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Abstract: Since the initial description of phage display technology for the generation of 
human antibodies, a variety of selection methods has been developed. The most critical 
parameter for all in vitro-based approaches is the quality of the antibody library. 
Concurrent evolution of the libraries has allowed display and selection technologies to 
reveal their full potential. They come in different flavors, from naïve to fully synthetic and 
differ in terms of size, quality, method of preparation, framework and CDR composition. 
Early on, the focus has mainly been on affinities and thus on library size and diversity. 
Subsequently, the increased awareness of developability and cost of goods as important 
success factors has spurred efforts to generate libraries with improved biophysical 
properties and favorable production characteristics. More recently a major focus on 
reduction of unwanted side effects through reduced immunogenicity and improved overall 
biophysical behavior has led to a re-evaluation of library design. 
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1. Introduction 

Until the invention of phage display, immunization and murine hybridoma technology were the 
only methods available for the generation of antibodies. Hybridoma technology however has its 
limitations when the antigens are toxic or non-immunogenic in mice. More importantly, however, 
generation of antibodies to self-antigens can be challenging, especially when there are high sequence 
homologies between the human and the respective murine antigen. In vitro antibody selection methods, 
such as phage display, have set a new standard. An important advantage of these antibody generation 
technologies is the absence of technical limitations, such as the choice of antigen and the ability to 
tailor both affinities and cross-reactivities to what is required. The past decades have seen a rapid 
development of large antibody repertoires and display methods, namely phage display, ribosomal 
display and bacterial, yeast or mammalian cell surface display. Today a multitude of antibody libraries 
exists that differ both in design and means of construction. The focus of this review will be on 
antibody libraries developed to isolate therapeutic antibodies. It is in the nature of the subject that 
commercial libraries play a major part. 

One of the greatest challenges in library selection as compared to in vivo methods is the absence of 
somatic hypermutation (SHM) which enables nature to create high-affinity antibodies. Different 
affinity maturation strategies are available to overcome this limitation. All of these methods are based 
on introducing a certain degree of diversity into selected, moderate affinity candidates, followed by 
repeated selection with increased selective pressure. Affinities that can be achieved directly from a 
combinatorial library, without affinity maturation, are expected to correlate, to a certain degree, with 
the size of the library. The probability of identifying high-affinity antibodies thus increases with library 
size [please refer to 1]. Functional library size, however, matters more than absolute library size and 
this can vary dramatically depending on the design and means of construction.  

Another major challenge of in vitro selection methods is to deliver therapeutic antibodies that are 
developable and safe in human. Developability encompasses several different aspects of a therapeutic 
antibody: production, manufacturability, formulation interactions as well as the resulting shelf life. 
These parameters influence the costs of goods, but more importantly, affect dosing, modes of 
administration and can have an impact on drug safety. Protein properties responsible for developability 
include structural, colloidal and chemical stability, all of which are affected by the primary sequence 
and the state of potential posttranslational modifications. However, not all of these properties can be 
predicted from the primary sequence. For example, while apparent structural stability is often 
dominated by the composition of the framework regions, the aggregation propensity can be influenced 
strongly by CDR (complementary determining region) composition.  

Immunogenicity is another important aspect of a therapeutic antibody. There is one clear trend 
among monoclonal antibody candidates which have entered clinical phases within the last 30 years: to 
be as human as possible. In 1990 only 11.5% of all antibodies in clinical development were fully 
human, but this number has increased to 45% by 2000 [2]. This development is driven by the impact of 
immunogenicity on three aspects of therapeutic antibodies: pharmacokinetics, safety and efficacy.   

A major concern in the development of therapeutic antibodies is the generation of anti-drug 
antibodies (ADA) in patients following multiple dosing. ADAs may cause the following 
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complications: drug-binding, which may significantly enhance antibody clearance, thus lowering half-
life, and drug-neutralization, which is detrimental in a more direct way.  

ADA responses can result in a complete loss of efficacy in a significant percentage of the patient 
population. Since the ADA response is triggered in many cases by protein sequences that are 
recognized as foreign by the patients’ immune system, the aim is to avoid occurrence of such 
sequences as much as possible, even in the library design. Potential posttranslational protein 
modifications, such as glycosylation, deamidation, oxidation or isomerization of amino acid side 
chains constitute another factor that can influence antibody immunogenicity [3]. The simple credo has 
been “the more human, the less potential for immunogenic responses”. ADA-responses are, however, 
difficult to compare between different antibodies since they depend on the antibody sequence and 
format, but also on its formulation, route of application, dosing and finally on the target and patient 
population. A conclusion regarding the validity of the above-mentioned credo is thus difficult to draw 
with the limited amount of data available today. A recent review by Getts et al., discusses in depth this 
trend towards human antibodies with respect to immunogenicity and safety aspects [4].  

In order to characterize a given antibody library, three main aspects have to be considered: the 
display method, the antibody fragment used as scaffold and the source of the sequence diversity. This 
review gives an introduction into the field with a focus on antibody-based phage display libraries for 
the generation of therapeutic antibodies, many of them developed in an industrial setting. To put 
everything into context, it will briefly describe the display methods used most frequently and touch on 
different antibody formats currently in use for display and selection. 

2. Display Methods for Combinatorial Libraries 

A variety of display and protein interaction systems have been evaluated as selection methods for 
antibody-antigen interaction. Commonly used methods for the generation of therapeutic antibodies 
from combinatorial libraries all comprise a display of the antibody, either on the surface of phages, of 
eukaryotic cells such as yeast, or on ribosomes following in vitro transcription (Figure 1). All display 
methods have two major advantages in common: (1) they can be applied to a wide selection of 
antigens and (2) the conditions and thus the selective pressure can be tailored to the requirements. In 
contrast, intracellular selection methods, such as yeast-two-hybrid system or protein complementation 
assay depend on intracellular expression of the target. The control over selective pressure is thus 
limited by the given biological system [5-7]. Those latter selection systems will not be addressed 
further. 

