
Real-time sign language recognition using a consumer depth camera

Alina Kuznetsova, Laura Leal-Taixé, Bodo Rosenhahn
Institute fuer Informationsverarbeitung, Leibniz University Hannover

Appelstr. 9A, Hannover, 30167, Germany
{kuznetso,leal,rosenhahn}@tnt.uni-hannover.de

Abstract

Gesture recognition remains a very challenging task in
the field of computer vision and human computer interac-
tion (HCI). A decade ago the task seemed to be almost un-
solvable with the data provided by a single RGB camera.
Due to recent advances in sensing technologies, such as
time-of-flight and structured light cameras, there are new
data sources available, which make hand gesture recogni-
tion more feasible. In this work, we propose a highly precise
method to recognize static gestures from a depth data, pro-
vided from one of the above mentioned devices.

The depth images are used to derive rotation-,
translation- and scale- invariant features. A multi-layered
random forest (MLRF) is then trained to classify the feature
vectors, which yields to the recognition of the hand signs.
The training time and memory required by MLRF are much
smaller, compared to a simple random forest with equiva-
lent precision. This allows to repeat the training procedure
of MLRF without significant effort.

To show the advantages of our technique, we evalu-
ate our algorithm on synthetic data, on publicly avail-
able dataset, containing 24 signs from American Sign Lan-
guage(ASL) and on a new dataset, collected using recently
appeared Intel Creative Gesture Camera.

1. Introduction
Sign language and gesture recognition is an important

problem in computer vision and machine learning and a fair
amount of research is done in this area. Due to advances in
sensing technologies, there is a rapid progress in the robust-
ness and quality of the solutions. Lately, a lot of work in
static and dynamic gesture and pose recognition appeared.
Most of the approaches for sign language recognition can
be roughly divided into two groups:

• pose estimation is performed and the parameters of the
pose are used to determine a gesture;

• gesture recognition is performed directly on raw image

Figure 1: Signs of the ASL sign language [1]; some signs
are very difficult to differentiate, for example, signs for the
letters ’m’ and ’n’, or for the letters ’s’ and ’t’.

data or on image features.

Since the initial hand pose estimation task appears to be
even more complicated than the task of gesture recognition
itself, more works can be found in the second group. The
current state-of-the-art methods are outlined in Sect. 2.

The problem of sign language and gesture recognition
can be divided into recognition of the static gestures and
of the dynamic gestures, e.g. the American Sign Language
(ASL) contains both static and dynamic gestures.

The main challenges of the static sign recognition prob-
lem are:

1. the number of signs (there are, for example, 24 static
signs in ASL (Fig. 1), or 26 static signs in Russian sign
language);

2. similarity between some signs (see Fig. 1 for an exam-
ple);

3. variation in appearance of a sign due to difference in
viewpoint (intra-subject variation);

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24065884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4. variation in performance of a sign by different subjects
(inter-subject variation);

Apart from that, there is a need to distinguish a static
sign from a dynamic sign or an accidental hand posture.

In our work, we propose an approach for the static sign
recognition and offer the solution for the above mentioned
challenges. We mainly concentrate on the first three chal-
lenges, i.e. we recognize the full set of signs, performed by
a single subject.

2. Related work
Gesture recognition with a single camera is a very chal-

lenging problem, remaining unsolved for a long time.
Early works used different kind of image convolution

to form feature vectors based on a single RGB image of
a hand. In [13], the authors use wavelelet families, com-
puted on edge images, as features to train a neural network
for 24 sign classification. Haarlet-like features, computed
on gray-scale images and on silhouettes were used in [10]
for classification of 10 hand shapes. Principle Component
Analysis (PCA) was applied directly on images to derive a
subspace of hand poses, which is then used to classify the
hand poses (see [9]). In [19], a modification of HOG de-
scriptors is employed to recognize static signs of the British
Sign Language. SIFT-feature based description was used to
recognize signs of ASL in [17]. All these methods depend
heavily on the lighting conditions, subject’s appearance and
background. Additionally, pose normalization is required
before feature computation, since the features mentioned
above are not rotation-, position- and scale- invariant.

Due to appearance of range sensors there have been sev-
eral breakthroughs in the area of recognition using a single
camera.

