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Abstract

This paper is devoted to evaluating the optimal self-financing portfolio and the
optimal trading frequency on a risky and risk-free asset to maximize the expected fu-
ture utility of the terminal wealth in a stochastic volatility setting, when proportional
transaction costs are incurred at each discrete trading time. The HARA utility func-
tion is used, allowing a simple approximation of the optimization problem, which is
implementable forward in time. For each of various transaction cost rates, we find
the optimal trading frequency, i.e. the one that attains the maximum of the expected
utility at time zero. We study the relation between transaction cost rate and opti-
mal trading frequency. The numerical method used is based on a stochastic volatility
particle filtering algorithm, combined with a Monte-Carlo method.
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1 Introduction

The Black-Scholes model is an essential tool to understand stock-market movements, and

rightly continues to be celebrated by many authors. It is equally well-accepted that its

principal drawback is the constance of its coefficients, most notably its volatility. There are

many ways of taking into account the fact that stock market volatility is far from being

constant. This article situates itself in the popular continuous-time framework of stochas-

tic volatility (SV). Such models are mathematically convenient because, at the cost of an

analysis of multidimensional stochastic differential equations even for single stocks, many of

the stochastic calculus tools from the standard Black-Scholes theory for option pricing and

portfolio optimization can be extended to handle SV. See the excellent treatment in [7] along

these lines. The book [8] contains a collection of recent articles with the same motivations;

one can also consult the book [6] for a presentation of how discrete and continuous-time

modeling of SV are related.

1.1 Stochastic volatility framework and estimation

For a stock price diffusion process model S given in continuous time by dS (t) = αS (t) dt +

V (t) S (t) dW (t), where V is the unobserved volatility process, and W is a Brownian mo-

tion, continuous-time observation would imply that one can observe the quadratic variation

process [S] of S; since stochastic calculus tells us that [S] (t) =
∫ t

0
V (r)2 S (r)2 dr, one imme-

diately has access, in continuous time, to the squared volatility V (t)2 = S (t)−2 d [S] (t) /dt.

However, the main practical problem with SV models is that volatility itself is not directly

observable, and must be somehow estimated. This proves that, even if one believes or

assumes from a modeling point of view (as we do) that stock prices are continuous-time

stochastic processes, we can only assume that they are observed in discrete time. Even high-

frequency (e.g. tick-by-tick) data for highly traded assets and indices cannot be considered

as continuous-time data for the purpose of understanding volatility.

In this paper, we estimate stochastic volatility in what one might call a Bayesian statis-

tical framework. More specifically, in the language of stochastic calculus, we consider the

pair of processes (S, V ) as above, and seek the stochastic filter of the unobserved process

V given the observed process S; both processes are defined in continuous time, but S is

observed in discrete time only, and therefore it is consistent to only require an estimation

of V at the same discrete instants, given the information contained in all past observations.

For simplicity of notation in this introduction, and often in the remainder of this paper,

observation times are denoted by the set of integers i = 0, 1, 2, · · · . In other words, we seek

the conditional probability law

P [Vi ∈ dy|S1 = s1; S2 = s2; · · · ; Si = si] (1)

where s1, s2, · · · , si are observed values of S up to time i. We adopt an approach which
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was introduced in [9] to actually compute an approximation of this probability distribution,

by way of a so-called stochastic volatility particle filter, which is adapted from the generic

method of del Moral et. al in [3]. More details on this method are given in Section 2

1.2 Motivations

With this framework being established, one can ask a variety of quantitative finance ques-

tions, such as option pricing, or portfolio optimization, under our discretely observed stochas-

tic volatility stock price. The former topic was considered using a special quadrinomial

recombining tree in [5]; part of the issue there was to handle the fact that the market is in-

complete under an SV model. See the references therein for other approaches to the problem,

not based on the Bayesian estimation of volatility. In this article, we concentrate on the latter

topic: portfolio selection in order to optimize a given utility function; in this case, incom-

pleteness of the model is not relevant, since we do not attempt to hedge any positions. This

optimization was the topic originally studied in [9], but the numerical method therein was to

cumbersome to be implemented beyond a highly simplified binomial version of the model in

[4]. A practical breakthrough was achieved in the paper of Batalova et al. [1], where it was

noticed that in the case of power utility, the cumbersome portion of the algorithm, which re-

quires numerically solving a discretized Bellman problem with high-dimensional state space

in reverse time, can be short-circuited in practice in a purely forward-time algorithm which

nonetheless updates its Bayesian estimation of the stochastic volatility distribution at every

time step.

