
Ontology based Comprehensive
Architecture for Service Discovery in

Emergency Cloud

J.Uma Maheswari#1, Dr.G.R.Karpagam*2
#

Coimbatore-641004, Tamilnadu, India.
Assistant Professor (Senior Grade), CSE Department, PSG College of Technology,

1uma_ftt@yahoo.co.in
*

Tamilnadu, India.
Professor, CSE Department, PSG College of Technology, Coimbatore-641004,

2

Abstract — Disasters such as Tsunami, Landslides, and cyclones occur frequently and a strong
emergency management system is required to manage such situations. These kinds of crisis circumstances
are expected to increase in future. The role of Information and communication technology can largely aid
in handling calamities and provide first aid support. The characteristics of Cloud computing such as
sharing on demand, connecting communities and offering everything as a service clearly indicate that it
can contribute to crisis without affecting business continuity. Hence efforts have taken to articulate web
services and the cloud infrastructure as ontology, in the perspective of emergency management which can
improve the understanding of this proposed agent based comprehensive architecture.

grkarpagam@gmail.com

 Keyword- Cloud Computing, Web Services, Semantics, Service Discovery, agents
I. INTRODUCTION

Emergency management is a discipline which is used to manage the hazardous situations from food
provisioning to medical treatment by applying science and technology. Emergency management has gained
importance due to frequent situations such as earthquake, floods, hurricanes, volcanic eruptions and wild fires
all over the globe. These situations expect efficient communication and rapid transportation which can be
satisfied by group communication that involves entities like people, organization, events, locations and essential
services. A recent development of i-phones and androids increases the social interaction by using social
networks [1]. The technology behind the social network is cloud computing. Cloud computing [2] is Internet
based development and use of computer technology whereby dynamically scalable and often virtualized
resources are provided as a service over the Internet. Consumers of Cloud computing will not compute their
own computer, but move their programs and data to the Clouds consisting of computation and storage utilities
provided by third parties. Cloud computing providers publish Cloud services over the Internet, and consumers
normally access these services provided by Cloud application layer through web-portals.

Another revolution in World Wide Web is Semantic Web [3] which has gained the attention of lot
researchers. Semantic Web is the extension of the World Wide Web that enables people to share content beyond
the boundaries of applications and websites. Ontologies are considered one of the pillars of the Semantic Web.
Ontologies include computer usable definitions of basic concepts in the domain and relationship among them.
The availability of machine-readable metadata would enable automated agents and other software to access the
web more intelligently. The agents would be able to perform tasks and locate related information automatically
on behalf of the user. Semantic search [4] locates information automatically by using the two types of ontologies
namely domain ontology and service ontology. Domain Ontology is a conceptualization of a specific domain
which enables the users to recognize the importance and relation between the terms and concepts of that domain.
Service ontology is a conceptualization of set of services related to that particular domain. A third type of
ontology, Cloud Ontology, a conceptualization of platforms, infrastructure and software that are supported and
available in the cloud is included in this paper.

 To date, however, there is no discovery mechanism for searching different kinds of Clouds. Cloud
consumers generally have to search for appropriate Cloud services manually. Even though there are many
existing generic search engines that consumers can use for finding Cloud services, these engines may return
URLs containing not relevant web-pages to meet the original service requirements of consumers. Intuitively,
visiting all the web-page can be time-consuming job. Whereas generic search engines (e.g., Google, MSN, etc)
are very effective tools for searching URLs for generic user queries, they are not designed to reason about the
relations among the different types of Cloud services and determining which services would be the best or most
appropriate service for meeting consumer‘s service requirements. Hence, service discovery mechanisms for
reasoning about similarity relations among Cloud services are needed.