The most well-known advances are in human pose
recognition using the Microsoft Kinect sensor [22]. The
authors used a special kind of features, computed directly
on depth images, to classify human body parts. The same
features were lately applied for the problem of hand pose
estimation [15] and shape classification [16].

Hand detection and segmentation is a much easier task in
case of availability of the depth data, therefore a number of
methods appeared relying solely on segmentation derived
from depth data, such as contour-based method, described
in [21], and rule-based method, presented in [7].

Additionally, since depth data is robust to illumination
and subject appearance changes, a number of methods ap-
peared on calculating image features directly on depth im-
ages [20], [23]. Obviously, these methods still do not ac-
count for different viewpoints.

One more conventional approach for hand gesture esti-
mation relies on a 3D model, maintained in memory, and
fitted to an image [18]. The approach of comparing the

rendered model in some configuration with the original im-
age was successfully applied both for sign recognition and
for pose estimation [12]. These methods naturally account
for different hand position and rotation, but the variation in
rotation enlarges parameter space and therefore makes the
matching procedure less stable and more time-consuming.

Many of the works focus on recognition of a small sub-
set of signs. As already mentioned, for most of them dif-
ference in viewpoint (or alternatively, different rotation, po-
sition and scaling of a hand), environment and subject ap-
pearance, represents significant difficulty.

In our work, we address the problems mentioned above
by using rotation-, position- and scaling- invariant features.
Additionally, in the fashion of [16], we apply a multi-
layered random forest (MLRF) for classification. This al-
lows us to significantly reduce the training time for MLRF
and the memory consumption, which implies the possibility
of retraining the forest automatically in a very short times
using a home personal computer.

We evaluate our algorithm on synthetic data to show the
robustness of the features against pose variations, on a pub-
lic dataset from [20] for comparison to the stat-of-the-art
and on the data we collected using Intel Creative Gesture
Camera [2] to show the applicability of the method to a dif-
ferent kind of sensor.

... ...

class:

1st level

2d level

Figure 2: Multi-layered forest structure; on the level one,
the forest determines the cluster of a vector; on the level
two, the final class label is assigned by the forest, corre-
sponding to the cluster label assigned on the first level.

2.1. Contributions

As mentioned in Sect. 2, we propose to improve sign
language classification using two main ideas.

Firstly, since a hand sign can have very different appear-
ance when seen from a different view (see Fig. 3), we pro-
pose to use rotation-, translation- and scaling- invariant im-
age features to reduce intra-class variation. Such features
exist for 3D point clouds, which can be derived from the
depth data, delivered by a depth sensor. These features can
be separated into two categories — local and global fea-
tures. The overview of the state-of-the-art features for ob-
ject recognition is presented, for example, in [4]. We chose

Figure 3: Difference in appearance of the sign ’P’ depend-
ing on the view (the new dataset).

to use ensemble of shape function (ESF) descriptor [24],
since it is translation-, rotation- and scale- invariant, and
can be computed in real time.

Secondly, we propose to use multi-layered random for-
est (MLRF) for classification (Fig. 2). The intuition behind
this approach is to find groups of similar feature descriptors
and for each group train a separate classifier that can bet-
ter distinguish the classes withing this group. Ideally, each
group contains less classes then the original set.

There are several advantages of using MLRF:

• Potentially higher accuracy Due to the usage of two
levels of forest, averaging happens between the trees
on the first level, and therefore the error already made
in some trees is not propagated to the second level.
The second-level random forests are trained on clusters
containing much less variation then the initial training
set, and therefore a smaller forest is required to make
classification robust.

• Smaller training time and memory Since random
forest consists of binary trees, for each node the train-
ing parameters should be stored, the memory size to
store the forest increases exponentially with the depth
of the forest. Since MLRF contains much less nodes,
the memory consumption is reduced drastically. For
example, to store a forest of depth D = 20 with
T = 10 trees, where each node has 5 parameters, the
minimum amount of memory required is 560 Mb, and
a forest of depth D = 25 requires over 18 Gb memory.
A MLRF having 10 forests on the second level, and
the depth of the forests on the both level equal to 10,
requires around 6 Mb of memory, and to store a MLRF
with depths D1 = 13 and D2 = 12 only 26.5 Mb is
needed.