2.1. Ribosome Display 

The concept of ribosome display was initially proposed by Mattheakis and coworkers and 
established by Hanes and Plückthun as a selection method for antibody scFv fragments [8,9].  
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Figure 1. Display methods as tools for antibody selection. Antibody (e.g., scFv, Fab, IgG) 
display methods include ribosome and phage display as well as cell surface display, such as 
yeast display. A: Ribosome display; in vitro evolution and selection method for scFv 
fragments. B: Phage display; protein selection method, where antibody derived fragments 
are genetically fused to pIII phage-coat protein and presented on the surface of filamentous 
phage. C: Yeast display; cell surface selection method, capable of presenting full length 
IgGs. The a-agglutinin yeast adhesion receptor, composed of two proteins Aga1 and Aga2, 
is used to display recombinant proteins on the surface of S. cerevisiae. 

 
Abbreviations: V: variable region; C: constant region; H: heavy chain; L: light chain  
(e.g., VL = variable region light chain) 

In contrast to display methods employing phage display or surface expression on cells, ribosome 
display is an evolution and selection system that takes place completely in vitro. Due to relative 
instability of the RNA and the ribosomal complex, the method is technically more challenging than 
e.g., the very robust phage display technology. Concerning the antibody format, it is limited to  
single-chain proteins, usually the scFv. Since no transformation is necessary, very large libraries (1012) 
have become accessible in a single step. Several cycles of selection and mutagenesis/recombination are 
possible in a short time, because the PCR (polymerase chain reaction) amplification can easily be 
coupled with random mutagenesis or PCR-mediated recombination. An additional advantage of 
ribosome display compared to conventional phage display is the possibility to elute mRNA from 
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antigen-bound ribosomal complexes by the addition of EDTA. This mild elution condition results in 
the dissociation of the ribosomal complex and thus ensures complete recovery even of very high 
affinity antibodies, which often can be difficult to achieve with elution strategies based on disruption 
of antibody-antigen interaction.  

2.2. Yeast Surface Display 

Yeast cell surface display of scFv antibodies was first established by Boder and Wittrup in 1997 and 
its applicability for the selection from large libraries was shown by Feldhaus and coworkers [10-12]. In 
contrast to phage display, full length IgGs can successfully be displayed on both yeast cells [13 (poster 
presentation)] and mammalian cells [14]. The advantages of using full length IgG during selection are 
two-fold: First of all, selection takes place in the envisioned therapeutic format. Second, potential 
impairment of affinity or potency, due to antibody format changes is unlikely to occur. In addition, cell 
surface display is compatible with FACS-sorting techniques, which allows antibody selection close to 
‘natural’ conditions in solution and parallel assessment of multiple parameters like antibody expression 
levels, number of bound antigen, or cross-reactivities. 

A limitation of yeast and similarly all other eukaryotic cell surface systems is the limited 
transformation efficiency of those cells, which sets upper limits on the library size that can be realized. 
The first yeast display libraries generated were thus of moderate size, in the range of 105–107 [10,15]. 
Yeast mating, a feature of the haploid/diploid lifecycle of yeast allows the generation of larger libraries 
(Fab or IgG) in yeast from two separate vectors and is also amenable to chain shuffling for affinity 
improvement [12]. 

2.3. Phage display 

Smith established the heterologous expression of peptides on the surface of filamentous  
phages [16]. Since then, phage display has become a widely used method for the display of both 
peptide and protein libraries. Antibody formats that can be displayed on phages are limited by their 
ability to express efficiently in the periplasm of E. coli. Two types of phage systems can be 
distinguished: phage vector and phagemid vector based display systems. The phage vector system 
consists of the entire phage genome with the antibody gene inserted as a fusion to a phage surface 
protein (in most cases gene III). The phagemid system consists of two components: a phagemid 
carrying the phage surface protein-antibody fusion and a so called helper phage.  

A major advantage of phagemid vectors is their smaller size and ease of cloning, allowing for large 
library sizes. The main difference between both systems lies in the display level of the antibodies.  

While every phage produced by a phage vector system carries 3–5 copies of the antibody on its 
surface (multivalent display), the display on phagemid systems is monovalent with <10% of the phages 
carrying an antibody on the surface [17]. Sometimes both systems are used sequentially, taking 
advantage of the avidity effect of multivalent display for the first selection round combined with higher 
stringency of monovalent display in later selection rounds. To improve antibody display levels in the 
phagemid system, several groups have generated helper phage carrying different mutations affecting 
gene III [18-24]. The hyperphage e.g. carries a gene III deletion which leads to multivalent display in 
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combination with a phagemid [21], allowing an easy switch from multivalent to monovalent display 
within one system. 

Since the initial application of phages for the display of antibody fragments by Winter as well as 
Burton and Lerner a large variety of different phage antibody libraries has been constructed [25,26]. 
Similar to cell surface display systems, phage library sizes are limited by the transformation efficiency 
of the bacterial host. In order to circumvent this limitation many repeated electroporations are 
necessary to create large repertoires [27].  

With both advantages, such as robustness, as well as certain limitations, phage display has become 
one of the most frequently used display methods for combinatorial antibody libraries [28]. Due to high 
stability of the phage, phage display technology is amenable to an extensive range of conditions that 
can be adapted to drive the selective pressure in the desired direction. An extreme example is the use 
of high temperature or concentrations of denaturant to select for high stability of the displayed  
protein [29]. 

3. Antibody-derived Fragments Used in Phage Display 

The antibody formats used for phage display initially by the groups of Winter and Lerner were 
single-chain Fv (scFv) and Fab-fragments [25,26,30]. Both formats are used due to their favorable 
expression properties in the periplasm of E. coli and their ability to display on phages, which cannot be 
achieved with full length IgG.  

ScFv-fragments are only moderately stable on average and often have a high tendency to form 
multimers as well as aggregates. Fab fragments in contrast are stabilized significantly by an additional 
interface of the constant domains [31]. They have been found to possess comparably higher structural 
stability, resulting in overall reduced aggregation and therefore a higher monomeric proportion. For 
these reasons, Fab fragments have replaced the scFv as display format in many of the more recent 
phage libraries. Besides the above-mentioned advantages which are important factors during selection 
and screening processes, the Fab format allows conversion into full length IgGs without impairment  
of function. 