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 242

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24066011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Web service [5] is a programmable Web application that is universally accessible through standard Internet
protocols, such as Simple Object Access Protocol (SOAP). Web service technology is becoming more and more
popular in many practical application domains, such as electronic commerce, flow management, application
integration, etc. It presents a promising solution for solving platform interoperability problems encountered by
the application system integrators. With the ever increasing number of functional similar web services being
made available on the Internet, how to distinguish the best Web service from others becomes an urgent problem
to be solved. Web Service Selection is a key component in service-oriented architecture. The selection of web
service is usually based on the functional requirements of the consumer but those web services may not able to
provide the quality the consumer expectations. Consumer requirements may include not only functional aspects.
It considers Non-functional demands, in addition to functional capabilities to provide a good quality of service
to the consumer.

The Web Service Selection based on Non-functional parameters becomes the challenging task in current
trend. Quality of Service [13] is an aggregated metric for describing characteristics of systems in areas, such as
networks and distributed systems. A new approach has been proposed to discover the suitable web services
based on functional and non functional parameters in a cloud environment for Emergency Management.

II. LITERATURE SURVEY
Arkaitz Ruiz-Alvarez et al [12] proposes the practices for Automated Approach to Cloud Storage Service

Selection which focuses on Cloud services identification, publication, Cloud storage and network service (IaaS
level),but its lacks the focus on ontologies. Miranda Zhang, Rajiv Ranjan, Armin Haller et al [7] Provides the
OWL based ontology called cloud computing Ontology (CoCoOn) that defines functional and non functional
concepts, attributes and relations of infrastructure services. The details about the Paas and Saas are not included
in the ontology. Jaeyong Kang, Kwang Mong Sim [8] presents a four-stage, agent-based Cloud service
discovery protocol. Utilizing an ontology description, in which each resource is described semantically and
relatively to other resources. They developed a multi-agent system that uses ontology-based matching. The
matching is based on input parameter value. The non functional parameters have not been taken for
consideration. G. Vadivelou, E. IIavarasan, R. Manoharan, P. Praveen proposes a new architecture[9] called the
Delegation Web Service (DWS) for selecting the web service with maximum load balancing. The load
balancing is achieved by grouping the web services of similar type from the registry by the DWS for each
consumer‘s request.

Alireza Zohali, Dr.Kamran Zamanifar provides the match making model[11] which considers the functional
as well as the non functional parameters. The service matching method of this paper composed of two phases. In
the first phase, the proper web services that satisfy the functionality matching of the desired service is found,
and in the second phase, the best one is selected from Web Services set obtained in the first phase using
semantic filtering. In the article [15], the analysis of requirements for a broker that performs discovery and
mediation between agents and Web services are explained.

Octavio Gutierrez-Garcia and Kwang-MongSim say that, Selforganizing systems are composed of interacting
individuals (e.g., agents) [17,18]. The interaction among individuals adapts and evolves the system to achieve an
objective (e.g., Cloud service selection). The constitution and objective of the system emerge from the
interaction of its members [16]. The emergent constitution is determined by the feedback obtained through the
free interaction of nearby members. Thus, each member determines the partners to be linked to, by using local
rules. Events in the system i.e., A Cloud consumer submitting requirements, produce changes that are initially
managed by directly connected members, which replicate the new constitution of the system to indirectly
connected members. This paper overcomes the limitations of the above related works and proposes the new
comprehensive architecture for web service discovery.

UmeshBellur, RoshanKulkarni proposes techniques for semantic description and matchmaking of services
[10]. These techniques use semantic concepts from Ontologies [19] to describe the Inputs, Outputs, Pre-
conditions and Effects (IOPE) of a service. The discovery process involves the matchmaking of the semantic
descriptions offered by the client and the provider. The algorithm takes an OWL-S [20] Query from the client as
input and iterates over every OWL-S Advertisement in its repository in order to determine a match. An
Advertisement and a Query match if their Outputs and Inputs, both, match. The algorithm returns a set of
matching advertisements sorted according to the degree of match such as Exact, Plugin, Subsume, and Fail.
These four degrees as ranked as: Exact >Plugin >Subsumes >Fail.

