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Abstract 
In this research we investigate condition numbers obtained from least squares estimation 

for a car-trailer system to characterize estimation performance. In this case, we can select 
better parameter estimation methods or well-posed measured data sets for the car-trailer 
system using condition numbers. We calculate condition numbers from several different 
linear model-based least squares methods which use four linear regression models and three 
least squares methods to estimate trailer parameters. We also consider three different 
observed data sets in ideal and non-ideal sensor scenarios for simulation tests. 
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1. Introduction 

In this research we investigate condition numbers obtained from least squares estimation 
for a car-trailer system to characterize estimation performance. In this case, we can select 
better parameter estimation methods or well-posed measured data sets for the car-trailer 
system using condition numbers. Kinematic model parameters should be identified accurately 
since they are typically applied to derive robot control and planning commands. In particular, 
trailer backing critically depends on model parameters. However, model parameters change 
from their nominal values for many reasons such as manufacturing and assembly errors, 
clearance, backlash, and wear. Sensor noises may also provide significant estimation errors. 
Thus, estimation or calibration of model parameters is an important procedure for automatic 
controls of robot systems.  

Least squares techniques have been widely used to identify or calibrate kinematic and 
dynamic parameters of robots and sensing systems by using a set of observed 
parameters [2-5]. Ordinary least squares are traditionally used for linear regression 
models. More recently, total least squares [6-8] were introduced for better accuracy. 
Further, condition numbers [9-11] or observability indexes [12-14] are applied to select 
best pose or configuration sets for robot calibration. Note the condition number indicates 
parameter sensitivity to disturbances such as sensor noises. In robotics research, least 
squares techniques were frequently applied to calibration of manipulators and parallel 
robots. However, less attention was paid to calibration of mobile applications. To the 
best of author’s knowledge, least squares techniques were not used to estimate/calibrate 
trailer parameters. As a result, perfect model parameters were simply assumed in many 
control algorithms for the car-trailer system. 

In this research we characterize parameter estimation methods in several different 
scenarios for the car-trailer system using condition numbers. As a result, we can use 
condition numbers to select better parameter estimation methods or better observed data 
for parameter estimation, which is our main contribution. We also contribute to 
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investigation of condition numbers when sensor noises are present. We estimate model 
parameters (i.e., hitch and trailer lengths) for the car-trailer system using linear regression 
models and least squares techniques, which may easily be implemented with inexpensive 
sensors such as an odometry and a potentiometer. Toward this goal, we first derive closed 
form linear models considering forward steering kinematics of the car-trailer system. 
Several linear model-based least squares techniques [1] are then presented to estimate 
trailer parameters using linear model and least squares. Several observed data are also 
applied to parameter estimation of car-trailer systems. In our evaluation, we then 
compare condition numbers obtained from several different estimation methods and 
scenarios to investigate how observed data should be selected to provide better 
estimation results. We use the car-trailer model assuming no senor noises to simulate 
ideal sensor measurements. We further use Gaussian noises to produce non-ideal sensor 
measurements similar to actual hardware implementation.  

This paper is organized as follows; In Section 2, we present linear least squares methods. 
In Section 3, we provide closed form linear regression models for parameter estimation 
considering steering kinematics of a car-trailer system. Using linear models and least squares, 
we present linear model-based least squares estimation methods in Section 4. We then 
evaluate linear model-based estimation methods for several different curvature commands 
applying respective ideal and non-ideal sensor measurements in Section 5. Conclusions are 
finally provided in Section 6. 
 
2. Least Squares Techniques  

In this section we briefly describe ordinary least squares and total least squares methods for 
linear regression models, which will be used to estimate trailer parameters. We also present a 
condition number as an observability index. 
 
2.1. Least Squares Techniques: OLS1, OLS2, and TLS  

In general, a linear regression model can be written by,  

 ,
1

( , )
n

i i i j j
j

y f η β
=

= = ∑η β ;     i=1,…, p    , (1)  

which is a linear combination of n input variables, ηi∈ℜn×1, and n unknown parameters, 
β∈ℜn×1. Note that yi is the output variable, p is the number of input/output 
measurements. Alternatively, using matrix-vector form, this model can be expressed by,  

 y = Aβ , (2) 

where A is the matrix of input variables. We can then estimate β easily using linear 
least squares methods for given input and output measurements. 

In particular, considering a straight line in a plane, the linear model (1) can be 
simplified by,  

 i iy ax b= + ;     i=1,…, p    , (3) 

where xi is the input variable and β= [a b]T. Given the output measurements, 
1 ...

