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Abstract
Consider agents who undertake costly effort to produce stochastic outputs observable by
a principal. The principal can award a prize deterministically to the agent with the highest
output, or to all of them with probabilities that are proportional to their outputs. We show
that, if there is suf�cient dipersion in agents' skills relative to the noise on output, then the
proportional prize will on average elicit more output from the agents than the deterministic
prize. Indeed, assuming agents know each others' skills (the complete information case),
this result holds when any Nash selection, under the proportional prize, is compared with
any individually rational strategy selection under the deterministic prize. When there is in-
complete information, the same result obtains but now we must restrict to Nash selections
for both prizes.
We also compute the optimal scheme� among a natural class of probabilistic schemes

� for awarding the prize, namely that which elicits maximal effort from the agents for the
least prize. In general the optimal scheme is a monotonic step function which lies "be-
tween" the proportional and the deterministic schemes. When the competition is over
small fractional increments (a case that commonly arises in the presence of strong con-
testants whose base levels of production are high), the optimal scheme awards the prize
according to the "log of the odds", where the odds are based on the proportional scheme.
JEL Classi�cation: C70, C72, C79, D44, D63, D82.
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for Research in Economics, Yale University
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1 Introduction
Consider a principal who has hired several agents to work for him. Each agent can under-
take costly unobservable effort to produce a stochastic observable output that the principal
values. The principal, in exchange, has a pot of gold that is valued by the agents. The
question is: how should the principal award the gold in order to elicit maximal expected
output from the agents? Should he give the entire pot to the best performer? Or should
he divide the pot into k successively smaller parts and award these as 1st ;2nd; :::;kth prizes
to the agents, based upon the rank-order of their outputs? Or is there something else the
principal can do?
We propose the following simple scheme. Let the principal �market" the gold to the

agents on the understanding that they must pay for it with the output they have produced.
How the gold gets allocated is then left to market forces. Indeed, suppose that agents
1; :::;n have put up supplies of x1; :::;xn units of output (perhaps all they have produced, if
they do not value the output per se but only the gold it can buy); and that the principal has
put up y units of gold on the other side of the market. The only price p (of the output, in
terms of gold) which will �clear" the market is1 p= y=(x1+ :::+xn), and this is tantamount
to handing out the gold y to the agents in proportion to the quantities they have put up.2
Note that this scheme also makes sense when the pot is indivisible. In this event, what

is being marketed is the probability of winning the whole pot y:Indeed we shall couch our
analysis in terms of the indivisible prize rather than the divisible pot of gold, though the
two are completely isomorphic.
We compare the proportional (marketed) prize to the single prize which, in turn, is of-

ten better than multiple a priori �xed prizes (see Modovanu-Sela (2001), and also Remark
3 in Section 8). Our �rst main result is that, on balance, the proportional prize elicits more
expected total output from the agents than the single prize.
What is essential for our analysis is that agents' performance be susceptible to quan-

ti�cation in terms of some tangible output produced or, more generally, a �score". This
often obtains in practice. For instance, a manager can consider total revenue earned as the
yardstick whereby to award the badge of honor, or promotion to a higher echelon, to the
best salesman of the year. In a race, the time taken to complete it comes naturally to mind.
Sometimes scores are of a more subtle structure: in a gymnastics contest each member of a
jury gives subjective scores to different aspects of performance which are then aggregated

1the total demand for gold is px1+ :::+ pxn which must equal the supply y
2To continue the propaganda, the proportional scheme is the only one which is non-manipulable in the

following sense: if an agent pretends to be several agents and splits his output to be sent out in different
names, this can be of no bene�t to him; nor can several agents bene�t by merging their outputs and pretending
to be one agent (see M.A.de Frutos (1999)).
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to come up with �nal scores. (The reader can no doubt think of many other examples.)
One upshot of assigning numerical scores, and perhaps the reason why they are so preva-
lent, is that they enable us to judge not only who beat whom, but by how much. Was the
race keenly contested or one-sided? What was the margin of victory? These are questions
that are often not without meaning, and amenable to plausible answers, which are seen in
the way scores get de�ned in practice.
The time-honored tradition has been to award the prize to the contestant with the high-

est score. We call this the �deterministic" scheme, though it is deterministic only in the
scores, and not necessarily in the effort undertaken by the contestants, since scores may
be a random function of effort. But, in principle, the prize could be given with different
probabilities to the contestants based upon the scores that they achieve, opening up a wide
class of schemes (see Section 11) of which the deterministic scheme is but one instance.
The proportional scheme, which we focus on and juxtapose to the deterministic, is equiva-
lent to putting up a bunch of �lottery tickets" at the market, which the contestants can then
�buy" with their scores. The use of lotteries to award prizes is extremely widespread in
practice (a Google search yielded 3,390,000 results) and has been discussed in the theo-
retical literature starting with Tullock (1975) in the context of lobbying (see Section 1.1).
However, to the best of our knowledge, it has not been studied in the �moral hazard" con-
text of our paper where only the stochastic outputs of agents are observed and their efforts
are not.
The proportional scheme is our proxy for awarding the prize in a manner that is less

drastic than deterministic and more commensurate with performance. Any scheme close
to it (in the bounded variation norm) will inherit its properties. So, for our purposes, the
precision with which probabilities of winning the prize are de�ned does not really matter,
so long as they do not stray too far from proportionality; and, in the same vein, minor
differences in the delineation of the scores do not disturb our conclusions (See Remark
2 in Section 8.) Needless to say, if performances are incapable of being sensibly quan-
ti�ed by scores, and can only be ranked, then the proportional scheme has no meaning
and only ordinal schemes make sense. (For an excellent treatment of the ordinal case, see
Moldovanu-Sela (2001).) In our model here, as in much of the literature, the principal is
presumed to be maximizing the total score (output) of all the agents, so a fortiori he can
observe the individual scores that make up the total. It is not so much a matter of ob-
servability, but that the cost of observation is small enough to be ignored This assumption
underlies our entire analysis.
If the aim of the scheme is to elicit more output, i.e., to �create competition" and to

get the contestants to strive hard, then we argue that on balance the proportional scheme
outperforms the deterministic. Of course, were the contest designer to have precise knowl-
edge of the distribution of contestants' characteristics (i.e., productive skills, cost of effort,
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valuation of the prize), then he could come up with a carefully tailored scheme which is
optimal among all schemes conceivable. But often such knowledge is not at hand. The
purpose then is to design a robust scheme, which is based solely on observable outputs and
yet does well over a wide range of possible distributions �for generations to come". Both
the deterministic and the proportional schemes are robust but, as was said, the proportional
scheme tends to do better.
The intuition for this result is simple and best brought out with two agents who have

complete information about each other's characteristics. (We show, in section 10, that our
results are not marred when there is incomplete information, i.e., each agent is informed
only of his own skills and has a probability distribution over those of his rivals.) Suppose
the deterministic prize is in play and that the two agents' skills are suf�ciently disparate.
Then the weak agent will not be able to overtake the output produced by the strong, with
any signi�cant probability, even if he works hard. Since work is costly, he will tend to
slacken. This, in turn, will cause the strong to also slacken, since the strong can continue to
win the prize with good probability even at low effort levels. The upshot is an equilibrium
at which effort and output are low. In contrast, the proportional prize generates better
incentives to work. By increasing effort and producing more output, the weak agent is
able to achieve a decent increment in his probability of winning the prize, even when
his output always lags behind his rival's. Thus he is inspired to work and creates the
competition which also spurs his rival to work, culminating in an equilibrium where effort
and output are high. That an egalitarian scheme, which distributes rewards commensurate
with output produced, will often generate better incentives to work than an elitist scheme
in which the rewards are reserved for the top few � this, in our view, is a theme of
wide-ranging application and runs like a leitmotif in the design of mechanisms in several
different contexts (see, e.g., Dubey and Geanakoplos (2010), Dubey and Haimanko (2003),
Dubey and Wu (2001) where this theme has been explicitly emphasized.)
On the other hand, when skills are similar (think of athletic stars competing in the

Olympics), the deterministic prize will clearly elicit more effort. For if both work, they
come out with nearly equal probabilities of winning the prize under either scheme. But
if anyone slackens, his probability drops abruptly to zero under the deterministic scheme,
while it drops less under the proportional scheme. Thus there is more to lose by slackening
when the deterministic prize is in use.
Now if agents' skills are picked at random from a suf�ciently dispersed set X , the

probability that they are similar will tend to be low, so that the proportional scheme out-
performs the deterministic scheme on average3. This is certainly true if agents' skills are

3Even more: as suggested by our example in Section 9 � though in need of a more general formulation �
when the proportional prize beats the deterministic (which happens frequently) it is by a big margin; whereas
when it loses, it is by a small margin.
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picked independently from X . But in fact it remains true much more generally, indeed
so long as their skills are not heavily correlated to be similar or, to put it graphically, the
distribution is not concentrated in a small neighborhood of the �diagonal" in X� ::::�X :
The details of our results are as follows.Let πD and πP denote the deterministic and

proportional prizes; and let χ denote the characteristics of the agents. In Sections 2 and 3
we describe the strategic games ΓπD(χ), ΓπP(χ) engendered by πD, πP when agents have
complete information, i.e., each agent knows not only his own characteristics but also
those of his rivals. This seems a tenable hypothesis when they compete in close proximity
with each other.
Fix a distribution ξ of agents' characteristics, on an underlying set X � ::::�X , that

admits enough �diversity" (see condition 2 of Assumption A IV ). LetΦ(χ) be an arbitrary
selection of individually rational (IR) strategies in ΓπD(χ) (for almost all χ w.r.t. ξ ).
Similarly let Ψ be an arbitrary Nash Equilibrium (NE) strategy selection for ΓπP (or, in
fact, a �Weak Nash Equilibrium" (WNS) selection, which is a somewhat looser notion �-
see Section 4). We show in Section 7 that the (expected, total) output under Φ (as we
vary χ according to ξ ) corresponds to high effort only by an elite coterie K of highly-
skilled agents, which is independent of the value v of the prize and whose average size is
a small fraction of the total number jNj of agents if the noise on output is not too big. In
contrast, the output under Ψ is of the order of min fv;Ng, entailing work across the whole
population (see Section 6), and thus generally much higher than that produced under Φ
(see Section 8). It also follows from our analysis that, when πD is replaced by πP, the vast
majority of non-elite agents is made better off at the expense of the elite coterie, provided
v is not too small. So, were the principal to ask for a vote for πP over πD , he would
win with a thumping majority; and indeed he would have every incentive to ask, since πP
elicits so much more total output for him (see Section 8.2).
In Section 9 we construct an explicit example to show a �regime change" between

proportional and deterministic prizes (in terms of their ef�cacy in eliciting output) as we
vary the similarity between the agents. It fully con�rms our intuition that the deterministic
prize does better when agents are evenly matched but worse when they are disparate.
In Section 10, we show that our theme remains intact when there is incomplete infor-

mation among the agents.
So far the prize was taken to be �xed and the behavior (NE or IR) induced by it was ex-

amined. In Section 11, we adopt a dual approach: the behavior is �xed (at maximal effort)
and we focus on prizes that induce it (as NE). More precisely, we consider a natural class
of probabilistic schemes ,which includes the single and multiple deterministic prizes, as
well as the proportional prize, as special cases. For any domain of agents'characteristics,
our goal is to �nd an "optimal" scheme, namely that which Nash-implements maximal ef-
fort throughout the domain, in exchange for the smallest prize. The dual approach permits
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this de�nition of optimality: for any scheme there is a minimum value � possibly in�nity
� of the prize, above which the scheme will implement maximal effort as an NE. (In con-
trast, in the primal approach, two schemes may in general be incomparable on account of
multiple NE: either scheme may supersede the other, depending upon which pair of NE is
examined.) There is also no problem, in the dual approach, regarding the existence of such
an optimal � or, at least, nearly optimal � scheme. The problem is to uncover its struc-
ture. We do so for two special domains. The �rst is a binary set-up with two agents and
two effort levels (low, high). It is also assumed that skills of the agents can be ordered so
as to exhibit "decreasing ,or increasing, returns". Here the optimal scheme is a monotonic
step function and its graph may be viewed as lying "in between" those of the proportional
and the deterministic schemes.We present an algorithm for constructing it, and incidentally
show that it depends only upon the distribution of agents' skills on the boundary of the do-
main. Next we analyse the binary model with the added proviso that agents' base skills are
so strong � think of stars, experts, champions � that the percentage gain in output, when
an agent switches from low to high effort, is small (even though, on the absolute scale,
these gains may be substantial enough to enable meaningful comparisons between the two
agents). In this scenario we show that the optimal scheme awards the prize according to
the "log of the odds", where the odds are based on the proportional scheme. Moreover the
optimal scheme does not depend on the skills of the agents, except insofar as they exhibit
decreasing or increasing returns. Thus, regardless of the distribution of skills, there are
just two canonical candidates for the optimal.