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 243

Ontology Repository

 Cloud Ontology Domain Ontology

Communication Agent

Query receiving Agent Query processing Agent Mediating Agent

Processing Agent

Cloud Search Delegator Match Making IOPE based
 Agent Agent Agent Ranking Agent

QoS Agent QoS based Update Monitoring

 Ranking Agent Agent Agent

Service Provider Service Requester

Service Registry

 Bind

Find Publish

III. COMPREHENSIVE ARCHITECTURE

Layer 1: Interface Level Layer

Layer 2: Processing Level
Layer

Layer 3: Semantic Layer

Layer 4: Service Layer

Fig. 1. Comprehensive Architecture
The objective of this paper is to provide ontology based Emergency Management in cloud. Agent based

architecture is proposed to achieve the goal. A multilayered comprehensive architecture is shown in Fig.1 and
each layer has its own responsibilities. Layer 1 emphasizes on user query and the processing of user query.
Layer 2 constitutes several processing agents and it is responsible for emergency service discovery in cloud.
Layer 3 explores the cloud and domain ontologies that are needed to provide the information about the
emergency cloud and their domains. The Last Layer 4 comprises the actual services which are needed to be
discovered.
A. Interface Level Layer

The topmost Layer Interface level Layer emphasizes on user Query and the processing of such queries. It
comprises of three sub agents namely (i) Query receiving agent (ii) Query Processing Agent (iii) Mediating
agent. Query Receiving Agent receives the bulk request from the user. The query undergoes for various pre
processing steps like stemming, stop word removal and splitting. The pre-processed query is sent to the service
history. If the query is matched with the query in the history then the corresponding services are retrieved.
Otherwise the pre-processed query is sent to the Search Agent.

Receiving agent gets the query from the user and the query is stemmed by using the reduced version of porter
stemmer algorithm. The Porter Stemmer [14] is a conflation Stemmer developed by Martin Porter at the
University of Cambridge in 1980. The Stemmer is based on the idea that the suffixes in the English language
(approximately 1200) are mostly made up of a combination of smaller and simpler suffixes. The Porter Stemmer
is a very widely used and available Stemmer, and is used in many applications. The pseudo code for the
stemmer is given in Fig.2.

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 244

If (suffix of a word==”sses”) replace it by “ss”. (caresses -> caress)

Else If (suffix of a word==”ies”) replace it by ”i”.(ties -> tie)

Else If (suffix of a word==”s”) remove. (cats -> cat)

Else if (suffix of a word==”ed”) remove.(plastered-> plaster)

Else if (suffix of a word==”ness”) remove.(goodness -> good)

Else if (suffix of a word==”ing”) remove.(singing->sing)

Else if (suffix of a word==”ful”) remove.(hopeful -> hope)

Else if (suffix of a word==”icate”) replace it by “ic”.(triplicate -> triplic)

Else if (suffix of a word==”alize”) replace it by “al”.(formalize -> formal)

Else if (suffix of a word==”ation”) replace it by “ate”.(predication -> predicate)

Fig.2. Stemming Procedure

 After stemming the query is given to the next agent ie Query Processing agent. QPA does one of the pre
processing steps ie stop word removal. The procedure for this is given in Fig.3(a).The lists of stop words are
initialized and word that is extracted from query is matched against this list. If there is any match then the word
is removed from the query. After stop word removal mediating agent splits the user bulk query using the
delimiter ‘,’. Fig.3 (b) explains the overall processing.

Fig.3(a) Stop word removal Fig.3(b) Query Processing

 The Service history has three fields namely (i) query (ii) cloud name (iii) service retrieved. Each individual
query form bulk query is matched with the query in the service history. If there is a match the service is
retrieved, else the query is transferred to search agent of the next layer. The example is given in Table I.