In this paper, we propose to take up the program in the paper of Batalova et al. [1], and

study its implementation and analyze its performance under the “real-market” assumption

that there are transaction costs in discrete time, each time a stock allocation is changed (each

time an individual traders buys or sells a stock). Our work contains proportional transaction

cost in each time interval. Even if transaction costs are proportional to the trades, which

is the case in this article, they cannot be approximated by the continuous-time method of

reducing the stock’s mean rate of return by a continuously compounded transaction rate.

Indeed, in practice, trades incur costs which are not proportional to the frequency of trading,

unlike the use of a continuously compounded constant trading rate.

Having transaction costs which are proportional to the trade sizes regardless of the trading

frequency is more challenging to implement in practice, and is the main subject of this

article. More specifically, for a given risk aversion parameter (for a given power in our

Hyperbolic Absolute Risk Averse (HARA) power utility) we find the optimal self-financing

portfolio that maximize the wealth’s expected future utility at time zero, with proportional

transaction costs at each trading time i, under our stochastic volatility model, assuming that

S is observed only at the integer trading times.

The main quantitative issue at hand then becomes that of trading frequency. If no

transaction costs are incurred, the practitioners may buy or sell stocks as many times as
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they choose, and theirs becomes only an issue of gathering information. In this case, the

gain increases as the number of transactions per unit of time increases. In the best of cases,

where they can handle trading at the tick-by-tick frequency, their problem is still discrete,

but they take advantage of all the available information. However, when discrete transaction

costs are considered, we have the limitation of not letting the transaction costs destroy all

our profits just for the sake of taking advantage of as much information as possible, and

adjusting our portfolio every time the stock moves. In other words, while increasing the

frequency of information usage causes the expected utility to increase, increases the trading

frequency also increases the number of transactions and their costs, causing the expected

utility to decrease.

1.3 Summary of results

The main goal of this paper is to understand the trade-off between these two opposing forces

by determining the trading frequency which maximizes the expected utility of the terminal

wealth. We call this the optimal trading frequency and denote it by N∗. Evidently, N∗

will also vary depending on the size of the transaction costs, which in our case is measured

by their proportionality constant λ to the trade size; the relation between N∗ and λ is also

studied in this paper. For illustration purposes, we choose a one-year time horizon, and let

N be the number of trades, so that N also denotes the frequency, in trades per year, and N∗

is also the optimal number of trades per year. We take the point of view of an individual

“day trader”, who is not likely to trade more frequently than once a day, i.e. likely to have

a trading frequency that is bounded above by 250. We will see that typical parameters for

day trades, this frequency is usually far higher than N∗, and we will see that our results can

be reinterpreted for the case of fixed (non-proportional) transaction costs once per trading

day, yielding recommendations for such day traders.

We adapt the solution of the portfolio optimization problem proposed by Batalova et. al

[1], using their time-forward algorithm with HARA utility function, and incorporate fixed

positive transaction costs whether trades are buys or sells.

Specifically, in this article, we show the following. At any time i, we allow allocations

of our wealth w into arbitrary quantities of SV stock Si and risk-free asset Bi = eri. Let

s̄i = (s1, s2, · · · , si) be the sequence of observed stock prices up to time i, and let Û (i, s̄i, w)

be the simulated expected HARA terminal utility (at time N), given the observations s̄i up

to time i, with wealth at time i equal to w.

1). We show that Û preserves the HARA utility structure: if for a fixed risk aversion

parameter p, we assume Û(N, s̄N , w) = wp/p, then the expected utility of the terminal

wealth at time i, Û(i, s̄i, w) will be the product of the HARA function wp/p and a

time-dependent function the observed stock prices up to time i only. Specifically, we
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identify a function Γ such that

Û(i, s̄i, w) =
wp

p
Γ(i, s̄i);

we prove this using backwards induction, and our proof results in a forward-time

algorithm to compute Γ. We state this with full proof in Proposition 3.1 in Section

3.2.