1.1 Related Literature
There is a rich literature on lobbying, where agents put up bids of money and are awarded
the prize either via the proportional scheme or the deterministic scheme ( called often
�lottery" or �all-pay auctions", respectively). See, e.g., Tullock (1975,1980), Hillman
and Riley (1989), Ellingsen (1991), Rowley (1991,1993), Bay, Kovenock and de Vries
(1993,1996), Che and Gale (1997,1998), Nti (1999), Fang (2002) and the references
therein. In most of this literature agents are assumed to have complete information about
each other, and in all of it there is no issue of �moral hazard", i.e., the bids submitted by
the agents are perfectly observable.
The literature on tournaments is also vast and does often emphasize moral hazard, i.e.,

observable outputs depend stochastically on unobservable effort. However proportional
prizes do not seem to have received attention there. For tournaments with a single prize,
see Lazear and Rosen (1981), Green and Stokey (1983), Nalebuff and Stiglitz (1983),
Rosen (1986). Subsequent writers have considered multiple prizes whose number and
sizes are �xed prior to the contest, and which are then awarded to the contestants based
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upon the rank-order of their performance (Glazer and Hassin (1988), Broecker (1990),
Anton and Yao (1992), Clark and Riis (1998), Krishna and Morgan (1998), Bulow and
Klemperer (1999), Barut and Kavenock (1998), Moldovanu and Sela (2001)).
In both strands of literature, the focus is on analyzing Nash Equilibria (NE) (which

are often unique and susceptible of being described by explicit formulae, given the special
structural assumptions of the models).
What is new in our approach is that we compare the proportional and deterministic

prizes in the presence of moral hazard. Our setting is suf�ciently general so as not to
preclude multiple Nash equilibria and to render it dif�cult to write explicit formulae for
them. No assumptions are made on disutility or productivity other than the fact that they
are monotonic in effort in the appropriate sense; in particular they are not required to
be concave or convex. Nevertheless we are able to show that the worst NE under the
proportional prize elicits more output than the best NE under the deterministic prize. In
fact, we show somewhat more than this, since our comparison is based on WNE and IR as
explained before, which are looser notions than NE (indeed IR is so weak a requirement
that any solution concept would be expected to satisfy it). To the extent that this constrains
agents' behavior less, our comparison is that much stronger (more credible?). Of course,
the price we pay for our generality is that we stop at this comparison, and are unable to
discern any �ner structure in agents' behavior, which would come to the fore were one to
con�ne attention to NE, especially in scenarios where they are unique (as happens in some
of the structured examples we study).

2 The General Model

2.1 The Agents
Each agent in our model has access to a �nite subset E � [0;1] of (fractional) effort levels.
We assume 0 2 E and 1 2 E. These represent no effort and maximal effort respectively.
An agent may choose any effort e 2 E. In doing so, he incurs disutility δ (e) � 0 and

produces stochastic output given by a non-negative random variable τ(e) with �nite mean
µ(e). (We allow for the possibility that the range of τ(e) is discrete, even �nite.) Effort 0
incurs disutility δ (0) = 0 and produces output τ(0) = 0 with certainty: it is just a proxy
for �not participating� in the game.
Agents are driven to work by the lure of an indivisible prize, which is handed out to

them by a prinicpal. If an agent places valuation v> 0 on the prize, and is awarded it with
probability p, this yields him expected utility pv. (See, however, Remark 2 in Section 8,
which shows that the tenor of our results remains unchanged for a wider class of utilities.)
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The triple (δ ;τ;v) characterizes an agent. Wemake throughout the following monotonic-
ity and boundedness assumptions on the space X 4 of possible characteristics (δ ;τ;v):

δ ;µ are weakly monotonic in e and there exist universal positive constants c;C;d;D
such that

ce< δ (e)<Ce (1)

and
de< µ(e)< De (2)

for all e 2 E nf0g.
(Note that, on account of weakmonotonicity, there is no loss of generality in supposing

that all agents have the same set E of effort levels. The case of an arbitrary allocation of
subsets of E across agents is automatically included, provided that 0 and 1 belong to each
agent's set.)

2.2 The Principal
Suppose now that we have a �nite set N of agents with characteristics (δ n;τn;vn)n2N . The
principal cannot observe these characteristics, or the effort levels (en)n2N that the agents
might have undertaken; all he can see are the realizations t =(tn)n2N of the random outputs
(τn(en))n2N . Thus his allocation π of the prize is given by a function

RN+
π�! [0;1]N

where the component πn(t), of the vector π(t), denotes the probability with which n 2 N
is allocated the prize.
The principal is risk-neutral and cares only about the expected total output produced

by the agents. To this end he can devise different allocation schemes π . A full class Π
of such schemes will be considered later in section 10. For the present, we focus on two
particular schemes. In both πn(t) = 0 for all n 2 N if t = 0, otherwise agents would be
rewarded for not participating in the game.
The �rst scheme is familiar from practice: the prize is shared equally among the win-

ners
W (t) = fk 2 N : tk = maxftn : n 2 Ngg

4This space X is de�ned after �xing the domain and range of τ . It will shortly be taken to be measurable.
One can con�ne attention to random variables τ which are characterized by �nitely many parameters, so that
(δ ;τ;v) is a �nite-dimensional vector; and then the Euclidean space generates the Borel sets. In this case X
consists of all (δ ;τ;v) that satisfy (1) and (2), along with the aforesaid �niteness restrictions on τ . More
generally, without such restrictions, the Levy-Prokhorov metric on the random variables τ is understood to
de�ne the Borel sets.
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Deterministic Prize (πD):

π
n
D(t) =

(
1

jW (t)j if n 2W (t) and t 6= 0
0 otherwise

(Note that πD is deterministic only in the outputs, not necessarily in the effort levels.)
The other scheme is analytically simple to work with and, to our way of thinking, not

without intuitive appeal. It amounts to handing out �lottery tickets� for the prize to each
agent, proportional to the output that he produces:

Proportional Prize(πP):

π
n
P(t) =

(
tn

∑k2N tk
if t 6= 0

0 otherwise

3 The Strategic Game of Complete Information
As was said, the principal does not know agents' characteristics, or even the distribution of
their characteristics. He wishes to compare πD versus πP over a large class of distributions.
As for the agents, we at �rst take them to be more informed. We suppose that, in

addition to knowing π = πD or πP, the agents also know each others' characteristics
(δ n;τn;vn)n2N . This seems to be a tenable hypothesis if agents compete in close prox-
imity with one another. (In Section 10, we consider the case when an agent knows his own
characteristics but is unsure about those of his rivals.)
Given (δ n;τn;vn)n2N a strategic game is induced among the agents by the principal's

choice of an allocation scheme π . The set of pure strategies of each agent n 2 N is E.
Any N-tuple of pure strategies e = (en)n2N gives rise to a random vector (τn(en))n2N of
outputs. The expected value pk of πk((τn(en))n2N) represents the probability of k winning
the prize and we de�ne k's payoff to be

Fk(e) = pkvk�δ
k(ek)

Denote by Γ the mixed extension of this game; and by Σk � Σ the set of (mixed)
strategies of k in Γ, i.e. Σk is just the set Σ of probability distributions on E. (Without
confusion, Fk(σ) will continue to denote k's payoff, when the mixed strategy N-tuple
σ 2∏n2N Σn � ΣN is played in Γ.)

9



4 Solution Concepts

4.1 Fixed Games
First we recall three standard concepts. For any σ � (σn)n2N 2ΣN , denote σ�n�

�
σ k
�
k2Nnfng 2

Σ�n �∏k2NnfngΣk.
The choice σ 2 ΣN is individually rational (IR) in Γ if

Fn(σ)�max
u2Σn

min
v2Σ�n

Fn(u;v)

for all n 2 N.
The choice σ 2 ΣN is a Nash Equilibrium (NE) of Γ if

Fn(σ) = max
�σn2Σn

Fn( �σn;σ�n)

for all n 2 N.
The choice σn 2 Σn is strictly dominant (SD) for n in Γ if

Fn(σn;v)> Fn(u;v)

for all u 2 Σn nfσng and all v 2 Σ�n.
Finally we introduce a weakening of the notion of NE which will be relevant for us.

The idea is to restrict the set of unilateral deviations available to an agent n by only allow-
ing him to shift probabilities (to whatever extent he wishes) from his current strategy σn

onto maximal effort 1. More precisely, denote

Σn(σn) = f �σn 2 Σn : �σn(e)� σ
n(e) for all e 2 E nf1gg

Then we say that σ � (σn)n2N is a weak Nash strategy-tuple (WNS) if

Fn(σ) = max
�σn2Σn(σn)

Fn( �σn;σ�n)

for all n 2 N. If the above holds with fσn;1g in place of Σn(σn), we say that σ is a
very weak Nash strategy-tuple (VWNS). Here the agent n is only permitted to shift all
the probabilities from σn abruptly onto 1. (Notice that maximal effort 1 is the anchor for
both these notions. Indeed 1� f1; :::;1g is always a WNS in any game and hence also a
VWNS.)
Let us denote by IR(Γ), NE(Γ), SD(Γ), WNS(Γ), VWNS(Γ), the set of all strategies

that are IR, NE, SD, WNS, VWNS in the game Γ. It is evident that
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SD(Γ)� NE(Γ)� IR(Γ)
and that

NE(Γ)�WNS(Γ)�VWNS(Γ)
re�ecting the progressively stringent requirements of the de�nition as we go from IR to
NE to SD, or from VWNS to WNS to NE. (Note also that, obviously, SD(Γ)6= /0 implies
SD(Γ) = NE(Γ) = a singleton set.)