TABLE I
Query Processing Agent

Invoke QPA(User_Query) Invoke QPA(need doctors, volunteers, food for people)

Generate call_id 236721

Invoke stemming(User_Query) R1 = need doctor, volunteer, food for people

Invoke stop_word_removal(R1) R2= need doctor, volunteer, food people

Invoke query_split(R2)

R31 = need doctor
R32 = volunteer
R33 = food people

Invoke service_history(R31,R32,R33) No Match
Invoke search_agent(R31,R32,R33) Search agent is invoked with splitted query

B. Processing Level Layer
1) Search Agent (SA): The search agent retrieves the name of the clouds for each query in which the

requested services resides. The splitted query from Layer 1 is passed to Search Agent of the Processing Layer.
The procedure is shown in Table II. According to the number of queries the algorithm is repeated. , Therefore
algorithm is repeated thrice because the numbers of queries are three. For a single query all the clouds are
searched to find the matching of query with services registered under the cloud if there is a match then the cloud
name is returned to the Delegator Agent. In the example, for the query volunteer the matched clouds are cloud1,
cloud2, cloud5.

 stop_word[][10]={"i", "a", "about","an","are","as","at","be",

 "by","com","for","from","how","in", "is","it",”of","on",

 "or", "that","the","this","to","was","what","when",

 "where","who", "will","with"}

 for all wordin in a query

 for all wordout in a stop_word list

 if(wordin of a query == stop wordout)

 remove the word

For all individual query in bulk query

If(match(user query, query in service history)
{
 find the cloud name;

 retrieve the service;

}

Else

 Transfer the request to Search Agent

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 245

match(outA, outQ)

if outA = outQ then
 return Exact

else if outQ superclass of outA then
 return Plugin

else if outQ subsumes outA then
 return Plugin

else if outA subsumes outQ then
 return Subsumes

else
 return Fail

TABLE II
Search Agent

Invoke search_agent(Splitted Query) Invoke search_agent(R31,R32,R33)

Invoke search_cloudontology(individual Query)
return cloud_names

Invoke search_cloudontology(R32)
return cloud1,cloud2,cloud5

Invoke delegator_agent(cloud_names)
 Invoke delegator_agent(cloud1,cloud2,cloud5)

2) Delegator Agent (DA): After finding the related clouds for the query, the delegator agents are
created corresponding to the number of clouds to be searched. Again based on the number of services that are
registered , each delegator can have one or more sub delegator agents. All sub delegator agents do their work in
parallel mode. Each sub delegator agent performs matching operation and return the relevant services for the
query. The working of delegator agent is given in TABLE III.

TABLE III
Delegator Agent

Fig.4 Match Making

The improved match making algorithm is used by the matchmaking agent to find the match between services.
The algorithm is shown in Fig.4.In that algorithm outA represents output for the registered (advertised) services.
outQ represents the output for the query. The input, output, precondition and effect is also got form the user for
each splitted query and it is matched with the registered services according to the matchmaking algorithm by
using service ontology. Weight has been assigned to each class (Exact, Plugin, Subsume, Fail). The priority
ranges from Exact to Fail. The cumulative weight for IO(input,output) and IOPE(input,output,pre condition,
effect) is calculated and ranked by the IOPE based ranking agent. The service which has the highest score is
more relevant to the query. The services which has the score greater than the threshold is sent to the QoS agent.
Threshold value is calculated by taking the average of minimum rank and maximum rank.

3) Qos Agent: The pseudo code for the QoS agent is given in TABLE IV. The QoS agent collects all
the relevant services from various delegator agents. It gets the availability value from the OWL-Q of each
service and then the services are arranged in the descending order according to the availability value by the QoS
based ranking agent. The retrieved services are displayed to the user.

