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1 Introduction

1.1 Quantile Regression With Dependent Censoring

Since the seminal work of Koenker and Bassett (1978) who propose to use linear quantile regression to

examine effects of an observable covariate on the distribution of a dependent variable other than the mean,

linear quantile regression has become a dominant approach in empirical work in economics, see e.g., Buchinsky

(1994) and Koenker (2005). For q ∈ (0, 1), a linear q-th quantile regression model takes the following form:

QY o (q|x) = x′βo (1.1)

where QY o (q|x) denotes the q-th conditional quantile of the dependent variable Y given X = x with X the

observable vector of covariates. In many applications in economics, the dependent variable Y is censored by

a censoring variable denoted as C. So instead of observing the variable Y , the econometrician observes the

triplet (V,X,D) with V ≡ min (Y,C) and D ≡ I {Y < C}.

Existing work in the literature on the identification and inference in censored linear quantile regression

models either assume the independent censoring mechanism1 – that is, Y and C are independent (conditional

on the covariate X), or make no assumption on the true censoring mechanism at all. Work in the former

category include Buchinsky and Hahn (1998), Honore, Khan and Powell (2002), and Chernozhukov and

Hong (2002), Portnoy (2003), Peng and Huang (2008) and Wang and Wang (2009), among others;2 and

Powell (1984, 1986) and Khan and Powell (2001) who adopt a special case of the independent censoring,

i.e., the fixed known censoring mechanism. Under additional conditions including a rank condition, βo is

point identified in the case of independent censoring and the aforementioned work develop estimation and

inference procedures for it. Work in the latter category include Khan and Tamer (2009), Khan, Ponomareva

and Tamer (2011) who show that the quantile coeffi cient βo is not point identified when no assumption is

made on the true censoring mechanism and establish the identified set for βo. In addition, Khan and Tamer

(2009) develop confidence sets (CSs) for βo when it is point identified.

The independent censoring mechanism is often violated in empirical applications, but on the other hand,

the researcher typically has some information on the true censoring mechanism (e.g., Y and C may be known

to be positively dependent), or may want to check robustness of conclusions to moderate deviations from

independent censoring. The first objective of this paper is to develop inference procedures for the quantile

coeffi cient βo when partial information on the true censoring mechanism such as positive dependence is

available. The second objective is to develop methods for examining sensitivity of conclusions on βo reached

under the independent censoring mechanism to deviations from it. To accomplish both objectives in a unified

framework, we model the true censoring mechanism via an Archimedean copula for Y and C (conditional

on X) and allow its generator function to vary in a pre-specified class. For a given class of Archimedean

copulas, we propose a two-step approach to the identification of βo. The first step extends the existing result

1Throughout this paper, we use the independent censoring mechanism to denote the conditional independent censoring
mechanism which reduces to the unconditional independent censoring mechanism when there is no covariate.

2Some such as Chernozhukov and Hong (2002) assume that the censoring variable C is always observed.
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in Rivest and Wells (2001) and Braekers and Veraverbeke (2005) which expresses the conditional distribution

function of Y given X in terms of the generator function and functions that are identified from the sample

information. In the second step, we make use of this result and the linear quantile regression (1.1) to establish

the identified set for βo when the generator function varies in the pre-specified class of generator functions.

One interesting finding is that for a broad class of Archimedean copulas, βo satisfies inequality constraints

characterized by functionals of the conditional distribution function of V and the sub-distribution function

of V .

Our identification strategy is well suited for sensitivity analysis to a known censoring mechanism. For

example, to conduct a sensitivity analysis to independent censoring, we make use of global measures of

dependence such as Kendall’s τ to measure deviations from the independent censoring mechanism; A value

of zero for Kendall’s τ corresponds to independent censoring, while a value of one for the magnitude of

Kendall’s τ corresponds to perfectly dependent censoring– Y and C are perfectly dependent conditional on

X. We develop a simple sensitivity analysis to independent censoring by adopting parametric Archimedean

copulas. Most parametric Archimedean copulas are characterized by a single parameter and are ordered

according to the concordance ordering. Because of the one-to-one relation between Kendall’s τ and the

copula parameter, the identified sets for βo corresponding to bounded ranges of the copula parameter of such

ordered parametric Archimedean copulas provide bases for examining the sensitivity of conclusions on βo to

the independent censoring mechanism. To formalize this procedure, we construct asymptotically valid and

non-conservative confidence sets (CSs) for βo for any pre-specified range of values of the copula parameter.

The general idea underlying our CSs comes from the observation that for a given generator function, the

closed-form expression for the conditional distribution function of Y given X established in the first step

and (1.1) imply that βo must satisfy some equality constraints. Although the true generator function is

unknown, for any β in the identified set, there must be at least one generator in the pre-specified class that

ensures such equality constraints to hold. The problem of constructing CSs for βo is thus equivalent to a

series of ‘specification testing’problems; for each β in the parameter space, we test the correct specification

of the copula or generator class and if the copula class is correctly specified in the sense that there exists at

least one copula or generator such that the equality constraints hold, then β is in the CS for βo; otherwise

it is not. We construct two test statistics similar to test statistics for consistent model specification testing

based on kernel estimators, see Fan (1994), Fan and Li (1996), and Zheng (1996) and many subsequent works

in the literature. For most one-parameter ordered families of Archimedean copulas, we show that under an

appropriate condition, for each β in the identified set, there exists a unique value of the copula parameter

that ensures the equality constraints to hold. This ensures that for each β in the identified set, our test

statistics are asymptotically normally distributed leading to asymptotically valid and non-conservative CSs

that are easy to implement. We also develop bootstrap CSs and present an empirical application to the

survival time after acute myocardial infarction.

2



1.2 A Semiparametric Competing Risks Model and Some Related Works

Interpreting Y and the censoring variable C in our model as two competing risks, this paper proposes a

new semiparametric competing risks model. Applications of the competing risks model in economics include

Flinn and Heckman (1982) who investigate the duration of unemployment where an individual can exit

unemployment either by finding a job or by leaving the labor market; Katz and Meyer (1990) who study

the probability of leaving unemployment through recalls and new jobs; Berrington and Diamond (2000)

who study age at marriage or cohabitation; Booth and Satchell (1995) who study Ph.D. completion; Deng,

Quigley, and Van Order (2000) who investigate mortgage termination; and Honore and Lleras-Muney (2006)

who study changes in cancer and cardiovascular mortality since 1970.

Identification analysis of competing risks models has a long history dating back to Cox (1959). Tsiatis

(1975) uses an explicit construction to demonstrate the non-identifiability of the marginal distribution func-

tion of Y once the independent censoring mechanism is dispensed with. Crowder (1991) further amplifies

this identifiability crisis by proving that even if the two marginal distribution functions of (Y,C) are given,

their joint distribution still remains unidentified generally. Peterson (1976) obtains the worst-case bounds

for both the marginal distribution function of Y and the joint distribution function of Y and C.

In response to the identifiability crisis, two general approaches have been taken in the literature to achieve

point identification of a competing risks model. First, covariate information and specific model structures

imposed on the marginal distributions may restore point identification, see e.g., the proportional hazards

and accelerated failure time models in Heckman and Honore (1989), Abbring and van den Berg (2003), Lee

(2006), and Lee and Lewbel (2012); Second, assuming a known copula for the individual risks, Zheng and

Klein (1995) first extend point identification results for independent risks to dependent risks and propose

a copula-graphic estimator of the marginal survival function. When the copula function is Archimedean

and known, Rivest and Wells (2001) first derive an explicit expression for the copula-graphic estimator of

the survival function proposed in Zheng and Klein (1995). In addition to establishing uniform consistency

and asymptotic normality of the copula-graphic estimator, Rivest and Wells (2001) also study asymptotic

properties of the copula-graphic estimator under misspecification of the true Archimedean copula. Braekers

and Veraverbeke (2005) extend Rivest and Wells (2001) to the fixed design regression.

This paper contributes to the competing risks literature in several ways. First, the duration of the

competing risk C is left unspecified in our model3 and thus inference on the conditional quantile of Y is

robust to possible misspecification of the marginal model for the competing risk C. Moreover our inference

procedures do not reply on conditions ensuring point identification of βo and thus allow for the presence of

general covariates in the marginal model for the risk of interest Y ; Second, we don’t impose a known copula

on the individual risks, instead we allow the true copula to vary in a prespecified class of Archimedean copulas

3 Independently, Szydlowski (2013) studies partial identification of the proportional hazards model for the risk of interest in a
competing risks model without specifying the marginal model for the competing risk. Like Khan and Tamer (2011), Szydlowski
(2013) makes no assumption on the true censoring mechanism. Using an outer set of the identified set for the parameter in
a parametric proportional hazards model, Szydlowski (2013) applies existing inference procedures to constructing CSs for the
parameter in his model.
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and develop a formal approach to conducting inference and sensitivity analysis to the independent censoring

mechanism. Informal sensitivity analysis has been performed in the context of competing risks models

including marginal survival or hazard function (Slud and Rubinstein, 1983; Zheng and Klein, 1995; Rivest

and Wells, 2001; Klein and Moeschberger, 1988); Cox regression (Huang and Zhang, 2008); and a general

semiparametric transformation model (Chen, 2010). In contrast to the current paper, however, existing work

first establish the consistency and asymptotic normality of the proposed estimators for a given dependence

structure between Y and C conditional on X and then examine the sensitivity of the proposed estimators or

inference procedures to independent censoring by selecting a few prespecified dependence structures. Lastly,

we propose a novel two-step identification strategy for βo or the marginal model for the risk of interest Y .

Our identification strategy is very general and not specific to the linear quantile model (1.1), instead it is

applicable to any parametric model for Y including the proportional harzeds model and marginal regression

model, see Remark 2.7 for a detailed discussion.

Besides Khan and Tamer (2009), our paper is related to Honore and Lleras-Muney (2006) and Kline and

Santos (2013). Assuming accelerated failure time models for each risk, Honore and Lleras-Muney (2006)

derive bounds for aspects of the underlying distributions allowing for dependent risks with interval outcome

data and discrete covariates. Both Khan and Tamer (2009) and Honore and Lleras-Muney (2006) are agnostic

about the true censoring mechanism. Kline and Santos (2013) develop methods for conducting a sensitivity

analysis in the context of missing data. They measure the degree of departure from missing-at-random by

using the maximal Kolmogorov-Smirnov distance between the distributions of missing and observed outcomes

across all values of the covariates. We refer readers to Henry and Mourifie (2012) for a partial identification

analysis of the binary Roy model and other work on Roy models.

The subsequent sections are organized as the following: Section 2 first introduces our identification

strategy for βo when the true copula belongs to a given class of Archimedean copulas and then presents

the identified set for βo when the class of Archimedean copulas is ordered. In Section 3, we present two

asymptotic CSs for βo and their asymptotic validity is shown in Section 4. We also construct bootstrap

CSs in Section 4. Section 5 presents an empirical application on the survival time after acute myocardial

infarction. The Appendices containing all the proofs are further divided into three sections. Appendix A

shows the asymptotic linear representation of the plug-in estimator of the conditional distribution function

of Y given X for a given generator function. The main theorems and the validity of our confidence sets are

proved in Appendix B. In Appendix C we collect a variety of auxiliary results used in Appendices A and B.

2 The General Framework and Partial Identification of βo

We first introduce some notations used throughout the paper. Let FY o (y|x), FC (c|x), and FY,C (y, c|x)

denote respectively the conditional marginal and joint distribution functions of (Y,C) given X = x, with the

corresponding conditional survival functions SY o (y|x), SC (c|x), and SY,C (y, c|x). Also let FV,D=1 (v|x) and

FV,D=0 (v|x) denote the two conditional sub distribution functions, summing up to FV (v|x). The marginal
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distribution function of X is denoted as FX (x), supported on X .

Let Cxo(u, v) : [0, 1]
2 7→ [0, 1] denote the conditional survival copula of (Y,C) given X = x. Following

Braekers and Veraverbeke (2005), we assume that Cxo is Archimedean with generator function ϕxo, i.e., for

(u, v) ∈ [0, 1]
2,

Cxo(u, v) = ϕ[−1]
xo [ϕxo (u) + ϕxo (v)] ,

where ϕxo : [0, 1]→ [0,∞] is a continuous, convex, strictly decreasing function with ϕxo (1) = 0. Here, ϕ[−1]
xo

denotes the pseudo-inverse of ϕxo defined by

ϕ[−1]
xo (u) =

{
ϕ−1
xo (u) , 0 ≤ u ≤ ϕxo (0)

0, ϕxo (0) ≤ u ≤ +∞ .

We say Cxo is strict if its generator function ϕxo is strict, i.e., ϕxo (0) = +∞.

Archimedean copulas have many nice properties, see Joe (1997) and Nelsen (2006). They arise naturally

from shared frailty models as in Clayton and Cuzick (1985), Heckman and Honore (1989). Specifically, if the

conditional hazard density functions of Y and C denoted as λY o and λCo are specified by the corresponding

conditional baseline hazard functions and a multiplicative frailty term ω as:

λY o (t|x, ω) = ωλY o (t|x) and (2.1)

λCo (t|x, ω) = ωλCo (t|x) ,

then it is well known that the conditional survival copula would be Archimedean with the (inverse of)

generator ϕ−1
xo = L ◦ Fω|x, the Laplace transform of the conditional distribution of frailty denoted as Fω|x.

The complete monotonicity induced by the Laplace transform ensures that the generator function ϕxo satisfies

the requirement to produce a copula function (Joe, 1997).

Braekers and Veraverbeke (2005) show that in competing risks models where Y and C are survival

variables with support (0,∞), if Cxo is known, then FY o (·|x) is identified from the sample information

extending the well-known identification result of competing risks models under the independent censoring

mechanism. The latter is obtained when ϕxo (u) = log (1/u) for all x under consideration. More importantly

they establish a closed-form expression for FY o (y|x) in terms of ϕxo and functions that are identified from

the sample information, see their Lemma 1 or Lemma 2.1 below. Based on this expression, they construct

an estimator of FY o (y|x) referred to as the copula-graphic estimator and establish its asymptotic properties.

When the true copula is a Clayton copula, Klein and Moeschberger (1988) establish this result and derive

bounds on FY o (y|x) for a specified range of values for the copula parameter.

Our identification analysis of βo builds on a slight extension of Lemma 1 in Braekers and Veraverbeke

(2005) which will be presented in the subsection below followed by a detailed analysis of identification of βo.

2.1 A Two-Step Approach to the Identification of βo
2.1.1 Step 1. Identification of FY o (·|x)

Throughout this section, we assume that x ∈ X is fixed.
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Assumption (AC). The true copula Cxo is a strict Archimedean copula.

Assumption (SY). (i) Let the support of FY o (·|x) be [ylx, yux] ⊆ R. The functions FV,D=1 (·|x) ,

FV (·|x) and FY o (·|x) have continuous (sub) densities in [ylx, vux], where vux is the right end point of the

support of FV (·|x); (ii) yux = vux.

Assumption (AC) is an assumption on the true copula. Assumption (SY) imposes support assumptions

on Y apart from some smoothness assumptions on the stated distribution functions. Assumption (SY) (ii)

is needed only when one is interested in identifying the whole distribution function FY o (·|x). If vux < yux,

we never observe anything beyond vux for Y , so would not expect to identify FY o (·|x) on [vux, yux] even

when ϕxo is known. This potential tail problem is also present under the independent censoring assumption

(see Fleming and Harrington, 1991; Gine and Guillou, 2001) and with general copula graphic identification

(see Corollary 3.3 in Zheng and Klein, 1995). In Braekers and Veraverbeke (2005), Y and C are survival

variables assumed to have common support (0,∞) so that ylx = 0 and yux = vux = ∞. We allow for finite

yux, but assume yux = vux. When one is only interested in some functional or feature of the distribution

function FY o (·|x) such as the quantile coeffi cient in (1.1), identification of the whole distribution function

FY o (·|x) may not be needed and Assumption (SY) (ii) may thus be dropped, see Remark 2.5 for further

elaboration.

Under Assumption (AC), SY,C (y, c|x) can be written as

SY,C (y, c|x) = ϕ−1
xo [ϕxo {SY o (y|x)}+ ϕxo {SC (c|x)}] . (2.2)

By setting y = c = v in (2.2), we get

SV (v|x) = ϕ−1
xo [ϕxo {SY o (v|x)}+ ϕxo {SC (v|x)}] . (2.3)

Using (2.2) and (2.3), Braekers and Veraverbeke (2005) show in their Lemma 1 that when ylx = 0 and

yux = vux = ∞, under mild conditions, the conditional cdf FY o (·|x) is point identified from the sample

information as long as the generator function ϕxo is known and more importantly they provide a closed-

form expression for FY o (y|x). For completeness, we will restate their result in the lemma below under

Assumptions (AC) and (SY). Since the proof is short, we will reproduce it as well to illustrate the roles of

Assumptions (AC) and (SY).

Lemma 2.1 (Braekers and Veraverbeke, Lemma 1) Suppose Assumptions (AC) and (SY) hold. If ϕ′xo exists

and is continuous on (0, 1], then ∀y ∈ [ylx, yux], we have:

FY o (y|x) = 1− ϕ−1
xo

(
−
∫ y

ylx

ϕ′xo {SV (v|x)} dFV,D=1 (v|x)

)
. (2.4)

Proof. First, we take care of the two boundary points. When y = ylx, both sides of (2.4) will equal to zero.

When y = yux, the left hand side of (2.4) will be equal to 1. We distinguish between two cases for the right

hand side of (2.4). First, if
∫ yux
ylx

ϕ′xo {SV (v|x)} dFV,D=1 (v|x) = −∞, then ϕ−1
xo (∞) = 0 by definition and
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the right hand side of (2.4) equals 1 as well. Second, if −
∫ yux
ylx

ϕ′xo {SV (v|x)} dFV,D=1 (v|x) < ∞, then the

same derivation below for y ∈ (ylx, yux) will apply here.

It follows from Tsiatis (1975) that

F ′V,D=1 (v|x) = − ∂

∂y
SY,C (y, c|x) |y=c=v. (2.5)

For any y ∈ (ylx, yux), SV (y|x) > 0 by the continuity property assumed in Assumption (AC). Hence

ϕxo and ϕ
′

xo come into play over their properly defined domain (0, 1]. By (2.2) and the simple fact that
∂
∂uCxo (u, v) = ϕ

′

xo (u) /ϕ
′

xo (Cxo (u, v)) (see Chapter 5 in Nelsen, 2006), we get

∂

∂y
SY,C (y, c|x) |y=c=v = − ∂

∂t
Cxo (SY o (y|x) , SC (c|x)) |y=c=v

= −ϕ
′
xo {SY o (v|x)}F ′Y o (v|x)

ϕ′xo {SV (v|x)} .