4.2 Spaces of Games
Suppose characteristics χ � (δ n;τn;vn)n2N are picked from X � :::�X � XN according
to some probability distribution ξ on XN . (Throughout, as was said, we assume that the
underlying set X satis�es (1) and (2); and that X is a Borel space as explained in footnote
4, so that ξ is a measure on the Borel sets of XN ;using the product topology from X :)
Fix an allocation scheme π . Then any χ 2 XN induces a mixed-strategy game among the
agents (as discussed in section 3), which we shall denote Γπ(χ). We wish to extend our
solution concepts to the space of games speci�ed by ξ .
Our focus will be on what happens for almost all χ according to ξ (a:a:χ(ξ )), i.e., for

all χ except perhaps for those in a set of ξ -measure zero.
Let σ : XN ! ΣN be a strategy selection. We say that σ is a ξ -Φ-selection under

π (where Φ � IR or NE or SD or WNS or VWNS) if, writing σ χ for σ(χ), we have
σ χ 2Φ(Γπ(χ)) for a:a:χ(ξ ).

5 Expected Output
Given a space of games (XN ;ξ ) what matters, from the principal's point of view, is the
expected total output produced by σ : XN! ΣN . Recalling that µn(e) is the mean of τn(e),
we see that for any χ = (δ n;τn;vn)n2N 2 XN , this output is given by

Expσ (χ)� ∑
n2N

∑
e2E

σ
n
χ(e)µn(e) (3)

and so, integrating over XN according to ξ , the expected total output on XN is

Expξ ;σ �
Z
XN
Expσ (x)dξ (x) (4)
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6 Proportional Prize: Expected Output from Weak Nash
Strategies

It is clear a priori that, for any χ 2XN and any scheme π , the total expected output in Γπ(χ)
cannot exceed jNjD since no agent produces more than D when he chooses maximal effort
e= 1 (see (2)). Also5, supposing vn = v for all n 2 N, the total expected disutility incurred
by the agents at any individually rational strategy selection cannot exceed v, otherwise
some agent is incurring negative utility and would be better off not participating in the
game. But then expected total output (see (1), (2)) is at most Dv=c. Thus, the most this
output can be is �of the order of " min(v; jNj), since D and c are constants of our model.
This is the �avor of our estimate in Theorem 1 below, showing that the proportional

prize elicits a �decent quantum" of output from the agents.

6.1 A Precise Estimate
For χ = (δ n;τn;vn)n2N denote v(χ) =minfvn : n 2 Ng and de�ne

v= ess in fξ (v(χ))

Assumption AI

v> DC=d

This basically says that, for any two individuals picked from the population, if both
work at maximal effort and are awarded the prize proportionately, then neither will have
incentive to unilaterally quit the game � each values the prize suf�ciently highly to want
to stay in. Indeed , by (1) and (2), the most disadvantaged such individual produces d,
incurs disutilityC;and values the prize at v (while his rival produces D):Thus his reward is
vd=(d+D) which must exceedC:Our Assumption A1 is somewhat milder.
We now show that Weak Nash Strategies (WNS) elicit a decent quantum of output

under the proportional prize.

Theorem 1 Suppose Assumption AI holds. Denote emin �minfe : e 2 E n f0gg. Let
5Given χ = (δ n;τn;vn)n2N , and a vector α � (αn)n2N >> 0 of positive scalars, let χ(α) �

(αnδ n;τn;αnvn). Then the games Γπ(χ) and Γπ(χ(α)) are "strategically equivalent" and all our solution
concepts remain the same for them. So w.l.o.g., scaling utilities appropriately, one could imagine vn = v for
all n 2 N.
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σ be a ξ -WNS-selection under πP. Denote by h � 2ab=(a+ b) the harmonic mean 6 of
a� jNjdemin and b� (dv=C)�D. Then

Expξ ;σ �
1
2
h

where Expξ ;σ is as de�ned in (4).

Proof: See the Appendix.

Remark 1: The presence of " emin�is a dampener on our lower bound for expected
output, but given the extremely weak assumptions we have made so far, this is unavoid-
able. Indeed there is nothing to preclude the scenario that every agent incurs sharply rising
disutility of effort as he advances above emin;while his output hardly goes up; and in this
scenario, the best one can hope for is to inspire everyone to work at emin: Were we to
strengthen our assumptions on productivity ( in the spirit of assumption AII below), re-
quiring output to go up in signi�cant chunks as we go up the effort ladder from emin to
1, sharper estimates could be reached by the methods of this paper (we leave this to the
reader). Incidentally notice that , in the special case of binary effort levels, i.e., E = f0;1g ;
we automatically have emin = 1 in Theorem 1 above (and Theorem 10 below), producing a
sharp bound without further ado.

A variant of Theorem 1 for VeryWeak Nash Strategies (VWNS)may also be of interest.

Assumption AI0

Same as Assumption AI, substituting 2C forC.

Theorem 10 Suppose Assumption AI0 holds. Let σ be a ξ -VWNS-selection under πP.
Then

Expξ ;σ �
1
4
minfjNjdemin;

dv
C
�2Dg

where Expξ ;σ is as de�ned in (4).

Proof: See the Appendix.
6Recall that h is said to be the harmonic mean of a and b ( both of which are strictly positive under our

assumptions) if

1
h =

1
2 (
1
a +

1
b ); i:e:;h=

2ab
a+b

13



It might help to see what Theorem 1 implies when the number of players increases. The
following immediate Corollary asserts that the expected total output, elicited via WNS-
strategy selections by the proportional prize, grows as fast as the minimum value of the
prize or the number of players, whichever is smaller (modulo the very minor requirement,
given in Assumption AI, no one values the prize too low).

Corollary to Theorem 1. Suppose the set of players is increasing, i.e., jNj ! ∞, and
the corresponding spaces (XN ;ξN) satisfy Assumption I with v(N) in place of v , and ξN
in place of ξ . For each N, let σN be a ξN-WNS-selection under πP. Then

ExpξN ;σN
� O(minfjNj;v(N)g)

Proof: Obvious from Theorem 1.�

6.2 Variations on the Theme
6.2.1 Highly Valued Prizes

In Theorem 1, the maximum value v̄ = maxfvn : n 2 Ng of the prize is allowed to be
quite small, and then � as was already said � it is not possible to get too many agents
to put in signi�cant work under any allocation scheme π , simply because the disutility
incurred jointly by them cannot exceed v̄. But the value of the prize lies in the eyes of
its beholders. Since we are speculating about populations of agents with highly variable
characteristics, who will compete under the scheme πP �for generations to come", we
may imagine the scenario when all the agents are of a mind to place high valuations on the
prize. Alternatively we can think of the scheme πP being used to disburse a vast number
of different indivisible prizes to the same population of agents, and then focus on the case
when the prize is such that it happens to be valued highly by everyone.
In either setting, the mathematical analysis is the same. For χ = (δ n;τn;vn)n2N recall

that v(χ) = minfvn : n 2 Ng. We will show that, for suf�ciently high values of v(χ),
maximal effort 1� (1; :::;1) can be implemented in a progressively stronger manner : �rst
as an NE, then as a unique WNS and �nally as an �almost-SD" of the game ΓπP(χ). Put
another way: in order to gain more certainty that agents will work hard, one must incur
the cost of enhancing the prize.
For the analysis (see Theorems 2 and 20 below), we need to put an additional constraint

on the distribution ξ of agents' characteristics. (Recall that µn(e) denotes the mean of
τn(e).)

14



6.2.2 Assumption AII

There exist universal positive constants β and ∆> 0 such that for a:a:χ(ξ ), if χ =(δ n;τn;vn)n2N ,
then

µ
n(1)�µ

n(e)> ∆

for all e 2 E nf1g and all n 2 N; and

τ
n(e)< β

for all e 2 E and all n 2 N:

Theorem 2. Suppose Assumption AII holds. Then there exist thresholds v� and v�
such that for a:a:χ(ξ ):

1 is an NE of ΓπP(χ) (5)

whenever v(χ)> v�; and

1 is the unique WNS; hence also the unique NE; of ΓπP(χ) (6)

whenever v(χ)> v�.

Proof: See the Appendix.

Clearly there is a threshold �v (between v� and v�) above which 1 becomes the unique
NE of ΓπP(χ). Moreover, there is another threshold above which it is possible to imple-
ment 1 almost as an SD. Fix ε > 0 as well as χ = (δ n;τn;vn)n2N . We shall say that 1
is �strictly dominant `up to error ε" in the game ΓπP(χ) if maximal effort is a strictly
dominant strategy for each player, conditional on the fact that his rivals' total output is at
least ε , i.e.,

Fn(1jA)> Fn(σnjA)
for all n 2 N and all σn 2 Σn nf1g and all A> ε , where

Fn(σnjA)� ∑
e2E

σ
n(e)[Expτ(

τn(e)
τn(e)+A

)vn�δ
n(e)]

Theorem 20 Suppose Assumption AII holds. Then for any ε > 0, there exists v��(ε)
such that for a:a:χ(ξ ):

1 is strictly dominant up to error ε (7)
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in the game ΓπP(χ), whenever v(χ)> v��(ε)

Proof: See the Appendix.

7 Deterministic Prize: Expected Output from Individu-
ally Rational Strategies

The following �Key Lemma" provides the crucial insight as to why the deterministic prize
πD elicits limited output. Indeed it shows that only the most productive agent, along with
those who stand a chance of beating him, set the bound on the output at any individually
rational strategy-tuple.
Fix χ = (δ n;τn;vn)n2N . Denote by h an agent (the �hero") who has maximal mean

output under effort level 1, i.e., for all n 2 N,

µ
h(1)� µ

n(1)

(where, recall again, µn(e) is the mean of τn(e)). De�ne K(χ) to be the set of "elite"
agents whose outputs at effort 1 have a positive probability of exceeding that of h, i.e.,

K(χ) = fn 2 N : Pr[τn(1)� τ
h(1)]> 0g

We shall show that the output under deterministic prize is commensurate with jK(χ)j. First
we need

7.0.3 Assumption AIII

There exists a universal constant B such that for a:a:χ(ξ ), if χ = (δ n;τn;vn)n2N , then for
all n;k 2 N

vn

vk
< B

and, moreover, τn( �e) � τn(e) whenever �e > e, where ��" denotes �rst order stochastic
dominance7.

7Recall: τn( �e)� τn(e) if Probfτn( �e)� zg � Probfτn(e)� zg for all z 2 Range τn( �e)[ Range τn(e)
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7.0.4 Key Lemma

Suppose Assumption AIII holds. Let σ be a ξ - IR-selection under πD:Then for a:a:χ(ξ )
we have

Expσ (χ)� 2jK(χ)jB2CD=c

where Expσ (χ) is as de�ned in (3).

Proof: See the Appendix.

7.1 Estimation of the Average Value of jK(χ)j with i.i.d. Agents
A natural scenario is that agents' characteristics are not correlated to be similar but are
suf�ciently "diverse" (e.g., drawn i.i.d. from a large set). We shall, in fact, require this
diversity only on their productivities (τn(1))n2N under maximal effort. This is embodied
in Assumption AIV below. First, a de�nition:

De�nition (Normalized Density) .Let Z be a random variable taking values in the
n-cube CjNj = [d;D]

jNj. Let λ denote the standard Lebesgue measure on CjNj scaled by
(D� d)�jNj. (so that λ (CjNj) = 1):We say that Z has normalized density function ρ if
ρ is Borel-measurable, nonnegative and Pr(Z 2 A) =

R
Aρ(x)dλ (x) for all Borel sets A �

CjNj;and we de�ne the upper bound of ρ to be the essential supremum of ρ onCjNj:

We are ready to state

7.1.1 Assumption AIV

1. There exists ε > 0 such that, for a:a:χ(ξ ), if χ = (δ n;τn;vn)n2N , then for all n 2 N:
support τn(1)� [µn(1)� ε;µn(1)+ ε]

2. As we vary χ on XN according to ξ ; the random variable8 (µn(1))n2N has a normal-
ized density function with �nite upper bound.