TABLE IV
Qos Agent

invoke
delegator_agent(query,cloud_names)

invoke
delegator_agent(R32,cloud1,cloud2,cloud5)

Create
delegator_agents(cloud_names)

Create
delegator_agents(cloud1,cloud2,cloud5)
delegator_agent1

Create
sub_delegator_agents(cloud_name)

Create subdelegator_agents(cloud1)
sub_delegator_agents D11,D12

invoke matchmakingalg(query) invoke matchmaking alg(volunteer(R32))

Retrieve relevant services

get_student_volunteers()
get_nss_volunteers()
get_schoolstudent_volunteers()
etc

invoke QoS_agent(delegator_agentname, list_of_services) invoke QoS_agent(D1, list_of_services)

Get availabilty_values(list_of_services) Get availabilty_values(list_of_services)

invoke ranking(list_of_services) invoke ranking(list_of_services)

invoke display(services,cloud_name)

get_nss_volunteer()
get_student_volunteer()
get_ncc_volunteer()
etc

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 246

4) Monitoring Agent: Monitoring Agent monitors semantic repository for the registration of new
service from providers. If any new service is found by MA then it informs the Update Agent. The processing of
monitor agent and update agent is given in TABLE IV.

5) Update Agent (UA): The Update Agent is responsible to modify the service history regarding the
availability of services and also updates the semantic repository if new service is monitored by Monitoring
Agent.

TABLE IV
Update Agent

For change in SLA/OWL-S/OWL-Q
Call Service MA ()
 Monitor changes ()
 Get Modify Credentials ()
 Call Service UA ()

 Reflect changes in Service Registry
 Reflect Changes in Cloud Ontology Registry

Return to Monitoring Agent

modify (Cloud1:get Biscuits ())
OWL-Q (Cloud1: get Biscuits (has Availability)) 0
Call Service MA ()
 Monitor changes ()
 Get Modify Credentials ()
 Set(Cloud1: get Biscuits(has Availability)  0
 Call Service UA ()
 Reflect changes in Service Registry
 Reflect Changes in Cloud Ontology Registry
Return to Monitoring Agent

IV. PROTOTYPE IMPLEMENTATION
A. Experimental Setup

This section explains the tools and platforms involved in the implementation of the prototype. The
Eucalyptus cloud has been setup to deploy all the services and the agent framework has been implemented to
retrieve the services in the cloud environment.Net beans (Version 6.8) platform has been used for java based
implementation of web services. Protégé (version 3.3.1) platform provides Protege OWL editor and OWLS
editor. FUSION SDMX Registry (version 2.0) is used as a semantic registry. There are 500 services have been
taken form OWLS TC Test collection. Fig.7 shows sequence of steps involved in ontology driven web service
discovery in cloud. The following TABLE V describes the various domain related services registered under
particular cloud. The cloud ontology is also shown in Fig.6.

Fig.6. Cloud Ontology

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 247

TABLE V
Cloud with Domain of Services

B. Cloud Service Discovery

Fig. 7. Cloud Service Discovery

The user sends the bulk query that arises in emergency situation. In the above example, for an accident to
treat the people there is a need for doctors and volunteers, the user query is got through the user interface and
the query has been sent to interface lever layer agents. Then it does the operations on the bulk query like
stemming, stop words removal and splitting of query. Therefore the query is splitted into two getvolunteer and
getdoctor. The user query is matched against the services present in the service history. In this example there is
no match between the requested query and stored services in the service history. Then the query is given to the
Search Agent. The Search Agent searches the cloud ontology and finds the correct cloud to identify the services.
The query getvolunteer is present in cloud1,cloud2 and cloud5. The relevant services that are present in these
clouds should be found by using Delegator Agent. Delegator Agent gets the corresponding cloud from search
agent and it find the relevant service in that cloud using IO and IOPE matching. The work of the delegator is
parallelized using hadoop map reduce concept. There are three delegators for cloud2 because the no of services
in cloud2 is large. For the example query getvolunteer the retrieval of services by several delegator agents are
given in the TABLE VI. All the retrieved services that are relevant to the user query is given to the QoS agent.
The coordinator agent ranks all the services based on their availability value and the ranked services are
displayed to the user for approval of service execution.