2). Let ξi be the quantity of stock in our portfolio; this ξi is allowed to depend only on the

initial wealth w0 and the observations s̄i up to time i. By a self-financing condition,

the sequence ξ determines the entire portfolio strategy. Our algorithm to compute Γ

also produces an algorithm for the optimal strategy ξ∗ = werκ∗, where r is the rate

of interest and w is the current wealth. Specifically, κ∗ uniquely solves the algebraic

equation
n∑

k=1

(κ∗β̂k(s̄i) + 1)p−1β̂k(s̄i) = 0,

where β̂k(s̄i) := (1 + λsign (ξi−1 − ξi))Ŝi+1,k− sie
r,where n is the number of simulation

particles, and Ŝi+1,k is the k-th particle of the simulated future stock prices given the

observed si. We simulate the future stock prices Ŝi+1,k by using the stochastic volatility

particle filter to initialize the volatility distribution at time i. This is explained in

Section 2.2. We state the above result in Summary 3.2.

3). We run the above algorithm on sets of simulated data s̄ for many different trading

frequencies N and several values of the transaction cost rate λ. We identify the optimal

trading frequency N∗ for each λ, and find that it increases as λ decreases. This is given

in figure ?? and table 2 in Section 5. We also provide recommendations for day traders

who incurr fixed transaction costs.

2 Model and framework

2.1 Stochastic volatility Model

Let P be an “objective market” probability measure, under which the stock price process S,

the risk-free asset process B, and a stochastic volatility driving process Y have the following

stochastic dynamics: for all t ≥ 0





dBt = rBtdt, B0 = 1

dSt = αStdt + σ(Yt)StdWt

dYt = µ(ν − Yt)dt +
√

µdZt
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where r is the deterministic constant short rate of interest, α is the deterministic constant

mean rate of return of the stock price S, and σ is a deterministic function of the stochastic

process Yt. As is typically done in SV models (see [7] or [1] for instance), we assume σ(x) =

exp(x), and our Y above is the mean-reverting Ornstein-Uhlenbeck process with a large

mean-reversion rate parameter µ (Y is often known as a fast mean-reverting process); the

positive constant ν is the mean level around which the process Y tends to revert. Note that

our entire study can be repeated with any number of distributions for the diffusion process

Y , such as dYt = µ(Yt)dt+ θ(Yt)dZt, where µ and θ satisfy typical Lipshitz and boundedness

conditions; we make no further comments on such extensions. In our study W and Z are

Brownian motions which may be correlated in order to account for complex leverage effects:

we denote ρw,z ∈ (−1, 1) their correlation coefficient.

2.2 Stochastic volatility filtering method

We refer to the article of Florescu and Viens [5] and Del Moral, Jacod, and Protter [3] for

the interacting particle algorithm.

The main task of the stochastic volatility particle filter is to find the distribution of the

volatility process Y when the discrete time observations of stock prices are given, and to do

this dynamically in time, as the observations become available. This theoretical problem,

which is to estimate the probability distribution of the volatility given information of the

stock prices up to time i, as stated for instance in the introduction in (1), can be rewritten

here specifically for the driving process Y as

ps̄
i (dy) := P[Yi ∈ dy|S0 = s0, S1 = s1, · · · , Si = si], (2)

where s0, s1, · · · , si are the observed stock prices up to time i. This conditional time-

dependent probability law, which we call the stochastic volatility filter given discrete ob-

servations, cannot be computed explicitly, and its numerical approximation is non-trivial. it

is unlikely to know the exact distribution of Y .

To estimate ps̄
i (dy), we adopt the particle method inspired by [3], introduced in [9], and

explained in detail in [5]. We now briefly explain this procedure.

It uses n particles (Yi,k)
n
k=1 which evolve in discrete time. At time 0, we initialize the

Y0,k in order to approximate our best unconditional “guess” for the distribution of Y0. This

“guess” can be seeded systematically by starting the filtering procedure in the distant past,

long before trading occurs, which will yield an initial empirical distribution of the system

(Y0,k)
n
k=0 which is close to the stationary measure of Y . We do not give further details on

this point, assuming only that (Y0,k)
n
k=0 are chosen.

At any given time i − 1, the past stock prices up to this time are given: S0 = s0, S1 =

s1, · · · , Si−1 = si−1. Assume by induction that (Yi−1,k)
n
k=1 have been computed. Then, as

soon as the ith observation Si = si becomes available, we implement a “mutation” step by
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running an m-sub-time-step Euler scheme to give, for each k = 1, · · · , n, a simulated value

of the pair of particles (Ŝi,k, Ŷi,k), started at time i− 1 at (si−1, Yi−1,k).