While scFv and Fab are the most commonly used antibody formats in phage display today, 
additional antibody derivatives have come into play that are based on engineered single antibody 
domains. The concept of single domain antibodies (sdAb) derived from antibody variable domains has 
been introduced over 20 years ago by Ward and coworkers [32].  

Like many scFv fragments, sdAbs are however unstable, with a tendency to aggregate and it  
took several more years until the technology of domain antibodies became of therapeutic and 
commercial relevance.  

The antigen binding site of antibodies from camelids and also cartilaginous fish frequently 
comprises the heavy chain variable domain only (referred to as VHH to distinguish it from classic 
VH). In contrast to isolated human VH domains, VHH domains are well expressed from bacteria and 
yeast and show high resistance towards aggregation, even at elevated temperatures [33,34]. The 
presence of an enlarged CDR1 and CDR3 in VHHs and loops that exhibit alternative canonical 
structures increases the structural repertoire of the antigen-binding site and compensates for the 
absence of the three VL CDRs.  
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The experience gathered with naturally occurring sdAb libraries from immunized camels and 
llamas, together with the results of structural studies on camelid and camelized domains and the 
characterization of their thermodynamic properties was the basis for the rational design of camelized 
domain antibodies [33,35-42]. Like the camelid VHH, they proved to be a small, robust and efficient 
single domain binding unit. In analogy to the structures observed for camel VHHs, the changes reduce 
hydrophobicity and thus prevent non-specific binding of camelized VH domains [38]. Concerning their 
use as antibody scaffold for phage display, the engineered domain antibodies fulfill the necessary 
requirements of high soluble expression in the E. coli periplasm. 

The development of domain antibodies based on naturally occurring VHHs or variable heavy 
domains engineered in analogy, was motivated by three assumed advantages of small antibody 
fragments compared to full length IgGs: (1) More rapid and efficient tissue penetration (2) high 
stability and good expression in bacterial and yeast systems and (3) targeting of novel epitopes.   

The last point is based on the unusual structural characteristics of domain antibodies. The long 
CDR3 is at the basis of the domain antibodies´ unique ability to recognize epitopes that are normally 
out of reach for conventional antibodies. This was shown by the isolation of VHHs that bind into 
cavities of enzymes, such as lysozyme [43-46]. The crystal structure of an anti-lysozyme VHH showed 
that part of the long CDR3 loop of 24 amino acids inserts into the active site of the enzyme [47]. It was 
the first example of an antigen-binding site with a large protruding loop. On the downside, the small 
size and the missing Fc part enabling FcRn binding limits serum half-life in vivo. To circumvent this 
limitation, additional modifications such as PEGylation to increase molecule size and thus prevent 
kidney clearance are often required [48,49]. The increased size, however, may reduce tissue 
penetration and the costly modifications can diminish the competitive advantage gained by cheap 
bacterial expression. In addition to that, small antibody formats lacking the constant domains are 
devoid of effector functions. Their use is therefore limited to applications that do not require 
Fc-effector functions. 

With the aim of overcoming certain limitations of the immunoglobulin fold as such, and to further 
explore the suggested advantages of antibody fragments mentioned above, a number of novel protein 
scaffolds have been used for library construction. Those novel scaffolds are, however, outside the 
scope of this review and will not be addressed further. 

4. Design of Combinatorial Antibody Libraries 

Four types of antibody libraries can be distinguished with respect to the source of library sequences: 
Immune, naïve, semi-synthetic and synthetic libraries (Figure 2). While the first two are based entirely 
on naturally occurring sequence diversity, synthetic libraries are diversified according to design.  
Semi-synthetic libraries combine natural diversity for certain aspects of the library with in silico 
design. Although the combinatorial aspect is most prominent in semi-synthetic and synthetic libraries, 
naïve and immune libraries also feature certain combinatorial aspects, e.g. the random pairing of heavy 
and light chains. For representative examples of different phage display libraries please refer to Table 1.  

Generation of large functional libraries is limited by transformation/transfection efficiency and the 
occurrence of frame shift mutants leading to non functional proteins. The cloning of large antibody 
libraries is therefore technically challenging, laborious and time consuming.  
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Figure 2. Four types of antibody libraries can be distinguished by source and design. A: 
Naïve libraries are amplified from a natural source, such as primary B-cells of non 
immunized donors. One library can be used for a wide variety of antigens. B: Immune 
libraries are generated from B-cell derived antibody repertoire of immunized or immune 
donors. Libraries are predisposed for a limited panel of antigens. C: Synthetic libraries are 
based on computational in silico design and gene synthesis. CDR design and composition 
is precisely defined and controlled. D: Semi-synthetic libraries comprise both CDRs from 
natural sources as well as in silico design of defined parts. 

 

The principle of in vivo recombination of the light and heavy chain gene of an antibody was first 
described by the group of Greg Winter as a means to increase library size [65]. A Cre/loxP two vector 
system was used, with a donor plasmid vector encoding the heavy chain and an acceptor fd phage 
vector encoding the light chain. Both heavy as well as light chain gene are flanked by loxP sites 
leading to a site-specific recombination in vivo. By-passing the limitation of transformation efficiency 
with infection, this system allows the generation of very large libraries. Griffiths and coworkers used 
this system to generate a phage display library of 6.5 × 1010. Sblattero and Bradbury used a modified 
version where both the heavy and light chain V-genes were located on the same phagemid separated 
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by a loxP site. Starting out with a relatively small initial library with a size of 7 × 107 they were able to 
generate a library of 3 × 1011 in vivo by site-specific recombination [66]. 

Table 1. Representative examples of phage display antibody libraries (scFv and Fab 
format) published. All phage display libraries are summarized in brief by key parameters as 
framework and CDR ‘source’, library size and highest affinities described. Selected 
references from the literature are given for each library. 