Cloud Domains
Cloud1 Food, Rescueteam

Cloud2 Food, Healthcare, rescueteam,
Vehicle

Cloud3 Weather, food

Cloud4 Vehicle ,Healthcare

Cloud5 Rescueteam, Weather, Vehicle

Semantic
Repository

Delegator Agent

Cloud 5

Bulk Request

getdoctors, get volunteers

Interface Level
Layer
1. Stop word removal
2. Stemming
3. Splitting the Query

Search Agent
1. Search the cloud
ontology
2. Identify the cloud

getdoctors

 get volunteers

Service History
Cloud

Ontology

QoS Agent

Cloud 1 Cloud 2

Ranked Results Relevant Services

 Query match

 Relevant Service

 No match

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 248

TABLE VI
Delegator Agent

The service request and the sample results are shown in Fig 8. Even though the last service is the user requested
service, but the delivered service is nssvolunteer() because the availability of the nccvolunteer() service is less
when compared to nssvolunteer and the top two services have been chosen from cloud2. In an emergency
situation if only the functional parameter like IO and IOPE is considered the relevant services can be given to
the user. But the user doesn‘t know whether the services have been executed or not, if the non functional
parameter like availability is also taken for consideration then there is a guarantee that only the Quality services
are delivered to the user.

Fig. 8. Request and Results

C. Results
The following TABLE VII describes the results obtained for IO based matchmaking and IOPE based match

making. These match making techniques are followed by the delegator agent to retrieve the services that are
present in the cloud. After analysing the result (Fig.9) in IO method the recall is high but precision is low. In
case of IOPE based service discovery the recall is low compared to IO but the precision is high than IO. It
indirectly means that IOPE based service discovery results in delivering only less no of high relevant services to
the user.

Cloud Delegator
Total No of
services for
getvolunteer

No of
retrieved
services

(IO)

No of
retrieved
services
(IOPE)

Total No of
services

Retrieved
(IO)

Total No of
services

Retrieved
(IOPE)

Cloud1 D11 70 20 30 30 45 D12 10 15

Cloud2
D21

110
15 25

45 60 D22 20 25
D23 10 10

Cloud5 D31 80 20 30 50 65 D32 30 35

Request : getvolunteer
Input : nss(volunteer type)
Output : no of volunteers
Precondition : ready state
Effect : service updation
Availability : 0.73
Cloud :C1

Request : getvolunteer
Input : ncc(volunteer type)
Output : no of volunteers
Precondition: ready state
Effect : service updation

Request : getvolunteer
Input : student(volunteer type)
Output : no of volunteers
Precondition :ready state
Effect : service updation
Availability :0.67
Cloud: : C1

Request : getvolunteer
Input : ncc(volunteer type)
Output : no of volunteers
Precondition : ready state
Effect : service updation
Availabilty : 0.61
Cloud: : C5

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 249

TABLE VII
IO Matching Vs IOPE Matching

Type of
Matching TP FP FN TN Recall

Precision

F-Measure

IO 80 40 20 140 0.8 0.66 0.723

IOPE 130 40 40 90 0.764 0.764 0.764

Fig.9. IO and IOPE results

V. CONCLUSION
As Cloud computing allows the users to create resources on-demand scales in response to the demands of
victims of emergency situations, it is recommended as the preeminent solution. Availability is one of the major
parameter to be considered during discovery. Since the cloud services are hosted at various geographical
locations, the possibility of single point failure is avoided. The novelty and significance of this paper is that
distributed and cooperative agents were used to create an ontology based self-organizing service discovery
approach. Load balancing a significant influencing factor has been dealt using Delegation concept which allow
for flexibility since they can expand quickly as the demands increases. This paper will help researchers to
understand the need for integrating the technologies namely semantic web services, cloud computing. This in
turn may lead to a synchronization of research efforts and more inter-operable Cloud technologies and services
at the IaaS layer.

ACKNOWLEDGMENT
The authors express their gratitude to the AICTE for financial support under the Research Promotion Scheme.