So

F ′V,D=1 (v|x) =
ϕ′xo {SY o (v|x)}F ′Y o (v|x)

ϕ′xo {SV (v|x)} (2.6)

leading to ∫ y

ylx

ϕ′xo {SY o (v|x)}F ′Y o (v|x) dv =

∫ y

ylx

ϕ′xo {SV (v|x)} dFV,D=1 (v|x)

or

−
∫ y

ylx

dϕxo {SY o (v|x)} =

∫ y

ylx

ϕ′xo {SV (v|x)} dFV,D=1 (v|x)

or

−ϕxo {SY o (y|x)}+ ϕxo {SY o (ylx|x)} =

∫ y

ylx

ϕ′xo {SV (v|x)} dFV,D=1 (v|x) .

The result or (2.4) follows from the above equation by noting that SY o (ylx|x) = 1, ϕxo (1) = 0, and ϕxo is

strict.

Remark 2.1 Braekers and Veraverbeke (2005) assume that ϕ′xo exists on [0, 1] in their Lemma 1. However

most commonly used generator functions do not have a finite ϕ′xo at 0, see for example those listed in Table 1.

The additional continuity assumption we impose on ϕ′xo in Lemma 2.1 guarantees that the Stieltjes integral

in (2.4) is well defined.

Remark 2.2 Lemma 2.1 implies that if ϕxo is known, then FY o (·|x) is point identified and has a closed-

form expression. When the true copula function Cxo(u, v) is not known to be Archimedean, a straightforward

extension of Theorem 3.1 and Corollary 3.2 in Zheng and Klein (1995) to allow for the covariate X implies

that under mild conditions, FY o (·|x) is point identified from the sample information as well. However, no

explicit expression for FY o (y|x) is available at such a general level.
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2.1.2 Step 2. Identification of βo

Suppose Assumptions (AC) and (SY) hold for all x ∈ J ⊆ X . For each x ∈ J , Lemma 2.1 expresses the true

cdf FY o (y|x) in terms of the copula generator function ϕxo and functions that are identified from the sample

information. In practice, the true copula or generator function is unknown. Let Φx denote a prespecified

class of strict generator functions. Lemma 2.1 or (2.4) allows us to establish the identified set for FY o (·|x).

Specifically, for a strict generator function ϕx ∈ Φx, let

FY (y|x;ϕx) = 1− ϕ−1
x

(
−
∫ y

ylx

ϕ′x {SV (v|x)} dFV,D=1 (v|x)

)
, y ∈ [ylx, yux] (2.7)

and FI (x) denote the identified set for FY o (·|x). Then it follows immediately from Lemma 2.1 or (2.4) that

FI (x) = {FY (·|x) : FY (·|x) = FY (·|x;ϕx) for some ϕx ∈ Φx} . (2.8)

The identified set for the quantile regression coeffi cient βo can be deduced from the identified set for

FY o (·|x) and (1.1). Let BI denote the identified set for βo. Then

BI = {β ∈ B : FY (x′β|x;ϕx) = q for some ϕx ∈ Φx and all x ∈ J } . (2.9)

Different choices of the generator class Φx reflect either the researcher’s prior knowledge of the true

censoring mechanism or represent deviations from independent censoring in a sensitivity analysis. The

identified set BI depends not only on Φx but also on the subset J . For a given subset J , the smaller the

class of generator functions Φx, the smaller is the identified set BI . For a given class Φx, the identified set

depends critically on the property of J . Below we present two examples illustrating these two difference

sources of identifying power.

Example 2.3 Suppose for all x ∈ J , the generator function ϕxo is known so Φx = {ϕxo}. For example,

under independent censoring, ϕxo (u) = log (1/u) for all x ∈ X . Since the conditional distribution function

in this case is point identified as FY (·|x;ϕxo) for x ∈ J , rank conditions similar to those in Koenker and

Bassett (1978) and Wang and Wang (2009) would lead to point identification of βo.

Example 2.4 Suppose Φx is the whole class of strict generator functions. Let

J =
{
x ∈ X : Pr

(
Ci ≥ X

′

iβo|Xi = x
)

= 1
}
.

Suppose Assumption (A2) in Khan and Tamer (2009) holds, i.e., XB does not lie in a proper linear subspace

of Rd. Then the identified set BI is singleton. Notice that for ∀x ∈ J , we have

FV (x′βo|x) = Pr (Yi ≤ x′βo, Yi ≤ Ci|x) + Pr (Ci ≤ x′βo, Yi > Ci|x) (2.10)

= Pr (Yi ≤ x′βo|x) = q.
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Alternatively, using the expression in (2.7), we get that for all x ∈ J ,

FY (x′βo|x;ϕx) = 1− ϕ−1
x

(
−
∫ x′βo

ylx

ϕ′x {SV (v|x)} dFV (v|x)

)
= 1− ϕ−1

x (ϕx {SV (x′βo|x)})

= FV (x′βo|x) ,

where we have used the fact that FV (v|x) = FV,D=1 (v|x) for v ≤ x′βo as derived in (2.10). As noted in

Khan and Tamer (2009), this identification strategy has also been employed in Powell (1986), Honore, Khan

and Powell (2002) in one way or another.

Remark 2.5 Without Assumption (SY) (ii), for a given generator function ϕx, FY o (y|x) is identified for

all y ∈ [ylx, vux] which may be used to establish the identified set for βo.

2.2 A Characterization of an Outer Set of the Identified Set

In this section, we consider one class of generator functions denoted as ΦOx and provide a nice characterization

of an outer set of the identified set for βo via inequality constraints.

Assumption (O). The class of generator functions ΦOx is composed of continuously differentiable gener-

ator functions on (0, 1] and is indexed by a unique pair of generators
(
ϕx,L, ϕx,U

)
such that ϕ

′

x,L (u) /ϕ
′

x (u)

and ϕ
′

x (u) /ϕ
′

x,U (u) are both non-decreasing on (0, 1) for all ϕx ∈ ΦOx .

The class of copulas generated by ΦOx has a convenient/nice property facilitating a sensitivity analysis.

To describe it, let CxL denote the Archimedean copula with generator function ϕx,L and CxU denote the

Archimedean copula with generator function ϕx,U . Under Assumption (O), Corollary 4.4.6 in Nelsen (2006)

implies that CxL ≺ Cx ≺ CxU for any Archimedean copula Cx generated by ϕx ∈ ΦOx . Thus in terms

of concordance ordering, CxL is the smallest and CxU is the largest in the class of Archimedean copulas

with generators in ΦOx . Thus letting ϕx,L (u) = log (1/u) or CxL (u, v) = uv, a sensitivity analysis can be

conducted by varying CxU according to increasing or decreasing concordance ordering representing more

strongly dependent censoring mechanisms. Dependence measures such as Kendall’s τ and Spearman’s ρ are

natural measures of deviation from independent censoring.

Let FOI (x) and BOI denote the identified sets for FY o (·|x) and βo corresponding to the class of generators

ΦOx defined in Assumption (O). Further for y ∈ [ylx, yux], let

FL (y|x) = FY
(
y|x;ϕx,L

)
and FU (y|x) = FY

(
y|x;ϕx,U

)
.

We show below that elements of FOI (x) are bounded by FL (y|x) from below and FU (y|x) from above (see

(2.12)) which leads to nice inequality constraints characterizing an outer set of BOI .

Proposition 2.6 Suppose Assumptions (AC), (SY), and (O) hold for all x ∈ J . Then

F−1
U (q|x) ≤ x′βo ≤ F−1

L (q|x) for all x ∈ J . (2.11)
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Proof. We will complete the proof in two steps.

Step 1. We show that FY o satisfies:4

FL (y|x) ≤ FY o (y|x) ≤ FU (y|x) ,∀y ∈ [ylx, yux). (2.12)

It follows from (2.6) that

F ′Y o (v|x) =
ϕ′xo {SV (v|x)}F ′V,D=1 (v|x)

ϕ′xo {SY o (v|x)} .

Multiplying both sides of the above equation by ϕ
′

x,L{SY o (v|x)} and integrating from ylx to y lead to

ϕx,L{SY o (y|x)} = −
∫ y

ylx

ϕ
′

x,L{SY o (v|x)}ϕ′xo {SV (v|x)}
ϕ′xo {SY o (v|x)} dFV,D=1 (v|x) . (2.13)

Because SY o (v|x) ≥ SV (v|x), given the monotonicity of ϕ
′

x,L (t) /ϕ
′

xo (t), we have

ϕ
′

x,L{SY o (v|x)}
ϕ′xo {SY o (v|x)} ≥

ϕ′x,L {SV (v|x)}
ϕ′xo {SV (v|x)} .

As ϕ′x (·) is negative, we get

−
ϕ
′

x,L{SY o (v|x)}ϕ′xo {SV (v|x)}
ϕ′xo {SY o (v|x)} ≥ −ϕ′x,L {SV (v|x)} . (2.14)

Hence (2.13) and (2.14) imply that

ϕx,L{SY o (y|x)} ≥ −
∫ y

ylx

ϕ′x,L {SV (v|x)} dFV,D=1 (v|x)

= ϕx,L{SY
(
y|x, ϕx,L

)
},

where we have used (2.7). The desired result follows from the above inequality and the decreasing property

of ϕx,L. Flipping the sign to conclude the corresponding bounds for the distribution function.

Step 2. Since FY o
(
x
′
βo|x

)
= q holds for almost all x, we obtain: FL

(
x
′
βo|x

)
≤ q ≤ FU

(
x
′
βo|x

)
.

The claimed result follows the definition of the conditional quantile functions.

Remark 2.7 Interpreting Y and C as two competing risks, the model defined in (1.1) and (2.2) is a new

semiparametric competing risks model where the marginal model for Y conditional on the covariate X is

specified by the linear quantile model, the marginal model for C conditional on the covariate is unspecified,

and the conditional copula function of Y and C is Archimedean. Our model and inference procedures are

potentially useful in duration analysis where the researcher is only interested in one of the competing risks

denoted by Y . Specifically the interest is in effects of some observable covariate X on the q-th conditional

quantile of Y in the presence of a possibly dependent competing risk C. In fact the identification strategy

and the subsequent inference procedures developed in this paper are not restricted to the marginal quantile

model for Y . Given FY (y|x;ϕx) in (2.7), one can easily write down the identified set for the parameter in

4The proof of Step 1 is a slight modification of that of Proposition 2 in Rivest and Wells (2001) which measures the maximal
bias of the copula-graphic estimator of the survival function due to a misspecified Archimedian copula generator. We include
a proof for completeness.
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any parametric model for Y including the proportional hazard model and any parametric regression model.

The reason is that the true parameter in all these models satisfies equality constraints on known functionals

of the true conditional distribution function of Y given X. With slight abuse of notation, denote, e.g., the

true parameter as βo ∈ B and the functional constriaints as G (FY o (·|x) ;βo) = 0 for a known possibly

vector-valued functional G. Then the identified set for βo is

{β ∈ B : G (FY (·|x;ϕx) ;β) = 0 for some ϕx ∈ Φx and all x ∈ J } .

For example, G (FY (·|x;ϕx) ;β) = FY (x′β|x;ϕx)− q for the quantile model;

G (FY (·|x;ϕx) ;β) =

∫
yFY (y|x;ϕx) dy − x′β

for the linear regression model; and

G (FY (·|x;ϕx) ;β) = FY (·|x;ϕx)− 1 + L (Λ0 (·;βb) exp (x′βx) ;βω) , β =
(
β′b, β

′
x, β
′
ω

)′
,

for the following parametric version of the mixed proportional hazard model in (2.1):

λY o (t|x, ω) = ωλ0 (t;βob) exp (x′βox) ,

where the conditional distribution function of ω given X = x is denoted as Fω|x (·;βoω) with the corresponding

Laplace transform L (·;βoω), where Λ0 (t;βob) is the integrated baseline hazard. Provided that the functional

G (·;β) is smooth enough, the CSs developed in the rest of this paper could be easily extended to any parametric

marginal model for Y .

2.3 Ordered Parametric Families of Invariant Copulas

To simplify the asymptotic analysis and the subsequent inference procedure, we introduce two more assump-

tions below, Assumptions (O-P-I) and (SC).

Assumption (O-P-I). (i) The true copula is invariant w.r.t x; (ii) It belongs to a one-parameter family

of Archimedean copulas denoted as C (·, ·;α) with generator ϕ (·;α) indexed by α ∈ A ≡ [αL, αU ]; and (iii)

for any α1 < α2 from A, it holds that

ϕ
′
(u;α1)

ϕ′ (u;α2)
is strictly increasing ∀u ∈ (0, 1) , (2.15)

where ϕ′ (u;α) denotes the partial derivative of ϕ (u;α) with respect to u.

Assumption (SC). Suppose there exists some x0 ∈ J , s.t. SY (y|x0;αU ) > SV (y|x0) for all y ∈

(ylx0 , yux0).

Assumption (O-P-I) (i) states that the true conditional copula function Cxo is invariant with respect to x

and Assumption (O-P-I) (ii) parametrizes the generator function by some parameter α ∈ A ⊂ R. The copula

invariance assumption has been adopted in other contexts, see e.g., Chen and Fan (2006) for semiparametric

copula-based multivariate dynamic models and Torgovitsky (2011) in nonseparable structural models. In the
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context of competing risks, Bond and Shaw (2006) have studied the so-called covariate-time transformation

model in which the modelling assumption directly implies the copula invariance. Bond and Shaw (2006)

show that classical competing risks models including the accelerated failure-time model and the proportional

hazard model fall into their framework, see also Clayton and Cuzick (1985), Heckman and Honore (1989).

Assumption (O-P-I) (ii) restricts the class of copula functions to be in a given parametric class. Informal

sensitivity analysis in Zheng and Klein (1995), Huang and Zhang (2008), and Chen (2010) suggest that the

bias of estimates of the marginal survival function of Y is negligible when the parametric copula misspecifies

the true copula as long as the dependence range (such as Kendall’s tau) is correctly specified. This is also

confirmed in our numerical analysis in Example 2.9 below. Many one-parameter families of Archimedean

copulas including Frank or Clayton copulas satisfy Assumption (O-P-I) (iii). They are either positively

ordered (increasing in concordance order as the parameter α increases) or negatively ordered (decreasing in

concordance order as the parameter α increases), see Joe (1997), Nelsen (2006), and Rivest and Wells (2001).

In Table 1 below, we list a number of one-parameter families5 of Archimedean copulas that are ordered and

satisfy Assumption (O-P-I) (iii).

Table 1: One-Parameter Archimedean Copulas
Copulas ϕ (u;α) α’s Range ϕ

′
(u;α) ϕ

′
(u;αL) /ϕ

′
(u;αU )

Clayton u−α−1
α (0,∞) −u−α−1 uαU−αL

Frank log
(

1−e−α
1−e−αu

)
(−∞,∞) − αe−αu

1−e−αu
αL(1−eαUu)
αU (1−eαLu)

Gumbel (− log u)
α

[1,∞) −αu
(
log 1

u

)α−1 αL
αU

(
log 1

u

)αL−αU
Gumbel-Hougaard log (1− α log u) (0, 1] − α

u−αu log u 1 + 1/αL−1/αU
u log u−1/αL

Nelsen #12
(

1
u − 1

)α
[1,∞) − α

u2

(
1−u
u

)α−1 αL
αU

(
1
u − 1

)αL−αU
Nelsen #16

(
α
u + 1

)
(1− u) (0,∞) − α

u2 − 1 1 + αL−αU
u2+αU

Nelsen #19 eα/u − eα (0,∞) − α
u2 e

α/u αL
αU
e(αL−αU )u

Nelsen #20 eu
−α − e (0,∞) −αuu

−α αL
αU
eu
−αL−u−αU

Under Assumption (O-P-I), the class of generator functions is given by

Φx = {ϕx : ϕx (·) = ϕ (·;α) for some α ∈ A} ,

where the functional form of ϕ (·;α) is known. So for a given family of ordered parametric copulas, the choice

of Φx is equivalent to the choice of A ≡ [αL, αU ]. Users could specify αL, αU reflecting their prior knowledge

on the possible dependence range giving rise to CxL and CxU . In a sensitivity analysis, users could take αL
corresponding to the independence copula and specify several values for αU reflecting different strengths of

dependence between Y and C; the larger αU is, the larger is the deviation of the true censoring mechanism

from independence censoring. Under Assumption (O-P-I), the following equality holds:

τ (α) = 1 + 4

∫ 1

0

ϕ (u;α)

ϕ′ (u;α)
du. (2.16)

5Some of the copulas in Table 1 do not have names (or not widely known among researchers), we simply attribute them as
Nelsen’s #, as those are found by Table 4.1 appearing in Chapter 4, Nelsen (2006).
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It is evident from (2.16) that perturbation on τ could be performed on the copula’s natural parameter α.

For Clayton and Gumbel copulas, it is known that Kendall’s τ = α
α+2 and

α−1
α respectively, so α = 0 for

Clayton copula and α = 1 for Gumbel copula correspond to independent censoring and as α increases the

censoring mechanism deviates more from independent censoring. Assumption (SC) is a separation condition.

It excludes cases where our copula lower bound SY (·|x;αU ) is identical to Peterson’s lower bound SV (·|x)

for all x ∈ J .

Under Assumption (O-P-I), for ϕx ∈ Φx, FY (y|x;ϕx) depends on ϕx only through α. So we denote it as

FY (y|x;α) in the rest of this paper.

Proposition 2.8 Suppose Assumptions (AC), (SY), and (O-P-I) hold for all x ∈ J . Then (i) the identified

set for βo is

BOI = {β ∈ B : FY (x′β|x;α) = q for all x ∈ J and some α ∈ A} ; (2.17)

(ii) if Assumption (SC) holds as well, then given any β in BOI , there is a unique α (β) such that

FY (x′β|x;α (β)) = q for all x ∈ J . (2.18)

Proof. (i) is obvious. Now given (i), it suffi ces to show for any α1, α2 ∈ A (w.l.o.g we take α1 < α2),

FY (x′0β|x0;α1) < FY (x′0β|x0;α2) holds for the particular x0 in the separation assumption (SC). From the

conclusion in Proposition 2.3 we know that SY (·|x0, α2) ≥ SY (·|x0, αU ) > SV (·|x0) holds in terms of the

invariant generator and at location x0. The proof follows almost verbatim from the proof of Prop. 2.3. After

equation (2.9) we shall proceed with those strict inequalities:

ϕ
′{SY (v|x0, α2) ;α1}

ϕ′ {SY (v|x0, α2) ;α2}
>
ϕ
′ {SV (v|x0) ;α1}

ϕ′ {SV (v|x0) ;α2}
, with v ∈ (ylx0 , yux0)

for α1 < α2 by (2.15) . Similar manipulation leads to ϕ{SY
(
y|x0, ϕα2

)
;α1} > ϕ{SY

(
y|x0, ϕα1

)
;α1}, and

the copula generator is strictly decreasing, thus FY (y|x0, α1) < FY (y|x0, α2). Therefore given any β in BOI
when FY (x′β|x;α (β)) = q ∈ (0, 1), we could only have a unique α (β) for x ∈ J .

