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Abstract

The new possibility of accessing an infinite pool of computational resources at a drastically reduced price has

made cloud computing popular. With the increase in its adoption and unpredictability of workload, cloud providers

are faced with the problem of meeting their service level agreement (SLA) claims as demonstrated by large vendors

such as Amazon and Google. Therefore, users of cloud resources are embracing the more promising cloud federation

model to ensure service guarantees. Here, users have the option of selecting between multiple cloud providers and

subsequently switching to a more reliable one in the event of a provider’s inability to meet its SLA. In this paper, we

propose a novel dynamic data-driven architecture capable of realising resource provision in a cloud federation with

minimal SLA violations. We exemplify the approach with the aid of case studies to demonstrate its feasibility.
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1. Introduction

Cloud computing has gained popularity over the last few years, borrowing ideas from grid and utility computing.

Cloud-based systems are characterised by provision of a large pool of computational resources accessible over the

Internet on-demand, with the capacity to elastically scale as needed [1]. By leveraging cloud services, organisations

have the potential of gaining access to previously unattainable resources, scaling/shrinking these resources based on

their demand and paying for only actual resource usage. This mode of payment has the benefit of saving the cost

incurred by users since most vendors offer their services on a pay-per-use or subscription basis [2].

Industrial, governmental and academic stakeholders are already making innovative use of the cloud. For example,

researchers are devising ways of outsourcing scientific experiments to the cloud [3], while academics are already

designing educational solutions around cloud technology to facilitate learning and laboratory work among students

[4]. In this paper, we limit our scope to public cloud service providers (CSPs) or simply ‘cloud providers’. Examples

include Amazon Web Services (AWS) (http://aws.amazon.com/) and Rackspace (http://www.rackspace.com/).
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The increase in the adoption of cloud computing has placed high demand on cloud resources. Consequently,

cloud providers are faced with a challenging problem of being unable to fulfil the claims made in their service level

agreements (SLAs). According to [5], within a six-month period in 2011, several top cloud providers (e.g. Amazon,

Google, Microsoft) experienced service outages which sometimes lasted for periods ranging from few hours up to one

week. Common sources of these SLA violations are unanticipated outages caused by software, hardware or network

faults [6]. This problem is further exacerbated by the high volatility of the cloud environment [7] and the unforeseen

workload on cloud data centres which results in unpredictable performance [8]. The uncertainty about the quality of

service (QoS) of cloud services reduces user confidence in the technology. Hence, promoting the perception of cloud

as “unreliable” for critical applications.

To reverse this trend, users that rely on the single cloud provision model are embracing the more flexible and

resilient cloud federation model [9, 10]. A cloud federation consists of multiple cloud providers who are able to

seamlessly interact among themselves. The hypothesis is that as cloud computing evolves, next generation clouds

would have the capability to form a federation where it will be possible to leverage on each others’ computational

resources [11]. This provides an opportunity to mitigate risks of violating cloud users’ SLAs by migrating jobs among

providers in the federation.

In order for the cloud federation to actualise satisfactory SLA compliance; a middleware layer for coordinating

the activities of cloud users and cloud providers in the federation is required [9]. Crucially, this middleware layer

must be highly adaptable to changing conditions in the cloud environment and rapidly respond to events that may

trigger SLA violation. Therefore, the middleware requires mechanisms for dynamic scaling to accommodate heavy

workload, detect imminent failure of cloud providers, and migrate jobs among clouds in the federation at run-time.

In previous work [12], we motivated the need for engineering highly robust, adaptable and scalable cloud systems

using the dual concepts of self-awareness and self-expression. Key among the requirements for these next generation

clouds is the efficient and transparent management of jobs deployed on them to prevent SLA violation. In this paper,

we take this work further by outlining the design of an architecture which realises the requirement of preventing

SLA violations within the context of federated cloud. The proposed cloud federation architecture incorporates a

novel middleware layer which is designed based on the principles of the Dynamic Data-Driven Application Systems

(DDDAS) paradigm. The middleware layer selects cloud providers on behalf of users, and subsequently manages the

execution of submitted jobs to ensure they are successfully provisioned within the bound of specified SLA constraints.

The rest of the paper is structured as follows: Section 2 describes foundational work in cloud federation and

existing SLA management techniques. Section 3 presents an illustrative example to highlight the unique properties

of the cloud federation model. The design of the novel cloud federation middleware is discussed in section 4. A case

study is presented in section 5 to demonstrate the feasibility of the approach. The paper concludes in section 6.