Condition 2 of this assumption rules out the possibility that (µn(1))n2N is concentrated
on the "diagonal"

�
(z; :::;z) 2CjNj : d 5 z5 D

	
of the cube CjNj:The picture is best seen

in the square with N = f1;2g. As the two random variables µ1(1);µ2(1) go from being
8Recall that (µn(1))n2N 2CjNj by (2).
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iid, with uniform density on [d;D] , to being concentrated on smaller and smaller neigh-
bourhoods of the diagonal, β rises from 1 to ∞:In this scenario β is a measure of how
likely it is that the two agents are similar. We should expect a threshold β

�such that πP
outperforms πD if β < β

�;and πD outperforms πP if β > β
�:This is not to say that high

β is necessarily bad for πP. Indeed if β were high towards the northwest or southeast
corners of the cube, making it more likely that the two agents are disparate , this would
only accentuate the superiority of πP over πDWe do not follow this general line of inquiry
here , wherein β would be allowed to become unbounded in regions of CjNj where agents
are disparate, and bound only where they are similar. Instead we consider the restricted
scenario where β is universally bounded on CjNj , thereby only preventing agents from
being similar with high probability.
Returning to the iid case on our two-dimensional cube, we can think of ε as the size of

the random noise on output, and then the �diversity" of agents' productive skills is re�ected
for us in how small the term βε = ε=(D� d)�jNj is. (Diversity in skills is dampened by
the noise ε: Indeed suppose noise ε is symmetric across the two agents and let ε grow,
keeping skills �xed. The two agents will become increasingly similar since their output
will depend essentially on the identical noise term and their skills will count for little for
suf�ciently large ε ) Lemma 1 below shows that the average size of the elite set , without
the hero, is no more than βε in the general setting of Assumption AIV.

Lemma 1 Suppose Assumption AIV holds. Then the expected value of jκ(χ)j under
ξ is at most 1+β jNjε .

Proof : See the Appendix.

7.1.2 Expected Output

We are ready to state the main conclusion of this section.

Theorem 3 Assume Assumptions AIII and AIV hold. Let σ be a ξ -IR-selection on
XN under πD. Then

Expξ ;σ �
2B2CD
c

(1+β jNjε)

Proof : Immediate from the Key Lemma and Lemma 1.
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8 Proportional Versus Deterministic Prizes

8.1 Expected Output
Theorems 1 and 3 enable an immediate comparison between the (expected total) outputs
elicited fromWNS, IR strategy selections by πP;πD respectively. Fix, for example, all the
parameters c;C;d;D;b;B;v of the model (such that v> DC=d) and suppose that Assump-
tions AI, III, IV hold. There exists a threshold ε̄ such that, if ε < ε̄ , then for large enough
N and v

Expξ ;σ > Expξ ; �σ

for any ξ -WNS-selection σ and any ξ -IR-selection �σ . This is so because the lower bound
on output given by Theorem 1 is independent of the noise ε , and rises with N;v ; while the
upper bound given by Theorem 3 is independent of N;v and goes to 2B2CD=c as ε goes to
0.
To get a better feel, it might help to consider a numerical example. Let B =C = c =

d = 1;D= 2; jNj= 7, v= 30,ε = 0:05:Further let the set of effort levels be E = f0;1g so
that emin= 1;and let the agents' skills be picked iid with uniform probability in the interval
[d;D] = [1;2] so that β = 1:Thus the noise term is only 5% of the skill interval and does
not dampen the diversity between the two agents.
By Theorem 1, the output is bounded below (noting a = 7;b = 28 ) by 5:6 at any

WNS-selection under the proportional prize. On the other hand, by Theorem 3, the output
is bounded above by (2B2CD=c)(1+β jNjε)) = 4(1+7(0:05)) = 5:4 at any IR- selection
under the deterministic prize. Thus the proportional prize outperforms the deterministic.

8.2 Welfare
For simplicity we take β = 1=(D� d) in this section and the next section 8.3, i.e., the
random variables µn(1) are iid with uniform distribution on [a;b]. When the deterministic
prize is used only the players in the elite coterie K(χ) (whose size is 1+ [jNjε=(D�
d)] on average) get the prize with signi�cant probability under any IR strategy tuple.
More precisely, the remaining players in N nK(χ) get the prize with probablity at most
v(χ)B∑k2K(χ) δ

k(1) (See the proof of the Key Lemma in the appendix for this estimate.)
If the proportional prize is used then, at any WNS strategy tuple, not only does the

expected total output go up for the principal as we just saw, but each player in N nK(χ)
wins the prize with much greater probability than before (at least demin=jNjD� O(1=jNj)
each, provided deminv(χ)=jNjD >Cemin, i.e., provided v(χ) >CjNjD=d). Thus for v(χ)
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large enough, all the players in N nK(χ), who constituted the impoverished majority under
the deterministic prize, suddenly �nd their prospects brighten and are able to become well
off by working hard. The elite coterie K(χ), of course, loses its status : the probabilities of
winning the coveted prize drops from O(1=jK(χ)j) to O(1=jNj) for each of its members,
though they still must work so as to not lag behind the others. In short, the egalitarian
distribution engendered by the proportional prize inspires all agents to work hard and
considerably raises total output.
The principal and the impoverished majority N nK(χ) should both applaud when πP

replaces πD ; or, rather, the principal can count on the unconditional support of the major-
ity when he institutes πP instead of πD, and need only worry about having to brook the
displeasure of the tiny elite coterie K(χ).

8.3 Large N and i.i.d. Agents
If we let jNj increase in the i.i.d. setting of this section, then the proportional prize will not
only elicit more total output (compared to the deterministic) averaged across χ , but will
in fact also elicit more output for χ occuring with high probability. Precisely, there is a
threshold ε� such that if ε < ε� then the following holds:

Proposition 1 For any δ > 0, there exists m(δ ) such that if jNj> m(δ ) then

Expσ (χ)> Exp �σ (χ) (8)

with probability at least 1�δ , where σ(χ) and �σ(χ) are arbitrarByyWNS and IR strategy-
tuples in ΓπP(χ) and ΓπD(χ) respectively. (Indeed, by lowering the threshold ε�, we may
even strengthen (8) to

Expσ (χ)>MExp �σ (χ)

for any M > 0.)

Proof: Immediate from the law of large numbers and Theorems1,3�

Remark 2 (Bounded Deviation). Suppose productivity functions τn are altered to
hn � τn :for differentiable hn : R+ ! R+ and that the derivative of hn is bounded below
by γ�1 and above by γ for some positive constant γ (independent of n). Then it is clear
that our results in this section will continue to hold. The alteration can be absorbed by
changing the lower and upper bounds in (2) from d;D to γ�1d;γD.
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In the same vein, take any utility function for the prize which is of �bounded deviation"
from expected utility. Precisely, an agent's utility from getting the prize with prnnobability
p could be a function f (p) for which there exist positive constants α and v such that
α�1pv� f (p)� α pv. This also does not affect the tenor of our results. It can be absorbed
by replacing B in (6) by α2B.
Remark 3 (Multiple Prizes). One might wonder what happens when l � jNj deter-

ministic prizes are used instead of a single prize (i.e., the pot of gold is split a priori into l
successively smaller parts to be handed out to the agents with the top l outputs; with some
suitable postulate on how agents value fractions of the pot, e.g., linearly).
When jNj= 2 it is evident that using two prizes is wasteful since the loser will always

get the second prize for free.
If there are l << jNj prizes, then again the proportional prize will perform better. The

reason is as follows. Assume everyone works hard. De�ne l �heroes" by the top l mean
outputs (as in section 7); and then de�ne the coterie K to consist of those agents whose
outputs have a positive probability of overtaking the weakest hero. Arguing as in the proof
of the Key Lemma, the maximal effort in K will effectively bound the total output at any
IR strategy-tuple, regardless of the values of the l prizes.
Furthermore, as in Section 7.1, the expected size of K will be small. Thus the propor-

tional prize will outperform l deterministic prizes when l << jNj.
We plan to explore the case of general l in future work.
Remark 4 (Interdependent Production) The discerning reader will notice that the

analysis remains intact even if the random output produced by an agent is in�uenced by
the effort (possibly factored through output) of the others.The various assumptions we
needed will then need to be recast ( slightly cumbersomely) but the same method of proof
applies. We spare the reader the details.
Remark 5 (More General Elite) The Key Lemma has a natural variant. We need not

rule out the possibility that the weakest agent can match the hero with small probability.
This was done for ease of exposition. More generally say that K(χ) is an "(1� ε)� elite"
if the probability that at least one agent in N nK(χ) produces output equalling or exceeding
the hero's, is at most ε . (This probability is to be of course considered under the scenario
that everyone in K(χ) is at effort level 1; and it incidentally allows for the interdependence
of Remark 4.) Then the Key Lemma holds, replacing c by c=(1� ε) in the upper bound,
and so Theorem 3 also holds with the same amendment.
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9 Regime Change (TwoAgents with Variable Noise in Out-
put)

We devote this section to an example which brings out our central theme: if agents are
�similar" then the deterministic prize elicits more output, otherwise that distinction goes to
the proportional prize. To this theme, one may adduce one more observation: if agents are
chosen �at random" from a �suf�ciently diverse" set of characteristics, then the probability
that they are similar is small. The upshot is that the proportional prize elicits more output
on average, as our analysis has revealed.
To better illustrate our theme, it will help to suppress the random choice of agents'

characteristics. Thus our example is going to be particularly simple. There are only two
agents i.e., N= f1;2g and only two effort levels (besides the �0" which is tantamount to not
participating in the game), i.e., E = f0;1=2;1g. For simplicity �x δ

1(1=2) = δ
2(1=2) = 0

(which is just a proxy for a very small positive number) and δ
1(1) = δ

2(1) = δ > 0. Fix
also two numbers 0 < a < b. We shall vary the productive abilities τnε of n = 1;2 with
a parameter ε . For effort level 1=2, both agents produce output uniformly in the interval
[0;ε]. For effort level 1, agent 1 produces uniformly in [a;a+ ε] while agent 2 produces
uniformly in [b;b+ε]. Since a< b, agent 1 is weaker than agent 2, and the �dissimilarity�
between them can be expressed by ∆(ε) � Prob

�
τ2ε(1)> τ1ε(1)

	
. As ε increases from 0

to ∞, ∆(ε) falls from 1 (complete disparity) to 1=2 (complete similarity). We may think of
the ε-spread a �noise� which, when large, overwhelms the intrinsic difference b�a in the
agents' abilities and makes them very similar.
Taking our cue from Theorem 2, our goal is to implement 1 = f1;1g as an NE9. For

simplicity we suppose v1 = v2 = v and inquire about the values10 v of the prize for which
π = πD or πP implements 1 as an NE given ε . Indeed, since we have �xed δ

1 and δ
2,

and are going to deduce v, the only exogenous variable is ε which de�nes the productivity
functions τ1ε(e);τ2ε(e). Thinking of χ � (δ n;τnε)n2f1;2g as the �precharacteristics" of the
agents, the space from which χ is chosen will be taken to be of the form X(α;β ) =��

τ1ε ;τ
2
ε

�
: α � ε � β

	
. (Notice that the same noise ε is used for each agent.)