REFERENCES
[1] Bhuvaneswari A,Dr.G.R.Karpagam, Ontology-Based Emergency Management System in a Social Cloud, International Journal on

Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3, November 2011.
[2] Anju Gautam and Rahul Pareek, Cloud Computing: An Overview, Journal of Global Research in Computer Science, Volume 2, No.

7,July 2011.
[3] Grigoris Antoniou,Frank van Harmelen, A Semantic Web Primer, Second Edition ,The MIT Press, Cambridge, 2003.
[4] Bettina Fazzinga,Thomas Lukasiewicz ,Semantic search on the Web, Semantic Web — Interoperability, Usability, Applicability, IOS

Press, (2010) 1–7
[5] Ethan Cerami, Web Services Essentials Distributed Applications with XML-RPC, SOAP, UDDI & WSDL First Edition, O'Reilly

February 2002.
[6] Taekgyeong Han and Kwang Mong Sim, “An Ontology-enhanced Cloud Service Discovery System”, Proceedings of the International

multi conference of Engineers and computer Scientists, 2010, Vol I, Hong Hong.
[7] Miranda Zhang, Rajiv Ranjan, Armin Haller,, Dimitrios Georgakopoulos,, Michael Menzel,, Surya Nepal, An Ontology-based System

for Cloud Infrastructure Services’ Discovery, 8th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing,2012 october.

[8] Jaeyong Kang, Kwang Mong Sim, Towards Agents and Ontology for Cloud Service Discovery, International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, 2011.

[9] G. Vadivelou, E. IIavarasan, R. Manoharan, P. Praveen, “A QoS Based Web Service Selection through Delegation, International
Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011.

[10] Umesh Bellur, Roshan Kulkarni, Improved Matchmaking Algorithm for Semantic Web Services Based on Bipartite Graph Matching,
ICWS, pp-86-93(2007).

[11] Alireza Zohali, Dr.Kamran Zamanifar, Matching Model for Semantic Web Services Discovery, Journal of Theoretical and Applied
Information Technology, 2005 - 2009 JATIT.

[12] Arkaitz Ruiz-Alvarez, Marty Humphrey, An Automated Approach to Cloud Storage Service Selection, ScienceCloud’11, 2011, San
Jose, California, USA.

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 250

[13] Maheswari, S. and G.R. Karpagam, “QoS Based Efficient Web Service Selection”. European Journal of Scientific Research, 66(3): p.
428-440, 2011.

[14] Noraida Haji Ali , Noor Syakirah Ibrahim, Porter Stemming Algorithm for Semantic Checking, ICCIT 2012.
[15] Katia Sycara,Massimo Paolucci,Julien Soudry,Naveen Srinivasan, Dynamic Discovery and Coordination of Agent-Based Semantic

Web Services, IEEE Internet Computing, June 2004.
[16] Shangguang Wang, Zibin Zheng, Qibo Sun, Hua Zou and Fangchun Yang,“Cloud Model for Service Selection”, IEEE INFOCOM

2011 Workshop on Cloud Computing.
[17] J. Octavio Gutierrez-Garcia and Kwang-Mong Sim,” Self-Organizing Agents for Service Composition in Cloud Computing”, 2nd

IEEE Conference on Cloud Computing Technology and Science, 2010.
[18] C. Gershenson, and F. Heylighen, “When Can we Call a System Selforganizing?,” in Proc. of the 7th European Conference,2003.
[19] G. Antoniou et al. Web Ontology Language: OWL. Handbook on Ontologies in Information Systems, 2003.
[20] D. Martin et al. OWL-S: Semantic Markup for Web Services. Technical Report,,W3Chttp://www.w3.org/Submission/2004/07/ ,2004.

J.Uma Maheswari et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 251

	Ontology based Comprehensive Architecture for Service Discovery in Emergency Cloud
	Abstract
	Keyword
	I. INTRODUCTION
	II. LITERATURE SURVEY
	III.COMPREHENSIVE ARCHITECTURE
	IV. PROTOTYPE IMPLEMENTATION
	V. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