2. Related Work

This section presents relevant research in cloud federation SLA management. Due to the newness of the research

area, we also consider research efforts for SLA management in single cloud provision model.

The inability of cloud providers to meet satisfactory QoS levels as specified in SLAs led to the vision of cloud

federation. Buyya et al. [10] envisioned the federated cloud computing (or InterCloud) model as an environment

that could flexibly respond to variations in workload, network and resource conditions by dynamically coordinating

multiple clouds in the federation. Since it is infeasible for a cloud provider to have data centres in every country,

the federated cloud environment offers the additional benefit of rapidly scaling to meet the needs of geographically

distributed cloud users than any single cloud provider [10]. The RESERVOIR project [9] also sets out a vision similar

to [10] for an open federated cloud computing model to address the limited scalability of single cloud providers and

lack of interoperability among them.

These works [10, 9] identified the importance of the middleware coordination layer in the cloud federation. Ac-

cording to [9], this middleware layer (referred to as Service Manager in their work) is the highest level of abstraction

responsible for coordination of cloud providers and cloud users in the federation. Importantly, it ensures that cloud

users’ jobs are forwarded to cloud provider(s) who are capable of executing those jobs without violating SLA con-

straints. Our work builds on this vision in the design of the middleware layer using the DDDAS approach [13].

The work of [14] employed an autonomic resource provision technique to manage SLA in federated cloud. While

their work considers all phases of the SLA life cycle, there is no explicit provision for post-negotiation causes of SLA
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violations such as variation in workload. Brandic I. et al. [15] presented a proposal for SLA management in a single

cloud infrastructure. Their work provides a method for mapping low-level resource metrics to high-level cloud user

SLA specifications, and deducing the likelihood of SLA violations from this mapping. Another interesting approach

is the autonomic resource allocator proposed by D. Ardagna et al. [16] for managing SLAs of multiple applications

running on a single cloud. The authors considered SLA violation from the dimension of workload variation with the

objective of maximising cloud providers’ revenue. The problem of SLA violations in our work is addressed from the

context of a cloud federation. In addition, we assume a broader set of events that may cause these violations, namely,

heterogeneous user requests, workload variations and unavailability of cloud providers in the federation.

To tackle the problem at hand, we leverage on advances in the use of DDDAS for large-scale systems (e.g. grid

computing [13]). The DDDAS approach provides a sound basis to reason about changes in user and cloud provider

behaviour in the cloud federation. It also informs the design of simulations to efficiently match users’ requests with

providers’ offerings, monitor job execution and rapidly adapt to risks to prevent SLA violations from occurring.

3. Motivation and Background

In this section, the single cloud provision model and its limitations at meeting cloud users’ SLA are presented.

Subsequently, we motivate the vision of the cloud federation paradigm and its potential to resolve the issues raised.

3.1. Illustrative Example

Consider Amadas cloud provider, an owner of three data centres distributed across the US and Europe. Amadas

is specialised at providing cloud infrastructure-as-a-service solutions to companies who depend on it for resources

required to host their applications. We consider four users of Amadas cloud: a science laboratory, a social networking

portal with a global user-base, an e-Commerce portal and a global news website. Each of these cloud users have

different application requirements. Specifically, the science lab uses the cloud to run data and computational intensive

scientific experiments; the social networking portal performs read/write intensive operations; the news website per-

forms mostly read-only operations while the e-Commerce website performs highly consistent transactional operations.

Figure 1 depicts the distribution of the cloud users across Amadas cloud’s data centres.

Global
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Website

e-Commerce
Website

Social
Networking

Portal
Science

Lab

Data
Centre 1

Data
Centre 2

Data
Centre 3

Amadas Cloud Provider
US (East Coast) US (West Coast) Europe

Figure 1: Single Cloud Provider Model

Suppose breaking a major news event raises high traffic from the social networking portal due to activities of

its large user-base. This causes a slashdot effect that results in many of the social network portal’s users visiting

the global news website. As expected, the heavy traffic from the social networking and news services will cause

a spike in the workload on Amadas’ data centre 2. The resources in this data centre are therefore dedicated to the

two highly demanding services, while other services depending on it (e.g. the e-Commerce website) are left with

limited resources. This resource starvation is capable of making transactions performed on the e-Commerce website

inconsistent, thus resulting in poor quality of service. Amadas’ policy of not allowing coordination between its data

centres makes it unlikely for system administrators to take mitigation measures (e.g. moving some of the services to

the less demanded data centre 1) beforehand.
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The scenario presented above describes only one cause of SLA violation (i.e. unpredictable workload) when using

the single cloud provider model. Other causes could be resource failure in the data centre [5, 6] and security attack

on cloud resources [17]. The occurrence of these scenarios typically results in the violation of cloud users’ SLAs.