The proposed method is device independent, since it
does not exploit any characteristics of a particular depth
sensor, and therefore can be applied both in case of Kinect
device, as well as in case of a time-of-flight camera (we
used Intel Creative Gesture Camera in our experiments).

3. Feature extraction
Depth image preprocessing The hand is detected and
segmented by thresholding depth values, and a point cloud
for further processing is obtained.

To normalize the depth image and transform it to the real
3D point cloud, we firstly transform depth image to a point
cloud using inverse perspective transformation:

x3D =
x2D − cx

fx
I(x2D, y2D) (1)

y3D =
y2D − cy

fy
I(x2D, y2D) (2)

z3D = I(x2D, y2D) (3)

where (cx, cy, fx, fy) are intrinsic parameters of a depth
sensor. In case of Kinect sensor, we use the default values,
provided by OpenNI library [3].

ESF descriptor ESF descriptor consists of a set of his-
tograms, concatenated together. The first histogram de-
scribes the distribution of distances between two random
points in the point cloud (function D2). The second his-
togram describes the distribution of angles enclosed by two
lines created by randomly sampling three points from a
point cloud (function A3) The third histogram describes the
distribution of areas enclosed by three randomly sampled
points (function D3).

Additionally for each line, connecting two points, it is
determined, if it is on the point cloud surface, off the sur-
face, or intersects the surface. In each case, a separate his-
togram is built for each function. For the function D2, a his-
togram containing the length ratio in case of line intersec-
tion is additionally computed. Each histogram has length
64, and therefore the whole descriptor, consisting of the 10
histograms, has length 640.

This descriptor has the following features:

• given that the whole object is visible, it is rotation-
and translation- invariant; additionally, the descriptor
is also scale invariant, since the range of possible val-
ues of D2, D3 and A3 is normalized before computing
the histograms;

• invariant under mirror transformation;

• it does not require unstable and time consuming nor-
mal computation;

• it is reported to be fairly discriminative [4, 24].

The hand has fairly different appearance depending on
the gesture, so we treat the sign classification problem as
the object classification problem. We compute one ESF de-
scriptor for the segmented hand region. Examples of ESF
descriptors for different classes are given in Fig. 4.

Figure 4: ESF descriptors for the letters ’a’ and ’w’.

4. The multi-layered random forest (MLRF)
Random forest Random forest (RF) is a classification
and regression technique [5, 8], that has become popular
lately due to its efficiency and simplicity.

Random forest consists of T decision trees ti. Each
decision tree is normally a binary tree. Data is propa-
gated through each tree starting from the root of a tree. At
each node, the data is split using a binary test in the form
f(x) < τ , where f and τ are determined from the train-
ing data. If the inequation holds, the data is sent to the left
branch, otherwise — to the right branch. All trees have the
same depth D.

At each leaf node of a tree a predictor is stored. In our
case, it is a probability distribution of class (or cluster) la-
bels, that reached this node on the training stage. Whenever
a data vector x reaches the node k of the m-th tree, the
prediction of the tree m for this vector is formed by the pre-
dictor stored in the leaf k.

The prediction of the whole RF t for the x is usually
formed by averaging the predictions of the separate trees:

t(x) =
1

T

∑
i

ti(x), (4)

where T is the number of trees in the RF.
During training, as the training data is propagated down

the tree, at each node several suggestions for f and τ are
sampled randomly, and the best parameters are selected ac-
cording to some criteria (we generate 5 split suggestions per
node during training). In this work, we used information
gain as such criteria.

As f function, we chose to use two dimensional sepa-
ration plane, where two coordinates are randomly sampled
from the feature vector: f(x) = xi1w1+xi2w2. Therefore,
each node of a decision tree is characterized by 5 parame-
ters in total.

Prior to applying random forest for training, we nor-
malize the feature vectors, so that their distribution has the
mean value 0 and the variance 1.

Clustering the data Recently several works appeared on
creating multi-layered random forest. For example, in [16]

the authors use spectral clustering to pre-cluster data and
then use multi-layered random forest to perform hand parts
regression.

Experiments showed that RF performs better in distin-
guishing between smaller number of classes, so we pre-
clustered the data to improve classification accuracy. Our
goal in this case is to produce clusters that contain much
less classes then the whole training set. We opted to use RF-
based clustering technique, since in our experiments spec-
tral clustering failed to produce such clusters.