Then using the function ψ(x) := 1− |x|,−1 < x < 1, we let

ψn(x) := 3
√

nψ(x 3
√

n), (3)

and measure how close our each of our simulated particles Ŝi,k is to the actual observed value

si by calculating for each k

Fi,k := ψn(Ŝi,k − si). (4)

If the simulated particle Ŝi,k is close to the observed value si, then Fi,k will be very large. If

Ŝi,k is not close to si, then Fi,k will be close to zero. This Fi,k is the “weight” or “fitness”

of Ŝi,k. We normalize all particle fitnesses by computing Ci =
∑n

k=1 Fi,k. Then p̂i,k :=
Fi,k

Ci

represents the approximate probability Ŝi,k is a good approximation to si, and we transfer

this likelihood concept to the Ŷ particles as follows. We rearrange the particles Ŷi,k according

to these probabilities, by picking n new particles {Yi,k : k = 1, · · · , n} independently of each

other according to the distribution P
[
Y = Ŷi,k

]
= p̂i,k : k = 1, · · · , n. This is the “selection”

step: it thus results in n particles (Yi,k) with the estimated probabilities p̂i,k; their empirical

distribution is the approximate stochastic volatility particle filter at time i.

2.3 Self-Financing portfolio strategies with the proportional trans-

action costs

A portfolio strategy is a pair

{(ξi, ηi), i = 0, · · · , N}, (5)

which is an adapted stochastic process such that (ξiSi, ηi) in P-square-integreable for all

i = 0, · · · , N . The ξi and ηi represent the number of units of stock S and the number of

units of risk-free asset B held at time i, respectively.

When we sell or buy the risky assets such as stocks, we pay transaction costs. Propor-

tional transaction costs in discrete time means are cost that are proportional to the dollar

amount of stock that is traded at each specific time. Algebraically, this cost is the abolute

value of risky asset that exchange hands at time i, times the transaction cost rate λ for

trading (λ ∈ R+): thus the proportional transaction cost at time i is

λ|ξi − ξi−1|Si (6)

,where |ξi − ξi−1| means the number of units of the traded stock at time i. In real market,

the transaction cost rates for purchasing are different from the ones for selling. But we use

the common transaction cost rates for both purchasing and selling cases to make algorithms

simple.
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In order to manage our portfolio, we consider the simple situation where the initial

dollar amount w0 is determined, and thereafter allocation changes are financed only by stock

movements and accrued interest; in other words we assume our portfolio is self-financing:

the wealth right before the transaction occurs equals to the one right after the transaction

occurs.

The initial wealth W0 = w0 is given. The wealth at time i is:

Wi = ξiSi + ηiBi.

For t ∈ [i, i + 1], Wt = ξiSt + ηiBt. Therefore elementary algebra yields ηi = (Wi− ξiSi)e
−ri,

that is to say, we can eliminate the use of the risk-free account allocation by keeping track

of the wealth. We call W(i)− the wealth right after the transaction occurs; calculated using

the old portfolio allocation, after transaction costs are deducted, this is

W(i)− = ξi−1Si + ηi−1Bi − λ|ξi − ξi−1|Si.

For our portfolio strategy (ξ, η) to be self-financing, this W(i)− has to agree with the value

Wi of the portfolio under the new allocation at time i. Therefore, the self-financing condition

for all i = 1, ..., N − 1 reads as

ξiSi + ηiBi = ξi−1Si + (Wi−1 − ξi−1Si−1)e
r − λ|ξi − ξi−1|Si. (7)

We notice that for any t ∈ [i, i + 1), i.e. before the next transaction,

Wt = ξi−1St + (Wi−1 − ξi−1Si−1)e
r(t−i) − λ|ξi − ξi−1|St. (8)