T

pY Y =  Y and the input measurements, 1 ...
T

pX X =  X , we can then 
estimate the unknown parameters, β, applying least squares methods. In this research 
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we distinguish least squares methods according to applied fitting errors as follows; 1) 
Ordinary Least Squares based on only output errors, ∆yi, (OLS1), 2) Ordinary Least 
Squares based on only input errors, ∆xi, (OLS2), and 3) Total Least Squares based on 
both input and output errors (TLS). As illustrated in Fig. 1, we define three different 
fitting errors, 1 ...

T

pe e =  e ,  

 
2 2

for 1
for 2

( ) ( ) for 

i

i i

i i

y OLS
e x OLS

x y TLS

 ∆= ∆


∆ + ∆

, (4) 

where input and output errors are,  

  ,   i i i i i ix X x y Y y∆ = − ∆ = − . (5) 

2.1.1.  Ordinary Least Squares based on only output errors (OLS1)  

OLS1 refers to traditional ordinary least squares, which minimizes only output errors, 
∆yi, between measurements and a model assuming ∆xi=0 (i.e., xi=Xi), Figure 1 (a). 
Using the model (2) and the error definition (4)-(5), the fitting error is then,  

 1 ...
T

py y ∆ ∆ = e = Y - y = Y - Aβ , (6) 

Now we can find the parameters, β, by minimizing this fitting error, 

 
β ββ

min min min( (T TS = e e = Y - A Y - Aβ) β) . (7) 

Differentiating (7) with respect to β and solving for β, the ordinary least squares 
estimate of β in OLS1 becomes,  

 1
1

ˆ ( )T T
OLS

−= A A A Yβ . (8) 

Note that we use ∧ to distinguish the estimate from true values.  
Further, we consider the simple line model (3). Using xi=Xi, the model and the fitting error 

become,  

 
Figure 1. Fitting Errors for (a) Ordinary Least Squares based on only Output 

Errors (OLS1), (b) Ordinary Least Squares based on only Input Errors (OLS2), 
and (c) Total Least Squares based on both input and Output Errors (TLS) 
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As a result, unknown parameters and input matrix become,  
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where 1p×I  is the p-by-1 identity matrix.  
 
2.1.2.  Ordinary Least Squares based on only input errors (OLS2)  

In this research OLS2 is applied to only the line model (3) where an input and an 
output are easily invertible. As shown in Fig. 1(b), OLS2 is the same as OLS1 except 
the role of the input and the output are reversed in the model (3). Thus, we only 
consider input errors, ∆xi, assuming ∆yi=0. Thus, the fitting error becomes,  

 
1

i i i i
be X x Xi Y

a a
 = − = − − 
 

 (11) 

Applying matrix-vector form similar to OLS1, the ordinary least squares estimate of β 
in OLS 2 is determined by,  

 1
2

ˆ ( )T T
OLS

−= A A A Xβ , (12) 

where  
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2.1.3.  Total Least Squares based on both input and output errors (TLS)  

TLS refers to total least squares (or orthogonal distance regression) which use both 
input and output errors to find unknown parameters. Using a singular value 
decomposition for the model (2) similar to [7], we have,  

 T= =C [A Y] UΣV , (14) 

where U is an p-by-p orthogonal matrix, Σ  is an p-by-(n+1) matrix of singular values, 
and V is an (n+1)-by-(n+1) orthogonal matrix whose components are V11∈ℜn×n, 
V12∈ℜn×1, V21∈ℜ1×n, V22∈ℜ1×1, 

 
 

=  
 

11 12

21 22

V V
V

V V
. (15) 

For non-singular V22, the total least squares estimate of β is,  
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 1
12 22

ˆ
TLS

−−= V Vβ  (16) 

Further, considering both input and output errors in the line model (3), we can estimate 
β explicitly by minimizing the fitting errors,  

 { }
2

2 2 2
2β, , β, , ,β, , 1 1 1

( )min min ( ) min ( ) ( ) min
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p p p
i i
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= = =

− −
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+∑ ∑ ∑  (17) 

 
2.2. Condition Number 
 

The condition number [9, 10], O(A), is an observability index, which may be used to 
investigate parameter sensitivity to disturbance and/or to select efficient pose 
commands for least squares estimation. The condition number in OLS1 and OLS2 is 
defined by,  

 1( )OLS
n

O µ
µ

=A , (18) 

which is the ratio of the largest singular value, µ1, of A∈ℜp×n to the smallest value, µn. 
Note that the singular value decomposition of A is, 