Clustering itself essentially means finding structures in
the data, which is equivalent to distinguishing between the
given data and random data having the same range of val-
ues. Therefore, we create an artificial training dataset, con-
taining all the data we want to cluster as one class, and
the randomly generated data in another class. This data is
generated by randomly sampling values from each marginal
distribution of the vector coordinates of the training data.

One of the random forest features is that in some sense
similar samples tend to fall within the same node during
training. This can be characterized by so-called proximity
matrix P of size N ×N , where N is the size of training set.

Pij = Pji =
|{m|xi,xj ∈ Lm

k }|
T

. (5)

Here Lm
k is the set of all samples x, that end up in the node

k for the decision tree m.
The proximity matrix P can be regarded as a similarity

measurement and therefore can be used as an input for a
clustering algorithm. We transform the proximity matrix to
a distance measure mP (i, j) =

√
1− Pij .

It can be seen, that this is a non-Euclidean metric, and
therefore a suitable clustering algorithm is required.

We chose to use hierarchical clustering [11] to cluster the
data based on the produced similarity metrics. For hierar-
chical clustering, we use complete linkage to aggregate data
into a cluster tree.

We use less bins in ESF descriptor for clustering, be-
cause it both allows to speed-up the training and reduces
the noise in the computed descriptors. According to our ex-
periments, more coarse histograms already contain enough
information to find similar signs, in the same time contain-
ing much less noise. We define L as the histogram aggrega-
tion level parameter, where L = 0 defines the full 64-bins
histograms, L = 1 reduces the size of histogram to 32 bins,
level L = 2 produces 16 bins, etc.

Therefore, the overall clustering algorithm has the fol-
lowing steps:

1. compute the features at a given aggregation level L;

2. create two artificial clusters — one containing all train-
ing data, one containing randomly sampled data;

Figure 5: Data clustering results for the [20] dataset using
hierarchical clustering with K = 20 clusters; the horizontal
axis show the classes (letters) and the clusters, the vectical
axes shows the number of samples in each cluster, corre-
sponding to the current class.

3. train a forest to differentiate between the two classes
and compute P for this forest;

4. apply hierarchical clustering algorithm to find clusters
in the data.

Examples of clustering results are shown in Fig. 5 and
Fig. 6. It can be seen, that the clustering actually produces
meaningful results, i.e. similar signs are grouped together
in clusters and for each cluster the number of classes inside
it is reduced. For example, for real data the signs ’o’,’p’,’q’
are grouped together in one cluster, and the signs ’m’ and
’n’ are grouped into another cluster; as shown in Fig. 7, the
depth images of these signs are quite similar and so are the
descriptors.

As expected, artificial data clustering separates the
classes almost perfectly, producing clusters, containing only
one class, while real data contains much more noise and
therefore the clusters contain small portions of different
classes (Fig. 5).

Training The multi-layered random forest (MLRF) is a
random forest, consisting of two layers.

To train the MLRF, we first perform clustering of the
data. Initially we set the number of clusters to K = 20. As
we showed earlier, the clusters build from the real data are
noisy and contain small portions of data from many classes.
Our goal is to create clusters, containing small number of
classes, therefore we prune clusters by:

• merging small clusters to the bigger clusters; we set
the minimum cluster size to 50% of the size of a class
in the training data; if a cluster is smaller than this size,
for each element of this cluster we find a cluster, con-
taining the most elements of the same class, and merge
this element to the new cluster; due to this threshold

Figure 6: Data clustering results for the synthetic data using
hierarchical clustering with K = 20 clusters; the horizontal
axis show the classes (letters) and the clusters, the vectical
axes shows the number of samples in each cluster, corre-
sponding to the current class.

(a) (b) (c) (d) (e)

Figure 7: The depth images of the signs, forming two differ-
ent clusters in the clustering, depictured in Fig. 5; images
7a,7b,7c come from one cluster, 7d,7e — from another clus-
ter.

the number of clusters is in fact determined automati-
cally for each dataset. We could observe, that in case
of ASL signs classification problem, 12− 15 big clus-
ters are formed.

• cleaning big clusters by removing classes, that have
too small number of representative in a cluster.