Library 
Name  Format  Framework  CDR Source  Library 

Size  
Published 
Affinities  Reference  

- 

scFv   

immune immune   nM  [50] 

RAB-03/04-G01 
Crucell immune immune  1 × 10

7
  [51] 

- naïve naïve  >10
7
 low pM  [26,52] 

CAT1.0  
MedImmune naïve naïve  1.4 × 10

10
 low to sub-nM  [27] 

CAT2.0  
MedImmune naïve naïve  1.3 × 10

11
  [53] 

- • 49 VH frameworks  
• single VL framework  

• synthetic CDR-H3
1 × 10

7
 µM  [54] 

- • 49 VH frameworks 
• single VL framework  

• synthetic CDR-H3 
10

8
  [55] 

- • 49 VH frameworks 
• 7 VL frameworks  

• synthetic CDR-H3 
3.6 × 10

8
 100nM to µM  [56] 

- • single VH framework 
• single VL framework  

• synthetic CDR-H3 
and CDR-L3  >3 × 10

8
 nM  [57] 

n-CoDeR®  
Bioinvent scFv /Fab  • single VH framework  

• single VL framework  natural 10
9
-10

10
 sub-nM  [58,59] 

Genentech 

Fab  

• single VH framework  
• single VL framework  

• synthetic CDR-H1 
-H2, -H3, (-L3)  up to 10

10
 low nM  [60,61] 

- 
• 49 VH frameworks 
• 26 VL_κ frameworks 
• 21 VL_λ frameworks  

• synthetic CDR-H3 
6.5 × 10

10
 

up to single 
digit nM  [62] 

Dyax  • single VH framework 
• natural VL  

• natural CDR-H3 
• synthetic CDR-

H1/-H2  
1 × 10

10
 sub-nM  [63] 

HuCAL 
GOLD® 
MorphoSys 

• synthetic  
(consensus sequence)  synthetic 1.6 × 10

10
 pM  [64] 

HuCAL 
PLATINUM® 
MorphoSys  

• synthetic  
(close to germline)  synthetic 4.5 × 10

10
   

 
Another important aspect is functional library size, which is limited by the occurrence of deletion 

mutants caused by frameshifts or stop codons introduced during diversification. Tremendous progress 
has been made by construction of vector systems comprising a positive selection for protein integrity. 
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This work was pioneered by Little et al. who used the bla gene (β-lactamase) as a selection tool for in 
frame, full size protein expression. In this system, a scAb-bla-fusion protein was introduced into a 
phagemid. Following protein expression, only library clones comprising functional scAb-β-lactamase 
gene products not affected by unintended frameshifts or internal stop codons survived the respective 
antibiotic selection [67]. 

4.1. Immune Libraries 

Immune libraries represent a special case, since they are derived from immune donors and are thus 
predisposed for recognition of certain antigens. Due to this predisposition, they are usually 
comparatively small in size. In contrast to naïve libraries, however, immune libraries are not well 
suited for the identification of antibody fragments against a large panel of antigens, especially  
self-antigens.  

The B-cell repertoire of mice immunized with the keyhole limpet hemocyanin (KLH) coupled 
p-nitrophenyl phosphonamidate (NPN) antigen was the source of the first immune library [50]. 
Rearranged immunoglobulin genes of IgG1 heavy and kappa light chains were amplified via PCR 
using sets of degenerate primers. The resulting combination of heavy and light chains was random and 
did not reflect the original pairing. After screening of the scFv phage display library against the 
NPN-antigen about 100 specific clones were identified with affinities in the nanomolar range. Since 
then, immune libraries have been generated from a variety of different species [68,69].  

For human immune libraries, two main applications are the selection of virus neutralizing 
antibodies from infected patients and the identification of tumor specific antibodies from libraries of 
cancer patients [25,51,70-72]. As an example, Kramer and coworkers described the generation of 
immune libraries for the selection of antibodies specific for the rabies virus glycoprotein. Libraries 
were constructed based on four different donors immunized with rabies vaccine. The libraries were of 
moderate size, in the order of 1 × 107. 147 specific clones, and among those 39 virus neutralizing scFvs 
could be identified. Although these libraries were constructed based on random pairing of single VH 
and VL chains, a bias was noted towards certain VH/VL pairings. Additionally, a preferential use of 
certain germlines (e.g., VH3_30) and very similar CDR-H3 sequences was found [51].  

Up to 75% of the immunoglobulins found in the sera of camelids, such as camels, dromedaries or 
llamas are functional antibodies consisting solely of two paired heavy chains containing a VHH 
domain each [73]. Muyldermans and coworkers at Ablynx make use of those naturally occurring 
camelid VHH antibodies for the generation of Nanobodies® [74,75]. A Nanobody® differs from a 
human heavy chain variable domain in about ten amino acids, four Nanobody®-specific amino acids in 
the framework-2 region and a longer third antigen-binding loop (H3) folding over this area. 
Nanobodies® in the nanomolar range are routinely isolated from immunized animals against a wide 
range of targets. Thus, the affinities of the selected VHH domains for their respective antigens are in a 
similar range as the affinities of monovalent scFv of Fab fragments derived from comparable  
libraries [76]. 
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4.2. Naïve Libraries 

Naïve libraries are derived from primary B-cells of non-immunized donors. Naturally rearranged 
variable region genes have been used to construct large repertoires of up to 1011 members. In contrast 
to immune libraries, one single library can be used for the generation of antibodies against all types of 
antigens, including toxins and self-antigens. With smaller libraries, affinities are typically in the  
micro- to lower nanomolar range. Large libraries have delivered affinities down to the sub-nanomolar 
range. James Marks and others in the lab of Greg Winter pioneered the work with naïve antibody 
libraries. In 1991 they published the construction of diverse libraries of immunoglobulin heavy and 
light chain variable genes from peripheral blood lymphocytes (PBLs) of non-immunized donors by 
polymerase chain reaction (PCR) amplification [26].  