Thereafter, Amadas suffers bad reputation and may be penalised in the form of monetary or service credit payment.

The cloud federation paradigm offers a framework that could be leveraged upon to prevent this problem.

3.2. The Cloud Federation Model

The emergence of many cloud providers offering various services has propelled the vision of cloud federation

[9, 10]. The proponents of the cloud federation model advocate that next generation cloud providers will have the

capacity to seamlessly interact among themselves thereby taking advantage of economies of scale [11]. This would

afford providers the possibility of outsourcing resources at run-time in the event of failure of any cloud provider in

the federation. Opencirrus (https://opencirrus.org/) is an example of a testbed that is designed for cloud federation

research. The cloud federation model is shown in figure 2.

Cloud users interact with the federation via a middleware layer. Therefore, the internal operation of cloud

providers in the federation is transparent to the cloud users. The middleware layer coordinates interaction with cloud

users and interaction among cloud providers in the federation. Each cloud provider is equipped with a cloud manager

component which interfaces with the middleware layer and coordinates the resources of its cloud. All interaction with

each cloud provider is via its cloud manager component.
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Figure 2: Cloud Federation Model

To fully realise the cloud federation model, there are a number of open research problems, such as: formalism of a

language to inform negotiation among cloud providers at run-time [18], interoperability of data formats and interfaces

(APIs) to facilitate inter-cloud communication [19], and middleware layer design for coordinating cloud federation

resources [14].

The objective of our work is the design of a cloud federation middleware that is capable of matching cloud users’

requests with cloud providers’ offerings without violating cloud users’ SLA. Due to the high volatility of the cloud

environment, the middleware should continuously steer the federation based on the current status of cloud providers’

offerings and requests demanded by users. We exploit the DDDAS approach [20] to achieve this.

4. The Approach

In this section, the design of the cloud federation architecture is presented. The middleware layer of the architec-

ture incorporates the DDDAS approach to mitigate risks of violating SLAs.
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4.1. Data-Driven Middleware for Cloud Federation
It is important to justify the choice of DDDAS as a promising approach for implementing this layer. Two drivers

for pursuing the DDDAS approach are the characteristics of the cloud domain, and the requirement of the problem at

hand. As illustrated in section 3.1, the cloud environment is highly volatile and exhibits dynamics primarily originating

from two actors: cloud users and cloud providers. Cloud users have different application needs (e.g. computation,

storage or read/write-intensive) and their demand for cloud resources varies based on the workload placed on their

services. Similarly, cloud service providers’ (CSPs) offerings are heterogeneous and vary from time to time e.g. due

to resource failure or workload imposed on cloud infrastructure.

These properties necessitates an approach such as DDDAS, that provides a basis for reasoning about these dynam-

ics and efficiently self-adapting to them at run-time. In particular, the adaptation should adhere to SLA constraints.
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Figure 3: Cloud Federation Architecture incorporating Data-Driven Middleware Layer

The cloud federation architecture is shown in figure 3. The middleware layer in the architecture is composed

of distributed simulator instances; this is similar to previous usage of the DDDAS approach in distributed domains

(e.g. trust prediction in mobile networks [21]). These simulators receive requests from cloud users and select cloud

providers capable of meeting these requests. The simulators receive control feedbacks from cloud providers signifying

successful execution of submitted job requests or risk alerts signifying their inability to do so. Risk alerts could be

triggered by reasons such as unanticipated resource failure and unforeseen spike in workload. The simulators act on

this feedback by taking risk mitigation actions such as selection of substitute cloud provider(s) to avoid violating the

SLA terms of submitted requests. Feedbacks received by the simulator can also be discriminated as: high priority

(requires immediate intervention), medium priority (react within a time bound) or low priority (trivial, non-threatening

risk). The knowledge acquired from the continuous interaction between simulators and CSPs improves the accuracy

of the simulators at selecting reliable CSPs. Next, we discuss each component of the architecture in more detail.