3 Theoretical Analysis

3.1 Goal

The main computational goal of this study is to find a predictable self-financing portfolio to

maximize the expected utility of terminal wealth for a given initial wealth when proportional

transaction costs are incurred. For a portfolio to be admissible, for each time i, ξi has to

depend only on the initial wealth w0 and the past observed stock values s1, s2, · · · , si. We

should find an admissible self-financing portfolio ξ∗ = (ξ∗1 , · · · , ξ∗N) that attains the following

supremum over the set of all admissible self-financing portfolios

U(0) = U(0, s0, w0) := sup
ξ

EP
[
u(W ξ

N)|S0 = s0,W0 = w0

]
, (9)

where W ξ is the wealth process following strategy ξ, and u is a nondecreasing concave utility

function. We use u(x) = xp/p, for some positive constant p < 1, which is called the power

utility function for a risk-averse investor or HARA utility function. Our study can also

handle u(x) = log x, the log-utility function, but this is left to the reader to check. Recall

that η is determined by the ξ from the equation ηi = (Wi−ξiSi)e
−ri, and we use the notation

s̄i := {s0, · · · , si}. Then we can write ξi = ξi(s̄i, w0).
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3.2 Mathematical results

We immerse the portfolio optimization problem (9) in the following time-dependent problem:

U(i, s̄i, wi) := sup
ξ

EP
[
u(W ξ

N)|S̄i = s̄i, Wi = wi

]
. (10)

This could be solved by an iteration of HJB equations backwards in time as in the article

[9], but this algorithm is far too cumbersome to be implemented: its state space includes the

trajectorial variable s̄i, whose dimension increases unwieldily in time.

Under the HARA utility function, a Monte-Carlo method can be used to estimate the

problem (10) via a time-forward recursion, as in [1]. We call this estimation Û . Specifically,

we define, for i = 1, · · · , N , and k = 1, · · · , n

Û(i, s̄i, wi) = max
ξ∈R

1

n

n∑

k=1

Û(i + 1, s̄i, Ŝi+1,k, Ŵi+1,k) (11)

where the simulated value Ŝi+1,k is computed using an Euler approximation as in the SV

particle filter of Section 2.2, and we set, in agreement with equation (8),

Ŵi+1,k = ξiŜi+1,k + (wi − ξisi)e
r − λ|ξi − ξi−1|Ŝi+1,k. (12)

We notice that the maximum in the definition of Û in (??) is over constant reals only, since

this iteration is over a single time interval, during which allocation changes are not allowed.

So far, there is nothing to guarantee that the definition of Û in (??) allows a forward

time recursion. To resolve this issue, and find a dynamic portfilio (ξ∗i )
n
i=1 that attains the

supremum in (10), we need to prove the following proposition.

Proposition 3.1 Let Û be defined by (11). Then there exists a function Γ depending only

on i, s̄i, and the simulated values used in (12), but not on w, such that for i = 1, · · · , N − 1,

we have

Û(i + 1, s̄i+1, w) =
wp

p
Γ(i + 1, s̄i+1). (13)

Proof. We prove this by using the backward induction. When i = N − 1, since

Û(N, s̄N , w) = wp/p, this is obviously proved with Γ = 1. Then we assume that

Û(i + 1, s̄i+1, w) =
wp

p
Γ(i + 1, s̄i+1). (14)

And let bi−1 =
ξi−1Ŝi+1,k

Ŵi+1,k
. First we prove this proposition if ξi−1 − ξi > 0. The proof of the

case of ξi−1 − ξi < 0 is similarly proved. As we substitute all these to the equation (12), we

have

Ŵi+1,k = ξiŜi+1,k + (wi − ξisi)e
r − λ(ξi−1 − ξi)Ŝi+1,k (15)

= ξi

(
(1 + λ) Ŝi+1,k − sie

r
)

+ wie
r − λξi−1Ŝi+1,k (16)

= ξi

(
(1 + λ) Ŝi+1,k − sie

r
)

+ wie
r − λbi−1Ŵi+1,k. (17)
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Now we make the following notation.

β̂+
k (s̄i) := (1 + λ) Ŝi+1,k − sie

r (18)

Then finally we have

Ŵi+1,k =
1

(1 + λbi−1)
(ξiβ̂

+
k (s̄i) + wie

r). (19)

Then by the assumption (14), we have

Û(i, s̄i, wi) = max
ξ∈R

1

n

n∑

k=1

(
ξβ̂+

k (s̄i) + wie
r
)p

p(1 + λbi−1)p
Γ(i + 1, s̄i, Ŝi+1,k) (20)

By the definition of bi−1, we can rewrite
Γ(i+1,s̄i,Ŝi+1,k)