The combinatorial library (> 107 members) was made by randomly combining heavy and light chain 
V-genes using PCR. Sheets and coworkers combined the light chain V-gene repertoire generated by 
Marks and coworkers with a newly generated heavy chain V-gene repertoire to a large naïve library 
with a library size of 6.7 × 109 [26]. B-cells from the spleens of three different donors as well as from 
PBLs of two different donors were used as source for the heavy chain V-gene repertoire. This heavy 
chain V-gene repertoire was cloned into a vector via RT-PCR and then combined with the already 
existing light chain V-gene repertoire for the scFv library via overlap extension PCR [77]. Both 
libraries were used for selections against different protein antigens and haptens. Whereas the smaller 
library resulted in scFvs with affinities in the low micromolar range, affinities as high as subnanomolar 
were reached using the larger library created by Sheets and coworkers [26,77]. The identified V-genes 
were in part nearly identical to known germline genes, while others were more heavily mutated [26].  

The CAT1.0 library (Cambridge Antibody Technology, now part of MedImmune/AstraZeneca) is 
the next big step in further development of that technology and the first large naïve antibody phage 
display library [27]. Rearranged antibody V genes for heavy and light chain genes were amplified from 
B-cells of 43 human donors and randomly combined into scFvs resulting in a library with a size of  
1.4 × 1010.  

The library was used for selections on a panel of different antigens and yielded 3-20 different scFvs 
per antigen. Following selection, again the VH3 framework was overrepresented, followed by VH1 
and VH4 frameworks.  

The CAT2.0 library was a further extension of CAT1.0 [53]. Additional new sub-libraries had been 
generated, to increase the total library size to 1.29 × 1011. The library was successfully used to identify 
antibodies against 28 different antigens (27 human and one viral antigen), with a mean of 119 unique 
scFvs per antigen. The potency (EC50 or IC50) of the lead scFvs in vitro ranged from 0.09–250 nM. 
Analysis of the framework usage and diversity of the library showed that almost the entire natural VH 
repertoire was represented in the CAT2.0 library (48/49 VH, 28/30 V_lambda, 31/35 V_kappa gene 
segments). During selection particular gene segments like VH1 as well as lambda light chains were 
enriched over others. The VH3 framework was used frequently but there was no further enrichment 
during selection. While there was no bias before selection towards a particular VH-VL pairing, after 
selection a preference for certain VH-VL pairings was observed, the most abundant pairing being 
VH1-Vlambda1. Other groups used similar approaches to generate large naïve libraries and also 
succeeded in isolating antibody fragments with affinities down to the picomolar range [77,78]. 
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4.3. Synthetic and Semi-Synthetic Libraries 

The fundamental difference between immune or naïve libraries and synthetic libraries consists in 
the origin of the sequences used to build the library. While immune and naïve libraries are amplified 
from a natural source, synthetic library parts are diversified by design. In synthetic libraries the 
antibody diversity is designed in silico and then synthesized in a controlled fashion.  

The ratio of naturally-derived and synthetically-designed parts varies in different libraries from 
semi- to fully synthetic. An advantage of synthetic diversification is that the composition of the CDRs 
can be exactly defined and controlled.  

Synthetic libraries can further be grouped according to the acceptor frameworks used, the origin or 
design of the sequence diversity within the CDR regions and the method used for building the library.  

The first semi-synthetic libraries used a variety of different framework genes to keep diversity  
high [55,56,62,79]. In 1992 Hoogenboom and Winter described semi-synthetic scFv-antibody phage 
display libraries, comprising 49 germline VH sequences and a single V_lambda 3 light chain  
sequence [79]. Five or eight residues in the CDR-H3 were randomized in a PCR-based approach to 
generate libraries with a size of 1 × 107. Subsequent libraries were based on the same set of acceptor 
VH frameworks, with the addition of 26 kappa and 21 lambda sequences [62]. Length variability was 
introduced in the CDR3s and diversity generated through randomization of 4-12 residues in CDR-H3, 
1-3 residues in kappa CDR-L3 and 0-5 residues in lambda CDR-L3. In parallel, library size increased 
over three orders of magnitude up to 6.5 × 1010.  

In a similar approach, de Kruif and collaborators used all 49 human germline VH genes and seven 
different light chain genes (4 V_kappa, 3 V_lambda) with CDR-H3 length variability between 6-15 
residues to construct a library of the size of 3.6 × 108.  

The shorter CDR-H3s of six amino acid length were fully randomized, whereas for the longer  
CDR-H3s the design included a stretch of fully randomized amino acid residues flanked by regions of 
lower diversity resembling human antibody sequences [56]. 

While specific antibody fragments to both haptens and protein antigens could be selected from the 
smallest libraries, affinities were very moderate [79]. A strong bias towards the VH3 framework was 
observed. Using a ten times larger library, scFvs against 18 different antigens were selected [55]. All 
VH families except VH2 were found, but VH3 was strongly overrepresented. The large semi-synthetic 
library constructed by Griffiths and coworkers yielded even higher hit-rates of unique, specific clones 
after selection [62]. The resulting antibodies represented 17/49 VH fragments, 10/26 V_kappa 
segments and 9/21 V_lambda segments, including all of the major families. Fifty two different 
heavy/light chain pairings were identified, with several VH genes being promiscuous. Affinities of 
purified Fabs ranged from 3.8 to 217 nM (antigens: NIP-CAP, fluorescein, HGF/SF, NML1, NML9), 
showing that high affinities can be achieved with a large library.  

Accumulating results from selections done with the early libraries confirm the expectation that 
larger libraries yield more specific antibodies with higher average affinities. A second observation is 
that certain frameworks (predominantly VH1 and VH3) are over represented after selection by phage 
display, often beyond the ratio that can be expected from the input libraries.  
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This observation, together with the desire to increase functional library size led to the development 
of single acceptor framework libraries. VH and VL frameworks were chosen based on the frequency of 
use and for their favorable stability and/or expression properties [57,63].  

Libraries that are based on a single framework combination almost exclusively use the heavy chain 
framework VH3_23, a framework that is frequently found in human antibodies, pairs with almost all 
light chains, shows a good expression in bacteria and displays well on phages.  