After the data is clustered, we train the first level random
forest on the aggregated feature vectors. This forest assigns
a cluster label to each incoming vector. Afterwards, for each
of the derived clusters, we train a separate random forest on
the full feature vectors to distinguish between similar signs.

We define the cumulative depth of the MLRF as the
sum of depths of the RF on the first and the second layers.
We also set the number of trees to be the same for each
forest in the first and the second layers.

An important step is to re-normalize the feature vectors
for each forest on the second level. Such re-normalization
is necessary, because similar vectors are clustered together,
and therefore the variance withing each cluster is much
lower, then the variance of the whole sample. The vari-
ance is derived by the classes that are contained in this clus-
ter, and skipping re-normalization can decrease classifica-
tion performance.

Testing During the testing phase, each sample is passed
through the first-level forest to determine, from which class
the sample comes from. The first-level forest determines the
cluster label of a sample. Afterwards, the sample is passed
to the corresponding forest on the second level to determine
its class label.

5. Evaluation
We evaluate our algorithm in different settings on syn-

thetic data, publicly available database, containing ASL
signs [20] and the depth data collected from the Intel Cre-
ative Depth Camera. We compare the results of our method
to the state-of-the-art methods [20] and [16] in terms of
classification error (the number of incorrectly classified
samples divided by the size of the test set), training time
and memory consumption.

We use an unparallelized MATLAB random forest im-
plementation [14]. The computational times are provided
for one core CPU employed in computations.

5.1. Synthetic data

In a natural environment, a subject’s hand position per-
forming different signs relative to a camera can change a
lot. Therefore, using the features robust to such changes
increases the performance.

To demonstrate robustness of the ESF features, we gen-
erated synthetic data using the hand model from [6] to cre-
ate depth images of 24 static letters of ASL. For the training
set, we generated 500 images per letter, in all cases the hand
was parallel to the camera. For the test set, we applied ro-
tations around three main axis to evaluate the classification
error versus the angle of rotation of the hand model.

We separate rotation around the axis X and Y, forming
the camera plain, and around the camera Z axis. As shown
in Fig. 8, the latter has no influence on the entire per-
formance, since the point cloud shape itself stays exactly
the same. Stronger rotation around X and Y axis causes
stronger performance decrease, since it changes point cloud
appearance (see Fig. 3). This result shows, that to be able
to robustly recognize gestures from a different viewpoint
in general the corresponding training data is still needed.
However, the rotation of a hand within the limits of 10 de-
grees does not degrade classification performance signifi-
cantly.

To justify the usage of the multi-layered RF, we evalu-
ated the training time of a conventional RF vs. the MLRF
with the same cumulative depth (see Sect. 4). As can be
seen, the multi-layered RF training is around 5 times faster
then a simple RF (Fig. 9).

Note, that the classification error for both forests is the
same (Fig. 10) starting from the depth D = 20. The classi-
fication error for the MLRF is a little higher for the smaller
depth. Our experiments showed that having depth less then

Figure 8: Train and test error depending on rotation angle
limits of the test sample; the forest used has the number of
trees T = 10 with depth D = 20.

Figure 9: Training time (s) needed for a simple RF and for
the multi-layered RF with T = 10 depending on the forest
depth (for the multi-layered forest, depth of the first layer is
D/2, as well as the depth of the second layer).

Figure 10: Classification error depending on the depth of
the forests.

10 makes the first-level forest too weak to classify the data
into the correct cluster.

We also evaluated the MLRF performance depending on
the separation between two layers. The optimal separation
between two layers of forest in depth is approximately D/2
(Fig. 11).

5.2. Real data

The public dataset [20] The dataset contains 24 static
signs from American sign language (ASL), performed by
5 subjects. There is high variability in how the people per-
form signs and in the relative position to the camera, al-
though the variability in pose is relatively low for one sub-
ject.

To evaluate how good our method generalizes, we
trained the forests on 4 subjects and then evaluated the per-
formance on the subject, left out of the training. In Tab.

Figure 11: Classification error depending on the separation
in depth between the first and the second layers of the forest
(T = 10).

Figure 12: Training time depending on the depth of the
forests.

Figure 13: Classification error depending on the depth of
the forests.

1 this is denoted as l-o-o experiment. The reported on the
web-site baseline error for the database is 51% for the depth
data. As can be seen, the training error in these experiments
is decreased by almost 10%. Additionally, in case of using
half of the data for testing and half for training (h-h experi-
ment), we were able to decrease the error to 15%.