Example 2.9 (Gumbel Copula) Suppose Assumption (O-P-I) (i) and (ii) hold with the family of Gumbel

copulas so

ϕ (u;α) = (− log u)
α
, α ∈ [1,∞).

Let αo denote the true value of the copula parameter. Suppose the true conditional marginal survival functions

are SY o|X (y|x) = e−y/x and SC|X (c|x) = e−c/x for y ≥ 0, c ≥ 0, and x > 0. It is easy to show that the

conditional survival and sub-survival functions of the observable V are given by:

SV (v|x) = exp
[
−21/αo

v

x

]
and

SV,D=1 (v|x) =
1

2
exp

[
−21/αo

v

x

]
, x > 0.
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Suppose we know that αo ∈ [αL, αU ] or equivalently τo ∈ [τL, τU ] =
[
αL−1
αL

, αU−1
αU

]
(see Example 5.4 in

Nelson, 2006). For any α ∈ [αL, αU ], (2.7) implies that for y > 0,

SY (y|x;α) = exp
[
−21/αo−1/α y

x

]
(2.19)

yielding the bounds SY (y|x;αL) and SY (y|x;αU ) for the true survival function SY o (y|x).

Let x = 1, αo = 2 (τo = 0.5), and αL = 1, αU = 5 (τ ∈ [0, 0.8]). In Figure 1, we plot the true survival

function SY o (y|1) (black solid curve), our copula bounds SY (y|1;αL) and SY (y|1;αU ) (two blue curves),

and the worst-case Peterson bounds (two red curves):

SV (y|1) = exp
(
−21/αoy

)
and

SV,D=1 (y|1) + SV,D=0 (0|1) =
1

2
exp

(
−21/αoy

)
+

1

2
.

Some observations follow immediately. First the Peterson’s upper bound has some unpleasant feature, namely

it is only pointwise sharp not functionally sharp. The upper bound on the survival function is not a proper

survival function itself, more specifically, limy→∞ [SV,D=1 (y|1) + SV,D=0 (0|1)] = Pr (D = 0|1), which is

strictly bigger than 0 in nontrivial cases (see Crowder 1991; Bedford and Meilijson 1997). Second, Peterson’s

bounds can be tightened significantly when prior knowledge on the censoring mechanism is available. Finally,

the deviation from the independent censoring assumption may not be negligible, making the sensitivity analysis

necessary.

Next we illustrate the effect of misspecification in the generator function (while fixing the dependence

range) on the copula bounds. So instead of the Gumbel copula, we use the Clayton copula:

ϕ̃ (u; α̃) =
u−α̃ − 1

α̃
, α̃ > 0
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in (2.7) leading to

SY (y|x; α̃) =

{
1

21/αo

[
exp

[
21/αo α̃

y

x

]
− 1
]

+ 1

}−1/α̃

. (2.20)

Example 5.4 in Nelson (2006) shows that for the Clayton copula, τ = α̃
α̃+2 . The range for Kendall’s τ varying

in [0, 0.8] would translate to α̃ ∈ [0, 8]. In Figure 2 we again plot the true survival function SY o (y|1) (black

solid curve) and the copula bounds SY (y|1;αL) and SY (y|1;αU ) (two blue curves) using the correctly specified

Gumbel copula. In addition, we also plot the misspecified copula bounds SY (y|1; α̃L) and SY (y|1; α̃U ) (the

two red curves) computed using the Clayton copula, where α̃L = 0 and α̃U = 8. Notice that the two sets of

copula bounds are almost identical. This observation is consistent with existing simulation results showing

the negligible bias in the estimated bounds with misspecified copula function as long as the dependence range

is correctly specified, see Zheng and Klein (1995), Huang and Zhang (2008), and Chen (2010).

Finally we complete this example by deriving the identified set for βo. By the restriction that SY (βo|x;α) =

1− q, we get:

βo ∈
[
log

(
1

1− q

)
21/αU−1/αo , log

(
1

1− q

)
21/αL−1/αo

]
. (2.21)

In terms of the corresponding [τL, τU ], we get

βo ∈
[
log

(
1

1− q

)
21−τU−1/αo , log

(
1

1− q

)
21−τL−1/αo

]
.

In this example, the quantile regression coeffi cient is interval identified (Manski, 2003) and there is one-

to-one correspondence between the quantile regression coeffi cient and the dependence level characterized by

Kendall’s tau.

It is obvious from the expression for SY (y|x;α) in (2.19) that Assumption (SC) holds for all x > 0 and

all finite αU .

3 Asymptotic Confidence Sets for βo

In the rest of this paper, we suppose Assumptions (AC), (SY), and (O-P-I) hold for all x ∈ J . In this

section, we construct two asymptotic confidence sets for βo based on the identified set BOI in (2.17):

BOI = {β ∈ B : FY (x′β|x;α) = q for all x ∈ J and some α ∈ A} .

The identified set BOI allows X to be any random variable, discrete or continuous or mixed. In what follows,

we work explicitly with mixed type regressors, so X ≡
(
Xc, Xd

)
with both continuous component Xc =(

Xc
1 , · · ·Xc

p

)
and discrete component Xd =

(
Xd

1 , · · ·Xd
r

)
. Furthermore, Xd

j takes the values 0, 1, ..., cj − 1 for

j = 1, ..., r.

Define the population criterion function as

T (β) = min
α∈[αL,αU ]

T (β;α) = min
α∈[αL,αU ]

∫
J

[FY (x′β|x;α)− q]2 f2
X (x) dx, (3.1)
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where J = J c×J d1 × ...×J dr , with J c ⊂int(X c) being compact and J dj = {0, 1, ..., cj} for j = 1, ..., r. Also

the integral
∫
dx is understood to be

∑
xd

∫
dµ (xc), integrating over the counting measure on J d1 × ...×J dr

and Lebesgue measure on X c. Our CSs are based on the sample version of T (β;α) defined as:

Tn (β;α) =

∫
J

[
F̂ (x′β|x;α)− q

]2
f̂2
X (x) dx, (3.2)

where F̂ (·|x;α) is the plug-in estimator of FY (·|x;α) introduced in the subsection below and f̂X (x) is the

kernel-type density estimator of fX (x) defined below:

f̂X (x) =
1

n

n∑
i=1

Wγ (x,Xi) (3.3)

where Wγ (x,Xi) = Kh (xc −Xc
i )L

(
xd, Xd

i , λ
)
, γ = (h, λ) = (h, λ1, · · ·, λr), Kh (·) = h−pK (·/h) denotes

the standard kernel function for continuous regressors,6 whereas L (·, ·, λ) is the Aitchison and Aitken (1976)

kernel:

L
(
xd, Xd

i , λ
)

=

r∏
j=1

(λj/ (cj − 1))
Nij(x)

(1− λj)1−Nij(x)

with Nij (x) = I
[
Xd
ij 6= xdj

]
for j = 1, ..., r. For the advantage of smoothing discrete regressors over the

standard frequency approach, see Hall, Racine and Li (2004), Li and Racine (2007).

We propose two test statistics from which we could draw inference on βo:

T̂n (β) = Tn (β; α̂ (β)) and (3.4)

T̃n (β) = Tn (β; α̃ (β)) , (3.5)

where

α̂ (β) ∈ arg min
α∈[αL,αU ]

Tn (β;α) and

α̃ (β) ∈ arg min
α∈[αL,αU ]

∣∣∣∣∣∣Tn (β;α)− B̂n (β;α)√
Σ̂ (β;α)

∣∣∣∣∣∣
with B̂n (β;α) and Σ̂ (β;α) being uniformly consistent estimators of Bn (β;α) and Σ (β;α) defined in (B.6)

(B.8) in Appendix B. Our CSs for βo with asymptotic level (1− ε) are defined as

CSN
1−ε,T̂n

=

β ∈ B :
nhp/2

∣∣∣T̂n (β)− B̂n (β; α̂ (β))
∣∣∣√

Σ̂ (β; α̂ (β))
≤ z1−ε/2

 and (3.6)

CSN
1−ε,T̃n

=

β ∈ B :
nhp/2

∣∣∣T̃n (β)− B̂n (β; α̃ (β))
∣∣∣√

Σ̂ (β; α̃ (β))
≤ z1−ε/2

 , (3.7)

where z1−ε/2 is the (1− ε/2)-th percentile of the standard normal distribution.

6 In typical applications, discrete regressors would have different support and cardinality, so we let λ change with r; for
notational brevity we use single bandwidth for all continuous regressors.
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We show in the next section that under conditions including Assumption (O-P-I) and the conditions of

Proposition 2.6, both CSN
1−ε,T̂n

and CSN
1−ε,T̃n

are asymptotically valid and non-conservative CSs for βo.

By varying αL and αU , both CSs can be used to check sensitivity of inference for βo to the independent

censoring assumption. In contrast to most CSs for partially identified parameters, the CSs CSN
1−ε,T̂n

and

CSN
1−ε,T̃n

are straightforward to implement. This is especially important in the context of a sensitivity

analysis since they are typically computed several times for different ranges of the copula parameter α.

Remark 3.1 For a given β ∈ BOI , the test statistics T̂n (β) and T̃n (β) in (3.4) and (3.5) resemble the test

statistics for consistent model specification testing based on kernel estimators, see Fan (1994), Fan and Li

(1996), and Zheng (1996) and many subsequent works in the literature.7 Indeed, as in these papers, we show

later that under suitable conditions including the separation assumption (SC), the asymptotic distributions of

T̂n (β) and T̃n (β) are normal justifying the CSs CSN
1−ε,T̂n

and CSN
1−ε,T̃n

defined in (3.6) and (3.7). Thus the

CSs CSN
1−ε,T̂n

and CSN
1−ε,T̃n

for βo are intrinsically linked to specification tests for the class of parametric

copulas with generator function ϕα, α ∈ A.

Remark 3.2 An alternative approach to construcing CS for βo is to make use of the inequality constraints

on βo in Proposition 2.6: FL (x′βo|x) ≤ q ≤ FU (x′βo|x) for all x ∈ J . For instance, one could adopt the

following criterion function:∫
J

[
F̂ (x′β|x;αL)− q

]2
_
f̂2
X (x) dx+

∫
J

[
F̂ (x′β|x;αU )− q

]2
+
f̂2
X (x) dx. (3.8)

Compared with T̂n (β) or T̃n (β), this approach suffers from several drawbacks. First, the asymptotic dis-

tribution of the statistic in (3.8) is diffi cult to establish; Second, similar to existing work on inference for

parameters defined by moment inequalities such as Andrews and Shi (2013), variants of the ‘generalized mo-

ment selection’may be needed introducing additional parameters that practitioners have to select. In contrast,

CSs based on T̂n (β) or T̃n (β) circumvent this because they rely on equality constraints only; Third, let

BO = {β ∈ B : FL (x′βo|x) ≤ q ≤ FU (x′βo|x) for all x ∈ J } .

Proposition 2.6 only shows that BO is an outer set of the identified set BOI , i.e., BOI ⊆ BO, but it is not clear

whether BO ⊆ BOI .

3.1 The Plug-in Estimator of FY (y|x;α)

Our test statistics depend on an estimator of FY (x′β|x;α) or generally of FY (y|x;α) defined in (2.7).

Throughout this section we will suppress the subscript Y in its conditional distribution or survival func-

tions unless otherwise emphasized. When the censoring mechanism is independent conditional on covariates,

Dabrowska (1987, 1989) studies the consistency and weak convergence of the so-called conditional Kaplan-

Meier estimator originally proposed by Beran in an unpublished report. Under dependent censoring mech-

anism, Braekers and Veraverbeke (2005) generalize the copula-graphic methods in Rivest and Wells (2001)
7Similar specification testing procedures with mixed type regressors could be found in Fan, Li and Min (2006) and Hsiao,

Li and Racine (2007).
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to the case where X is univariate and non-stochastic. In this section we propose a plug-in estimator of

FY (y|x;α) using its expression in (2.7).

We first introduce the Nadaraya-Watson kernel estimators of FV,D=1 (v|x) and FV (v|x):

F̂V,D=1 (v|x) =

n∑
i=1

wnγ (x,Xi) I [Vi ≤ v,Di = 1] and

F̂V (v|x) =

n∑
i=1

wnγ (x,Xi) I [Vi ≤ v] ,

where wnγ (x,Xi) = Wγ (x,Xi) /
∑n
j=1Wγ (x,Xj), with Wγ (·, ·) defined in the previous subsection. In view

of our Lemma 2.1, it is natural to work with the plug-in type estimator for the conditional distribution

functions indexed by α:

F̂ (y|x;α) = 1− ϕ−1

(
−
∫ y

ylx

ϕ′
{
ŜV (s|x) ;α

}
dF̂V,D=1 (s|x) ;α

)
(3.9)

= 1− ϕ−1

− ∑
Vi≤y,Di=1

ϕ
′
(
ŜV (Vi|x) ;α

)
wnγ (x,Xi) ;α

 .
Remark 3.3 An alternative estimator of FY (y|x;α) is the copula graphic estimator introduced in Braekers

and Veraverbeke (2005) denoted as F̃ (y|x;α) = 1− S̃ (y|x;α), where

S̃ (y|x;α) (3.10)

= = ϕ−1

− ∑
Vi≤y,Di=1

[
ϕ
(
ŜV
(
V −i |x

)
;α
)
− ϕ

(
ŜV
(
V −i |x

)
− wnγ (x,Xi) ;α

)]
;α

 .

The estimator F̃ (y|x;α) generalizes the conditional kernel Kaplan-Meier estimator proposed in Dabrowska

(1987, 1989) to allow for conditional dependent censoring characterized by the generator function ϕ (·;α).

When ϕ (t;α) = log (1/t), (Y,C) are independent conditional on X = x and F̃ (y|x;α) reduces to the condi-

tional kernel Kaplan-Meier estimator in Dabrowska (1987, 1989),

F̃Ind (y|x) = 1−

 ∏
V(i)≤y

(
1−

wnγ
(
x,X[i]

)
1−

∑i−1
j=1 wnγ

(
x,X[j]

))D[i]

 (3.11)

where
(
V(i)

)n
i=1

denote the order statistics and
(
D[i], X[i]

)n
i=1

denote the induced order statistics of the sample.

The above estimator resembles the traditional Kaplan-Meier estimator closely, replacing the empirical weight

n−1 with the kernel weight wnγ (x,Xi). As shown in Lemma A.3, the two estimators F̂ (y|x;α) and F̃ (y|x;α)

are first order asymptotically equivalent.

4 Asymptotic Validity and Bootstrap Confidence Sets

In this section, we first establish a uniform asymptotic linear representation of the plug-in estimator of

FY (y|x;α), then establish asymptotic validity of the CSs CSN
1−ε,T̂n

and CSN
1−ε,T̃n

, and lastly construct

bootstrap CSs.

18



4.1 Asymptotic Linear Representation of F̂ (y|x, α)

We first present regularity assumptions used to establish the asymptotic linear representation of F̂ (y|x, α).

The random vector Zi = (Vi, Di, Xi) stacks all the observable random variables. To ease the notational

burden, we assume that the support of the conditional distribution function of Y is fixed at [yl, yu], invariant

with respect to x. In addition, we let ϕα (u) = ϕ (u;α) throughout the rest of this paper and let

ϕ̇′α (u) ≡ ∂

∂α
ϕ′α (u) and ϕ̇−1

α (u) ≡ ∂

∂α
ϕ−1
α (u) .

Assumption (D). (i) The random variable Xc has an absolutely continuous and bounded density w.r.t

the Lebsegue measure µ in Rp, and infx∈J fX (x) > 0 for the compact subset J in (3.1); (ii) The marginal

density function fX (x) = fX
(
xc, xd

)
satisfies ∀xd, xc → fX

(
xc, xd

)
is s-order continuously differentiable

over the set J c and the s-order derivatives are bounded; (iii) There exists y0
u in the support of Y and δ0 > 0

such that

SV
(
y0
u|x
)
≥ δ0 a.s. x ∈ J . (3.12)

Assumption (F). (i) The two conditional sub-distribution functions have continuous bounded condi-

tional sub-density functions fV,D=j (v|x), j = 0, 1 uniformly for x ∈ J ; (ii) Along the xc-axis the conditional

sub distribution functions satisfy:

∀v ∈
[
yl, y

0
u

]
and ∀xd, xc → FV,D=1

(
v|xc, xd

)
, x → FV,D=0

(
v|xc, xd

)
are s-order continuously differen-

tiable over the set J c, with bounded s-order derivatives.

Assumption (G). (i) Along the u-axis, the generator function ϕα (·) is third order continuously differ-

entiable with ϕ(3)
α (·) ≤ 0 and ϕ(3)

α (·) remains bounded uniformly for ∀α ∈ A and for ∀u ∈ [δ0, 1]. Moreover

ϕ
′

α (·) is bounded away from 0 uniformly for α ∈ A and u ∈ [δ0, 1] for the δ0 defined in (3.12);

(ii) The Lipschitz continuity property with respect to α holds for ψα (·) = 1/ϕ
′

α (·) or ψα (·) = ϕ
′′

α (·) with

positive constant L:

sup
u∈[δ0,1]

∣∣ψα1 (u)− ψα2 (u)
∣∣ ≤ L |α1 − α2| .

Assumption (H). (i) The bandwidth satisfies the following conditions: h → 0, nh
p

logn → ∞, nh
2s → 0,

nh2s+p

logn → 0 and (logn)2

nh3p/2
→ 0 as n→∞;

(ii) For all j = 1, · · ·, r, λj → 0 and
nhpλ2j
logn → 0, as n→∞.

Assumption (K). Let K (u) =
∏p
j=1 k (uj), where k (·) is a bounded s-order kernel function with

compact support, i.e., ∫
k (u) du = 1 and

∫
ujk (u) du = 0 for j = 1, ..., s− 1.

Moreover it can be written as Ψ (p (x)), with Ψ (·) being of bounded variation and p (x) a real polynomial

on R.