 TΣΑ = U V , (19)  

where U is an p-by-p orthogonal matrix, V is an n-by-n orthogonal matrix, and Σ is an 
p-by-n matrix of singular values. Also note these singular values are diagonals of Σ, 
diag(Σ) = diag(µ1, …, µn), where µ1> …> µn. The condition number satisfies the 
following inequalities for OLS1, 

 
|| || || ||( )
|| || || ||

Oδβ δ
β

≤
yA

y
, (20) 

which illustrates parameter sensitivity to disturbances in the output y. Thus, a low 
condition number indicates a well-conditioned estimation problem whereas a high 
condition number means an ill-conditioned problem. Further, the condition number for 
TLS [9] can be calculated explicitly by, 

 2
11 1( ) ( ,..., ) || || 1T

TLS nO diag s s−= +A V β , (21) 

where  
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−
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3. Linear Regression Model  
In this section we provide linear car-trailer models, which will be combined with 

least squares presented in Section 2 to estimate trailer parameters. We first derive 
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closed form exact models assuming forward motion. We then propose prediction 
models simplified by linearization techniques.  
 
3.1. Exact Model (EM)  

In this section we derive a closed form linear Exact Model (EM), which can easily be 
applied to least square methods. Now we consider an Instantaneous Center of Rotation 
(ICR) and geometric configuration in Fig. 2. Assuming forward motion where the linear 
velocity is positive, v>0, there exists the ICR, O, for rear and trailer axles. Considering 
two triangles, OQC2 and QC1P, the hitch angle, ψ, is correlated with trailer parameters 
and a path curvature,   

 2 2 1

1

secsin
tan

C Q L L
R LOQ

ψψ
ψ

+
= =

+
, (23) 

where L1 is the hitch length, and L2 is the trailer length, and R (=1/κ) is the radius of the 
path curvature, κ, at the rear axle center, C1. Applying R=1/κ,  (23) can then be 
rewritten by,  

 ( )2 1sin cos 0L Lψ κ ψ− + = . (24) 

Choosing variables and unknown parameters in (24) as shown in Table 1, we can 
establish three linear Exact Models (EM1, EM2, and EM3) for car-trailer systems, 
which will be applied to least squares in the next section,  
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Figure 2. Kinematic Model for A Car-Trailer System 
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3.2. Prediction Model (PM) 

Note that we have 2 2 2
1 2R L L+ >  using two triangles, OC1P and OC2P, in Fig. 2. Thus, 

a curvature constraint can be determined by, 

 2
2 2 2

2 1

1 1
R L L

κ = <
−

. (26) 

This constraint shows the curvature is bounded by a finite value. Note that L2>L1 for 
actual car-trailer systems. The hitch angle is also physically constrained considering 
(24) and (26). In this research we thus choose |ψ|< 0.785 rad (=45 deg.) considering 
typical trailer systems. As a result, we may assume small hitch angles without loss of 
generality.  

Assuming small hitch angles and denoting a= L1+L2, we can linearize (24) with 
respect to ψ such that we have, 
 aψ κ= . (27) 

We call this model Prediction Model (PM) since this model can be used to predict 
input and output relations by estimating the combined parameter, L1+L2. However, PM 
cannot be applied directly to estimate L1 and L2, respectively. Fig. 3 shows respective 
curvature and hitch angle errors from small angle assumption comparing PM and EM 
for given nominal values of actual trailer parameters and physical constraints; L1=1.25 
m, L2=2.48 m, |ψ|≤0.785 rad, and |κ|≤ 0.2 m-1. This result then confirms that these errors 
are sufficiently small considering physical systems such that the PM (27) can be used to 
predict EM (24) or (25) without loss of generality. Contrary to EM, estimation 
problems combining PM and a least squares method are typically well-conditioned in 
the presence of sensor noises, which will be discussed later.  

 

Figure 3. Errors Comparing the Prediction Model (27) to the Exact Model (24) 
as a Function of (a) and (b)  given Trailer Parameters and Physical 

Constraints (L1= 1.25 m, L2=2.48 m, |≤0.785 rad (= 45°), and |≤0.2 m-

1) 
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4. Estimation Methods 
Using the aforementioned least squares and linear models to estimate parameters, we 

present three estimation schemes; Exact Model-based Least Squares (EMLS), 
Prediction Model-based Least Squares (PMLS), and Combined Least Squares (CLS). In 
EMLS, we have six combinations using a least squares method (OLS1 or TLS) and an 
exact model (EM1, EM2, or EM3), which can estimate trailer parameters L1 and L2. In 
PMLS, we have 3 combinations using a least squares method (OLS1, OLS2, or TLS) 
and a prediction model (PM), which can predict input and output relations. These 
combinations are illustrated in Fig. 4. Contrary to EMLS, PMLS methods are well-
conditioned in the presence of input/output noises. Thus, we propose CLS estimation 
methods to apply well-conditioned input and output data to EMLS when noises are 
present. As shown in Fig. 4, we first predict a model applying input and output 
measurements to PMLS. We then estimate trailer parameters applying inputs and output 
relations predicted by PMLS to EMLS. In this case, we have total 18 combinations of 
PMLS and EMLS.  
 