To justify the usage of the MLRF, we compare its per-
formance to the performance of a standard random forest.
We vary the depth of the random forest and compare the
classification error of the simple RF with the MLRF and
measure the training time (Fig. 12 and Fig. 13). Since the
database overall size is around 65000 of images, the MLRF
achives even more win in training time — it is around 10
times faster then the simple RF for the depth D = 20.

In [16], the performance of the shape classification for
the [20] dataset is presented. In the l-o-o experiment, the

method h-h l-o-o time(s) mem
GF + RF [20] 31% 51% — —-
RF (D = 20) 15% 49.1% 4485 560
MLRF (D = 20) 23.4% 50.1% 522 6.05
MLRF (D = 30) 13% 43% 1132.3 192.5

Table 1: Performance comparison on the [20] database (in
all forests, T = 10) in terms of the error for h-h and l-o-o
scenarios; memory consumption is given in Mb.

dataset [20] Intel Camera data
error D = 20 6% 22%
time (s)D = 20 212 68.77
error D = 30 2.45% 15.3%
time (s)D = 30 821 476

Table 2: Performance evaluation (MLRF) for one subject
on the data from [20] and on the data, collected with Intel
Gesture Camera.

achieved accuracy is 85% vs. 57% of our method and in the
h-h experiment, the reported performance is 97.8%. How-
ever, the reported training time is around 4000 s per tree
on a quad core PC. For our method, the training time for
an unoptimized MATLAB version of the MLRF is less then
one thousand of seconds on one core. In one-subject exper-
iment, our method shows the accuracy of 97.4% (see Tab.
2). Therefore, in one-subject experiment our method has the
same performance as the method in [16], while the training
times allows to re-calibrate the system for a new subject
very fast.

Evaluation on the new dataset To illustrate applicability
of the recognition method to other sensors, we collected a
dataset using Intel Creative Gesture Camera [2]. The device
represents a low-cost time-of-flight camera with the range
from 10cm to 1m, maximal frame rate of 50fps and the res-
olution of 240×320 pixels (for depth data). High speed and
near range make the camera potentially useful in the field of
gesture recognition.

The dataset contains 3 subjects performing 24 signs from
the ASL sign language. For each letter, we collected around
250 data frames. The purpose of this dataset is to account
for natural variation in a hand pose relative to the camera,
and therefore the participants were asked to rotate the hand
relative to the camera by 30 degrees in all directions to cre-
ate more variability (see Fig 3 for an example).

Since the data has lower resolution (240 × 320 vs.
480 × 640 pixels for the Kinect), we expect some recog-
nition performance decrease. Indeed, the results show (see
Tab. 2) some performance decrease, which we explain by
low camera resolution and high variance in hand pose.

6. Conclusion
In this work, we proposed the usage of multi-layered ran-

dom forest for multi-class classification for a problem with a
large number of classes, where different classes have differ-
ent extent of similarity. The main advantages of the usage
of the MLRF are the low training times and low memory
consumption given the same or slightly better accuracy.

We also proposed the usage of translation-,rotation- and
scale- invariant features for gesture recognition, that im-
proved the results of the recognition significantly, even in
case of hand pose changes. Our experiments showed, that
these features have in general better discriminating proper-
ties compared to the features presented in [20], however,
they still lack generalization properties.

We evaluate the performance of our method depending
on the key parameters and compare it with the state-of-the-
art methods. Our method demonstrates low training time,
low memory usage and high accuracy in one subject tests,
which make it applicable in a scenario, when fast system
re-calibration is acceptable.

