through our adoption and devel-
oper experiments that the vast majority of developers try to
provide users with explanations that address why information
is being requested. Unfortunately, users are presented with
purpose strings in less than one out of five apps.

The results of our developer survey suggest that adoption may
be low partly because developers are unaware of purpose
strings or how to use them. Furthermore, developer aware-
ness of purpose strings did not correlate with the number of
years of i0OS development experience nor the number of i0OS
apps developed. This suggests that the low adoption rate is
not simply a reflection of developer inexperience, but a result
of poor documentation. Anecdotally, we found the iOS doc-
umentation incomplete and sometimes contradictory during
the course of our experiments. Creating developer resources
to improve app privacy may increase developer compliance.

A consequence of allowing developers full freedom in spec-
ifying purpose strings is that many fail to effectively utilize
them. An alternate approach would be to provide developers
with a set of pre-defined purpose string templates from which
they can choose. These templates could address the types
of information we commonly found in our collected purpose
strings, such that the context of the requests can be made clear
to users [20]. These templates might also make it easier for
developers to supply purpose strings. Of the 23 developers we
surveyed who were either unaware of purpose strings or did
not use them, thirteen said that they would be “very likely” to
use pre-defined templates, if given the option in the future.

Experimental Limitations

We used a simple form of static analysis to predict resource
requests and purpose strings specified using the deprecated
API method. Due to its simplicity, this analysis does not con-
sider many of the factors necessary to provide more accurate
predictions (e.g., by performing dynamic analysis).

Although we provide insight on users’ understanding of re-
source requests, we rely on users to self-report this under-
standing. While our user study was controlled so that we
could observe relative differences as a function of the pres-
ence of purpose strings, it is not clear how these findings
might translate to the real world where users are influenced
by other factors; we measured the efficacy of purpose strings
in altering behavior, rather than their effectiveness. Likewise,
we measured users’ willingness to approve requests, rather
than whether or not they were acting in their best interests.
Despite not risking the disclosure of any real data, the sig-
nificant differences we observed between randomly-assigned
conditions show that participants took the tasks seriously.

Our experiments were limited to free iOS apps. Although we
expect similar results for paid apps, an exception may be in
the developer adoption rate of purpose strings. Paid apps are
less likely to contain advertising libraries [21], which could
reduce the number of resources requested by apps, thus in-
creasing the estimated adoption rate.

The primary purpose of this study was to examine developer
adoption of purpose strings and their impact on user behavior.
Since we controlled for the apps participants viewed (compar-
ing popular apps with the same popular apps, and an unknown
app with the same unknown app), future work is needed to
examine how the trustworthiness of an app influences a par-
ticipants’ willingness to grant permission requests. While we
observed significant differences in user behavior across the
resources we tested, additional research is needed to exam-
ine whether behaviors change based on the resource accessed.
Such studies should be performed in situ, such that users un-
derstand their real data is at risk.

ACKNOWLEDGMENTS

This work was supported in part by TRUST (Team for Re-
search in Ubiquitous Secure Technology), which receives
support from the National Science Foundation (NSF award
number CCF-0424422), NSF award number CNS-1318680,
and by Intel through the ISTC for Secure Computing. Thanks
to Rebecca Pottenger, Erika Chin, and Aimée Tabor for their
support and feedback.

REFERENCES
1. Agarwal, Y., and Hall, M. ProtectMyPrivacy: detecting
and mitigating privacy leaks on iOS devices using
crowdsourcing. In Proceeding of the 11th annual
international conference on Mobile systems,
applications, and services, MobiSys *13, ACM (New
York, NY, USA, 2013), 97-110.

2. Amer, T. S., and Maris, J. B. Signal words and signal
icons in application control and information technology
exception messages — hazard matching and habituation
effects. Tech. Rep. Working Paper Series—06-05,
Northern Arizona University, Flagstaff, AZ, October
2006. http: //www.cba.nau.edu/Faculty/
Intellectual/workingpapers/pdf/Amer _JIS.pdf.

3. Apple Inc. What’s New in iOS. https:
//developer.apple.com/library/ios/releasenotes/
General/WhatsNewIniOS/Articles/i0S6.html, January
28 2013. Accessed: September 15, 2013.

4. Benisch, M., Kelley, P. G., Sadeh, N., and Cranor, L. F.
Capturing location-privacy preferences: quantifying
accuracy and user-burden tradeoffs. Personal Ubiquitous
Comput. 15,7 (Oct. 2011), 679-694.

5. Bravo-Lillo, C., Komanduri, S., Cranor, L. F., Reeder,
R. W., Sleeper, M., Downs, J., and Schechter, S. Your
attention please: designing security-decision Uls to
make genuine risks harder to ignore. In Proceedings of

the Ninth Symposium on Usable Privacy and Security,
ACM (2013), 6.

6. Brustoloni, J., and Villamarin-Salomén, R. Improving
Security Decisions with Polymorphic and Audited
Dialogs. In Proceedings of the 3rd Symposium on
Usable Privacy and Security, SOUPS *07, ACM (2007),
76-85.

7. Consolvo, S., Smith, I. E., Matthews, T., LaMarca, A.,
Tabert, J., and Powledge, P. Location disclosure to social

http://www.cba.nau.edu/Faculty/Intellectual/workingpapers/pdf/Amer_JIS.pdf
http://www.cba.nau.edu/Faculty/Intellectual/workingpapers/pdf/Amer_JIS.pdf
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html

10.

11.

12.

13.

14.

15.

16.

relations: why, when, & what people want to share. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 05, ACM (New
York, NY, USA, 2005), 81-90.

. Egelman, S., Cranor, L. F., and Hong, J. You’ve been

warned: An empirical study of the effectiveness of web
browser phishing warnings. In Proceeding of The 26th
SIGCHI Conference on Human Factors in Computing
Systems, CHI 08, ACM (New York, NY, USA, 2008),
1065-1074.