4.2. Cloud Environment
The two major actors in the federated cloud environment are cloud users and cloud providers.

• Cloud Users: refers to individuals or organisations who interface with the cloud federation. Each cloud user

typically owns some service(s) which it provisions to its clients. As illustrated in section 3.1, services may differ

in their requirements. We model cloud users as a set U = {U1,U2, ...,UM}, where M is the number of users

requesting resources at a time instance. The requirements of services owned by cloud user, Ui, are bundled as a

series of job request, Ji, with an associated SLA, S i, which specifies the constraints for the requested job. The

SLA, S i, encompasses terms such as response time, availability and scalability constraints. To request cloud

resources, users submit the 2-tuple (Ji, S i) to the cloud federation via its middleware layer.
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• Cloud Service Providers (CSPs): offer different specialised cloud services (X-as-a-service), where X could be

storage, infrastructure, platform or software. The cloud manager component of each CSP (see figure 2) notifies

the middleware about its resource capacity, pricing and service terms. The middleware utilises this information

for selecting the CSP to execute cloud users’ job requests. Importantly, the cloud manager sends notification

about job completion or risk alerts to the middleware which acts on them to mitigate SLA violation. CSPs are

modelled as a set {CS P1,CS P2, ...,CS PN}, where N is the number of CSPs in the federation.

4.3. Cloud Federation Middleware

The middleware layer consists of many simulator instances which coordinate the cloud federation. The distributed

simulation approach is preferred due to the scale of the cloud federation. A single simulator instance may constitute

a bottleneck under heavy workload and thus make the middleware less scalable. Distribution of simulator instances

improves the scalability of the middleware and affords dedication of simulators to multiple concerns. For example,

some simulators may be more efficient at selecting CSP for specific types of incoming job requests than others. In

accordance with the DDDAS paradigm, these simulators collect data based on current state of the cloud, perform

measurements to detect probable violations and effect control changes to mitigate them.

More precisely, the simulators on this layer perform the following functions:

• receive job requests and associated SLAs as input from cloud users,

• inspect offerings of cloud service providers at specified intervals,

• select cloud service provider(s) to execute job requests based on job type and SLA terms,

• monitor job execution to detect risk alerts from cloud providers, and

• perform control actions to prevent the violation of users’ SLAs whenever a risk alert is received.

In this work, we elaborate on the CSP selection, risk detection and SLA violation prevention steps. The simulators

reaches the CSP selection decision by utilising a market control algorithm. In general, market-based control tech-

niques (many of which are discussed in [22]) are particularly suited for managing large-scale systems because of their

decentralised, robust and highly scalable properties. Simulator instances are modelled as a set {MS 1,MS 2, ...,MS K},
where K is the number of active simulator instances in the middleware. The relevance of the trading strategy and

reputation repository (in figure 2) will be discussed in the next section.

4.4. Market-Based Simulator

A distributed/decentralised market mechanism is required to coordinate the interaction of the distributed simula-

tors. A good candidate for realising this goal is the retail-inspired posted-offer market mechanism [23]. This is because

the mechanism assumes full decentralisation amongst market entities (i.e. buyers and sellers). There is no notion of

a centralised auctioneer or market-maker as it exists in other computational market analogies (e.g. continuous-double

auction [24]). The posted-offer mechanism has also been shown to reach an efficient allocation of resources among

market entities by following computationally inexpensive negotiation steps [23]. For example, an adaptation of the

mechanism has been used to manage resources in peer-to-peer grid computing [25].

Buyers in the market are modelled as simulator instances and sellers as CSPs. Buyers seek to maximise their

success throughput (i.e. the number jobs allocated to sellers which are completed within SLA constraints), while

sellers are interested in maximising their profit by continuously executing jobs according to specified SLA constraints.

4.4.1. Assumptions
We make the following assumptions in our adaptation of the posted-offer market mechanism:

1. Each cloud user, Ui, submits its job request to one simulator instance, MS i at any time instance,

2. Every CSP has the capacity to execute each job requested by a cloud user, and

3. Market entities (buyers and sellers) are self-interested. This means they seek to maximise their objectives

without cooperating with each other.
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4.4.2. Computing Market Prices
One important element of any market mechanism is the pricing strategy adopted by both buyer and seller agents.

Within the context of our market mechanism, items (i.e. jobs) are priced using ‘artificial money’ not real money.

Essentially, we adhere to the principle of most market-based control systems [22], where ‘artificial money’ is used

primarily as a control tool and not as a financial transaction instrument as it exists in real world markets.