Assumptions (D)(i), (ii) and (F) are standard assumptions used to establish asymptotic properties of

estimators or test statistics that are functionals of kernel type regression estimators (see Li and Racine,
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2007). Assumption (D)(iii) plays a similar role to Assumption (D)(i), because most generator functions

have unbounded derivatives at 0, see Table 1. Assumption (D)(iii) allows us to avoid having to deal with

such explosive behavior of the generator function and require Assumption (G) (i) only when establishing

the linear representation of F̂ (y|x, α), see the expression in (3.9).8 It can be relaxed by imposing suitable

restrictions on the tail behavior of the generator function at the expense of more tedious proofs. Apropos

of the requirement on the copula generator, the differentiability and non-vanishing first order derivative are

almost necessary in view of the following uniform asymptotic linear representation. The Lipschitz continuity

in Assumption (G)(ii) is used to prove uniformity of the linear representation over α and it also simplifies

the convergence argument for α̂ (β) or α̃ (β) when we apply the local U-process machinery. The condition

on the bandwidth is standard in kernel estimation problem, and we undersmooth a bit to kill the bias term,

facilitating the inference procedure. Under Assumption (K), we have the following VC-type functional class

due to Nolan and Pollard (1987):

K =
{
K
(
h−1 (x− ·)

)
: x ∈ Rp, h > 0

}
.

An explicit construction of k (·) satisfying the above requirement could be found in Section 1.2.2 in Tsybakov

(2008) based on Legendre polynomials.

Theorem 4.1 Under Assumptions (D)-(K), it holds that

F̂ (y|x;α)− FY (y|x;α) =
1

nfX (x)

n∑
i=1

Wγ (x,Xi) g (y|Zi, x;α) +Rn (y, x;α) , (3.13)

where g (y|Zi, x;α) = c (y|Zi, x;α) + b (y|Zi, x;α) in which

c (y|Zi, x;α) =
−1

ϕ′α {SY (y|x;α)} [

∫ y

yl

ϕ
′′

α {SV (v|x)} [I (Vi ≤ v)− FV (v|Xi)] dFV,D=1 (v|x) (3.14)

−ϕ′α {SV (y|x)} [I (Vi ≤ v,Di = 1)− FV,D=1 (y|Xi)]

−
∫ y

yl

ϕ
′′

α {SV (v|x)} [I (Vi ≤ v,Di = 1)− FV,D=1 (v|Xi)] dFV (v|x)],

b (y|Zi, x;α) =
−1

ϕ′α {SY (y|x;α)} [

∫ y

yl

ϕ
′′

α {SV (v|x)} [FV (v|Xi)− FV (v|x)] dFV,D=1 (v|x) (3.15)

−ϕ′α {SV (y|x)} [FV,D=1 (y|Xi)− FV,D=1 (y|x)]

−
∫ y

yl

ϕ
′′

α {SV (v|x)} [FV,D=1 (y|Xi)− FV,D=1 (v|x)] dFV (v|x)]

and Rn (y, x;α) satisfies that

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|Rn (y, x;α) | = Op

(
log n

nhp

)
.

8At the right end point 1, only Gumbel copula generator has ϕ
′
(1) = 0 in our Table 1, one could simply modify the above

requirement for t ∈ [δ0, δ1], with some approporiate δ1 < 1.
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Compared with the result for the copula-graphic estimator F̃ (y|x;α) in Braekers and Veraverbeke (2005),

(3.13) holds uniformly for x ∈ J ⊂ X with a better rate for the remainder term, where the density of X

stays away from 0 on J , and our covariate is a multivariate random variable rather than univariate fixed

design.

Remark 4.2 Holding X = x fixed and ϕα fixed at some α ∈ A, we could also establish the weak convergence

of the conditional empirical process:
{√

nhp
[
F̂ (y|x;α)− FY (y|x;α)

]
: y ∈

[
yl, y

0
u

]}
. It can be shown that

the process is stochastically equicontinuous w.r.t. certain pseudo metric. We refer the readers to Braekers

and Veraverbeke (2005) for a detailed proof for the copula-graphic estimator F̃ (y|x;α).

We can also establish the uniform consistency of F̂ (y|x;α), which we record as a corollary below. Its

proof is actually shown in Lemma A.3 when characterizing the order of Rn3 (y, x;α) defined in Appendix A.

Corollary 4.3 Under the Assumptions (D)-(K), it holds that

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|F̂ (y|x;α)− FY (y|x;α) | = Op

(√
log n

nhp

)
.

In particular, it holds if we set y = x
′
β for those x

′
β ∈

[
yl, y

0
u

]
.

4.2 Validity of the Asymptotic Confidence Sets

In order to prove the asymptotic exactness of the confidence sets defined in (3.6) and (3.7), we show that

T̂n (β) and T̃n (β) are both asymptotically normal upon proper centering and normalization. Noting that

those two statistics resemble the population criterion function closely, we show below that α̂ (β) and α̃ (β)

converge in probability to α (β) and prove the stochastic equicontinuity (SE) of [Tn (β;α)−Bn (β;α)] w.r.t

α in the local neighborhood of α (β) whose radius is determined by the convergence rate of α̂ (β) or α̃ (β)

to α (β). Proving consistency and getting convergence rate for estimators obtained from minimizing a

kernel based criterion function is akin to a problem from smooth minimum distance estimation, as shown

in Linton (1997, 1998), also see Lavergne and Patilea (2013) on a recent account. For α = α (β), the

asymptotic distribution of [Tn (β;α)−Bn (β;α)] is determined by a degenerate U -statistic similar to the test

statistics in Hardle and Mammen (1993), Fan (1994), Fan and Li (1996), and Zheng (1996); when α 6= α (β),

[Tn (β;α)−Bn (β;α)] could be decomposed as the degenerate U-statistic, a non-degenerate U-statistic and

the deterministic drifting term:
∫
J [FY (x′β|x;α)− q]2 f2

X (x) dx. The SE of [Tn (β;α)−Bn (β;α)] would

be proved by showing the SE of the degenerate U-process and negligibility of the other two terms when α

approaches α (β) suffi ciently fast.

We need two more sets of assumptions to show the validity of our confidence sets, one (Assumptions (V0)

and (V1)) for CSN
1−ε,T̂n

and one (Assumptions (V0) and (V2)) for CSN
1−ε,T̃n

.

Assumption (V0). For all β ∈ B, x′β ∈
[
yl, y

0
u

]
for all x ∈ J .
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Assumption (V1). (i) For any β ∈ BOI , the corresponding α (β) belongs to the interior of A; (ii) In

addition to Assumption (H), we assume that nh2s → 0; (iii) In addition to Assumption (G), those functions

ϕ̇′α (u), ϕ̇−1
α (u) exist and are continuous and bounded in the range of [δ0, 1] and [0,∞) respectively.

Assumption (V2). (i) In addition to Assumption (H), there exists a sequence εn → 0 such that
√

n
lognεn →

∞ and nhpεn → 0; (ii) In addition to Assumption (G), the Lipschitz continuity property with respect to α

holds for ψα (·) = 1/ϕ
′

α (·) or ψα (·) = ϕ
′′

α (·) with positive constant L from below:

L |α1 − α2| ≤ sup
u∈[δ0,1]

∣∣ψα1 (u)− ψα2 (u)
∣∣ .

Assumption (V0) is used for both CSs. It ensures that all the conditional quantiles of potential interest

stay suffi ciently far away from the right end support point of V . When independent censoring is assumed,

similar restrictions have also appeared in Peng and Huang (2008), Wang and Wang (2009) for β in a neigh-

borhood of the (point identified) true βo. There is a distinction between Assumption (V1) and Assumption

(V2) because of the slightly different arguments used in the proofs for CSN
1−ε,T̂n

and CSN
1−ε,T̃n

. The con-

sistency of α̂ (β) follows the standard way to contrast sample criterion function and population criterion

function, viewed as a minimum distance estimator. Its rate of convergence is shown once the requirement

that α (β) stays in the interior and enough smoothness (w.r.t α) on the generator function are satisfied. In

comparison, a different route is taken for α̃ (β) as in Santos (2006). Its consistency and rate of convergence

will be achieved through the different convergence stochastic orders of the test statistic and a careful study

of the local neighborhood of the ’null’set for α (see Santos, 2006):

Aεno =

{
α ∈ A :

∫
J

[FY (x′β|x;α)− q]2 f2
X (x) dx ≤ εn, with εn → 0

}
. (3.16)

Notice that when εn → 0, Aεno will shrink to the singleton {α (β)}; on the other hand, when α /∈ Aεno , the

sample criterion function would be shown to be explosive.

The first main result in this section establishes the asymptotic distributions of the test statistics T̂n (β)

and T̃n (β) for β ∈ BOI , thereafter the asymptotic size property of our confidence sets follows immediately.

Proposition 4.4 Suppose Assumptions (SC), (D)-(K), and (V0) hold, then for β ∈ BOI with the unique

α (β),
nhp/2 [Tn (β;α (β))−Bn (β;α (β))]√

Σ (β;α (β))
=⇒ N (0, 1) . (3.17)

In addition if (V1) holds, we have:

nhp/2
[
Tn (β; α̂ (β))− B̂n (β; α̂ (β))

]
√

Σ̂ (β; α̂ (β))
=⇒ N (0, 1) ; (3.18)

if (V2) holds, we have:

nhp/2
[
Tn (β; α̃ (β))− B̂n (β; α̃ (β))

]
√

Σ̂ (β; α̃ (β))
=⇒ N (0, 1) , (3.19)
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where Bn (β;α) = n−1h−p
∫
K2 (u) du

∫
σ2 (x′β|x;α) fX (x) dx in which σ2 (x′β|x;α) is defined in (C.2) in

Appendix C, and Σ (β;α) is defined in (B.8) in Appendix B with uniformly consistent estimators B̂n (β, α)

and Σ̂ (β;α) respectively.

Theorem 4.5 Under the assumptions (SC), (D)-(K), and (V0), our confidence sets have pointwisely as-

ymptotic exact size: for ∀β ∈ BOI , if (V1) holds, we get: limn→∞ Pr
{
β ∈ CSN

1−ε,T̂n

}
= 1 − ε; or if (V2)

holds, we get: limn→∞ Pr
{
β ∈ CSN

1−ε,T̃n

}
= 1− ε.

Remark 4.6 Both test statistics and confidence sets have their own merits. T̂n (β) circumvents the need to

estimate the complicated drifting term and asymptotic variance term when the minimization over α ∈ A is

conducted; on the other hand, even without the separation assumption (SC), the procedure based on T̃n (β)

is still asymptotically valid although may be conservative, similar to Jun and Pinske (2009) in a different

context:

lim sup
n

Pr

min
α∈A

∣∣∣∣∣∣
nhp/2

[
Tn (β;α)− B̂n (β, α)

]
√

Σ̂ (β;α (β))

∣∣∣∣∣∣ ≥ z1−ε/2


≤ lim

n
Pr


∣∣∣∣∣∣
nhp/2

[
Tn (β;α (β))− B̂n (β, α (β))

]
√

Σ̂ (β;α (β))

∣∣∣∣∣∣ ≥ z1−ε/2


= 1− ε.

4.3 Bootstrap Confidence Sets

It is well documented in the literature on model specification testing that the normal approximation of the

distribution of the kernel-based test statistics may not work well in small samples, see Hardle and Mammen

(1993) and resampling methods such as bootstrap may be used. Below we present bootstrap analogues of

the asymptotic confidence sets CSN
1−ε,T̂n

and CSN
1−ε,T̃n

.

Let

T ∗n,b (β;α) ≡
∫
J

[
1

n

n∑
i=1

Wγ (x,Xi) c
∗
b

(
x
′
β|Zi, x;α

)]2

dx,

where

c∗b (y|Zi, x;α) (3.20)

=
−M∗i,b

ϕ′α

{
Ŝ (y|x;α)

} [

∫ y

yl

ϕ
′′

α

{
ŜV (v|x)

}[
I (Vi ≤ v)− F̂V (v|Xi)

]
dF̂V,D=1 (v|x)

−ϕ′α
{
ŜV (y|x)

}[
I (Vi ≤ v,Di = 1)− F̂V,D=1 (y|Xi)

]
−
∫ y

yl

ϕ
′′

α

{
ŜV (v|x)

}[
I (Vi ≤ v,Di = 1)− F̂V,D=1 (v|Xi)

]
dF̂V (v|x)]

in which the perturbation variables
{
M∗i,b

}n
i=1

are independently generated with zero mean and unit variance

from, for example, the standard normal distribution or centered unit exponential distribution. Thereafter

23



we define T ∗n,b (β; α̂ (β)) and T ∗n,b (β; α̃ (β)) accordingly.9

We could generate
{
M∗i,b

}n
i=1

for b = 1, ..., B and obtain
{
T ∗n,b (β; α̂ (β))

}B
b=1

or
{
T ∗n,b (β; α̃ (β))

}B
b=1
.

The bootstrap critical values are defined as

cB
n,T̂n

(β, 1− ε) = inf

{
t :

1

B

B∑
b=1

I
{
nhp/2T ∗n,b (β; α̂ (β)) ≤ t

}
≥ 1− ε

}
and

cB
n,T̃n

(β, 1− ε) = inf

{
t :

1

B

B∑
b=1

I
{
nhp/2T ∗n,b (β; α̃ (β)) ≤ t

}
≥ 1− ε

}
.

Hence the following two bootstrap confidence sets are immediate:

CSB
1−ε,T̂n

=
{
β ∈ B : nhp/2T̂n (β) ≤ cB

n,T̂n
(β, 1− ε)

}
and

CSB
1−ε,T̃n

=
{
β ∈ B : nhp/2T̃n (β) ≤ cB

n,T̃n
(β, 1− ε)

}
.

Theorem 4.7 Under the assumptions (AC), (D)-(K), and (V0), our bootstrap confidence sets have point-

wisely asymptotic exact size: for ∀β ∈ BOI , if (V1) holds, we get: limn→∞ Pr
{
β ∈ CSB

1−ε,T̂n

}
= 1− ε; or if

(V2) holds, we get: limn→∞ Pr
{
β ∈ CSB

1−ε,T̃n

}
= 1− ε.

5 An Empirical Application

In this section, we illustrate our methodology on a real data set used in Wang and Wang (2009). The

data comes from a study on the survival of patients after acute myocardial infarction conducted at the

University Clinical Center in Ljubljana and is publicly available in R package relsurv. It consists of n = 1, 040

observations with 493 censored observations. The variable of interest, i.e., the survival time, is recorded in

days and we transform it into the unit scale [0, 1] by the empirical probability integral transformation. There

are two regressors of mixed type; the discrete regressor is Gender (with 751 observations from Male vs. 289

observations from Female) and the continuous regressor is Age (we again transform the original data into

the unit scale between [0, 1]).10 The exact cause of censoring is unknown in this data, however in typical

clinical studies censoring is not merely of administrative type (censoring occurs because the study simply

terminates). Patients might be removed if there is evidence that treatment is ineffective, or patients withdraw

themselves because of side effects or they die due to other causes (Fleming and Harrington, 1991). Hence it

is reasonable to expect some positive dependence between Y and C in those situations.

We compare our confidence set CSB
95%,T̂n

with two bootstrap confidence intervals in Portnoy (2003),

Peng and Huang (2008) (Por, PH in Table 2 below respectively) where conditional independent censoring

is assumed. Those two approaches could be automatically implemented in Roger Koenker’s R package

quantreg. Linear quantile regressions, with intercept β and slope β, are fitted on subsets splitted according

9One could bootstrap the drifting term when calculating T̃n (β)
10 In comparison, Wang and Wang (2009) take the log transform of the original survival time. Also, even though the procedure

in Wang and Wang (2009) calls for ordinary kernel smoothing across the variable Age, they still work with the original one,
which is integer-valued.
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to gender groups and we report the bootstrap confidence intervals on the slope coeffi cient β. Notice that the

data between different gender groups are very unbalanced, which justifies the smoothing across the discrete

regressor here (Li and Racine, 2007). Referring to the actual implementation of our approach, since the

continuous regressor is univariate, we let K (u) = 15
16

(
1− u2

)2
, the bisquare kernel which is a second order

kernel. Moreover the two tuning parameters are set to be h = 2n−1/4, λ = n−1/2, and the truncation of

the integral is restricted to be J = [0.1, 0.9]. Also the perturbation variable M∗i,b in the bootstrap weight is

taken to be standard normal. Needless to say, our procedure is computationally more intensive as for every

regression coeffi cient under consideration, a minimization over α is carried out and bootstrap is needed

to obtain the critical value. To reduce computational cost, we simply set the the number of bootstrap

replications at 100 and do a grid search over β ∈ [−5, 1] with grid length equal to 0.01. Notice that our

construction of confidence set leads to simultaneous inference on both the slope β and the intercept β.

However, the bootstrap intervals in Portnoy (2003), Peng and Huang (2008) are for the slope and intercept

separately. For fair comparison, we have picked a projection based version of ours by considering all β not

rejected while β runs over in [0, 1] with a grid length 0.01.11 To check the sensitivity of conclusions from

maintaining ICM assumption, we consider two scenarios, small vs. moderate deviations. In the former case,

we set τ ∈ [0, 0.2] whereas in the latter case τ ∈ [0, 0.5]. Both confidence sets based on Clayton copula and

Gumbel copula are reported to examine the effect of employing different copula generator functions when

the specified dependence level τ coincides. The results are reported in Table 2 below, where DCM denotes

dependent censoring mechanism.

Some remarks follow from Table 2. First of all, our confidence sets turn out to be intervals for this

particular case, so there are no holes in between. Second, despite we choose the projection based inference

(which might be conservative) and allow for a wider range of dependence, our confidence intervals are not

necessarily wider than those in Por, PH for the female group. The frequency approach by splitting the data

leaves too few observations in the female group and as noted in Wang and Wang (2009), Por, PH tend to

be unstable for small samples. Third, the conclusion on negative effect (the sign) of aging on the survival

time is robust even when we allow for τ ∈ [0, 0.5], but the one on the exact magnitude might change. For

example, in the male group when q = 3/4, the ICM intervals lead to the accelerating effect (|β| > 1) from

aging, but this could be overturned when we allow for moderate positive dependence. Finally, the difference

between fitting a Clayton and Gumbel is almost negligible, never larger than 0.08. So the exact shape of a

generator function plays only a minor role.