References
[1] Fingerspelled alphabet. http://lifeprint.com/. 1
[2] Intel creative gesture camera. http://click.intel.

com/intelsdk/Default.aspx. 2, 7
[3] Openni. http://www.openni.org/. 3
[4] L. A. Alexandre. 3D descriptors for object and category

recognition: a comparative evaluation. In Workshop on
Color-Depth Camera Fusion in Robotics at the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, oct 2012. 2, 3

[5] Y. Amit and D. G. Y. Shape quantization and recognition
with randomized trees. Neural Computation, 9:1545–1588,
1997. 4

[6] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Polle-
feys. Motion capture of hands in action using discriminative
salient points. In European Conference on Computer Vision
(ECCV), pages 640–653, Firenze, October 2012. 6

[7] L. Billiet, J. A. Oramas Mogrovejo, M. Hoffmann, W. Meert,
and L. Antanas. Rule-based hand posture recognition us-
ing qualitative finger configurations acquired with the kinect.
In Proceedings of the 2nd International Conference on Pat-
tern Recognition Applications and Methods, pages 1–4, Feb.
2013. 2

[8] L. Breiman. Random forests. Mach. Learn., 45(1):5–32,
Oct. 2001. 4

[9] N. Dardas and E. Petriu. Hand gesture detection and recog-
nition using principal component analysis. In Computa-
tional Intelligence for Measurement Systems and Applica-
tions (CIMSA), 2011 IEEE International Conference on,
pages 1–6, 2011. 2

[10] M. V. den Bergh, F. Bosche, E. Koller-Meier, , and L. V.
Gool. Haarlet-based hand gesture recognition for 3d interac-
tion. In Proceedings of the IEEE Workshop on Applications
of Computer Vision (WACV 2009), December 2009. 2

[11] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning. Springer, corrected edition, July 2003.
4

[12] N. K. Iason Oikonomidis and A. Argyros. Effi-
cient model-based 3d tracking of hand articulations us-
ing kinect. In Proceedings of the British Machine Vi-
sion Conference, pages 101.1–101.11. BMVA Press, 2011.
http://dx.doi.org/10.5244/C.25.101. 2

[13] J. Isaacs and S. Foo. Hand pose estimation for american sign
language recognition. In System Theory, 2004. Proceedings
of the Thirty-Sixth Southeastern Symposium on, pages 132–
136, 2004. 2

[14] A. Karpathy. Machine learning matlab tool-
box. https://github.com/karpathy/
Random-Forest-Matlab. 6

[15] C. Keskin, F. Kira, Y. E. Kara, and L. Akarun. Real time hand
pose estimation using depth sensors. In ICCV Workshops,
pages 1228–1234. IEEE, 2011. 2

[16] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun. Hand
pose estimation and hand shape classification using multi-
layered randomized decision forests. In Proceedings of the
12th European conference on Computer Vision - Volume Part
VI, ECCV’12, pages 852–863, Berlin, Heidelberg, 2012.
Springer-Verlag. 2, 4, 6, 7

[17] T. Kim, K. Livescu, and G. Shakhnarovich. American
sign language fingerspelling recognition with phonological
feature-based tandem models. In SLT, pages 119–124. IEEE,
2012. 2

[18] A. Kuznetsova and B. Rosenhahn. Hand pose estimation
from a single rgb-d image. In Proceedings of the 9th Interna-
tional Symposium on Visual Computing, ISVC’13. Springer-
Verlag, 2013. 2

[19] S. Liwicki and M. Everingham. Automatic recognition of
fingerspelled words in british sign language. 2012 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition Workshops, 0:50–57, 2009. 2

[20] N. Pugeault and R. Bowden. Spelling it out: Real-time asl
fingerspelling recognition. In ICCV Workshops, pages 1114–
1119, 2011. 2, 5, 6, 7, 8

[21] Z. Ren, J. Yuan, and Z. Zhang. Robust hand gesture recog-
nition based on finger-earth mover’s distance with a com-
modity depth camera. In K. S. Candan, S. Panchanathan,
B. Prabhakaran, H. Sundaram, W. chi Feng, and N. Sebe,
editors, ACM Multimedia, pages 1093–1096. ACM, 2011. 2

[22] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In Proceed-
ings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’11, pages 1297–1304, Wash-
ington, DC, USA, 2011. IEEE Computer Society. 2

[23] M. Van den Bergh and L. Van Gool. Combining rgb and
tof cameras for real-time 3d hand gesture interaction. In
Proceedings of the 2011 IEEE Workshop on Applications of
Computer Vision (WACV), WACV ’11, pages 66–72, Wash-
ington, DC, USA, 2011. IEEE Computer Society. 2

[24] W. Wohlkinger and M. Vincze. Ensemble of shape functions
for 3d object classification. In ROBIO, pages 2987–2992.
IEEE, 2011. 3