4.4. Defined Frameworks: Maximal Diversity 

Pini and coworkers used VH3_23 heavy chain and the light chain corresponding to the Vκ3_20 
germline for its expression and stability properties [57]. Defined positions were randomized in  
CDR-L3 and CDR-H3, resulting in a library size of >3 × 108. 88% of the clones were shown to express 
a functional antibody and scFvs were selected with monovalent affinities down to 10 nM [57].  

The principle of the n-CoDeR® scFv library (BioInvent) is also based on the use of a single, stable 
framework, namely VH3_23, combined with V_lambda (DPL3) (Figure 3) [58,59]. In contrast to the 
library by Pini, natural CDRs were used for the generation of diversity. Sequences encoding in vivo-
formed CDRs from rearranged immunoglobulin genes of different germline origin were combined into 
one single master framework by amplification of CDRs with primers and overlap extension. Due to the 
fact that only one fixed framework was used, CDRs from other germlines were combined with this 
fixed framework. CDRs were amplified from B-cells of several donors and from several different 
tissues including lymph nodes and PBMCs. The assumption was that these CDRs might contain fewer 
T-cell epitopes compared to an in silico design, due to the proofreading mechanism they underwent in 
vivo. The initial library had a size of 2 × 109, which has increased by one order of magnitude and 
delivered affinities in the sub-nanomolar range.  

A similar framework was also used by Lee and coworkers to construct libraries with completely 
synthetic CDRs displayed on a single scaffold [60]. They based their library on the framework of the 
humanized 4D5 antibody (Herceptin®), a framework derived from VH3_23 and V_kappa). A design 
strategy of mimicking natural diversity using tailored codons was used to closely mimic the human 
repertoire. Different library generations were described and it could be shown that the restricted 
diversity in CDR-H1 and CDR-H2 improved the performance of the library whereas highly variable 
CDR-H3 sequences were advantageous. Affinities in the low nanomolar range were achieved using 
these libraries. 

Hoet and coworkers at Dyax combined synthetic diversity in CDR-H1 and -H2 with length and 
sequence diversity in CDR-H3 from natural origin (Figure 3) [63]. CDR-H1 and -H2 repertoires were 
designed based on analysis of germlines genes with introduction of hot spot mutations. Those variable 
parts were constructed with codon-based oligonuceotides to avoid unwanted amino acids and stop 
codons, with the aim to increase the functional library size. VH3_23 was used as heavy chain acceptor 
and combined with the full lambda and kappa light chain repertoire. The natural diversity of the  
CDR-H3 and light chains originated from B-cells of 35 donors having various autoimmune diseases 
and 10 healthy donors in order to maximize the diversity. The light chain and all three heavy chain 
CDRs are independently replaceable modules to facilitate affinity maturation. From the phagemid Fab 
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library with a size of 3.5 × 1010 and a phage library with a size of 1.0 × 1010, affinities in the 
subnanomolar range were obtained.  

Figure 3. Representative examples of semi-synthetic and fully synthetic library design. 
Semi-synthetic libraries combine synthetic design and natural sources to different degrees 
whereas fully synthetic libraries are based on in silico design and de novo synthesis. Three 
examples are schematically shown. Library A comprises natural diversity within all CDR 
regions integrated into one selected single scaffold. CDR sequences are gained via PCR 
amplification from all naturally occurring frameworks (adapted from semi-synthetic  
N-CoDeR® library). Library B comprises synthetic diversity in CDR-H1 and –H2 
combined by natural diversity within CDR-H3. Whereas one single heavy chain framework 
was selected, the whole light chain repertoire has been used (adapted from semi-synthetic 
Dyax library). C: The fully synthetic HuCAL® library concept is based on consensus 
sequences representing major germline families yielding 7 VH and 7 VL mastergenes. 
CDRs are designed to match amino acid composition of naturally occurring antibodies. 

 

In a special application of the same principle, Schoonbroodt and coworkers later generated a library 
focusing on anti-carbohydrate antibodies [80]. The goal of this library was to generate a library 
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tailored for the generation of antibodies recognizing negatively charged carbohydrates by introducing 
basic residues at defined positions. The design of the CDR-H3 was based on sequence alignments of 
known carbohydrate specific antibodies, while the CDR-H1 and CDR-H2 as well as the VL were 
unaltered compared to the original library. The library was successfully tested on two human charged 
carbohydrate targets, heperan sulfate and 6-sulfosialyl Lewis X core.  

The HuCAL® (Human Combinatorial Antibody Library) libraries (MorphoSys) have taken the 
synthetic library concept one step further [64,81,82]. Library design is based on consensus sequences 
representing major germline families rather than using single germlines (Figure 3). The principle of 
consensus sequences was based on the finding that canonical sequence approximation is successful in 
predicting stabilizing mutations in the immunoglobulin fold [83]. Since the different frameworks 
contribute to the structural diversity of human antibodies, this is taken into consideration by including 
a variety of frameworks, yielding a total of seven heavy chain and seven light chain frameworks, 
resulting in 49 potential combinations.  

Starting with HuCAL® libraries comprising CDR3 diversification only, library sizes were increased 
by two orders of magnitude up to 1.6 × 1010 for the HuCAL GOLD® version, with full diversification 
of all six CDRs. HuCAL GOLD® delivered antibodies with affinities in the picomolar range, whereas 
best affinities were obtained in the single digit nanomolar range for the initial HuCAL® library 
[64,81,82,84]. HuCALs’ synthetic CDR regions are designed to reflect the natural amino acid 
distribution and length variation at each position for each respective framework. To maximize 
functional library size CDR regions are synthesized via TRIM technology and a selection for the 
integrity of the antibody-construct is implemented using the above-mentioned β-lactamase selection 
system [67]. TRIM technology uses prebuilt trinucleotides instead of single nucleotides and enables a 
better control of CDR design and avoidance of unwanted amino acids and stop codons [85].  