For any given χ � (δ n;τnε)n2f1;2g � ε and v1 = v2 = v, we have the game Γπ(ε;v)
9This is a dual view to the one taken so far. We had earlier �xed the scheme π and looked at the variable

behavior (WNS or IR etc. ) implemented by π . Now we �x the behavior at maximal effort and look for
the variable π that implements it (as NE or SD etc.). The latter problem is much simpler. In particular, it
enables us to unambiguously compare two arbitrary schemes. In the earlier setting, it can well happen that
two schemes are incomparable, either outperforming the other, depending upon which pair of behavioral
solutions, under the two schemes, is considered ( multiplicity of solutions underlies this problem).
10This is not to say that the principal can strategically vary the value v of the prize � that value is not his

to vary; it lies in the eyes of the agents who behold the prize. We, the analysts, vary v in order to pinpoint
the population of agents (or, of prizes) for which a given π implements 1 as an NE.
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where π = πD or πP. A little re�ection reveals that if 1 is an NE of Γπ(ε;v), then 1 is also
an NE of Γπ(ε; �v) for all �v > v. Thus we can measure the �ef�cacy" of π by the smallest
value v(π;ε) of v for which π implements 1 as an NE, given precharacteristics ε . This is
given by

v(π;ε) = in ffv 2 R+ : 1 2 NE(Γπ(ε;v))g
First let us restrict to the situation when α = β , so that X(α;β )� X(ε) is a singleton. We
shall show that there is a threshold ε� (which depends on a,b) such that a �regime change�
occurs there:

v(πP;ε)� v(πD;ε) =
(
-tive if ε < ε�

+tive if ε > ε�

i.e. the proportional prize πP beats the deterministic prize πD when the agents are in
[0;ε�), i.e., are suf�ciently dissimilar, whereas it loses to πD when similarity sets in for
ε > ε�. In our example, for a = 2 and b = 3, ε� � 2:8. Thus if one restricts noise so that
the output of �shirk� (e = 1=2) cannot overtake the output produced by the strong agent
(n= 1)when he �works� (e= 1), then we must have ε < 3, implying that πP beats πD with
probability 2 � 8=3 � 0:93 (assuming all ε in [0;3] to be equally likely); if the overtaking
can occur with probability at most 0:2, then ε�3< 0:2ε , i.e., ε < 3=:8, in which case πP
beats πD with probability 2:8=(3=:8)� 0:7.
Let us verify the existence of the threshold ε�. For the game on (N;X(ε)), let ∆π̄nD(ε)=

increase in probability of winning the prize for n, when he switches from effort e = 1=2
to e = 1 (assuming that his rival is at e = 1, and that the deterministic prize πD is being
used). Similarly, de�ne ∆π̄nP for the proportional prize πP. Then clearly

v(πD;ε) =
δ

min
�

∆π̄1D(ε);∆π̄2D(ε)
	

and
v(πP;ε) =

δ

min
�

∆π̄1P(ε);∆π̄2P(ε)
	

Denoting the two minima by minD(ε) and minP(ε) respectively, we see that

minP(ε)> minD(ε)() πP beats πD

minD(ε)> minP(ε)() πD beats πP
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It is easy to compute all these terms for our simple example. Indeed

∆π̄
1
D(ε) =

(maxfε�b+a;0g)2� (maxfε�b;0g)2

2ε2

∆π̄
2
D(ε) = 1�

(maxfε�b+a;0g)2� (maxfε�a;0g)2

2ε2

and

∆π̄
1
P(ε) =

Z b+ε

b

�Z a+ε

a

x
x+ y

dx�
Z

ε

0

x
x+ y

dx
�
dy

∆π̄
2
P(ε) =

Z a+ε

a

�Z b+ε

b

y
x+ y

dy�
Z

ε

0

y
x+ y

dy
�
dx

Taking b= a+1, and integrating by parts, yields

∆ π̄
1
P(ε) = F(ε;y)�F(0;y)+F(a;y)�F(a+ ε;y)

��y=a+1+ε

y=a+1

where F(c;y) � 1
2
�
y2� c2

�
ln(y+ c)� 1

4y
2+ 1

2cy (=
R
y ln(c+ y)dy). And ∆π̄2P(ε) is an

identical expression, obtained by swapping a with a+1.
We may now (with the help of MAPLE, and taking a = 2 and b = 3) plot minD(ε),

minP(ε) and minP(ε)�minD(ε) against ε in Figures 1, 2, 3 below. In Figure 3 we see
that the threshold ε� is � 2:8.

Figure 1 here

Figure 2 here

Figure 3 here

Turning to broader spaces X(α;β ) with α < β , �rst notice that ∆π̄1D(ε) = 0 if ε � 1
(for in this case agent 1 always produces below b, while agent 2 always produces above
b with effort level 1). Thus v(N;πD;X(α;β )) = ∞ if α < 1. Since ∆πnP(ε) > 0 for all ε

and n 2 f1;2g, v(N;πP;X(α;β ))<∞. It follows that πP is better than πD for all (α;β ) if
α < 1. This is also true by our earlier discussion if β < ε� � 2:8.
Figure 3 further reveals that when πP beats πD, it does so most of the time by a large

margin (e.g. by more than 0.1 for 0< ε < 2); whereas when it loses to πD, the margin of
loss is small (� 0:1).
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An alternative way in which to vary the productivities τ1(1), τ2(1) of agents 1;2 is as
follows. Fix 0< a< b. Let N̄(σ2) be the �truncated� Normal distribution:

N̄(σ2) =
N
�
(a+b)=2;σ2

�
(N ((a+b)=2;σ2)) [a;b]

where the numerator is the standard normal distribution with mean (a+b)=2 and variance
σ2 and the denominator is the probability of the interval [a;b] under that distribution. In
short, N̄(σ2) is the probability distribution induced by N

�
(a+b)=2;σ2

�
, conditional on

being in [a;b].
Pick x i.i.d. according to N̄(σ2) for each agent n, and let τn(1) be uniformly distributed

in (x� ε;x+ ε) (where ε is suitably small and �xed). As we increase σ from 0 to ∞, the
chances of �similarity� between the two agents fall from maximal to minimal. There will
be a threshold σ� such that πP elicits more output than πD if, and only if, σ > σ�. The
veri�cation, being straightforward, is omitted.

10 Incomplete Information Game
Our main theme, namely that πP is better for the principal than πD when agents' char-
acteristics are suf�ciently diverse, has been established under the hypothesis that agents
know each others' characteristics. Now we show that the theme remains intact even when
information is coarsened in such a way that an agent is no longer sure of the characteristics
of his rivals.
Let E = f0;1g and N = f1;2g. Let δ

n(1) = 1 and11 vn = v > 1 for n = 1;2; i.e., the
uncertainty pertains only to the productivities τ1; τ2. Of course, τnz (0) = 0 as always, no
matter what the �skill" z of agent nmay be. Suppose that τnz (1) is uniformly distributed on
the interval [z;z+ε], where ε is a measure of the noise on the output. Furthermore suppose
that the skills of the agents n= 1;2 are drawn independently from the intervals [a1;b1] and
[a2;b2], with uniform probability (and that all this is common knowledge to the agents).
Since agent n is informed of only his own skill, a strategy for him is given by a function

σ
n : [an;bn]! [0;1]

where σn(x) is the probability with which n chooses effort 1 when his skill is x.
11If v � 1 then the only NE in Γ�πD or Γ�πP is that both agents never work (since effort 1 costs 1 which

cannot be compensated by any probability of winning the prize)
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For any prize allocation scheme π , the game of incomplete information Γ�π is then
de�ned in the standard manner. (It depends not only on π but also on the parameters
v;a1;b1;a2;b2;ε which we suppress because they will be understood. Our focus is on
π = πP or πD which we keep track of in our notation.)
First consider the case when there is ex-ante symmetry between the agents and no

noise

[a1;b1] = [a2;b2] = [0;1] (say); and ε = 0

Let Fnπ ((p;σ 0)jx) denote the payoff of n in the game Γ�π , when he chooses effort 1
with probability p and his skill level is x, while his rival chooses the strategy σ 0. (Thus,
if n's strategy is σ , his payoff in Γ�π will be Fnπ (σ ;σ 0) =

R 1
0 Fnπ ((σ(x);σ 0)jx)dx.) Notice

that Fnπ ((1;σ 0)jx) increases12 in x (for �xed n;π;σ 0), since n's disutility of effort stays
constant at 1 while his probability of winning the prize goes up13. Thus n's best reply to
σ 0 is to switch from 0 to 1 at some �threshold" skill c, which solves Fnπ ((1;σ 0)jc) = 0 i.e.,
denoting by σ c the strategy

σ c(x) =

(
1 if x� c
0 if x< c

We see that σ c is a best reply to σ 0 in the game Γ�π if Fnπ ((1;σ 0)jc) = 0. We conclude
that (σ c;σ c) is a14 (symmetric) NE in Γ�π if Fnπ ((1;σ c)jc) = 0. The unique c(π) that
solves this equation is computed rather easily for π = πP or πD. Indeed we have,

FnπD((1;σ c)jc) = cv�1

and
FnπP((1;σ c)jc) = cv+

Z 1

c
(
cv
x+ c

)dx�1

= cv[1+ ln
1+ c
2c

]�1

12weakly in Γ�πD and strictly in Γ�πP
13weakly in Γ�πD and strictly in Γ�πP
14also �the", i.e., there is only one symmetric NE as the reader may easily verify.
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which gives (denoting c(πD)� cD and c(πP)� cP)

cD =
1
v

(9)

and

v=
1

cP[1+ ln(1+cP2cP )]
(10)

When cP = 0, the right hand side of (10) is in�nity by L'Hospital's rule while at c = 1, it
is 1. Since v> 1 the solution of (10) is cP < 1, hence we have ln(1+cP2cP )> 0. Thus, for any
v > 1, we deduce that cP > cD. In short, more player-types are working at NE under πP
than under πD and hence πP elicits more expected output.
Now let noise increase (from 0 to in�nity), still maintaining the ex-ante symmetry of

the agents (i.e., [an;bn] = [0;1] for n= 1;2). Arguing as before, it is evident that threshold
strategies will once again constitute NE. But for ε large enough, the symmetry between
agents will obtain even ex-post (to any desired level of accuracy) not just ex-ante, i.e.,
no matter what the realization of their respective skills, the two agents are nearly evenly
matched since the large noise renders their skills irrelevant. In this event, as demonstrated
in section 9, πD will elicit more effort than πP. Indeed it is easy to verify (and we omit the
routine algebra) that there exists an �ε such that

cP(ε)< cD(ε) if ε < �ε

and
cP(ε)> cD(ε) if ε > �ε

which asserts that, unless the noise is so high as to make skills count for little πP outper-
forms πD in games of incomplete information (exactly mirroring the situation of complete
information).
Next let us consider the effect of allowing for ex-ante asymmetry of the incomplete

information. To this end, let [a2;b2] = [∆;1+∆] for 0 < ∆ < 115 and [a1;b1] = [0;1],
i.e., agent 2's skills are ∆-higher than 1's, so that ∆ denotes the degree of asymmetry.
15If ∆> 1 then we have the trivial situation that the highest skill-type of 1 cannot beat the lowest skill type

of 2 which renders the deterministic prize ineffective, while the proportional still continues to elicit effort.
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For convenience, �x the noise ε = 0. Arguing as in the ex-ante symmetric case (though,
for more details, see Proposition 1 below), there again exist thresholds cnD(∆);cnP(∆) such
that (σ1cD(∆);σ

2
cD(∆));(σ

1
cP(∆);σ

2
cP(∆)) constitute the symmetric NE of the games Γ�πD;Γ

�
πP

respectively; and, moreover,
cnP(∆)< cnD(∆)

for n= 1;2 and all ∆ (unless v is so small that no agent ever works in NE� we implicitly
eliminate such trivial NE by presuming v is high enough). Thus πP always outperforms
πD and, as anticipated, the superiority of π p becomes more pronounced as the degree ∆ of
the asymmetry rises.
The exact calculations for the asymmetric case emerge from the following proposition.