6 Concluding Remarks

Assuming an Archimedean copula for the dependent variable Y and the censoring variable C, we have pro-

posed a two-step method for studying partial identification of the quantile coeffi cient βo in quantile regression

11The reason we set the parameter space B to be [0, 1] × [−5, 1] is that it includes the widest interval coming from Portnoy
(2003), Peng and Huang (2008) and is slightly enlarged.
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Table 2: Confidence Sets
Male Female

q 1/4 1/2 3/4 1/4 1/2 3/4
ICM τ = 0
Por [−0.73,−0.49] [−1.69,−0.73] [−2.26,−1.34] [−0.72,−0.28] [−2.07,−0.82] [−3.73,−0.80]
PH [−0.75,−0.47] [−2.18,−0.46] [−2.38,−1.30] [−0.76,−0.19] [−2.12,−0.93] [−4.39,−0.84]
DCM τ ∈ [0, 0.2]
Clay [−0.70,−0.44] [−1.83,−0.51] [−2.33,−1.31] [−0.76,−0.40] [−2.14,−1.05] [−2.52,−1.29]
Gum [−0.71,−0.41] [−1.85,−0.59] [−2.30,−1.28] [−0.73,−0.38] [−2.18,−1.07] [−2.50,−1.24]
DCM τ ∈ [0, 0.5]
Clay [−0.80,−0.23] [−1.94,−0.24] [−2.47,−0.82] [−0.84,−0.21] [−2.21,−0.87] [−2.73,−0.75]
Gum [−0.78,−0.27] [−1.98,−0.25] [−2.44,−0.86] [−0.84,−0.15] [−2.20,−0.84] [−2.76,−0.71]

with possibly dependent censoring. For a broad class of Archimedean copulas, we have characterized an outer

set of the identified set of βo via inequality constraints. Most Archimedean copulas are characterized by a

single parameter and are also ordered. Using such ordered parametric Archimedean copulas, we have de-

veloped an econometric method for conducting sensitivity analysis to examine the sensitivity of conclusions

on βo to the independent censoring mechanism commonly adopted in empirical work. Interpreting Y and

the censoring variable C in our model as two competing risks, our methodology should be useful in duration

analysis with possibly dependent competing risks.

As a first step towards developing formal sensitivity analysis in censored quantile regression models, we

have opted for simplicity instead of generality in this paper. Many important extensions are worthwhile.

First, in practice, it is also of interest to test certain linear restriction on the parameter in the identified set,

e.g., whether a particular component equals to zero. Without point identification, such testing problems can

be formulated as in Santos (2006, 2012), i.e., we check whether there is at least one βo satisfying the linear

restriction under the null,

H0 : Bo ∩Rβ 6= ∅, vs. H1 : Bo ∩Rβ = ∅,

where Rβ = {β ∈ B : Rβ = r}, with a given matrix R and vector r. Second, endogenous regressors can be

incorporated in our framework as in Khan and Tamer (2009) or one may extend Manski (1994) to allow for

censored outcome variables in quantile selection models.

7 Appendix A: Asymptotic Linear Representation of the Plug-in
Estimator F̂ (y|x;α)

In this section, let M be a universal finite constant and ∆ be an intermediate value appearing in a Taylor

expansion. Their specific values are of no importance, so may vary from line to line. We will need to handle

various functional classes F using local U-process techniques collected in Appendix C, and will refer to the

term σ2, s.t.
∥∥Pmf2

∥∥
F ≤ σ2 for m = 1 or 2 as the maximal variance (see Appendix C). The following
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notations would facilitate the proofs:

HV (v|x) ≡ SV (v|x) /fX (x) , HV,D=1 (v|x) ≡ SV,D=1 (v|x) /fX (x) , (A.1)

ĤV (v|x) ≡ ŜV (v|x) /f̂X (x) , ĤV,D=1 (v|x) ≡ ŜV,D=1 (v|x) /f̂X (x) ,

where the various estimators are all of kernel type introduced in the main text.

The following facts would be used repeatedly in the proofs, so we list them below for easy reference.

Facts: Under the Assumptions (D)-(K), the following results hold:

sup
x∈J

∣∣∣f̂X (x)− fX (x)
∣∣∣ = Op

(√
log n

nhp

)
, (A.2)

sup
x∈J

sup
y∈[yl,y0u]

∣∣∣F̂V (y|x)− FV (y|x)
∣∣∣ = Op

(√
log n

nhp

)
, and (A.3)

sup
x∈J

sup
y∈[yl,y0u]

∣∣∣F̂V,D=1 (y|x)− FV,D=1 (y|x)
∣∣∣ = Op

(√
log n

nhp

)
. (A.4)

The proofs of the above facts would follow from Theorems 1 and 3 in Einmahl and Mason (2005), combining

the arguments dealing with discrete regressors as in Li and Racine (2007). For completeness, we sketch a

proof of (A.3) in Appendix C.

We now give a main proof of Theorem 4.1, where the convergence rates of various terms used in the proof

would be collected in a series of lemmas following the main proof.

Proof. Recall that

F̂ (y|x;α) = 1− ϕ−1
α

[
−
∫ y

yl

ϕ
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x)

]

= 1− ϕ−1
α

− ∑
Vi≤y,Di=1

ϕ
′

α

(
ŜV (Vi|x)

)
wnγ (x,Xi)

 .
Straightforward algebra shows that

−
∫ y

yl

ϕ
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x) +

∫ y

yl

ϕ
′

α (SV (v|x)) dFV,D=1 (v|x)

= −
∫ y

yl

[
ϕ
′

α

(
ŜV (v|x)

)
− ϕ

′

x (SV (v|x))
]
dFV,D=1 (v|x)

−
∫ y

yl

ϕ
′

α (SV (v|x)) d
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
−
∫ y

yl

[
ϕ
′

α

(
ŜV (v|x)

)
− ϕ

′

α (SV (v|x))
]
d
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
.

Regarding the above expression, we now take a second order Taylor expansion on the first term and integrate

by parts on the second term on the right hand side:

−
∫ y

yl

ϕ
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x) +

∫ y

yl

ϕ
′

α (SV (v|x)) dFV,D=1 (v|x)

=

∫ y

yl

ϕ
′′

α {SV (v|x)}
[
F̂V (v|x)− FV (v|x)

]
dFV,D=1 (v|x)− ϕ

′

α {SV (v|x)}
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
−
∫ y

yl

ϕ
′′

α {SV (v|x)}
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
dFV (v|x)] +Rn1 (y, x;α) +Rn2(y, x;α)
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where

Rn1 (y, x;α) = −
∫ y

yl

ϕ
(3)
α {∆}

2

[
F̂V (v|x)− FV (v|x)

]2
dFV,D=1 (v|x) and (A.5)

Rn2(y, x;α) = −
∫ y

yl

[
ϕ
′

α

(
ŜV (v|x)

)
− ϕ

′

x (SV (v|x))
]
d
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
. (A.6)

By Lemmas A.1 and A.2, we get

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

Rn1 (y, x;α) = Op

(
log n

nhp

)
and

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

Rn2(y, x;α) = Op

(
log n

nhp

)
.

Hence the result follows once we show the order of those remainder terms.

Finally to see why (3.14) and (3.15) hold, it suffi ces to illustrate on the first term inside the bracket of

(3.13): ∫ y

yl

ϕ
′′

α {SV (v|x)}
[
F̂V (v|x)− FV (v|x)

]
dFV,D=1 (v|x)

=
1

f̂X (x)n

n∑
i=1

Wγ (x,Xi)

∫ y

yl

ϕ
′′

α {SV (v|x)} [I (Vi ≤ v)− FV (v|x)] dFV,D=1 (v|x)

=
1

fX (x)n

n∑
i=1

Wγ (x,Xi)

∫ y

yl

ϕ
′′

α {SV (v|x)} [I (Vi ≤ v)− FV (v|x)] dFV,D=1 (v|x)

+
fX (x)− f̂X (x)

f̂X (x) fX (x)n

n∑
i=1

Wγ (x,Xi)

∫ y

yl

ϕ
′′

α {SV (v|x)} [I (Vi ≤ v)− FV (v|x)] dFV,D=1 (v|x) ,

where the second term is bounded from above uniformly in α ∈ A by

M sup
x∈J

∣∣∣fX (x)− f̂X (x)
∣∣∣× sup

x∈J
sup

y∈[yl,y0u]

∣∣∣F̂V (y|x)− FV (y|x)
∣∣∣ = Op

(
log n

nhp

)
,

whose rate of convergence follows from the stated facts (A.2) and (A.3).

Lemma A.1 Under Assumptions (D)-(K), we have: supα∈A supx∈J supy∈[yl,y0u] |Rn1 (y, x;α) | = Op

(
logn
nhp

)
.

Proof. We pull out the integrand on the right hand side of (A.5) and notice that dFV,D=1 (·|x) is a finite

measure for a.s. x ∈ J :

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|Rn1 (y, x;α)| ≤ 1

2
sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|ϕ(3)
α (∆) |

[
F̂V (y|x)− FV (y|x)

]2
.

Now Assumption (G1) on the copula generator and the stated fact (A.3) give the desired rate.

The next lemma characterizing the order of Rn2 (y, x;α) is most cumbersome. Braekers and Veraverbeke

(2005) first discretize along the y-axis and then bound the local oscillation uniformly for x ∈ J invoking

certain maximal inequalities to arrive at the rate of
(

logn
nhp

)3/4

. We shall improve this rate to logn
nhp because

the dominating term is a second order U-process as in Major (2006). A similar proof appears in Lemma 3.1

of Lopez (2011) dealing with the conditional Kaplan-Meier estimator.
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Lemma A.2 Under Assumptions (D)-(K), we have: supα∈A supx∈J supy∈[yl,y0u] |Rn2 (y, x;α) | = Op

(
logn
nhp

)
.

Proof. Given Assumption (G), we can decompose the expression for Rn2 (y, x;α) in (A.6) into two terms

as:

−
∫ y

yl

[
ϕ
′

α

(
ŜV (v|x)

)
− ϕ

′

α (SV (v|x))
]
d
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
=

∫ y

yl

ϕ
′′

α (SV (v|x))
[
ŜV (v|x)− SV (v|x)

]
d
[
ŜV,D=1 (v|x)− SV,D=1 (v|x)

]
+

∫ y

yl

ϕ(3)
α (∆)

[
ŜV (v|x)− SV (v|x)

]2
d
[
ŜV,D=1 (v|x)− SV,D=1 (v|x)

]
.

Apparently the second term is negligible and of order
(

logn
nhp

)3/2

by (A.3) and (A.4). Some simplification

occurs in handling the first term. Recalling the definitions given in (A.1), we have:

ŜV (v|x)− SV (v|x) =
1

fX (x)

[
ĤV (v|x)−HV (v|x)

]
+

[
fX (x)− f̂X (x)

]
HV (v|x)

f2
X (x)

+

[
fX (x)− f̂X (x)

] [
ĤV (v|x)−HV (v|x)

]
fX (x) f̂X (x)

+

[
fX (x)− f̂X (x)

]2
HV (v|x)

f2
X (x) f̂X (x)

.

A similar expression holds for
[
ŜV,D=1 (v|x)− SV,D=1 (v|x)

]
. The latter two terms (also those from condi-

tional sub-survival functions) would be of smaller order by (A.2), (A.3), (A.4), and Assumption (F). Now it

reduces to bound the dominating terms as∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
ĤV (v|x)−HV (v|x)

]
d
[
ĤV,D=1 (v|x)−HV,D=1 (v|x)

]
and∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
fX (x)− f̂X (x)

]
d
[
ĤV,D=1 (v|x)−HV,D=1 (v|x)

]
.

It suffi ces to demonstrate with the first term. We introduce further notations as

H̃V (v|x) = E
[
ĤV (v|x)

]
and H̃V,D=1 (v|x) = E

[
ĤV,D=1 (v|x)

]
.

Standard bias-variance decomposition leads to∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
ĤV (v|x)− H̃V (v|x)

]
d
[
ĤV,D=1 (v|x)−HV,D=1 (v|x)

]
+

∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
H̃V (v|x)−HV (v|x)

]
d
[
ĤV,D=1 (v|x)−HV,D=1 (v|x)

]
=

∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
ĤV (v|x)− H̃V (v|x)

]
d
[
ĤV,D=1 (v|x)− H̃V,D=1 (v|x)

]
+

∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
ĤV (v|x)− H̃V (v|x)

]
d
[
H̃V,D=1 (v|x)−HV,D=1 (v|x)

]
+

∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
H̃V (v|x)−HV (v|x)

]
d
[
ĤV,D=1 (v|x)− H̃V,D=1 (v|x)

]
+

∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
H̃V (v|x)−HV (v|x)

]
d
[
H̃V,D=1 (v|x)−HV,D=1 (v|x)

]
.
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Analogous expansion as in Lopez (2011) could be taken to bound the last three terms involving bias, and

the order is of
(

logn
nhp

)1/2

(hs +
∑
λj) + (hs +

∑
λj)

2, smaller than the dominating one under Assumption

(H). In the end, it boils down to bound the first term which is a second order degenerate U-statistic plus the

diagonal term: ∫ y

yl

ϕ
′′

α (SV (v|x))

f2
X (x)

[
ĤV (v|x)− H̃V (v|x)

]
d
[
ĤV,D=1 (v|x)− H̃V,D=1 (v|x)

]
=

1

n2h2p

n∑
i=1

f (Zi, Zi) +
1

n2h2p

∑
i 6=j

f (Zi, Zj)

where

f (Z1, Z2) = D1
ϕ
′′

α (SV (V1|x))

f2
X (x)

1 {V1 > y}hpWγ (x,X1)H (X2, V2, V1)

−
∫
d1
ϕ
′′

α (SV (v1|x))

f2
X (x)

1 {v1 > y}hpWγ (x, x1)H (X2, V2, v1) dPZ (v1, d1, x1)

with

H (X2, V2, u) = 1 {V2 > u}hpWγ (x−X2)−
∫

1 {v2 > u}hpWγ (x, x2) dPZ (v2, x2) .

The diagonal term could be bounded from above uniformly by

M sup
x

[
1

n2

n∑
i=1

W 2
γ (x,Xi)

]
≤M sup

x

[
1

n2

n∑
i=1

K2
h (x−Xi)

]
= Op

(
1

nhp

)
.

When it comes to the degenerate U-process indexed by (y, x, α, γ), the maximal variance for the kernel

function f (·, ·) is of order h2p as in Lopez (2011). Hence the application of (C.4) gives the desired rate

Op

(
logn
nhp

)
.

Lemma A.3 Under Assumptions (D)-(K), we have: supα∈A supx∈J supy∈[yl,y0u]

∣∣∣F̃ (y|x;α)− F̂Y (y|x;α)
∣∣∣ =

Op

(
logn
nhp

)
.

Proof. By the definition of these two estimators, we get:

F̃ (y|x;α)− F̂Y (y|x;α)

=

 −ϕ−1
α

[
−
∑
Vi≤y,Di=1 ϕα

(
ŜV
(
V −i |x

))
− ϕα

(
ŜV
(
V −i |x

)
− wnγ (x,Xi)

)]
+ϕ−1

α

[
−
∑
Vi≤y,Di=1 ϕ

′

α

(
ŜV (Vi|x)

)
wnγ (x,Xi)

] 
= Rn3 (y, x;α) +Rn4(y, x;α),

where

Rn3 (y, x;α) =
ϕ
′′

α{ϕ−1
α (∆)}

2ϕ′α{ϕ−1
α (∆)}3

[
−
∫ y
yl
ϕ
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x)

+
∫ y
yl
ϕ
′

α (SV (v|x)) dFV,D=1 (v|x)

]2

and

Rn4(y, x;α) =
−1

ϕ′α
{
ϕ−1
α (∆)

}
 −∑Vi≤y,Di=1 ϕα

(
ŜV
(
V −i |x

))
− ϕα

(
ŜV
(
V −i |x

)
− wnγ (x,Xi)

)
+
∑
Vi≤y,Di=1 ϕ

′

α

(
ŜV (Vi|x)

)
wnγ (x,Xi)

 .
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Hence it suffi ces to show that

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|Rn3 (y, x;α) | = Op

(
log n

nhp

)
and

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|Rn4 (y, x;α) | = Op

(
log n

nhp

)
.

In the expression for Rn3 (y, x;α), the multiplier ϕ
′′

α/2ϕ
′
α remains uniformly bounded under our assumption

(G). Hence it suffi ces to show that the following holds:[
−
∫ y

yl

ϕ
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x) +

∫ y

yl

ϕ
′

α (SV (v|x)) dFV,D=1 (v|x)

]
= Op

(
log n

nhp

)1/2

.

Omitting the smaller than Op
(

logn
nhp

)
terms, we obtain that∣∣∣∣−∫ y

yl

ϕ
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x) +

∫ y

yl

ϕ
′

α (SV (v|x)) dFV,D=1 (v|x)

∣∣∣∣
≤

∣∣∣∣∫ y

yl

ϕ
′′

α {SV (v|x)}
[
F̂V (v|x)− FV (v|x)

]
dFV,D=1 (v|x)

∣∣∣∣
+
∣∣∣ϕ′α {SV (v|x)}

[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]∣∣∣
+

∣∣∣∣∫ y

yl

ϕ
′′

α {SV (v|x)}
[
F̂V,D=1 (v|x)− FV,D=1 (v|x)

]
dFV (v|x)]

∣∣∣∣
≤ M

(
|F̂V (v|x)− FV (v|x) |+ |F̂V,D=1 (v|x)− FV,D=1 (v|x) |

)
.

The result follows again from the stated facts (A.3) and (A.4).

As for Rn4 (y, x;α), taking second order Taylor expansion of∑
Vi≤y,Di=1

ϕα

(
ŜV
(
V −i |x

))
− ϕα

(
ŜV
(
V −i |x

)
− wnγ (x,Xi)

)
,

we get

Rn4 (y, x;α) = −1

2

∑
Vi≤y,Di=1

ϕ
′′

α (∆)w2
nγ (x,Xi) ,

and by the decreasing property of ϕ
′′

α (·) assumed in Assumption (G1)(i) and the fact that for large enough

n, supx∈J supy∈[yl,y0u] ŜV (·|x) ≥ δ0, this term is bounded from above by

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

|Rn4 (y, x;α) | ≤ sup
x∈J

(
1

2
|ϕ
′′

α (δ0) |
n∑
i=1

w2
nγ (x,Xi)

)
.

The conclusion follows from the boundedness of ϕ
′′

α (·) at point δ0 and the standard kernel density argument

showing
∑n
i=1 w

2
nγ (x,Xi) = Op

(
logn
nhp

)
.

8 Appendix B: Asymptotic Validity of the Confidence Sets

To ease the notational burden and because we are fixing β at βo under the null, we will denote the unique

α (βo) simply as αo for the given βo, i.e., F (x′βo|x;αo) = q a.s. Similarly we use notations α̂o and α̃o
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instead of α̂ (βo) and α̃ (βo). We will first present a proof of the main theorem which makes use of results in

the subsequent lemmas.