. Enck, W, Gilbert, P, Chun, B.-G., Cox, L. P,, Jung, J.,

McDaniel, P., and Sheth, A. N. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI *10, USENIX Association
(Berkeley, CA, USA, 2010), 1-6.

Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S.
A study of Android application security. In Proceedings
of the 20th USENIX Security Symposium, SEC *11,
USENIX Association (Berkeley, CA, USA, 2011),
21-21.

Felt, A. P., Greenwood, K., and Wagner, D. The
effectiveness of application permissions. In Proceedings
of the 2nd USENIX Conference on Web Application
Development, WebApps ’11, USENIX Association
(Berkeley, CA, USA, 2011), 7-7.

Felt, A. P, Ha, E., Egelman, S., Haney, A., Chin, E., and
Wagner, D. Android permissions: user attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, ACM (New York, NY, USA, 2012),
3:1-3:14.

Fisher, D., Dorner, L., and Wagner, D. Short paper:
Location privacy: User behavior in the field. In
Proceedings of the Second ACM workshop on Security
and Privacy in Smartphones and Mobile Devices, SPSM
12, ACM (New York, NY, USA, 2012), 51-56.

Kelley, P. G., Benisch, M., Cranor, L. F., and Sadeh, N.
When are users comfortable sharing locations with
advertisers? In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI "11,
ACM (New York, NY, USA, 2011), 2449-2452.

Kim, S., and Wogalter, M. Habituation, dishabituation,
and recovery effects in visual warnings. In Proceedings
of the Human Factors and Ergonomics Society Annual
Meeting, vol. 53, SAGE Publications (2009),
1612-1616.

Langer, E., Blank, A., and Chanowitz, B. The
Mindlessness of Ostensibly Thoughtful Action: The
Role of “Placebic” Information in Interpersonal

18.

19.

20.

21.

22.

23.

24.

25.

26.

Interaction. Journal of Personality and Social
Psychology 36, 6 (1978), 635-642.

. Lever, C., Antonakakis, M., Reaves, B., Traynor, P., and

Lee, W. The Core of the Matter: Analyzing malicious
traffic in cellular carriers. In Proceedings of the ISOC

Network & Distributed Systems Security Symposium,
NDSS ’13 (2013).

Lin, J., Amini, S., Hong, J., Sadeh, N., Lindqvist, J., and
Zhang, J. Expectation and purpose: Understanding
users’ mental models of mobile app privacy through
crowdsourcing. In Proceedings of the Second ACM
workshop on Security and Privacy in Smartphones and
Mobile Devices, UbiComp *12, ACM (New York, NY,
USA, 2012), 51-56.

Mongolo. Rasticrac v3.0.1.
http://iphonecake.com/bbs/viewthread.php?tid=
106330&extra=pages3D1, April 17 2013. Accessed:
September 15, 2013.

Nissenbaum, H. Privacy as contextual integrity.
Washington Law Review 79 (February 2004), 119.

Pearce, P, Felt, A. P., Nunez, G., and Wagner, D.
AdDroid: privilege separation for applications and
advertisers in Android. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, ASTACCS 12, ACM (New
York, NY, USA, 2012), 71-72.

Sadeh, N., Hong, J., Cranor, L., Fette, L., Kelley, P.,
Prabaker, M., and Rao, J. Understanding and capturing
people’s privacy policies in a mobile social networking
application. Personal Ubiquitous Comput. 13, 6 (Aug.
2009), 401-412.

Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., and
Cranor, L. F. Crying wolf: an empirical study of SSL
warning effectiveness. In Proceedings of the 18th
USENIX Security Symposium, SEC ’09, USENIX
Association (Berkeley, CA, USA, 2009), 399—416.

Thompson, C., Johnson, M., Egelman, S., Wagner, D.,
and King, J. When it’s better to ask forgiveness than get
permission: attribution mechanisms for smartphone
resources. In Proceedings of the Ninth Symposium on
Usable Privacy and Security, ACM (2013), 1.

Xia, H., and Brustoloni, J. C. Hardening web browsers
against man-in-the-middle and eavesdropping attacks. In
Proceedings of the 14th International Conference on the
World Wide Web, WWW ’05, ACM (New York, NY,
USA, 2005), 489-498.

Yang, J. Smartphones in use surpass 1 billion, will
double by 2015. http: //www.bloomberg.com/news/
2012-10-17/smartphones—-in-use-surpass—-1-
billion-will-double-by-2015.html, 2012.

http://iphonecake.com/bbs/viewthread.php?tid=106330&extra=page%3D1
http://iphonecake.com/bbs/viewthread.php?tid=106330&extra=page%3D1
http://www.bloomberg.com/news/2012-10-17/smartphones-in-use-surpass-1-billion-will-double-by-2015.html
http://www.bloomberg.com/news/2012-10-17/smartphones-in-use-surpass-1-billion-will-double-by-2015.html
http://www.bloomberg.com/news/2012-10-17/smartphones-in-use-surpass-1-billion-will-double-by-2015.html

	Introduction
	Background and Related Work
	User Behavior
	Methodology
	Analysis
	Effect of Purpose Strings on Granting of Requests
	Examining Explanatory Factors
	User Satisfaction and Comprehension
	Choice of Text

	Adoption
	Methodology
	Purpose String Extraction
	Static Binary Analysis
	Manual Testing

	Analysis
	Adoption Rates
	Purpose String Categories

	Developer Opinions
	Methodology
	Analysis
	Developer Awareness
	Developer Attitudes

	Discussion
	Influence on User Understanding and Behavior
	Improving Developer Utilization
	Experimental Limitations

	Acknowledgments
	REFERENCES