(1+λbi−1)p := Γ′(i+1, s̄i, Ŝi+1,k) for some function

Γ′. To simplify the notation, we use the Γ instead of Γ′. Then now we have

Û(i, s̄i, wi) = max
ξ∈R

1

n

n∑

k=1

(
ξβ̂+

k (s̄i) + wie
r
)p

p
Γ(i + 1, s̄i, Ŝi+1,k). (21)

To evaluate the extremum, it is enough to find the zeros of the derivative of the above

function with respect to ξ. Then ξ solves the following equation

n∑

k=1

(
ξβ̂+

k (s̄i) + wie
r
)p−1

β̂+
k (s̄i)Γ(i + 1, s̄i, Ŝi+1,k) = 0. (22)

Let κ = ξ
wer . Then κ solves

n∑

k=1

(
κβ̂+

k (s̄i) + 1
)p−1

β̂+
k (s̄i)Γ(i + 1, s̄i, Ŝi+1,k) = 0. (23)

Now we consider the derivative of the above equation (23) with respect to κ. Then since

0 < p < 1, we see that

n∑

k=1

(p− 1)
(
κβ̂+

k (s̄i) + 1
)p−2

(β̂+
k (s̄i))

2Γ(i + 1, s̄i, Ŝi+1,k) < 0. (24)

This proves that κ is the maximum in the equation (21); we denote it by κ∗. So the maximum

in the expression in (21) is attained at ξ := ξ∗ = κ∗wer. Substitute this ξ∗ to the equation

(21), then we have

Û(i, s̄i, w) =
wp

p

1

n

n∑

k=1

erp
(
κ∗β̂+

k (s̄i) + 1
)p

Γ(i + 1, s̄i, Ŝi+1,k) (25)

=
wp

p
Γ(i, s̄i). (26)
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Similarly, if ξi−1 − ξi < 0, then

Ŵi+1,k =
1

(1− λbi−1)
(ξiβ̂

−
k (s̄i) + wie

r) (27)

,where

β̂−k (s̄i) := (1− λ)Ŝi+1,k − sie
r. (28)

Then the rest of the proof is the same as the proof of the case ξi−1 − ξi > 0 except simply

replacing β̂+
k (s̄i) by β̂−k (s̄i). This completes the proof of the proposition.

Now we use the same method in the article of the Batalova et al. [1] to make our algorithm

forward in time and simple.

A further approximation is taken by assuming that the quantity Γ(i+1, s̄i+1, Ŝi+1,k) in the

equation (23) does not depend on k. See [1] for an explanation of what this approximation

entails. We see that if ξi−1 − ξi > 0, then κ∗+ is the unique solution of the equation

n∑

k=1

(κ∗+β̂+
k (s̄i) + 1)p−1β̂+

k (s̄i) = 0. (29)

Similarly, if ξi−1 − ξi < 0, then κ∗− is the unique solution of the equation

n∑

k=1

(κ∗−β̂−k (s̄i) + 1)p−1β̂−k (s̄i) = 0. (30)

Thus we see that equation (29) and equation (30) can be computed forward in time thanks

to the values β̂+
k (s̄i) and β̂−k (s̄i), defined in (18) and (28). We summarize these considerations

here.

Summary 3.2 Let Û be as given (11). The maximum in this expected utility for i =

1, · · · , N − 1, is attained at the approximate value ξ∗i (s̄i) = wie
rκ∗, where κ∗ is the unique

solution to the following algebraic equation.

Corollary 3.3 (i) If ξi−1 − ξi > 0, κ∗ uniquely solves the equation

n∑

k=1

(κ∗β̂+
k (s̄i) + 1)p−1β̂+

k (s̄i) = 0, (31)

where

β̂+
k (s̄i) := (1 + λ)Ŝi+1,k − sie

r. (32)

(ii) If ξi−1 − ξi < 0, κ∗ uniquely solves the equation

n∑

k=1

(κ∗β̂−k (s̄i) + 1)p−1β̂−k (s̄i) = 0 (33)

,where

β̂−k (s̄i) := (1− λ)Ŝi+1,k − sie
r. (34)
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Remark 3.4 We notice that if the transaction cost rate λ is zero, in other words,if we

assume that there is no the proportional transaction costs, then our results in Proposition 3.1

and Summary 3.2 are exactly the same as the ones in ([1], Section 4). We state these briefly

with our notation here, to highlight the similarity: they show that the approximation of the

expected utility at time i + 1 is

Û(i + 1, s̄i+1, w) =
wp

p
K(i + 1, s̄i+1) (35)

for some function K which does not depend on w, and the optimal portfolio is given by