Proof of Theorem 4.5. It suffi ces to prove those weak convergence results in Prop. 4.4. As already

explained in the main text, there are both common and distinct parts in proving (3.18) and (3.19). T̂n (βo)

resembles the population criterion function closely we would argue below that α̂o converges in probability to

αo and prove the stochastic equicontinuity of the process nhp/2 [Tn (βo;α)−Bn (βo;α)] w.r.t α in the local

neighborhood whose radius is determined by the convergence rate of α̂o to αo. When it comes to T̃n (βo),

we will explore the fact that [Tn (βo;α)−Bn (βo;α)] has different asymptotic behaviors for α = αo and for

α 6= αo as in Santos (2006).

The proof of (3.18) will be accomplished in Steps 1-3 below and the proof of (3.19) will be accomplished

in Steps 1’-3’below.

Step 1. We show the asymptotic normality of the degenerate U-statistic at αo:

nhp/2√
Σ (βo;αo)

[Tn (βo;αo)−Bn (βo;αo)] =⇒ N (0, 1) , (B.1)

where Σ (β;α) is defined in (B.8).

Step 2. We show α̂o →p αo and characterize the convergence rate, α̂o − αo = Op (δn), with δn =

1√
n
∨ logn

nhp . Moreover, Σ̂ (βo;αn)− Σ (βo;αn) = op (1) for ∀αn →p αo.

Step 3. We show the stochastic equicontinuity of the process [Tn (βo;α)−Bn (βo;α)] indexed by α in a

neighborhood of αo, i.e. ∀ε > 0, we could find a δ ≤ O (δn), s.t.

lim sup
n→∞

Pr

(
sup

|α−αo|<δ
nhp/2 |[Tn (βo;α)−Bn (βo;α)]− [Tn (βo;αo)−Bn (βo;αo)]| ≥ ε

)
< ε. (B.2)

Step 1
′
is the same as Step 1.

Step 2
′
. We show that outside the neighborhood Aεno defined in (3.16), the test statistic will diverge to

positive infinity:

min
α∈A\Aεno

nhp/2√
Σ̂ (βo;α)

|Tn (βo;α)−Bn (βo;α)| → +∞. (B.3)

Step 3
′
. We argue the convergence of α̃o →p αo due to (B.3) and the uniqueness of αo. Finally the result

follows from the stochastic equicontinuity of the process [Tn (βo;α)−Bn (βo;α)] indexed by α via (B.2) in

the neighborhood Aεno .

Notice that Step 1 leads to (3.17) while Steps 1-3 give us (3.18). Steps 1
′
-3
′
lead to (3.19), see Santos

(2006). Once we verify the claims in those three steps, combining them together leads to the conclusion that

both confidence sets would be of exact size asymptotically.

Proof of Step 1. We show that the asymptotic behavior of Tn (βo;αo) is given by a degenerate U-statistic.
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Note that

Tn (βo;αo) =

∫
J

[
F̂ (x′βo|x;αo)− FY (x′βo|x;αo)

]2
f2
X (x) dx+ op

(
n−1h−p/2

)
=

∫
J

[
1

n

n∑
i=1

Wγ (x,Xi) (c (x′βo|Zi, x;αo) + b (x′βo|Zi, x;αo))

]2

dx

+

∫
J
Rn (x′βo, x;α)

[
1

n

n∑
i=1

Wγ (x,Xi) (c (x′βo|Zi, x;αo) + b (x′βo|Zi, x;αo))

]
dx

+

∫
J
R2
n (x′βo, x;α) dx+ op

(
n−1h−p/2

)
=

∫
J

[
1

n

n∑
i=1

Wγ (x,Xi) (c (x′βo|Zi, x;αo) + b (x′βo|Zi, x;αo))

]2

dx+ op

(
n−1h−p/2

)
.

The first equality where we replaced f̂2
X (x) with f2

X (x) follows the same argument as in Prop.1 in Hardle

and Mammen (1993). In the second equality we apply Cauchy-Shwartz inequality to the second term and

use the result that sup |Rn (x′βo, x;α)| = Op

(
logn
nhp

)
. We need Assumption (H) which states: (logn)2

nh3p/2
→ 0,

to show the negligibility of the third term. Also for simplicity, we omit the range of the integral, so

Tn (βo;αo) = In1 + 2In2 + 2In3 + In4 + s.o. (B.4)

where

In1 =
1

n2

n∑
i=1

∫
W 2
γ (x,Xi) c

2 (x′βo|Zi, x;αo) dx,

In2 =
1

n2

∑
1≤i<j≤n

∫
Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) c (x′βo|Zj , x;αo) dx,

In3 =
1

n

n∑
i=1

∫
Wγ (x,Xi) c (x′βo|Zi, x;αo)

 1

n

n∑
j=1

Wγ (x,Xj) b (x′βo|Zj , x;αo)

 dx,
In4 =

∫ [
1

n

n∑
i=1

Wγ (x,Xi) b (x′βo|Zi, x;αo)

]2

dx.

The above decomposition and the next sequence of lemmas parallel the results presented by Hall (1984ab),

hence we follow his notation as closely as possible. In addition, we write conditional expectation given

covariates as E
′
, i.e. E

′
[Z] = E [Z|X1, · · ·, Xn], as in Hall (1984b). Recall from (C.2) in Appendix C,

σ2 (y|Xi, x;αo) = E
′ [
c2 (y|Zi, x;αo)

]
and σ2 (y|x;αo) = limxn→x σ

2 (y|xn, x;αo) .

The calculation in the proof of Lemma C.3 in Appendix C gives In4 = O
(
h2s +

∑r
j=1 λ

2
j

)
immediately,

hence nhp/2In4 = O

(
nhp+2s+

∑r
j=1 λ

2
jnh

p

hp/2

)
= o

(
1

hp/2

)
by Assumption (H), which is of smaller order than

nhp/2In1 demonstrated in Lemma B.1 below. The proof of Step 1 will be completed via Lemmas B.1-B.5.

Lemma B.1 Under Assumptions (D)-(K), we have that

nhp/2In1 =
1

hp/2

∫
K2 (u) du

∫
σ2 (x′βo|x;αo) fX (x) dx+ s.o.
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Proof. As in Hall, Li and Racine (2004), after taking conditional expectation one gets

E
′
[In1] =

1

n2h2p

n∑
i=1

∫
K2

(
xc −Xc

i

h

)
σ2 (x′βo|Xi, x;αo) dx+ s.o.,

and by boundedness of c (x′βo|Zi, x;αo) , we obtain:

(nhp)
4
E
′
[
In1 − E

′
[In1]

]2
≤M

n∑
i=1

(∫
K2

(
xc −Xc

i

h

)
dxc
)2

= O
(
nh2p

)
. (B.5)

Hence by Markov’s inequality, we get

lim
M→∞

lim sup
n→∞

Pr
{∣∣∣In1 − E

′
[In1]

∣∣∣ > Mn−3/2h−p|X1, · ··, Xn

}
= 0,

and thus the unconditional probability goes to zero too, i.e.,
∣∣∣In1 − E

′
[In1]

∣∣∣ = Op
(
n−3/2h−p

)
. Since

nhp/2E
[
E
′
[In1]

]
=

1

h3p/2

∫
σ2 (x′βo|Xi, x;αo)K

2

(
xc −Xc

i

h

)
fX (Xi) dXidx+ s.o.

=
1

hp/2

∫
K2 (u) du

∫
σ2 (x′βo|x;αo) fX (x) dx+ s.o.,

another application of Markov’s inequality gives nhp/2In1 = nhp/2E
′
[In1] + s.o..

Now we define

Bn (β;α) =
1

nhp

∫
K2 (u) du

∫
σ2 (x′β|x;α) fX (x) dx. (B.6)

Before dealing with In2, we introduce further notations needed in the martingale representation:

n2h2pIn2 =
∑

1≤j<i≤n
Wnij =

n∑
i=2

Yni, (B.7)

where Wnij =
∫
h2pWγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) c (x′βo|Zj , x;αo) dx, and Yni =

∑i−1
j=1Wnij . Now

the partial sum Sni =
∑i
j=1 Ynj is a martingale triangular array with respect to the filter Fn,i generated by

X1, · · ·, Xn and Z1, · · ·, Zi. Let

V 2
n =

n∑
i=2

E
[
Y 2
ni|Fn,i−1

]
=

n∑
i=2

i−1∑
j=1

E
[
W 2
nij |Fn,i−1

]
+ 2

n∑
i=2

∑
1≤j<k≤i−1

E [WnijWnik|Fn,i−1]

= Vn1 + Vn2.

Further let Σo ≡ Σ (βo;αo), where

Σ (β;α) = 2

∫
σ4 (x′β|x;α) f2

X (x) dx

∫ [∫
K (u)K (v + u) du

]2

dv. (B.8)

Lemma B.2 Under Assumptions (D)-(K), we have that an ≡ E [Vn1] = n(n−1)
4 h3dΣo + s.o.
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Proof. To see why the above expression holds, we first focus on the conditional expectation given covariates:

E

[∫
h2pWγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) c (x′βo|Zj , x;αo) dx

]2

=

∫∫∫∫  ∫∫ K (xc−Xcih

)
K
(
xc−Xcj
h

)
c (x′βo|Zi, x;αo) c (x′βo|Zj , x;αo)×

K
(
y−Xci
h

)
K
(
y−Xj
h

)
c (y′βo|Zi, x;αo) c (y′βo|Zj , x;αo) dxdy

×
dQ (Zi|Xi) dQ (Zj |Xj) dFX (Xi) dFX (Xj) + s.o.

=

∫∫ [ ∫ c (x′βo|Zi, x;αo) c (y′βo|Zi, x;αo) dQ (Zi|Xi)

K
(
x−Xci
h

)
K
(
y−Xci
h

)
dFX (Xi)

]2

dxdy + s.o.

Also define

η (x′βo, y
′βo|Xi, x;αo) =

∫
c (x′βo|Zi, x;αo) c (y′βo|Zi, x;αo) dQ (Zi|Xi)

= E
′
[c (x′βo|Zi, x;αo) c (y′βo|Zi, x;αo)] .

Finally, by omitting smaller order terms, we obtain:

Σo/2 =
1

h3d

∫ ∑
xd,yd

η (x′βo, y
′βo|Xi, x;αo)K

(
xc −Xc

i

h

)
K

(
yc −Xi

h

)
fX (Xi) dXi

2

dxdy + s.o.(B.9)

=
1

hd

∫ ∑
xd,yd

η
(
x′βo, y

′βo|
(
xc − uh, xd

)
, x;αo

)
K (u)K

(
yc − xc
h

+ u

)
fX
(
xc − uh, xd

)
du

2

dxdy + s.o.

=

∫
σ4 (x′βo|x;αo) f

2
X (x) dx

∫ [∫
K (u)K (v + u) du

]2

dv + s.o.

Now we are ready to present the result for In2.

Lemma B.3 Under Assumptions (D)-(K), we have that 2nhp/2In2 =⇒ N (0,Σo) .

Proof. The proof follows modification of Lemmas 1 & 2 in Hall (1984b), and we use the fact that the

centering term c (x′βo|Zi, x;αo) is uniformly bounded repeatedly without further mentioning.

First, we would show: Vn1 = an+op (1) = n(n−1)
4 h3pΣo+op (1) by controlling E [Vn1 − an]

2: E [Vn1 − an]
2 ≤

Mn3E
[
W 4
n12

]
, and the fourth moment shall be bounded in a similar way as in Hall (1984a):

E
[
W 4
n12

]
≤
∫∫∫∫ E

∑
xd
(i)

4∏
i=1

K

(
xc(i) −Xc

1

h

)
c
(
x(i)′βo|Z1, x

(i);αo

)


2

dxc(1) · · · dxc(4)

≤ Mh2p

∫∫∫∫ 
∑
xd
(i)

∫
K (v)

[
4∏
i=2

K

(
v +

xc(i) − xc(1)

h

)]
f
(
xc(1) − vh

)
dv


2

dxc(1) · · · dxc(4)

= Mh5p

∫∫∫∫ 
∑
xd
(i)

∫
K (v)

[
4∏
i=2

K
(
v + w(i)

)]
f
(
x(1) − vh

)
dv


2

dxc(1)dw(2)dw(3)dw(4)

= O
(
h5p
)
.
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Hence E [Vn1 − an]
2

= O
(
n3h5p

)
, and Vn1 = an +Op

(
n3/2h5p/2

)
.

Analogously, one bounds the following higher order moment terms by routine yet tedious calculation as

done on Page 251 in Hall (1984b),

E [Wn13Wn14Wn23Wn24] = O
(
h7p
)
and E

[
W 2
n12W

2
n13

]
= O

(
h5p
)
.

From there we could show Vn2 being negligible, since

E
[
V 2
n2

]
= 4E

∑
1≤j<k≤n−1

(
n∑

i=k+1

WnijWnik

)2

≤ M
∑

1≤j<k≤n−1

{
nE
[
W 2
n12W

2
n13

]
+ n2E [Wn13Wn14Wn23Wn24]

}
= O

(
n3h5p + n4h7p

)
.

Thus we get E
′ [
n−2h−3pVn2

]2
= Op

(
1
nhp + hp

)
= op (1) .

Finally, we check the Lindeberg condition in order to apply Corollary 3.2 in Hall and Heyde (1980):

∀ε > 0, as n→∞,

n−2h−3p
n∑
i=1

E
[
Y 2
niI
(
|Yni| > εnh3p/2

)]
→ 0. (B.10)

The proof shall be accomplished by Markov’s inequality and computing the fourth moments:
∑n
i=2E

[
Y 4
ni

]
=(

n3h5p
)
, since

n−2h−3p
n∑
i=1

E
[
Y 2
niI
(
|Yni| > εnh3p/2

)]
≤ ε−2n−4h−6p

n∑
i=2

E
[
Y 4
ni

]
= O

(
1

nhp

)
.

Overall, n−2h−3pV 2
n → Σo/4 in probability, n−2h−3pVn2 = op (1) and one would deduce

n−1h−3p/2
n∑
i=2

Yni =⇒ N

(
0,

Σo
4

)
which is the desired result once rewritten in terms of 2In2.

Next we characterize the stochastic order of In3, which is smaller than In2 when we select an under-

smoothing bandwidth.

Denote bn (x) = 1
n

∑n
j=1Wγ (x,Xi) b (x′βo|Zj , x;αo), and γn (x) = E [bn (x)]. Break In3 into In3 =

Jn1 + Jn2, where

Jn1 =
1

n

n∑
i=1

∫
Wγ (x,Xi) c (x′βo|Zi, x;αo) γn (x) dx and

Jn2 =
1

n

n∑
i=1

∫
Wγ (x,Xi) c (x′βo|Zi, x;αo) [bn (x)− γn (x)] dx

Lemma B.4 Under Assumptions (D)-(K), Jn2 = op
(
n−1h−p/2

)
.
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Proof. The following string of computation is routine:

E
′ [
J2
n2

]
=

1

n2
E
′

( n∑
i=1

∫
Wγ (x,Xi) c (x′βo|Zi, x;αo) [bn (x)− γn (x)] dx

)2


=
1

n2

n∑
i=1

E
′

[(∫
Wγ (x,Xi) c (x′βo|Zi, x;αo) [bn (x)− γn (x)] dx

)2
]

≤ 1

n2

n∑
i=1

E
′
[∫

Wγ (x,Xi) c
2 (x′βo|Zi, x;αo) dx

]
×
∫
Wγ (x,Xi) [bn (x)− γn (x)]

2
dx

≤ 1

n2
sup
i
E
′
[∫

Wγ (x,Xi) c
2 (x′βo|Zi, x;αo) dx

] n∑
i=1

∫
Wγ (x,Xi) [bn (x)− γn (x)]

2
dx

where the first inequality is merely Cauchy-Schwartz inequality and the claim would follow if one can show

E
′ [
J2
n2

]
= op

(
n−2h−p

)
via

E

[
n∑
i=1

∫
hpWγ (x,Xi) [bn (x)− γn (x)]

2
dx

]
= op (1) .

Indeed by expanding [bn (x)− γn (x)]
2 into diagonal and cross product terms and recalling the expression of

the bias term in the linear representation, we get

E

[∫
hpWγ (x,Xi) [bn (x)− γn (x)]

2
dx

]
≤ M

(
nh2p

)−1
E

[∫
hpWγ (x,Xi)

]
dx×

E

[∫
hpWγ (x,Xj)

{
[FV,D=1 (·|Xj)− FV,D=1 (·|x)]

2
+ [FV (·|Xj)− FV (·|x)]

2
}
dx

]
+M (nhp)

−2
E

[∫
h2pW 2

γ (x,Xi)
{

[FV,D=1 (·|Xi)− FV,D=1 (·|x)]
2

+ [FV (·|Xi)− FV (·|x)]
2
}
dx

]
≤ M (nhp)

−1
E

[∫
K

(
xc −Xc

j

h

){
[FV,D=1 (·|Xj)− FV,D=1 (·|x)]

2
+ [FV (·|Xj)− FV (·|x)]

2
}
dx

]
= o

(
1

n

)
,

where the last one follows from the standard kernel convergence result, thus the claim is proved.

Lemma B.5 Under assumptions (D)-(K),
√
n
hs Jn1 = Op (1).

Proof. Conditional on the covariates, Jn1 is a sum of centered independent random variables: Jn1 =

1
nhp

∑n
i=1 Zni with Zni =

∫
hpWγ (x,Xi) c (x′βo|Zi, x;αo) γn (x) dx. Actually one could show the CLT holds

for
√
n
hs Jn1 as in Hall (1984b) by verifying the Lindeberg condition: ∀ε > 0,

1

nh2(p+s)

n∑
i=1

E
[
Z2
niI
(
|Zni| > ε

√
nhp+s

)]
→ 0,

and convergence in probability of 1
nh2(p+s)

E (
∑n
i=1 Zni)

2. What we do here is much simpler by bounding the

second moments of Zni since we are using undersmoothed bandwidth, only the weak result stated in the
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lemma is of interest to us:

EZ2
ni ≤Mh2p

∫
K (z)K (z + u) dz

∫∫
γn (x) γn (x+ uh) dxdu ≤Mh2(p+s).

The first inequality follows a change of variables and bounding the centering term, while the second one

follows by expanding the bias term up to second order. Now

E

[√
n

hs
Jn1

]2

= E

[
1√
nhp+s

n∑
i=1

Zni

]2

≤ M

nh2(p+s)
× nh2(p+s).

Therefore under the Assumption (H) that we are using the bandwidth to kill the bias, In3 is of smaller order.