In the latest version, HuCAL PLATINUM®, framework sequences are as close as possible to the 
nearest germline sequence, excluding non-germline-positions caused by formation of consensus 
sequences. In parallel, functional sequence space in HuCAL PLATINUM® was increased by omitting 
unproductive frameworks, such as VH4 and kappa4 and by addition of a supplemental VH3 
framework. Re-evaluation of an extended set of sequence data available led to a new design of the 
CDR-H3 that replicates natural amino acid composition and length variability within CDRs more 
closely. While the CDR design of the HuCAL GOLD® library was based on analysis of  
2,460 sequence entries [64], sequence information increases >5-fold to 14,800 entries for HuCAL 
PLATINUM®. In addition to optimized mastergenes and new CDR-H3 design HuCAL PLATINUM® 
considers a length dependent amino acid composition within the CDR-H3 region.  

Concomitantly, the occurrence of N-linked glycosylation sites in the CDRs has significantly been 
reduced to avoid this post-translational modification as a potential source of heterogeneity with 
implications on stability, function and immunogenicity. 

4.5. Elucidating Minimal Requirements: Restricted Diversity 

In marked contrast to the approach of maximizing diversity within the frame of the naturally 
occurring sequence space, a series of libraries was constructed utilizing only a subset of amino acids 
for diversification. Based on findings that naturally occurring, antibodies are often biased in favor of 
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tyrosine and serine residues in their antigen binding sites Genentech developed antibody libraries with 
very limited diversity in the CDR regions. Solvent accessible CDR positions were randomized using 
only a subset of 12 [86], four [87] or only two [88] amino acids. From these libraries, with a 
diversification as low as 4 amino acid, specific Fab antibodies with single digit nano molar affinities 
have been selected for different antigens (e.g., VEGF) [87]. Crystallographic analyses as well as 
shotgun scanning confirmed the importance of the tyrosine residues for antigen binding [89]. 

4.6. Diversity Limited to Natural Design: Adimab Technology 

The antibody library generated by Adimab for yeast cell surface display of full IgGs is a further 
interesting example in this trend of limiting and “humanizing” the randomization strategies used for 
library design. The antibody frameworks used to build the library represent a selection of fully human 
germline sequences that are most frequently used in humans.  

The design of the CDR regions is based on the analysis of the available sequence information and 
intended to reflect the human pre-immune diversity. It is a germline-based approach meant to preserve 
the integrity of actual human sequences by tailoring the diversification to each specific germline. The 
CDR-H3 is designed to account for the recombination of immunoglobulin gene segments (i.e., V, D, 
and J) with the hope to reflect natural human pre-immune antibody diversity more closely than by a 
design based on calculated amino acid frequencies. The limitation of theoretical diversity compared to 
full randomization according to amino acid frequencies is considered to be an advantage, especially in 
the light of the limitation on library size inherent to yeast display technology.  

4.7. Camelized Human VH Domains: Synthetic Libraries 

In parallel to the development of semi-synthetic and synthetic libraries based on scFv or Fab 
fragments, synthetic single domain antibodies libraries were established. Repertoires of camelized VH 
domains were created by randomization of residues within the CDR3 loop, with simultaneous variation 
in length. Tanha and coworkers constructed a human VH library based on a camelized VH sequence 
through complete randomization of 19 of the 23 CDR3 residues. From a library size of 2–6 × 107, 
domain antibodies with affinities in the micromolar range were isolated [90]. From a repertoire of  
2 × 108 clones, Davies and coworkers selected camelized VH domains specific for hapten, peptide and 
protein antigens with affinities in the high nanomolar range [37].  

In contrast to those camelized VH domains, the scaffold used by Reiter and coworkers for library 
construction was a native sequence of a monoclonal antibody with a unique VH/VL interface. The 
library, consisting of 4 × 108 independent clones, was generated by randomization of nine amino acid 
residues in the CDR3 and yielded affinities in the nanomolar range [91].  

As for the VHH domain libraries, the affinities published with these synthetic single domain 
libraries are in similar range as the affinities of monovalent scFv of Fab fragments derived from 
comparable libraries. 

Domantis (GSK) further advanced the technology by developing a series of large and highly 
functional libraries of human VH and VL dAbs™, based on human germline sequences that were 
adapted to generate single domain antibodies (VH and VK). The domain scaffolds were selected for 
high stability and engineered for solubility and resistance to aggregation. Additionally, the generation 
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process includes a stringent selection step (heat stress) to maintain the desired favorable properties: 
heating of VH domain-displaying phages leads to protein unfolding and potential aggregation. After 
cooling, intact VH’s are enriched by selection on Protein A, thus enriching for domain antibodies with 
reversible unfolding properties [92,93]. 
 
5. Maturation Strategies 

In vivo, high-affinity antibodies are generated by the immune system through a combination of steps 
introducing diversity (somatic hypermutation) and a subsequent selection (clonal expansion). During 
antigen stimulated B-cell proliferation, the immunoglobulin locus undergoes a very high rate of 
somatic mutation.  

There are several different approaches to mimic these events in vitro to improve the affinity of 
antibodies obtained from combinatorial libraries. For in vitro affinity maturation, selected molecules 
are randomized to introduce diversity followed by selection with increased selective pressure to 
identify improved variants [94]. In general one can differentiate between targeted and non-targeted 
diversification strategies.  
 
5.1. Non-Targeted Diversification 

Error prone PCR and the use of mutator E. coli strains are two non-targeted approaches for the 
introduction of mutations [95-97]. Sequence diversity is introduced randomly into the whole antibody 
sequence. This also leads to the introduction of deleterious mutations in conserved framework regions 
and necessitates the selection of a large repertoire to identify improved functional candidates. Error 
prone PCR is often used in combination with ribosomal display for two reasons: first, a PCR 
amplification step is already part of the technology and second, large libraries (up to 1012) are easy to 
construct due to the lack of a transformation step. Examples for the use of error prone PCR are 
numerous: Hanes reported the improvement of the affinity of a hemagglutinin specific scFv by the use 
of error prone PCR and ribosomal display [9]. Hawkins and coworkers used error prone PCR in 
combination with phage display resulting in a moderate 4.5-fold increase in affinity of a hapten 
specific antibody fragment [98].  