5. Simulation Results and Discussion 

We evaluate our EMLS, PMLS, and CLS estimation methods in simulation. We use 
three different types of data by using Harmonic (H) data with κ =0.2sin(0.1t), 
Curvilinear (C) data with κ =0.2tanh(0.1t), and Linear (L) data, κ = 0.2(0.1t/π-1). In 
this case, the curvature is limited by |κ|≤ 0.2 m-1 considering an actual trailer system. 
Recall that parameters and input/output variables for each model are summarized in 

Table 1. Parameters and Variables for Exact Models (EM) and Prediction 
Models (PM) 

Model β yi ηi,1 ηi,2 
EM1 [L1, L2] sinψi κicosψi κi 
EM2 [1/L1, L2/L1] κicosψi sinψi −κi 
EM3 [1/L2, L1/L2] κi sinψi −κicosψi 
PM [a] ψi κi − 

 
 

 
Figure 4. CLS Estimation using Model-based Least Squares (PMLS and EMLS) 
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Table 1. We further use Gaussian sensor noises to simulate non-ideal sensor 
measurements in a real car-trailer system. The magnitudes of sensor noises are selected 
to be 0.03 considering actual odometry and angular position sensors. For each non-ideal 
scenario where Gaussian sensor noises are applied, we repeat parameter estimation 10 
times to obtain more rigorous estimation results. 

Table 2 summarizes condition numbers and error norms of estimated parameters in 
ideal and non-ideal EMLS. These results show condition numbers from non-ideal 
scenarios with sensor noises are significantly different from ideal condition numbers. 
We observe parameter errors increase considerably as errors in condition numbers 
increase. As a result, the EMLS method cannot be applied to estimate parameters in an 
actual system where sensor noises are not negligible since EMLS methods are not 
robust. Further, we present CLS estimation results in Table 3. These results show CLS 
condition numbers are close to ideal EMLS condition numbers in all considered data 
scenarios. These results thus indicate CLS methods are robust to sensor noises such that 
parameter estimation errors are modest or small in CLS in the presence of sensor noises. 
Our simulation results confirm PMLS methods are also well-conditioned in ideal and 
non-ideal cases. Also note parameter errors from linear and harmonic data sets are 
relatively smaller than those from curvilinear data sets. 

Table 2. Exact Model-based Least Square (EMLS) Estimation Results in 
Simulation Assuming true Trailer Parameters of L1=1.25 m and L2=2.48 m 

Data Least Squares 
(Model) 

No sensor noises. With sensor noises 
Cond. No. Norm( 1 2,  L L∆ ∆ )(m) Cond. No. Norm( 1 2,  L L∆ ∆ )(m) 

H OLS1(EM1) 24.91 0 24.5 1.25 
H OLS1(EM2) 159.3 0 29.0 202.78 
H OLS1(EM3) 78.07 0 30.5 127.17 
H TLS(EM1) 16.2 0 1426.9 36.74 
H TLS(EM2) 29.3 0 3.8 36.74 
H TLS(EM3) 7.35 0 4.4 36.74 
C OLS1(EM1) 41.03 0 39.1 1.16 
C OLS1(EM2) 266.3 0 37.9 126.47 
C OLS1(EM3) 129.6 0 43.6 77.86 
C TLS(EM1) 21.0 0 3837.6 67.56 
C TLS(EM2) 38.4 0 3.42 67.56 
C TLS(EM3) 9.58 0 5.02 67.56 
L OLS1(EM1) 24.5 0 24.0 1.59 
L OLS1(EM2) 154.6 0 24.5 926.29 
L OLS1(EM3) 76.2 0 24.9 595.57 
L TLS(EM1) 19.1 0 1193.8 42.73 
L TLS(EM2) 34.3 0 3.7 42.73 
L TLS(EM3) 8.62 0 4.0 42.73 

 



International Journal of Software Engineering and Its Applications 
Vol.8, No.5 (2014) 
 

 

240  Copyright ⓒ 2014 SERSC 

6. Conclusion 
In this research we investigate condition numbers to find more reliable estimation 

methods or observed data sets in the presence of sensor noises. Our simulation results 
indicate CLS methods are relatively robust for sensor noises. We also find ideal EMLS 
condition numbers can be used as a reference to examine estimation sensitivity or to 
predict estimation performance. Further, we may select linear or harmonic data sets as 
observed data to improve estimation accuracy rather than curvilinear data sets.   
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