Suppose an agent is informed that his rival's output is uniformly distributed in some inter-
val [z;z+η ]� R+ and that his own skill is x. Fix x and think of z;η as variable. We will
compute two critical values zD � zD(x;η), zP � zP(x;η) such that the expected payoff of
the agent is zero in Γ�πD , Γ

�
πP if he chooses effort 1 and if z= zD, z= zP respectively. Since

this payoff varies inversely in z, the agent's best reponse to the rival is to choose effort 1 if
z < zD and effort 0 if z > zD in the game ΓD (or, effort 1 if z < zP and 0 if z > zP, in the
game ΓP). The critical values zD, zP are given in proposition below.

Proposition 2 The critcal z-values are zD = x�η=v and zP = η

exp(η=vx)�1 � x . More-
over we have x(v�1)�η � zP � x(v�1).

Proof. First consider πD: Then z = zD implies x = z+ η=v, and thus the player
wins if the opponent's output lies in the interval [z;z+η=v]. This event has probability
(η=v)=η = 1=v and gives expected payoff v(1=v)�1= 0:
Now consider πP: The expected payoff is

1
η

Z z+η

z

�
xv
x+ y

�
dy�1= xv

η
ln
�
x+η+ z
x+ z

�
�1

Setting this equal to zero and solving for z we get

z=
η

exp(η=xv)�1 � x= zP

For the bounds on zP we note that for an opponent of skill exactly y� = x(v�1) the
payoff under πP is xv

x+y� � 1 = 0. Thus if z+η < y� the payoff at each y in [z;z+η ] is
� 0, which implies zP � y��η . Similarly if z> y�, the payoffs in [z;z+η ] is � 0, which
implies zP � y�:
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We leave it to the reader to see how our results for the asymmetric case can be straight-
forwardly derived from this proposition. In fact, this proposition suf�ces also for the analy-
sis of games of �partial information" which lie between what we, following others, have
called games of �complete" and �incomplete" information. To be concrete suppose [an;bn]
is partitioned into k (say, equal) subintervals [an+ i∆;an+(i+1)∆] where ∆= (bn�an)=k
and i= 0;1;2; :::k�1. (When k = 1 we have �incomplete" information and as k! ∞ we
converge to �complete" information.) Each agent is now informed of his own exact skill
and of the subinterval of [an;bn] in which his rival's skill lies. This de�nes a game of par-
tial information in the obvious way (from his initial probability distribution on [an;bn], the
agent can infer conditional probabilities of his rival's skill given the subinterval of [an;bn]
in which it must lie).
We have not done the exact calculations, but it seems reasonably clear that πP outper-

forms πD for every k not just for the two extreme points k=∞ and k= 1 that have already
been checked.

11 Optimal Prizes
We shall consider the class Π of all allocation schemes π : RN+! [0;1]N which satisfy the
following conditions:

(i) (Scale Invariance)
π(rt) = π(t) for all scalars r > 0

(ii) (Anonymity)For any permutation ω : N! N,

π(ωt) = ω(πt)

(iii) (Monotonicity)
π
n(t)� π

k(t) whenever tn � tk

(iv) (Disbursal)
∑
n2N

π
n(t) = 1

if t 6= 0; and the sum is 0 if t = 0
The construction of an �optimal" scheme (de�ned below) in Π for a given set X
of pre-characteristics (δ n;τn)n2N is a delicate matter. We shall �rst discuss it in the
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simple setting of two agents (i.e., N = f1;2g) with binary effort levels and determin-
istic16 output. The effort levels are �shirk� (e= 1=2) and �work� (e= 1)� in addi-
tion, of course, to effort level 0 for not participating in the game. So E = f0;1=2;1g.
The disutility of effort is �xed in χ (with17 δ

n(1=2) = 0 and δ
n(1) = δ for n= 1;2).

What varies is the productivity of an agent. Let τ(e;s) denote the deterministic out-
put of each agent when he exerts effort e 2 f1=2;1g and and is endowed with �skill�
s 2 [k;K], so that we may take X � [k;K]� [k;K].

As in section 9, we shall take the implementability of maximal effort 1 as our criterion,
and accordingly de�ne

v(π;χ) = in ffv 2 R+ : 1 2 NE(Γπ(χ;v))g

and

v(π) = supfv(π;χ) : χ 2 Xg

Thus v(π) is the smallest value v = v1 = v2 of the prize which Nash-implements 1 uni-
formly over X when the scheme π is used. We de�ne �π to be optimal in Π for X if

v( �π)� v(π)

for all π 2Π (in other words, v( �π) = inffv(π) : π 2Πg). An obviously equivalent de�n-
ition would be: �π is optimal if , whenever any π 2 Π Nash-implements 1 on X , so does
�π
Our goal in this section is to construct such an optimal scheme18.
For brevity, denote τ(1=2;s)� τ(s) and τ(1;s)� τ�(s). Wemake some natural monotonic-

ity assumptions on τ and τ�, along with a form of �decreasing (or, increasing ) returns to
skill� :
16Our analysis will not be disrupted by the introduction of small noise: the optimal π� will continue to be

�approximately� optimal.
17We take δ

n(1=2) = 0 for simplicity (recall that δ
n is permitted to be weakly increasing, as pointed out

in footnote 1). But our analysis remains intact if δ
n(1) is suf�ciently larger than δ

n(1=2)> 0 (as can easily
be checked.)
18The existence of of an optimal scheme, or rather an almost optimal scheme ( in case the in�ma in

our de�nition of optimal are not achieved) is not in doubt since the in�mum is �nite ( because, e.g., the
proportional prize always implements maximal effort as an NE for a suf�ciently high �nite value of the
prize). What is of interest therefore is to examine the structure of the (almost, or exact ) optimal schemes.
In this section we shall compute explicit formulae for exact optimal schemes in two scenarios.
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11.1 Assumption AV
Both τ : [k;K]�!R+ and τ� : [k;K]�!R+ are strictly monotonic, with inffτ�(s)� τ(s) : s 2 [k;K]g>
0, and

τ�(s)
τ(s)

� τ�(s0)
τ(s0)

whenever s0 < s

The displayed inequality says that the percentage gain in output, by switching from
shirk to work, is a weakly decreasing function of the skill s 2 [k;K]. (The case of in-
creasing returns is entirely analogous. See Remark 6 below.) It simpli�es the analysis
considerably. Indeed our goal is to incentivize an agent (of skill s) to switch from shirk to
work, assuming his rival (of skill t) is working. The inequality above implies (see Lemma
3 in the Appendix) that our goal will be achieved for every (s; t) 2 [k;K]� [k;K) if it is
achieved for (s;K) and (K;s) for all s2 [k;K]; in other words, we need only to worry about
incentivizing the agent in the following two extremal cases:

Case A His skill is s 2 [k;K] and his rival is working with skill K.
Case B His skill is K and his rival is working with skill s 2 [k;K]

Denote

R(s) =
τ�(s)

τ�(s)+ τ�(K)

r(s) =
τ(s)

τ(s)+ τ�(K)

�R(s) =
τ�(K)

τ�(K)+ τ�(s)

�r(s) =
τ(K)

τ(K)+ τ�(s)

When an agent switches from shirk to work, his fractional output goes up from

r(s) to R(s) in Case A
�r(s) to �R(s) in Case B

Denote q(s) = 1� �r(s). It is clear from our assumptions that q > R > r and that R(s) =
1� �R(s);R(K) = �R(K) = 1=2
It will be useful for us to introduce one more function, which captures the simple form

of π 2Π when there are only two agents.
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De�nition (Effective prize function) A prize function is a weakly increasing function
p : [0;1]! [0;1] satisfying

p(1� x) = 1� p(x) for all x:

The function p is said to be effective at prize level v, if 1 = (work,work) is a Nash equi-
librium for any pair (s; t) 2 [0;K]� [0;K] of skills of the two players in the associated
game.

Note that Assumption A II implies that, if jNj= 2 and π 2Π, then there exists a prize
function p such that πn(τ1;τ2) = p

�
τn=

�
τ1+ τ2

��
, for n 2 N, whenever τ1+ τ2 6= 0

(justifying our name for p).
The following lemma will be useful.

Lemma 2 The prize function p is effective at level v iff for all s 2 [0;K] we have

p(q(s))�δ=v� p(R(s))� p(r (s))+δ=v

Proof. As discussed earlier, p(x) is effective iff for all s 2 [0;K]

p
� �R(s)�� p(�r (s))+δ=v and p(R(s))� p(r (s))+δ=v

Since p
� �R(s)�= 1� p(R(s)), p(�r (s)) = 1� p(q(s)), the �rst inequality becomes

p(q(s))�δ=v� p(R(s))

which proves the result.

De�ne a sequence of points 0= x0;x1; : : : ;xl in [0;1=2] by

xi =
�

R(0) for i= 1
ρ (xi�1) for 1< i� l

where
ρ (x) =min

�
R
�
r�1 (x)

�
;q
�
R�1 (x)

��
and l is the smallest index i for which r�1(xi) is unde�ned. Note that since q;R;r are all
strictly increasing functions, so is ρ , and therefore x1; : : : ;xl is an increasing sequence.
Now de�ne p� : [0;1]! [0;1] as follows ( where i= 0;1; :::; l ):

p� (x) =

8<:
i=2l for xi � x< xi+1
1=2 for xl � x� 1=2

1� p� (1� x) for 1=2< x� 1
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The following theorem shows that, in our binary scenario of two players and two effort
levels, there exists an optimal scheme given by a prize function which takes the form of a
monotonic step function.The location of the jump points, and the sizes of the jumps, are
given explicitly in terms of r;R; �r, �R (in other words, in terms of the exogenously given skill
functions τ and τ� restricted to the boundary of the square [k;K]:("Graphically speaking"
this optimal scheme is "in between" : (a) the deterministic scheme which has a single jump
of size 1 at 1/2 on the unit interval; and (b) the proportional scheme which is linear and
may be viewed as having continuous uniform-sized jumps.)

Theorem 4

(i) Any effective scheme has prize level � 2lδ .