Proof of Step 2. Recall the result in Prop. 2.6, which states that given any βo under the null we have

a unique αo minimizing (3.1). By Assumption (G), FY (y|x;α) is continuous w.r.t α, so is the population

criterion function (3.1). Now the compactness of A guarantees the well separation of this minimum point.

Furthermore uniform almost surely convergence of F̂Y (y|x;α) to FY (y|x;α) as shown in Cor. 3.8 would give

the desired convergence of α̂o to αo by Theorem 5.7 in Van der Vaart (1998). Getting the rate of convergence

is a bit more complicated and we separate it out in the next lemma.

Referring to the claim that Σ̂ (βo;αn)−Σ (βo;αn) = op (1) for ∀αn →p αo, a close inspection of Σ (βo;α)’s

expression from Appendix C shows that only ϕ
′

α, ϕ
′′

α coupled with FV (v|x) and FV,D=1 (v|x) are involved.

By Assumption (G2), ϕ
′

α and ϕ
′′

α are uniformly continuous w.r.t α and the plug-in type estimator Σ̂ (βo;α)

merely replaces FV (v|x) and FV,D=1 (v|x) with their kernel estimators F̂V (v|x) and F̂V,D=1 (v|x). Hence

the result follows from the standard convergence result in kernel estimation.

Lemma B.6 Under Assumptions (D)-(K), (SC), (V0), and (V1), we have that α̂o − αo = Op (δn), with

δn = 1√
n
∨ logn

nhp .

Proof. To get the convergence rate of α̂o to αo, notice that the minimizer satisfies the following first order

condition given the smoothness of generator function in Assumption (G):∫ [
F̂ (x′βo|x; α̂o)− q

]
f̂2
X (x)

(
∂

∂α
F̂ (x′βo|x; α̂o)

)
dx = 0.

Taking a first order expansion around αo, we get

(α̂o − αo)
∫ {(

∂

∂α
F̂ (x′βo|x;αo)

)2

+
∂2

∂α2
F̂ (x′βo|x;αo)

[
F̂ (x′βo|x;αo)− q

]}
f̂2
X (x) dx

=

∫ [
F̂ (x′βo|x;αo)− q

]
f̂2
X (x)

(
∂

∂α
F̂ (x′βo|x;αo)

)
dx+ s.o.

=

∫ [
F̂ (x′βo|x;αo)− q

]
f̂2
X (x)

(
∂

∂α
FY (x′βo|x;αo)

)
dx

+

∫ [
F̂ (x′βo|x;αo)− q

]
f̂2
X (x)

(
∂

∂α
F̂ (x′βo|x;αo)−

∂

∂α
FY (x′βo|x;αo)

)
dx+ s.o.
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The integral on the LHS converges to the following term in probability:∫ {(
∂

∂α
F (x′βo|x;αo)

)2

+
∂2

∂α2
F (x′βo|x;αo) [F (x′βo|x;αo)− q]

}
f2
X (x) dx

=

∫ (
∂

∂α
F (x′βo|x;αo)

)2

f2
X (x) dx > 0,

where we have used the fact that [F (x′βo|x;αo)− q] = 0 for any x.

Now we denote ∂
∂αFY (x′βo|x;αo) = G (x′βo, x;αo) , the first term on RHS could be written as

1

h2p
U (2)
n (f) +

1

n

n∑
i=1

∫
Wγ (x,Xi) b (x′βo|Zi, x;αo) f̂X (x)G (x′βo, x;αo) dx+ s.o.

=
1

h2p
U (2)
n (f) +O (hs) + s.o.

where f ∈ F3 in Appendix C. After symmetrizations, the Hoeffding-Hajek decomposition shows that the

leading term is U (1)
n (π1f) /hp, which is

1

n

n∑
i=1

∫
Wγ (x,Xi) c (x′βo|Zi, x;αo) fX (x)G (x′βo, x;αo) dx = Op

(
n−1/2

)
,

by standard Lindeberg central limit theorem, similar to the average derivative type result under Assumption

(H). The second term on the RHS is∫ [
F̂ (x′βo|x;αo)− q

]
f̂2
X (x)× ϕ̇

−1

α

(∫
ϕ̇
′

α (SV (v|x)) dFV,D=1 (v|x)

)
×[∫

ϕ̇
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x)−

∫
ϕ̇
′

α (SV (v|x)) dFV,D=1 (v|x)

]
dx

≤ M

(∫ [
F̂ (x′βo|x;αo)− q

]2
dx

)1/2

×(∫ [∫
ϕ̇
′

α

(
ŜV (v|x)

)
dF̂V,D=1 (v|x)−

∫
ϕ̇
′

α (SV (v|x)) dFV,D=1 (v|x)

]2

dx

)1/2

= Op

(
log n

nhp

)
,

where the second term in the bracket could be handled just as the plug-in estimator.
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Proof of Step 3. The following decomposition holds for an arbitrary α:

nhp/2√
Σ̂ (βo;α)

[Tn (βo;α)−Bn (βo;α)] (B.11)

=
nhp/2√
Σ̂ (βo;α)

[∫ [
F̂ (x′βo|x;α)− FY (x′βo|x;α) + FY (x′βo|x;α)− q

]2
f̂2
X (x) dx−Bn (βo;α)

]

=
nhp/2√
Σ̂ (βo;α)

 1

n2

∑
1≤i<j≤n

∫
Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) c (x′βo|Zj , x;αo) dx


+

nhp/2√
Σ̂ (βo;α)

[
1

nfX (x)

n∑
i=1

∫
[FY (x′βo|x;α)− q]Wγ (x,Xi) c (x′βo|Zi, x;αo) f̂X (x) dx

]

+
nhp/2√
Σ̂ (βo;α)

∫
[FY (x′βo|x;α)− q]2 f̂2

X (x) dx+ s.o.

=
nhp/2√
Σ̂ (βo;α)

[Pn1 (α) + Pn2 (α) + Pn3 (α)] + s.o.

The proof will be completed once we show that ∀ε > 0, one could find a δ, s.t.

lim sup
n→∞

Pr

(
sup

|α1−α2|<δ
nhp/2 |Pn1 (α1)− Pn1 (α2)| ≥ ε

)
< ε,

and for ∀α s.t. |α− αo| ≤ O (δn), nhp/2 [Pn2 (α) + Pn3 (α)] = op (1). It is rather easy to bound the

deterministic term: nhp/2Pn3 (α) ≤ nhp/2M supx [FY (x′βo|x;α)− q]2 = Mnhp/2 ×
(

1
n ∨

(
logn
nhp

)2
)

= o (1)

under Assumption (H). The other two claims will be proved in the subsequent lemmas.

Lemma B.7 Under Assumptions (D)-(K), ∀ε > 0, we could find a δ, s.t.

lim sup
n→∞

Pr

(
sup

|α1−α2|<δ
nhp/2 |Pn1 (α1)− Pn1 (α2)| ≥ ε

)
< ε.

Proof. Recalling the expression for Pn1 (α), the difference could be written as,

h2p [Pn1 (α1)− Pn1 (α2)] = U (2)
n

(
f
)

=
1

n2

∑
1≤i<j≤n

∫
h2pWγ (x,Xi)Wγ (x,Xj)

[
c (x′βo|Zi, x;α1) c (x′βo|Zj , x;α1)−
c (x′βo|Zi, x;α2) c (x′βo|Zj , x;α2)

]
dx.

As the operation (taking difference of f ∈ F4 over α defined in Appendix C) still preserves the VC property,

we have the following VC-type class of functions:

F4 =

{
f : h ≥ 0, λj ∈

[
0,
cj − 1

cj

]
, (α1, α2) ∈ A, |α1 − α2| < δ

}
with bounded envelope M and

∥∥∥P 2f
2
∥∥∥
F4
≤ σ2, where σ2 = O

(
h3pδ2

)
and using the fact that 1/ϕ

′

α and ϕ
′′

α

are Lipschitz continuous with respect to α. Now we apply Major’s (2006) tail bound with k = 2 for a large
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enough n s.t. the constraints are satisfied:

Pr

{
sup

|α1−α2|<δ
nhp/2 |Pn1 (α1)− Pn1 (α2)| ≥ ε

}
= Pr

{
sup
f∈F4

nh−3p/2
∣∣∣U (2)
n

(
f
)∣∣∣ ≥ ε}

= Pr

{
sup
f∈F4

n
∣∣∣U (2)
n

(
f
)∣∣∣ ≥ εh3p/2

}
≤M exp

[
−M

(
εh3p/2

σ

)]
= M exp

[
−M

(ε
δ

)]
.

Hence the desired result follows as δ → 0.

Lemma B.8 Under Assumptions (D)-(K), we have

sup
|α−αo|≤O(δn)

nhp/2√
Σ̂ (βo;α)

Pn2 (α) = op (1) .

Proof. Omiting the smaller order diagonal term in Pn2 (α), we consider the U-process indexed by α :

U (2)
n (f) =

1

n (n− 1)

∑
i6=j

∫
[FY (x′βo|x;α)− q]Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) dx

=
2

n (n− 1)

∑
i6=j

1

2

[ ∫
[FY (x′βo|x;α)− q]Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) dx

+
∫

[FY (x′βo|x;α)− q]Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zj , x;αo) dx

]
.

The function f belongs to F3 with |α− αo| ≤ δn in Appendix C and G (y, x;α) = [FY (y|x;α)− q]. By the

Hoeffding decomposition, we have the first linear term being dominating since the second one is of smaller

order following (C.4):

U (2)
n (f) =

2

n

n∑
i=1

∫
[FY (x′βo|x;α)− q]

∫
K (u) f (u− xch) duWγ (x,Xi) c (x′βo|Zi, x;αo) dx+ U (2)

n (π2f) .

Under Assumption (G) we have |FY (x′βo|x;α)− q| ≤Mδn, hence both the square root of maximal variance

and envelope functions are bounded up by δn in the first order Hoeffding decomposition. Hence by inequality

(2.5) in Gine and Guillou (2001), we have

E
∥∥∥U (1)

n (π1f)
∥∥∥
|α−αo|≤O(δn)

≤M
√

log n

n
δn = O

√hp log n ∨

√
log3 n

nhp

 = o (1) ,

which completes the proof.

Proof of Step 2’. First of all, the normalized drifting term is still bounded from below:

√
nPn3 (α) ≥

√
n

∫
[FY (x′βo|x;α)− q]2 f̂2

X (x) dx ≥
√
nεn + s.o.

By assumptions (K) and (V2) and compactness of J , as in Appendix C we have the functional class F4 being

of VC type with bounded envelope function and the maximal variance of order h3p just as the calculation

done in (B.9). Applying the maximal inequality by Gine and Mason (2007), we get that

h4pE

∥∥∥∥∥∥ 1

n2

∑
1≤i<j≤n

∫
Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) c (x′βo|Zj , x;αo) dx

∥∥∥∥∥∥
2

G

≤Mh3pn−2 (log n) .

41



Hence by Markov inequality, uniformly we get

Pn1 (α) =
1

n2

∑
1≤i<j≤n

∫
Wγ (x,Xi)Wγ (x,Xj) c (x′βo, Zi|x;α) c (x′βo|Zi, x;αo) dx = Op

(√
log n

nhp/2

)
.

In order to deal with Pn2, we express it in terms of standard U-statistic with the negligible diagonal term:

Pn2 (α) =
1

n (n− 1)

∑
i 6=j

∫
[FY (x′βo|x;α)− q]Wγ (x,Xi)Wγ (x,Xj) c (x′βo|Zi, x;αo) dx+ s.o.

After symmetrizations and by the inequality in Gine and Mason (2007), the above term is of orderOp

(√
logn
n

)
.

In sum, recalling Assumption (E), we have

min
α∈A\Aεno

nhp/2√
Σ̂ (βo;α)

[Tn (βo;α)−Bn (βo;α)] ≥
√
nhp√

Σ̂ (βo;α)

[
Op

(√
log n√
n

)
+Op

(√
log n

)
+
√
nεn

]
→ +∞,

because the final drifting term is positive and dominates others by Assumption (V2).

Proof of Step 3’. Recall Σo = Σ (βo;αo), and the following string of inequalities bounding the studentized

test statistic nhp/2√
Σ̂(βo;α)

[Tn (βo;α)−Bn (βo;α)] over the small neighborhood α ∈ Aεno is similar to Santos

(2006) modulo the smaller order terms:

3∑
j=1

inf
α∈Aεno

nhp/2√
Σ̂ (βo;α)

[Pnj (α)] + s.o.

≤ inf
α∈Aεno

nhp/2√
Σ̂ (βo;α)

[Tn (βo;α)−Bn (βo;α)]

≤ nhp/2√
Σ̂o

Pn1 (αo) +
nhp/2√

Σ̂o

(Pn2 (αo) + Pn3 (αo)) + s.o.

=
nhp/2√

Σ̂o

Pn1 (αo) + s.o.,

where the first inequality follows by taking infimum over three terms separately and the second inequality

follows by the fact that αo ∈ Aεno . The last equality by Pn2 (αo) + Pn3 (αo) = 0, hence the studentized test

statistic over α ∈ Aεno is bounded up by nhp/2√
Σ̂o
Pn1 (αo) plus smaller order term. Since that infα∈Aεno Pn3 (α) =

0 at αo, we could bound the studentized test statistic from below by nhp/2√
Σ̂o
Pn1 (αo) once we show the following

hold:

sup
α∈Aεno

 nhp/2√
Σ̂ (βo;α)

|Pn2 (α)|

 = op (1) and

inf
α∈Aεno

[
nhp/2

Σ̂ (βo;α)
Pn1 (α)

]
− nhp/2√

Σ̂o

Pn1 (αo) = op (1) .

The last one is easy combining α̃o →p αo and the stochastic equicontinuity of Pn1 (α) already proved in

(B.2). Based on results in Step 2
′
we know α̃o must be in Aεno for large enough n and Assumption (V2)
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states the metric inducing the neighborhood Aεno is equivalent as a standard neighborhood around αo with

radius
√
εn.

Also the proof handling Pn2 (α) follows the complete analog in Lemma B.8 with a different radius
√
εn

around αo:

E
∥∥∥U (1)

n (π1f)
∥∥∥
α∈Aεno

≤M
√

log n× εn
n

,

thereafter

sup
α∈Aεno

 2nhp/2√
Σ̂ (βo;α)

|Pn2 (α)|

 = Op

(
nhp/2 ×

√
εn
n

)
= Op

(√
nhpεn

)
= op (1) .

Proof of Bootstrap Consistency. Recall the expression for the bootstrap test statistic: for any α,

T ∗n,b (βo;α) ≡
∫ [

1

n

n∑
i=1

Wγ (x,Xi) c
∗
b

(
x
′
β|Zi, x, α

)]2

dx

=
1

n2

n∑
i=1

∫
W 2
γ (x,Xi) c

∗2
b

(
x
′
β|Zi, x, α

)
dx+

2

n2

∑
1≤i<j≤n

∫
Wγ (x,Xi)Wγ (x,Xj) c

∗
b

(
x
′
β|Zi, x, α

)
c∗b

(
x
′
β|Zj , x, α

)
dx

≡ I∗n1 (α) + 2I∗n2 (α) .

Let Zn represent the whole sample. Apparently conditional on Zn, I∗n2 (α) is a degenerate U-statistic for

any α, i.e. E
[
I∗n2 (α) |Zn,M∗i,b

]
= 0 by the construction of the multiplier bootstrap procedure. Referring

to its conditional second moment, we have
(
E
[
I∗2n2 (α) |Zn

]
− n(n−1)

4 h3pΣ (βo;α)
)
converges to 0 for almost

surely sample realization Zn. Hence continuing the same argument as in the proof of Lemma B.2, for almost

surely sample realization Zn, we have

2nhp/2I∗n2 (α) =⇒ N (0,Σ (βo;α)) .

When it comes to I∗n1 (α), we get that nhp/2 [I∗n1 (α)−Bn (α)] converges to zero in probability uniformly

in α, for almost surely sample realization Zn. This is because I∗n1 (α) goes to its conditional expectation

E [I∗n1 (α) |Zn] = In1 (α) defined in (B.4) by standard LLN and nhp/2 [In1 (α)−Bn (α)] goes to zero uni-

formly in α for almost surely sample realization Zn because of (B.5) and the subsequent arguments. Also

the negligibility of replacing the Σ (βo;α) with its plug-in consistent estimator Σ̂ (βo;α) follows the same

argument as in the proof of Step 2. In sum, we have shown the following conditional weak convergence:

nhp/2

Σ (βo;α)

[
T ∗n,b (βo;α)−Bn (α)

]
=⇒ N (0, 1) ,

uniformly in α. In particular the result holds for both α̂o and α̃o, hence the validity of bootstrap confidence

sets follow immediately.
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9 Appendix C: Auxiliary Results

In this appendix, we present several useful results. The first one is the Hadamard differentiability of

SY (·|x;α) as a functional of (SV (·|x) , SV,D=1 (·|x)), see Lemma C.1. Although we didn’t actually use it in

our proofs, as it is for a fixed α, we present it here since it generalizes a similar result for the Kaplan-Meier

estimator in Van der Vaart and Wellner (1996) and the conditional Kaplan-Meier estimator in Dabraska

(1987, 1989) assuming independent censoring. In Lemma C.2, we present the asymptotic variance and bias

of the plug-in estimator F̂ (y|x;α). Finally we collect some useful results on local U-processes used repeatedly

in the proofs of the main results in Appendices A and B.

9.1 Hadamard Differentiability

Lemma C.1 Suppose the copula generator ϕα (·) is third order continuously differentiable and ϕ′α (·) is not

equal to zero. Then SY (·|x;α) is Hadamard differentiable from the domain of D−
[
yl, y

0
u

]
×BV1

[
yl, y

0
u

]
into

D−
[
yl, y

0
u

]
, where D−

[
yl, y

0
u

]
denote the space of càglàd functions on

[
yl, y

0
u

]
and BV1

[
yl, y

0
u

]
????

Proof. First consider ϕα ◦ S (·|x;ϕx) = θ (SV (·|x) , SV,D=1 (·|x)) (·), where

θ (SV (·|x) , SV,D=1 (·|x)) (·) =

∫ ·
0

ϕ
′

α {SV (s|x)} dSV,D=1 (s|x) .