Buying Price Computation: Buyers (simulator instances) determine their private valuation for a job based on the

following SLA parameters: (i) job priority and (ii) expected job completion time. Their private valuation is determined

by their utility function, which for buyer MS when allocating job J is defined by:

UMS (J) = −αU(x1) + βU(x2) + U(J) (1)

where x1 and x2 represent price and reliability respectively; U(x1) and U(x2) are price and reliability distribution

functions respectively; and U(J) is the payoff derived from the execution of job J. The co-efficients α and β represent

the priority and expected job completion time as defined in the SLA. The values of α and β are specified by the cloud

user in the SLA such that the buyer’s objective reflects the actual weight of the job. Consequently, the buyer seeks to

maximise its utility function by meeting the job’s SLA constraint.

Selling Price Computation: Sellers (CSPs) compete in the cloud federation market to increase their profit. This

means that they make trading decisions based on the utility they expect to derive from the execution of the job. The

utility of a seller, when executing a job J is defined by:

UCS P(J) = S (J) −C(J) (2)

where S (J) is the selling price decision functions and C(J) is the cost incurred for executing the job. Specific

details about how these functions are defined depends on individual CSPs. Ultimately, the seller’s objective is to

maximise its utility function at any given time.

4.4.3. Trading Mechanism
The steps of the posted-offer mechanism for each trading round is described as follows:

Step 1: sellers (CSPs) publish the prices and service terms of their resource offerings.

Step 2: buyers search for any seller whose service term meets the SLA constraint, S i of the job at hand.

Step 3: if buyer finds a matching seller, the job is allocate to it, then step 4, otherwise step 2.

Step 4: buyer (simulator instance) monitors the selected seller (CSP) at intervals.

Step 5: if seller (CSP) executes job successfully then it sends completion notification else a risk alert is sent.

Step 6: if buyer (simulator instance) detects risk alert or seller (CSP) is not responsive then step 2 else step 7.

Step 7: buyer (simulator instance) compares actual CSP job performance with SLA constraint.

Step 8: cloud user is notified of completed job.

We make the following important refinements to the posted-offer mechanism to capture the dynamics of the cloud

federation environment. Since CSPs vary unpredictably in their ability to successfully execute allocated jobs, each

CSP is assigned an initial reputation rating which is updated dynamically based on its actual performance. The CSP

reputation repository (see figure 3) is used to capture these reputation ratings. Therefore, the following additional

operations are performed in steps 2, 6 and 7.

Step 2∗: buyers search for any seller in the reputation repository within an acceptable2 reputation rating.

Step 6∗: if buyer detects that seller (CSP) is not responsive then buyer updates reputation repository with a negative

rating for the CSP.

Step 7∗: if actual CSP performance violates SLA constraint, buyer updates reputation repository with a negative rating

for the CSP otherwise updates with positive rating.

These refinements increase the probability of selecting a highly reliable CSP for jobs which are specified as high

priority by cloud users. The trading strategy adopted by buyers (in step 2) also contributes to the selection of suitable

2The range of acceptable rating is defined by the job priority specified by the cloud user for the job at hand.



1174    Funmilade Faniyi et al.  /  Procedia Computer Science   9  ( 2012 )  1167 – 1176 

CSP for each job. The substitution strategy is implicitly specified in the mechanism (step 7 and 2). This is defined by

the replacement of a CSP with another one when a risk alert is triggered or when it stops responding. Since buyers

are self-interested and able to adopt diverse strategies; the trading strategy repository provides buyers with other

predefined strategies from which they can select to maximise their utility. An example is risk aversion strategy, where

a risk averse buyer splits up a job among multiple CSPs, to mitigate the risk of violation by any one CSP. Essentially,

the priority and SLA constraints of a job are the deciding factors when selecting a trading strategy for it.

The global objective of the cloud federation market is to maximise the number of jobs successfully completed by

sellers (CSPs) within SLA constraints. For jobs, J, (J = 1, ..,M) allocated to seller, CS Pi, (i = 1, ..,N), this objective

is defined by:

G(i, j) = Max.
N∑

i=1

M∑

J=1

(Ei j − Ai j) (3)

where N and M are respectively the total number of sellers and jobs currently in the cloud federation. Ei j and Ai j are

the expected and actual completion times of job J executed by seller entity, CS Pi respectively.

5. Applicability

In this section, we present an example of a service selection problem to demonstrate a candidate application of the

architecture presented in figure 3. For simplicity, two SLA terms are considered: cost of service and response time.

5.1. Hypothetical Case Study
The work of M. Jaeger et al. [26] presented a variety of workflow patterns for service composition. In practice,

software-as-a-service (SaaS) cloud providers publish concrete instances of the abstract services in these workflows.