(ii) x! p� (x)δ is an effective scheme with prize 2lδ :

Proof. Let p be an effective scheme with prize level v. Applying Lemma 2 with s= 0;
we get

p(x1) = p(R(0))� p(r (0))+δ=v� δ=v
Next let s = r�1 (x) or s = R�1 (x) according as ρ (x) = R

�
r�1 (x)

�
or q

�
R�1 (x)

�
. Then

by Lemma 3 we get

p(ρ (x))� p(x)+δ=v whenever x;ρ (x) 2 [0;1].
Applying this formula repeatedly we get

1=2= p(xl)� p(xl�1)+δ=v� �� � � p(x1)+(l�1)δ=v� lδ=v
which proves (i).
For (ii) we �rst show that, for any s, each of the two intervals [r (s) ;R(s)] and [R(s) ;q(s)]

contains some �jump� point xi. Indeed if x= r (s) is in [xi�1;xi); then R(s) =R
�
r�1 (x)

�
�

ρ (x) > ρ (xi�1) = xi; hence xi 2 [r (s) ;R(s)]. The argument is similar for [R(s) ;q(s)] :
Now by the de�nition of p� it follows that

p� (q(s))�1=2l � p� (R(s))� p� (r (s))+1=2l,
which is precisely the condition of Lemma 2 with v= 2lδ :

Remark 6 (Increasing Returns to Skill)De�ne "increasing returns" as in Assumption
AV , substituting " s0> s " by "s0< s ". Then Lemma 3 in the Appendix holds, substituting
k for K ( by the same proof, with s�∆; t �∆;k;s0 < s in place of s+∆; t +∆;K;s0 > s
respectively). Thus the whole analysis for optimal prizes can be replicated for this dual
case.
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11.2 Optimal Prizes with Small Fractional Increments
There are many contests where the exertion of effort causes only a small fractional (or
percentage) increase in output. This happens when all the contestants are very strong �-
experts, champions,stars�- and their base levels of output ( namely, the outputs at their
lowest effort levels emin) are so high that incremental output by each contestant is a small
fraction of his base, even though these increments may have large observable differences
between them on an absolute scale , enabling us to meaningfully compare the contestants.
To model this situation, we retain the deterministic binary model of the previous sec-

tion. By relabeling skills, assume w.l.o.g. that an agent of skill t 2 [k;K] produces t units
of output if he shirks; and t+ψ(t)∆ units if he works. (This may be taken as a de�nition
of ψ(t); with ∆ understood to be small.compared to t:) Assume that the rival is of skill x
and working. Let α;β denote the fraction of total output produced by our t-agent when he
works, shirks respectively. Then

α�β =
t+ψ(t)∆

t+ψ(t)∆+ x+ψ(x)∆
� t
t+ x+ψ(x)∆

' t+ψ(t)∆
t+ψ(t)∆+ x

� t
t+ x

=
t2+ tψ(t)∆+ tx+ xψ(t)∆� t2� tψ(t)∆� tx

(t+ψ(t)∆+ x)(t+ x)

' xψ(t)
(t+ x)2

∆

where we have approximated x+ψ(x)∆ by x since ∆ is small.
So, if π is the prize function, the incentive I(t;x) for our t� agent to work is

I(t;x)� π(α)�π(β )' π
0(β )

xψ(t)
(t+ x)2

∆

assuming π to be differentiable, and denoting its derivative by π 0:
We shall consider two cases.

Strictly decreasing returns to skill:

t+ψ(t)
t

is strictly decreasing in t; i.e.,
ψ(t)
t
is strictly decreasing in t

Strictly increasing returns to skill:
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t+ψ(t)
t

is strictly increasing in t; i.e.,
ψ(t)
t
is strictly increasing in t

First we focus on decreasing returns. Then, by Lemma 3, we need only consider the
two cases below.
Case A. Agent is at t and the rival at K:Then ( suppressing ∆)

I(t;K) = π
0(

t
t+K

)
Kψ(t)
(t+K)2

Case B.Agent is at t and the rival at K:Then

I(K; t) = π
0(
K
t+K

)
tψ(K)
(t+K)2

But, by strictly decreasing returns,

Kψ(t)> tψ(K)

Also, since π(x) = 1�π(1� x) for all x 2 [0;1] ; and (t = (t+K))+ (K = (t+K)) =
1;we have

π
0(

t
t+K

) = π
0(
K
t+K

)

The last two displays imply

I(K; t)< I(t;K); for all t 2 [k;K]
Thus it suf�ces to incentivize the t� agent to switch from shirk to work in Case B (for

all t 2 [k;K] ). Since we want to maximize the minimum incentive, we must arrange for

I(K; t) = constant, for all t

which gives the differential equation

π
0(
K
t+K

) = eC (t+K)2
tψ(K)

or

π
0(
K
t+K

) =
eC

ψ(K)

�
t+K
t

�2
t
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where eC is a constant. For x> 1=2; let
x=

K
t+K

so

1� x= t
t+K

and t =
K(1� x)
x

and we may rewrite our differential equation

π
0(x) =

eC
ψ(K)

(
1

(1� x)2 )(
K(1� x)
x

) =
C

x(1� x)
whereC is another constant and 1=2� x� K=(k+K):The solution is

π(x) = A+B ln
x
1� x

where A;B are determined from the boundary conditions π(1=2) = 1=2 and π(K=(k+
K)) = 1: Then, in the range (k=(k+K))� x< 1=2;the value of π is determined by re�ec-
tion around 1=2 , i.e., π(x) = 1�π(1� x):
The analysis for strictly increasing returns is entirely analogous. Indeed, by Lemma 3

for increasing returns, we need only consider two cases:

Case A�:agent is at t and the rival at k;where

I(t;k) = π
0(
t
t+ k

)
kψ(t)
(t+ k)2

Case B�:agent is at k and the rival at k;where

I(k; t) = π
0(
k
t+ k

)
tψ(k)
(t+ k)2

Again

π
0(
t
t+ k

) = π
0(
k
t+ k

)

and, by strictly increasing returns,

kψ(t)> tψ(k)

so
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I(k; t)< I(t;k); for all t 2 [k;K]
leading to the differential equation

π
0(
K
t+K

) =C0
(t+K)2

tψ(K)
or

π
0(
k
t+ k

)
tψ(k)
(t+ k)2

= const

which, letting

x=
k
t+ k

so

1� x= t
t+K

and t =
K(1� x)
x

may be rewritten

π
0(x) =

C
x(1� x)

whereC is another constant and 1=2� x� k=(k+K):The solution is

π(x) = A0+B0 ln
x
1� x

for 1=2� x� k=(k+K) and 1�π(1�x) for 1=2<K=(k+K), where A0;B0 are determined
via the boundary conditions

π(
k

k+K
) = 0 and π(

1
2
) =

1
2

Remark 7 ( Universality of the "Log Odds" Solution ) The term x=(1�x) gives the
"odds" of winning for the agent who produces the fraction x of the total output (while his
rival produces the fraction 1� x ), assuming that lotteries are handed out in proportion to
the outputs. Thus in the upper (lower ) half of its domain, the optimal π awards the prize
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through "log of the odds" for strictly decreasing (increasing) returns to skill, completing π

on the complementary half by the requirement π(x)+π(1� x) = 1.
What is noteworthy is that, apart from the type of returns (decreasing or increasing)

exhibited by Ψ, the solution is independent of the precise form of Ψ:
The solution is �rst convex and then concave for strictly decreasing returns, and the

other way round for strictly increasing returns (around the midpoint 1/2).
Also worthy of note is the fact (easily veri�ed, and left to the reader) that, for constant

returns to skill, we get the strictly increasing returns solution.

Appendix
Proof of Theorem 1

For brevity denote Expσ , de�ned in (3), as Y , i.e., Y is the random variable which gives
the expected total output of all the agents in N; and denote its expectation Expξ ;σ , de�ned
in (4), as Ȳ . For 0< p< 1, consider the event

E = fχ 2 XN : Y (χ)< Ȳ
p
g

It is evident that ξ (E)� 1� p. Denote

F = fχ 2 E : 9k 2 Ns:t:σ kχ(0)> 0g
If ξ (F) = 0, every agent produces expected output at least demin almost everywhere in

E, and so
Ȳ � (1� p)jNjdemin (11)

If ξ (F)> 0, then there is an agent n such that ξ (Fn)> 0 where

Fn = fχ 2 E : σnχ(0)> 0g
At each χ 2 Fn, let agent n unilaterally change his strategy by shifting probability

σnχ(0) from effort 0 to effort 1. Since n gets the prize with probability 0 when he chooses
0, and gets it (see (2)) with probability at least

d
Y +D

� d
(Ȳ=p)+D

his gain in payoff is at least

σ
n(0)[v(

d
(Ȳ=p)+D

)�C]
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at every χ 2 Fn. Since σ is a ξ -WNS-selection, we must have

v(
d

(Ȳ=p)+D
)�C � 0

which gives

Ȳ � (1� p)(dv
C
�D) (12)

Since either (11) or (12) must occur, we see that

Expξ ;σ � Ȳ � min fpjNjdemin;(1� p)(
dv
C
�D)g

for all 0< p< 1, and hence

Expξ ;σ � max0<p<1 minfpjNjdemin;(1� p)(
dv
C
�)g

= max0<p<1fpa;(1� p)bg

=
ab
a+b

=
h
2

where the second equality follows from the fact that both a and b are positive. �.

Remark 8: Observe that the above proof does not work if σ is a ξ -VWNS-selection.
For if the unilaterally deviating agent n were to shift σnχ(e) wholly onto 1 for all e 2
E nf1g, not just for e= 0, he may not stand to bene�t because

� his increase in the probabilty of winning the prize when he switches from e to 1,
may be miniscual whenever e 6= 0 (becasue the probability was already close to 1
when he chose e), while the cost δ

n(1)�δ
n(e) may be signi�cant

� at the same time σn(0) may be very small compared to ∑e 6=0;1σn(e), so the gain
in switching from 0 to 1 is outweighed by all the losses entailed in switching from
e 6= 0;1 to 1.

Thus in analyzing VWNS, we need to make sure that σn(0) is big enough (we will
ensure that it is at least 1/2 in the variation of the proof of Theorem 1 given below).
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11.2.1 Proof of Theorem 10

Proof. Let Y and Ȳ be as in the proof of Thoerem 1. Consider the event

E = fχ 2 XN : Y (χ)< 2Ȳg

It is evident that ξ (E)� 1=2. Denote

F = fχ 2 E : 9k 2 Ns:t:σ kχ(0)> 1=2g

If ξ (F) = 0, every agent produces expected output at least (1=2)demin almost every-
where in E, and so Ȳ � (1=4)jNjdemin, proving the theorem.
If ξ (F)> 0, then there is an agent n such that ξ (Fn)> 0 where

Fn = fχ 2 E : σnχ(0)> 1=2g
At each χ 2 Fn, let agent n unilaterally change his strategy from σnχ to 1. Since n gets

the prize with probability 0 when he chooses 0, and gets it (see (2)) with probability at
least

d
Y +D

� d
2Ȳ +D

when he chooses 1, his gain in payoff is at least

1
2
:[v(

d
2Ȳ +D

)]�C

at every χ 2 Fn. Since σ is a ξ -VWNS-selection, we must have

v(
d

2Ȳ +D
)�2C � 0

which gives

Ȳ � 1
4
(
dv
C
�2D) (13)

proving the theorem.
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11.2.2 Proof of Theorem 2

First let us a note an obvious fact which we shall use repeatedly. Let X be a nonnegative
random variable, with upper bound �B and expectation �M. Then, for any α 2 (0;1) and
M � �M

PrfX > αMg> M�αM
�B�αM

(14)