Now we shall apply Lemma 20.10 in Van der Vaart (1998) to θ (SV (·|x) , SV,D=1 (·|x)). A close inspection

shows that the proof does not rely on whether we are dealing with D−
[
yl, y

0
u

]
or D

[
yl, y

0
u

]
. The derivative

is given combining Van der Vaart’s formula and chain rule on ϕ−1
α :

1

ϕ′α ◦ SY (·|x;α)

(
h2ϕ

′

α (SV (s|x)) |·yl −
∫ ·
yl

h2−dϕ
′

α (SV (s|x)) +

∫ ·
yl

ϕ
′′

α (SV (s|x))h1dSV,D=1 (s|x)

)
(C.1)

=
1

ϕ′α ◦ SY (·|x;α)

(
h2ϕ

′

α (SV (·|x))−
∫ ·
yl

h2−ϕ
′′

α (SV (s|x)) dSV (s|x) +

∫ ·
yl

ϕ
′′

α (SV (s|x))h1dSV,D=1 (s|x)

)
Notice when we set h1 = FV (·|x) − F̂V (·|x) and h2 = FV,D=1 (·|x) − F̂V,D=1 (·|x), the above expression is

consistent with our linear representation, although in a pointwise sense.

Remark 9.1 Given the weak convergence of kernel estimators of the (sub) survival functions of observable

V and the above Hadamard differentiability, the weak convergence of the plug-in estimator is immediate

(with a given α). Also, by Lemma 3.9.23 in van der Vaart and Wellner (1996), one could obtain the

weak convergence of the conditional quantile process as long as the conditional density function exist and

is bounded away from zero. Note merely upon change of notation, our Lemma C.1 also works for the

marginal survival function SY (·|α) when the covariate X is absent, which gives another proof of the weak

convergence result in Rivest and Wells (2003), namely their Theorem 2. Moreover for the marginal survival

function, since the empirical (sub) survival functions are effi cient estimators, by the results in Section 25.7

in Van der Vaart (1998) we could conclude the effi ciency of the plug-in estimator and the copula graphic

estimator in Rivest and Wells (2003) given the above Hadamard differentiability. Again this generalizes the
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classical result showing the Kaplan-Meier estimator is effi cient under independence censoring assumption,

since now the dependence structure could be allowed to be different (but with a known generator ϕ and a fixed

α).

9.2 Asymptotic Variance and Bias of F̂ (y|x;α)

Lemma C.2 The asymptotic covariance of
√
nhp

[
F̂ (t|x;α)− FY (t|x;α) , F̂ (s|x;α)− FY (s|x;α)

]
is given

by

Γ (t, s|x;α) =
||K||22

fX (x)ϕ′α {SY (t|x;α)}ϕ′α {SY (s|x;α)}

× [

∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV (u ∧ v|x)− FV (u|x)FV (v|x)] dFV,D=1 (u|x) dFV,D=1 (v|x)

−
∫ t

yl

ϕ
′′

α {SV (v|x)}ϕ
′

α {SV (s|x)} [FV,D=1 (v ∧ s|x)− FV (v|x)FV,D=1 (s|x)] dFV,D=1 (v|x)

−
∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV,D=1 (u ∧ v|x)− FV (v|x)FV,D=1 (u|x)] dFV (u|x) dFV,D=1 (v|x)

−
∫ s

yl

ϕ
′′

α {SV (v|x)}ϕ
′

α {SV (t|x)} [FV,D=1 (v ∧ t|x)− FV (v|x)FV,D=1 (t|x)] dFV,D=1 (v|x)

+ϕ′α {SV (t|x)}ϕ′α {SV (s|x)} [FV,D=1 (t ∧ s|x)− FV,D=1 (t|x)FV,D=1 (s|x)]

+

∫ s

yl

ϕ
′′

α {SV (v|x)}ϕ
′

α {SV (t|x)} [FV,D=1 (v ∧ t|x)− FV (t|x)FV,D=1 (v|x)] dFV (v|x)

−
∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV,D=1 (u ∧ v|x)− FV (u|x)FV,D=1 (v|x)] dFV,D=1 (u|x) dFV (v|x)

+

∫ t

yl

ϕ
′′

α {SV (v|x)}ϕ
′

α {SV (s|x)} [FV,D=1 (v ∧ s|x)− FV,D=1 (v|x)FV,D=1 (s|x)] dFV (v|x)

+

∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV,D=1 (u ∧ v|x)− FV (u|x)FV,D=1 (v|x)] dFV (u|x) dFV (v|x)].

Proof. We would first calculate the conditional covariance for the centering term c (t|Zi, x;α) in the linear

representation. Again we write conditional expectation given covariates as E
′
, i.e. E

′
[Z] = E [Z|X1, · · ·, Xn]

as in Hall (1984b). For any t, s, the following equalities need no further explanation:

E
′
[(I [Vi ≤ t]− FV (t|Xi)) (I [Vi ≤ s]− FV (s|Xi))] = FV (t ∧ s|Xi)− FV (t|Xi)FV (s|Xi) ,

E
′
[(I [Vi ≤ t,Di = 1]− FV,D=1 (t|Xi)) (I [Vi ≤ s,Di = 1]− FV,D=1 (s|Xi))]

= FV,D=1 (t ∧ s|Xi)− FV,D=1 (t|Xi)FV,D=1 (s|Xi) , and

E
′
[(I [Vi ≤ t]− FV (t|Xi)) (I [Vi ≤ s,Di = 1]− FV,D=1 (s|Xi))] = FV,D=1 (t ∧ s|Xi)−FV (t|Xi)FV,D=1 (s|Xi) .
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Therefore by straightforward yet tedious algebra, one gets

η (t, s|Xi, x;α) = E
′
[c (t|Zi, x;α) c (s|Zi, x;α)]

=
1

ϕ′α {SY (t|x;α)}ϕ′α {SY (s|x;α)} ×

[

∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV (u ∧ v|Xi)− FV (u|Xi)FV (v|Xi)] dFV,D=1 (u|x) dFV,D=1 (v|x)

−
∫ t

yl

ϕ
′′

α {SV (v|x)}ϕ′α {SV (s|x)} [FV,D=1 (v ∧ s|Xi)− FV (v|Xi)FV,D=1 (s|Xi)] dFV,D=1 (v|x)

−
∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV,D=1 (u ∧ v|Xi)− FV (v|Xi)FV,D=1 (u|Xi)] dFV (u|x) dFV,D=1 (v|x)

−
∫ s

yl

ϕ
′′

α {SV (v|x)}ϕ′α {SV (t|x)} [FV,D=1 (v ∧ t|Xi)− FV (v|Xi)FV,D=1 (t|Xi)] dFV,D=1 (v|x)

+ϕ′α {SV (t|x)}ϕ′α {SV (s|x)} [FV,D=1 (t ∧ s|Xi)− FV,D=1 (t|Xi)FV,D=1 (s|Xi)]

+

∫ s

yl

ϕ
′′

α {SV (v|x)}ϕ′α {SV (t|x)} [FV,D=1 (v ∧ t|Xi)− FV (t|Xi)FV,D=1 (v|Xi)] dFV (v|x)

−
∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV,D=1 (u ∧ v|Xi)− FV (u|Xi)FV,D=1 (v|Xi)] dFV,D=1 (u|x) dFV (v|x)

+

∫ t

yl

ϕ
′′

α {SV (v|x)}ϕ′α {SV (s|x)} [FV,D=1 (v ∧ s|Xi)− FV,D=1 (v|Xi)FV,D=1 (s|Xi)] dFV (v|x)

+

∫ t

yl

∫ s

yl

ϕ
′′

α {SV (u|x)}ϕ
′′

α {SV (v|x)} [FV,D=1 (u ∧ v|Xi)− FV (u|Xi)FV,D=1 (v|Xi)] dFV (u|x) dFV (v|x)].

Hence we have the definition:

σ2 (y|Xi, x;α) ≡ η (y, y|Xi, x;α) ≡ E
′ [
c2 (y|Zi, x;α)

]
and σ2 (y|x;α) = lim

xn→x
σ2 (y|xn, x;α) . (C.2)

An alternative way to proceed is to express the centering term as in Braekers and Veraverbeke (2005):

c (y|Zi, x;α) =
−1

ϕ′α {SY (y|x;α)} [

∫ y

yl

ϕ
′′

α {SV (v|x)} [I (Vi ≤ v)− FV (v|Xi)] dFV,D=1 (v|x) (C.3)

−
∫ y

yl

ϕ
′

α {SV (v|x)} d [I (Vi ≤ v,Di = 1)− FV,D=1 (v|Xi)]],

by grouping the last two terms together. The result given by Braekers and Veraverbeke (2005) consists of

seemingly four terms, yet a close inspection shows that there are still nine terms in total and upon integration

by parts, and it is equivalent as what has been derived here. Now the asymptotic covariance follows the

standard kernel estimation step:

(nhp) cov
[
F̂ (t|x;α)− FY (t|x;α) , F̂ (s|x;α)− FY (s|x;α)

]
= hpcov [wni (x, γ) c (t|Zi, x;α) , wni (x, γ) c (s|Zi, x;α)] + o (1)

=
1

f2
X (x)

E

[
h−pK2

(
Xc
i − xc
h

)
E [c (t|Zi, x;α) c (s|Zi, x;α) |Xi]

]
+ o (1)

=
‖K‖2

fX (x)
η (t, s|x;α) .

Next lemma gives the order of the bias term.
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Lemma C.3 Under Assumptions (D)-(K), we have that

sup
α∈A

sup
x∈J

sup
y∈[yl,y0u]

∣∣∣∣∣ 1n
n∑
i=1

Wγ (x,Xi) b (y|Zi, x;α)

∣∣∣∣∣ = Op

hs +

r∑
j=1

λj

 .

Proof. Because b (y|Zi, x;α) is linear in those three terms (see (3.15)), we shall only illustrate on the first

one. Also the term −1
ϕ′α{SY (y|x;α)} remains uniformly bounded, hence it will be omitted in the derivation

without affecting the stochastic order. We define the indicator functions Ij
(
x̃d, xd

)
for j = 1, ..., r s.t.

Ij
(
x̃d, xd

)
= 1 iff x̃d and xd differ only in the j-th component. Following Hall, Li and Racine (2004), we get

E

[
n∑
i=1

Wγ (x,Xi)

∫ y

yl

ϕ
′′

α {SV (v|x)} [FV (v|Xi)− FV (v|x)] dFV,D=1 (v|x)

]

=
∑
x̃d

Pr
(
Xd = x̃d

) r∏
j=1

{
[λj/ (1− λj) (cj − 1)]

Nij(x)
(1− λj)

}
×

∫ y

yl

ϕ
′′

α {SV (v|x)}
∫
K (u)

[
FV
(
v|xc − uh, x̃d

)
− FV (v|x)

]
fX
(
x− uh, x̃d

)
dudFV,D=1 (v|x)

=

∫ y

yl

r∑
j=1

λj
cj − 1

{∑
x̃d

Ij
(
x̃d, xd

) [
FV
(
v|xc, x̃d

)
− FV (v|x)

]}
ϕ
′′

α {SV (v|x)} fX
(
xc, x̃d

)
dFV,D=1 (v|x)

+
hs

s!

∫ y

yl

p∑
j=1

[∫
k (uj)u

s
jduj

s∑
i=0

(
∂iFV (v|x)

∂
(
xcj
)i ∂s−ifX (x)

∂
(
xcj
)s−i

)]
ϕ
′′

α {SV (v|x)} dFV,D=1 (v|x) + s.o.

≤ sup
α∈A

sup
x∈J

sup
y∈[yl,yu]

∣∣∣∣∫ y

yl

ϕ
′′

α {SV (v|x)} dFV,D=1 (v|x)

∣∣∣∣O
hs +

r∑
j=1

λj

+ s.o.

≤ O

hs +

r∑
j=1

λj

+ s.o.

Now the claim in the stated lemma follows from Markov inequality.

9.3 Local U-processes

We borrow the following sequence of remarkable results on moment inequality in Gine and Mason (2007),

and tail inequality in Major (2006). Compared with classical results on U-processes initiated by Nolan and

Pollard (1987) and well summarized in de la Pena and Gine (1999), the following bounds allow the functional

class to change with n and the (maximal) variance of individual function appears in the bound, as an analog

of Bernstein type inequality. Hence they suit our purpose to handle the kernel type estimated function when

bandwidth is changing with n and when the variance term is much smaller than the envelope function.

First some notations and terminologies will be collected here from Nolan and Pollard (1987), de la Pena

and Gine (1999). We say a class of functions F is of VC type with respect to an envelope F if the covering

number N (F , L2 (Q) , ε), the smallest number of L2 (Q) open balls of radius ε required to cover F , statisfies

N (F , L2 (Q) , ε) ≤
(
M ‖F‖L2(Q)

ε

)v
for 0 < ε ≤ 2 ‖F‖L2(Q) ,
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for some universal positive constants M,v and for every probability measure Q on the underlying space.

For a kernel function f of k variables, we denote

U (k)
n (f) =

(n− k)!

n!

∑
i∈Ikn

f (Xi1 , · · ·, Xik) ,

where Imn = {(i1, · · ·, im) : 1 ≤ ij ≤ n, ij 6= ik if j 6= k}. Now suppose f is symmetric in its entries, we have

the well-known Hoeffding decomposition:

U (m)
n (f)− Ef =

m∑
k=1

U (k)
n (πkf) ,

where

πkf = (δx1 − P )× · · · × (δxk − P )× Pm−kf.

Moreover let σ2 (which we call maximal variance) be any number satisfying

∥∥Pmf2
∥∥
F ≤ σ

2 ≤M2.

Lemma C.4 (Gine and Mason, 2007, Theorem 8) Let F be a collection of measurable symmetric functions

f : Sm → R, bounded up by M in absolute values, and let P be any probability measure on (S,S) . Assume

F is of VC type with envelope function F ≡ M and with characteristics A and v. Then for every m ∈ N ,

and A ≥ em, v ≥ 1, there exist constants C1,C2, s.t. for any k = 1, ...,m,

nkE
∥∥∥U (k)

n (πkf)
∥∥∥2

F
≤ C12kσ2

(
log

(
A

σ

))k
, (C.4)

assuming nσ2 ≥ C2 log
(
A
σ

)
.

Lemma C.5 (Major, 2006, Theorem 2) Let F be a collection of measurable symmetric functions f : Sm →

R satisfying the all assumptions stated in previous lemma, then we have

Pr

{
sup
f∈F

∣∣∣nk/2U (k)
n (πkf)

∣∣∣ ≥ x} ≤M exp

[
−M

(x
σ

)2/k
]
, (C.5)

if nσ2 ≥
(
x
σ

)2/k ≥M (
1

logn

)3/2

log
(

2
σ

)
.

Remark 9.2 The case that m = 1 corresponds to the usual empirical process result. Modulo the universal

constant, the above lemmas are also in accordance with the rates obtained in Gine and Guillou (2001),

Einmahl and Mason (2005) earlier, hence we will simply refer to the above two lemmas even in the case

where we are dealing with the usual empirical process.

Below we list those functional classes that have appeared in Appendices A and B, which fit into this local

U-process (or empirical process) framework:

F1 ≡
{
I [V ≤ v]K

(
xc −Xc

h

)
L
(
xd, Xd, λ

)
: v ∈ R1, x ∈ J , h ≥ 0, λj ∈

[
0,
cj − 1

cj

]}
, (C.6)
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F2 ≡


D1

ϕ
′′
α(SV (V1|x))

f2X(x)
1 {V1 > y}hpWγ (x,X1)H (X2, V2, V1)−∫

d1
ϕ
′′
α(SV (v1|x))

f2X(x)
1 {v1 > y}hpWγ (x, x1)H (X2, V2, v1) dPZ (v1, d1, x1)

y ∈
[
yl, y

0
u

]
, x ∈ J , h ≥ 0, λj ∈

[
0,

cj−1
cj

]
 , (C.7)

F3 ≡


∫
c (y|Z1, x;αo)K

(
xc−Xc1
h

)
L
(
xd, Xd

1 , λ
)
K
(
xc−Xc2
h

)
L
(
xd, Xd

2 , λ
)
G (y, x;αo) dx :

y ∈
[
yl, y

0
u

]
, x ∈ J , h ≥ 0, λj ∈

[
0,

cj−1
cj

]  , (C.8)

F4 ≡


∫
c (y|Z1, x;α) c (y|Z2, x;α)K

(
xc−Xc1
h

)
L
(
xd, Xd

1 , λ
)
K
(
xc−Xc2
h

)
L
(
xd, Xd

2 , λ
)
dx :

y ∈
[
yl, y

0
u

]
, h ≥ 0, λj ∈

[
0,

cj−1
cj

]  , (C.9)

where the additional H and G functions appearing in F2 and F3 are defined in Lemma A.2, Lemma B.6,

and Lemma B.8. To see that the entropy condition holds for all those four classes, note that the following

three sub-classes are all uniformly bounded and of VC type:

F1,1 =
{
I [V ≤ v] : v ∈ R1

}
,

F1,2 =

{
K

(
xc −Xc

h

)
: xc ∈ J c, h ≥ 0

}
, and

F1,3 =

{
L
(
xd, Xd, λ

)
: ∀xd, λj ∈

[
0,
cj − 1

cj

]}
.

Since the product is Lipschitz continuous with three individual terms using the boundedness of those func-

tions, we have

N
(
F1, L2 (Q) ,M ‖F‖L2(Q) ε

)
≤

3∏
i=1

N
(
F1,i, L2 (Q) ,M ‖Fi‖L2(Q) ε

)
by Theorem 2.10.20 in Van der Vaart and Wellner (1996), thus F1 is also of VC type. Complete analogy

applies to F2 and F3. When it comes to F4, by our assumption (P1) on the generator functions, we obtain

that ∀f, f ′ ∈ F4,
∣∣∣f − f ′ ∣∣∣ ≤ M

∣∣∣α− α′ ∣∣∣, thus F4 is of VC type following Theorem 2.7.11 in Van der Vaart

and Wellner (1996).

Now we illustrate with class F1 to give a quick proof of (A.3).

Proof of (A.3). For any f1 ∈ F1, we have Ef2
1 = O

(
hp
(

1 +
∑r
j=1 λj

))
= O (hp) as in Li and Racine

(2007). Thereafter we could take the maximal variance for the current class as σ2
F1 = O (hp).∣∣∣F̂V (y|x)− FV (y|x)

∣∣∣
≤ Op

hs +

r∑
j=1

λj

+Op

(√
E

∥∥∥∥ 1

hp
U

(1)
n (π1f)

∥∥∥∥2

F1

)

≤ Op

hs +

r∑
j=1

λj

+Op

(
1

hp

√
hp log n

n

)
= Op

(√
log n

nhp

)
,

where the first inequality follows from standard bias-variance decomposition and in the second inequality we

apply (C.4), and the final result follows our assumption (H). The strengthening to almost surely convergence

is routine by the blocking device and Montgomeny-Smith inequality (see Theorem 1.1.5 in de la Pena and

Gine, 1999) as presented in Gine and Guillou (2001), however, the weaker results are suffi cient for our

purpose.
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