Here, we consider an example of a workflow compositional model of the online shopping cart of a company which

relies on dynamically composed services to meet its customers’ orders. The compositional model is shown figure 4.

A

B1

B2

C1

C2 D

Browse Product
Catalogue & Place Order

Product Supplier
Services

Shipping Provider
Services

Payment Service

OR
SPLIT

OR
JOIN

OR
SPLIT

OR
JOIN

BN CN

Figure 4: Online Shopping Cart Service Composition

Four services are required to ensure orders placed by customers of the company are met.

• Service A: renders the company’s product catalogue in a browser and provides a means for customers to place

orders.

• Service B: provides selected product(s) in the customer order at a specified cost. Suppose N product supplier

services are available, possible options are B1, B2,...,BN .

• Service C: offers shipping services for product(s) in the customer order within specified delivery time and at a

cost. For N shipping service providers, possible options are C1, C2,...,CN .

• Service D: provides payment service to collect funds from customers on behalf of the company.

As illustrated in figure 4, product supplier services (B1, ...,BN) are substitutable depending on whichever offers the

selected product(s) at a lower cost. Similarly , supplier services (C1, ...,CN) are substitutable depending on whichever

meets the desired delivery time at a lower cost. The SLA constraint of interest to the company is to minimise the cost
of meeting orders (i.e. product and shipping cost) without exceeding the promised delivery time.
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5.2. Cloud Federation Solution
To meet the SLA constraint specified in customer orders, the following simplifying assumptions are made:

• The product supplier and shipping services are provided by software-as-a-service (SaaS) cloud providers.

• The order of each customer, i, contains only one product, Oi.

• The SLA term of the product supplier service, S LAB, for order, Oi, specifies the minimum price the company

is willing to pay for the product i.e. S LAB = (PB
Oi )

• The SLA term of the shipping service, S LAC , for order, Oi, specifies the minimum shipment price and maximum

acceptable delivery time i.e. S LAC = (PC
Oi ,TOi )

The setup of the cloud federation is shown in figure 5. The cloud user (i.e. online shopping cart company)

interfaces with the cloud federation to provide concrete instances of the product supplier and shipping services at

run-time. For each requested service, the order and associated SLA terms are submitted to the cloud federation.

A B C D
(Oi, SLAB) (Oi, SLAC)

B1 B2
BN

C1
C2CN

Select Feedback Select Feedback

Substitutable SaaS Product CSPs Substitutable SaaS Shipping CSPs

Market-based Simulator
Instance, MS1

Market-based Simulator
Instance, MS2

MIDDLEWARE

Figure 5: Coordination of Cloud Service Providers for Online Shopping Cart Service in Federated Cloud

The simulator instances in the middleware layer are able to select from two sets of CSPs, one for product supplier

services and the other for shipping services. Each CSP publishes its cost and delivery time offerings via its cloud

manager interface. The selected CSPs are made available for subscription in the workflow. Simulator instances

continuously monitor CSPs, measure their performance against SLA terms and adapt future selection (via trading

strategies and reputation ratings) to mitigate risks of violating SLAs. By leveraging on multiple CSPs from the open

cloud federation environment, a robust and reliable composition that satisfies the company’s SLA is achievable.

6. Conclusion and Future Work

The success of the cloud computing model depends hugely on the ability of cloud providers to keep promises

made to users in their SLAs. The repeated inability of cloud providers to achieve this has given rise to the cloud

federation model. Despite the current inception stage of cloud federation research, it holds promises of providing

higher SLA guarantees for cloud users than the single cloud provision model. The cloud federation model achieves

this by dynamically utilising the services of multiple cloud providers to meet users’ requests. In this paper, we have

presented the design of a cloud federation architecture aimed at coordinating the cloud federation entities to meet cloud

users’ SLA terms. The coordination (middleware) layer of the architecture uses a market-based DDDAS distributed

simulation approach to achieve this in a scalable and robust manner.

We are currently working on the validation of the proposed approach via simulation studies. In the future, we shall

report results about the architecture’s ability to scale under varying workload conditions and its adaptability to various

risk alert scenarios. To achieve improved measure about cloud providers’ reliability, we shall extend the market

mechanism to incorporate on-line learning capabilities. This is to facilitate early prediction about the likelihood of a
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cloud provider’s inability to meet SLA terms of jobs allocated to it in the federation. At a later stage, we shall carry

out further experimental studies of the approach in a real cloud federation testbed.
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