Low and coworkers used the E. coli mutator strain mutD5 in combination with subsequent phage 
display to increase the affinity of a phOx antibody fragment by a factor of 100-fold. While the 
introduced mutations scatter over the entire antibody sequence, those which confer increased affinity 
cluster in the CDR regions [99-101]. 

Chain shuffling is another method used for non-targeted diversification. In this approach one of the 
two antibody chains is replaced by a repertoire while the other chain is kept constant. Marks and 
coworkers used the method of chain shuffling with a scFv specific for the hapten phOx, selected from 
a naïve library [52]. The VH of this scFv was combined with a naïve repertoire of V_kappa and 
V_lambda light chains and the newly selected VL was then combined with a repertoire of the first two 
CDRs of the VH, leaving the CDR-H3 unaltered. 20-fold affinity improvement by light chain shuffling 
and further 15-fold by heavy chain shuffling could be achieved. Since then a lot of groups successfully 
used antibody chain shuffling for affinity improvement resulting e.g., in a 5–6 fold affinity 
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improvement of an erbB2 specific antibody fragment and a 30-fold affinity improvement of a VEGF 
specific antibody fragment [102,103].  

A further development is DNA shuffling by random fragmentation and reassembly by PCR, also 
called sexual PCR [104]. This method involves the digestion and thereby fragmentation of a gene pool 
of closely related sequences and the subsequent reassembly by PCR leading to shuffling of DNA 
fragments. This approach can be combined with error prone PCR or mutator E. coli strains. Boder and 
coworkers used this combination of methods together with yeast display to increase the affinity of a 
scFv specific for fluorescein. A 1,000-fold decreased dissociation rate and a sub-picomolar affinity 
was observed after maturation [15]. Different combinations of methods lead to good results, e.g., the 
combination of error prone PCR with chain shuffling resulting in a 22-fold improved affinity of a  
Fas-specific scFv [99]. 

5.2. Targeted Diversification 

Targeted strategies introduce diversity at defined positions that are predicted to contribute to the 
antigen binding, mainly in the CDR regions, followed by stringent selections. CDR-targeted 
mutagenesis is advantageous since optimization of these regions is most likely to improve affinity and 
least likely to create problems with protein stability. In this maturation concept, CDRs are targeted 
either in a parallel or a sequential fashion. The approaches differ by the localization and amount  
of diversity introduced. Both of these aspects can already be implemented in the design of the  
initial library. 

The term CDR walking has been used to describe an approach where only limited diversity is 
introduced in short (4-6) amino acid stretches of a single CDR. Both parallel and sequential CDR 
walking using degenerated oligonucleotides was used to improve the affinity of a gp120 (HIV antigen) 
specific antibody [105,106]. For the sequential approach CDR-H1, was randomized first, followed by 
CDR-H3. For the parallel approach five independent libraries were generated randomizing a single 
CDR each, followed by combining improved CDRs from antibodies with high affinities after selection. 
The best affinity improvement was reached using the parallel approach which led to a 420-fold 
increased affinity [106].  

One advantage of synthetic libraries is that the requirements for easy diversification can already be 
implemented in the library e.g. with restriction sites flanking the CDRs. The HuCAL® libraries have 
restriction site flanking all six CDRs. All CDRs of a given antibody are therefore available for rapid 
diversification through the use of pre-made maturation cassettes that replace the original CDR.  

The CDR cassettes used for maturation are similar to the design of the initial library: diversity 
replicating the natural distribution is reproduced faithfully by the TRIM technology to maximize 
functional library size [85]. Maturations are performed either with a defined, characterized antibody or 
included into the initial selection using a pool of preselected antibody candidates in a process called 
RapMAT®, which stands for rapid maturation [107,108]. Maturation of a single Fab by diversifying 
CDR-L3 and CDR-H2 in parallel and combining optimized CDRs led to a 5,000-fold improved 
affinity of a GM-CSF specific Fab fragment [108].  

6. Conclusions 
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Over the past 15 years the generation of therapeutic antibodies from combinatorial antibody 
libraries has been established as a valid alternative to conventional immunization. To isolate 
candidates from such libraries the antibodies or antibody fragments are displayed on the surface of 
cells, phages, ribosomes or within the cell. Among those display methods, phage display has the 
longest history and it is among the technologies most commonly used today. While the choice of the 
antibody format can be limited by the display method, e.g., to the scFv or the Fab in the case of phage 
display, library design is in principle independent, as long as sufficient expression properties in the 
respective host system are ensured.  

Combinatorial antibody libraries differ in design, origin of sequence diversity and method of 
generation. All three aspects have an impact on the most essential features of a library: its size and 
functional diversity reflected in the ability to deliver high affinity antibodies with good biophysical 
properties. Antibody libraries can be classified into three major groups: naïve, semi-synthetic and 
synthetic libraries. Most libraries aim at maximizing library diversity, but differ in their approaches of 
maximizing functional size and subsequent developability of the selected molecules. Limitation to a 
single stable framework or to a selected number of consensus frameworks to ensure good biophysical 
properties is one trend in this context. Currently there is a trend to be as close to human germline  
as possible, both in the choice of framework and CDR composition, to avoid potential issues  
of immunogenicity.  

With the synthetic library of moderate size described by Pini and coworkers, scFvs were selected 
with monovalent affinities down to 10 nM [57]. Affinities achieved with large semi-synthetic libraries 
described by Hoet and Söderlind reached the sub-nanomolar range, whereas antibodies in the lower 
picomolar range have been isolated directly from the fully synthetic HuCAL PLATINUM® library as 
well as the very large naïve CAT2.0 library. Affinity improvement factors vary widely within each 
method and are highly dependent on both the antigen as well as the starting molecule. The approaches 
targeting CDR regions have advantages concerning functional size of maturation libraries and integrity 
of antibody framework.  

This concept of targeted CDR mutagenesis has been implemented in the design of several synthetic 
libraries, such as the HuCAL® or Dyax libraries. On the one hand, these findings thus confirm the 
expected correlation between library size and average affinities. On the other hand, they show that 
there is more than one good solution for designing an antibody library. Concerning the aspect of 
affinity, very different library designs are able to deliver comparable results.  
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