To see this, denote the LHS by p. Then M � �M � p �B+(1� p)αM which yields p �
(M�αM)=( �B�αM).
We shall �rst establish (5) of Theorem 2. Fix throughout χ = (δ n;τn;vn)n2N for which

the bounds in Assumption AII apply (such χ occur with ξ -probability 1). For any k 2 N,
let Y�k � ∑n2Nnfkg τn(1) be the total output produced by the players in N nfkg when they
all exert maximal effort. For brevity, denote l � jNj� 1 � jN n fkgj. Then Exp Y�k � ld
by (2). So, by Assumption AII and (14)(taking M = ld; �B = lβ ;α = 1=2 and noting that
β > d) we obtain

Pr(Y�k � ld=2�
ld=2

lβ � (ld=2))>
d
2β

(15)

Given any realization A > 0 of total output Y�k produced by N n fkg, let player k
unilaterally deviate from effort e 2 E nf1g to 1. Then k0s probability of winning the prize
goes up by (or, equivalently, others' probability of winning the prize goes down by)

Expτ [
A

A+ τk(e)
� A
A+ τk(1)

]

= Expτ [
A(τk(1)� τk(e))

(A+ τk(e))(A+ τk(1))
]

� AExpτ(τ
k(1)� τk(e))
jNj2β 2

=
A(µk(1)�µk(e))

jNj2β 2

� A∆
jNj2β 2

(16)

(The inequalities here follow from Assumption AII.) But A� ld=2 with probability at least
d=β by (15). Thus k0s gain in payoff, when he unilaterally deviates from e 2 E nf1g to 1,
is at least
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d
2β
:
ld
2
:

∆
jNj2β 2

vk � Zvk(say)

On the other hand, his loss in payoff is at most δ
k(1)� δ

k(e) � C. Thus, if we choose
v� >C=Z, the gain outweighs the loss and we conclude that 1 is an NE of ΓπP(χ), proving
(5). (Notice that, since l � jNj � 1, we have Z � 1=(jNj) which implies v� = O(jNj) as
expected from Theorem 1 according to which the total expected output isO(min(jNj;v�)).)
We now turn to the proof of (6). First let us establish that there exists v+ such that, if

minfvn : n 2 Ng> v+, then at any NE σ of ΓπP(χ) we have

Expτ Y�k � ld=4 (17)

for all k 2 N. Suppose provisionally that (17) is false, i.e., Expτ Y�k̄ < ld=4 for some
k̄ 2 N. Then

Pr(Y�k̄ < ld=2)> 1=2 (18)

Clearly there exists n 2 N nfk̄g such that σn(0)> 0 (otherwise Expτ Y�k̄ � ld contradict-
ing our provisional hypothesis that Expτ Y�k̄ < ld=4.)
Let n shift probability σn(0) from 0 to 1. His loss in utility, from the extra work

is at most σn(0)C. On the other hand, from (18) and Assumption AII, we see that his
probability of winning the prize goes up by at least

σ
n(0):[

∆
(ld=2)+β

]:
1
2

We choose v+ to ensure that the gain outweighs the loss i.e.,

v+:[
∆

(ld=2)+β
]:
1
2
>C

contradicting that σ is a WNS of ΓπP(χ), and thus contradicting also (18), and thereby
establishing (17)
Now by (14) and (17) (taking M = ld=4;α = 1=2; �B = β l and noting that β > d we

derive

Pr(Y�k > ld=8)�
ld=8

lβ � (ld=8) >
d
8β

(19)
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Consider any k 2 N and e 2 E n f1g. We shall show there exists v� such that, if vk > v�,
then k can improve his payoff by deviating from e to 1 (assuming of course that all the
other players are producing some given amount �A > ld=8). Indeed, in view of (19) and
(16) (using now ld=8 as the lower bound for A in (16)), k0s gain in payoff is at least

d
8β
:
ld
8
:

∆
jNj2β 2

:vk � �Zvk(say)

while his loss is at most C. Thus it suf�ces to choose v� > C= �Z. Since �Z > Z, we have
v� > v+, proving (6). �

11.2.3 Proof of Theorem 20

This is entirely analogous to the proof of Theorem 2 �

11.2.4 Proof of Key Lemma

Since χ � (δ n;τn;vn)n2N is �xed, we shall suppress it and write K � K (χ). Imagine the
scenario when every agent in K chooses 1. This de�nes probabilities πk� > 0 for k 2 K to
win the prize.
It is evident that (i)∑k2K πk� = 1 and (ii)πk� is independent of the mixed strategies

chosen by the players in N nK (each of whom gets the prize with zero probability in our
scenario, since he is beaten for sure by the hero h). Furthermore, by Assumption A III(the
stochastic dominance part) , k0s probability of winning can only increase if any subset of
players in K n fkg change to strategies other than 1. Hence we deduce that every player
k 2 K can guarantee himself the payoff

π
k
�vk�δ

k(1)

by playing 1. Thus, if σ 2 IR(ΓπD(χ)),

Fk(σ)� π
k
�vk�δ

k(1)

for all k 2 K. But clearly Fk(σ)� π̄k(σ)vk (denoting π̄k(σ)� k's probability of winning
the prize when σ is played), so we have

π̄
k(σ)� π

k
��

δ
k(1)
vk
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for all k 2 K, which implies

∑
k2K

π̄
k(σ)� ∑

k2K
π
k
�� ∑

k2K

δ
k(1)
vk

= 1� ∑
k2K

δ
k(1)
vk

But then, putting v� v1 and observing B�1v� vn � Bv for all n 2 N, we have

∑
n2NnK

π̄
n(σ) = 1� ∑

k2K
π̄
k(σ)

� ∑
k2K

δ
k(1)
vk

� B
v ∑
k2K

δ k(1)

So we obtain

∑
n2NnK

Fn(σ) = ∑
n2NnK

"
π̄
n(σ)vn� ∑

e2E
σ
n(e)δ n(e)

#
� Bv ∑

n2NnK
π̄
n(σ)� ∑

n2NnK
∑
e2E

σ
n(e)δ n(e)

� B2 ∑
k2K

δ
k(1)� ∑

n2NnK
∑
e2E

σ
n(e)δ n(e)

But each n 2 N nK can guarantee a payoff of at least 0 by choosing effort level 0, so
Fn(σ)� 0 since σ 2 IR(ΓπD(χ)), and so:

∑
n2NnK

Fn(σ)� 0

Combining the above two inequalities, we have

∑
n2NnK

∑
e2E

σ
n(e)δ n(e)� B2 ∑

k2K
δ
k(1)

Since δ
k(1)�C and δ

n(e)� ce by (1) , we get

∑
n2NnK

∑
e2E

σ
n(e)e� B2jKjC

c
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Recalling also that µn(e)� De by (2), we obtain

∑
n2NnK

∑
e2E

σ
n(e)µn(e)� B2jKjC

c
D

Clearly, by our de�nition of h and (2),

∑
k2K

∑
e2E

σ
n(e)µk(e)� B2jKjµh(1)

� B2jKjC
c
D

(using the fact thatC > c in the last inequality). The above two inequalities prove the Key
Lemma. �

11.2.5 Proof of Lemma 1

Let 0< ε < 1 be �xed. For any n-tuple of real numbers x= (x1; : : : ;xn), let M =max(xi)
and de�ne Nε (x) to be the number of xi in the open interval (M� ε;M). As a preliminary
step, we �rst establish the Claim below and its corollary.
Claim: Suppose the xi are independent and uniformly distributed in the closed inter-

val19 [0;1]. Then Nε has the distribution min(n�1;B(n;ε)), where B(n;ε) is the binomial
distribution.
Proof. For each k � n�1; we calculate the probability Pr(Nε = k).
First suppose that k < n�1; and let Ek denote the event that

fx1 is largestg_fx2; : : : ;xk+1 2 (x1� ε;x1)g_fxk+2; : : : ;xn 2 [0;x1� ε]g

For x in [0;1] the density Pr(Ekjx1 = x) is

x� ε x> ε

0 εk(x� ε)n�k�1dx :

Integrating over x we get Pr(Ek) =
εk(1�ε)n�k

n�k . Considering the possible permutations of
the xi we get

Pr(Nε = k) = n
�
n�1
k

�
Pr(Ek) =

�
n
k

�
ε
k(1� ε)n�k for k < n�1:

19This is without loss of generality. Transform Y, distributed uniformly on [d;D] ; to X =
[Y �d] [D�d]�1which is uniform on [0;1]. The average size of the elite set is unaffected by this trans-
formation.
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However for k = n�1 we get

Pr(Nε = n�1) = Pr(Nε = n�1jmax(xi)> ε)+Pr(Nε = n�1jmax(xi)� ε)

=

�
n
n�1

�
ε
n�1(1� ε)+ ε

n

and the result follows.
Corollary(to Claim):The expected value of Nε is E (Nε) = nε� εn:
Proof :We calculate as follows

E (Nε) =
n�2
∑
k=0
k
�
n
k

�
ε
k(1� ε)n�k+(n�1)

��
n
n�1

�
ε
n�1(1� ε)+ ε

n
�

=
n

∑
k=0
k
�
n
k

�
ε
k(1� ε)n�k� ε

n = nε� ε
n:

We now ready to prove lemma 1. W.l.o.g we take Cn = [0;1]n and show

E (Nε (X))� βnε

Proof. For each k = 0;1; � � � ;n�1, consider the set

Ak = fx 2Cn j Nε (x) = kg

Then by the previous corollary for the uniform setting we have

n�1
∑
k=0
k
Z
Ak
dx= nε� ε

n � nε

and thus we get

E (Nε (X)) =
n�1
∑
k=0
k
Z
Ak

ρ (x)dx� β

n�1
∑
k=0
k
Z
Ak
dx� βnε

46



11.2.6 Lemma 3

Let s 2 (k;K) and t 2 (k;K), Then there exist s0 2 [k;K] and t 0 2 [k;K] such that

(a) either s0 = K or t 0 = K

and

(b) τ�(s0)
τ�(s0�(t 0) �

τ(s0)
τ(s0�(t 0) �

τ�(s)
τ�(s)+τ�(t) �

τ(s)
τ(s)+τ�(t) and

τ(s0)
τ(s0)+ τ�(t 0)

=
τ(s)

τ(s)+ τ�(t)

Proof. Since τ� and τ are strictly monotonic, there exist ∆> 0 and ∆0 > 0 such that

s0 � s+∆ 2 [k;K]; t 0 � t+∆0 2 [k;K] (20)

and
τ(s0)

τ(s0)+ τ�(t 0)
=

τ(s)
τ(s)+ τ�(t)

(21)

Hence there exists a maximal pair ∆;∆0 satisfying (20) and (21), and then either s0 = K or
t 0=K (otherwise both ∆ and ∆0 could be increased slightly, still maintaining (20) and (21),
and contradicting the maximality of ∆, ∆0).
In view of (21), to prove (b) it suf�ces to show that

τ�(s0)
τ�(s0�(t 0)

� τ�(s)
τ�(s)+ τ�(t)

(22)

which is equivalent to
τ�(t 0)
τ�(s0)

� τ�(t)
τ�(s)

(23)

as can be seen by dividing the numerator and the denominator of the LHS, RHS of (22) by
τ�(s0�(s) respectively.
But a similar manuever shows that (21) is equivalent to

τ�(t 0)
τ(s0)

=
τ�(t)
τ(s)

(24)

And, since s0 > s, Assumption AV implies

τ�(s0)
τ�(s)

� τ(s0)
τ(s)

(25)
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From (24) and (25), we get
τ�(s0)
τ�(s)

� τ(s0)
τ(s)

=
τ�(t 0)
τ(t)

(26)

establishing (23), and thereby (22)
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