ξ∗ = werκ∗ where κ∗ is the unique solution of

n∑

k=1

β̂k(s̄i)
(
κ∗

(
Ŝi+1,k − sie

r
)

+ 1
)p−1

. (36)

4 Algorithm

For the practitioners’ benefit, we restate all the above considerations in the form of a complete

algorithm. It is similar to that which was used (but not fully stated) in Batalova et al. [1]; in

our case, the maximization step calculates κ differently than theirs, depending on the sign of

ξi−1− ξi: if we need to buy (resp. sell) stocks at time i, we use equation (31) (resp. equation

(33)) to calculate κ.

Let us briefly summarize the algorithm below. To provide an approximate solution to

our portfolio optimization problem (9), based on past observed prices up to time i, using

the Euler and Bayesian Monte-Carlo methods yielding stochastic volatility particles Yi,kand

their corresponding probabilities p̂s̄
i,k, we simluate the future stock prices Ŝi,k one unit of

time into the future, using the SV dynamics on [i, i + 1]. Then with these, we calculate κ∗i
and the optimal portfolio ξ∗i = wie

rκ∗i . In addition, we calculate a Monte-Carlo version the

initial expected utility U(0) based on the evolution of the optimal portfolio ξ∗ for a number

of different simulated scenarios s̄; this step is not part of the optimization scheme, but allows

us to estimate U (0), which will be crucial to our analysis of the optimal trading rate in the

next section.

Now we present our forward-in-time algorithm in more detail; to lighten the notation, we

omit writing the functional dependence of all quantities on the fixed sequence of observations

s̄.

1). Initialization : Let the k-th initial stock price in the Monte-Carlo step S0,k = s0. Let

Y0,k = y0, where Y0,k is the k-th particle of the filter p̂s̄
0(·) = 1

n

∑n
k=1 δY0,k

(·). Let the

initial wealth W0,k = w0 for all k = 1, · · · , n. Let Û(N, w) = wp/p. And decide the

number of steps in the Euler scheme m and the number of particles in the stochastic

volatility filter n. We choose n such that the particle filtering error order n−1/2 (see

12



[3], [9]) is sufficiently small, and similarly for m and the Monte-Carlo error order
√

m.

Let h = ∆t = ti − ti−1.

2). Calculation of the Stochastic Volatility Particle Filter : it has two steps, a

mutation step and a selection step. For i = 1, · · · , N − 1.

(i) (Mutation Step)

For k = 1, · · · , n, we start with (si−1, Yti−1,k)

For 0 ≤ j ≤ m− 1, calculate





Ŝti−1,j+1 = Ŝti−1,j + αŜti−1,j
h
m

+ exp(Ŷti−1,j)Ŝti−1,j

√
h
m

Zi−1,j

Ŷti−1,j+1 = Ŷti−1,j + µ(ν − Ŷti−1,j)
h
m

+
√

µ
√

h
m

Z ′
i−1,j,

(37)

where Zi−1,j and Z ′
i−1,j are i.i.d. standard Normal random variables. This is the

Euler scheme. Then let Ŝti = Ŝti−1,m and Ŷti,k = Ŷti−1,m and repeat this procedure

n times to have n particles {Ŝti,k, Ŷti,k}n
k=1.

(ii) (Selection Step)

For k = 1, · · · , n, we start with (Yti,k) and set

Ci =
n∑

k=1

ψn(Ŝti,k − si) (38)

where ψn is the function given in (3). Then calculate :

Ψn
i =

{
1
Ci

∑n
k=1 ψn(Ŝti,k − si)δŶti,k

if Ci > 0

δ0 otherwise
(39)

Then sample n IID particles from the law Ψn
i (in other words, sample n inde-

pendent times from the discrete distribution with atoms Ŷti,k and corresponding

weights p̂i,k := ψn(Ŝti,k − si)/Ci ). The resulting IID sample is {Yti,k}n
k=1 and to-

gether with its corresponding probabilities p̂i,k, is the stochastic volatility particle

filter at time i.

3). Calculation of optimal portfolio strategy ξi : Let the initial optimal strategy

ξ∗0 = 0 and the initial wealth be w0, and specify the transaction cost rate λ.

For each i = 1, 2, · · · , N , we assume that wi−1 and ξi−1 have been determined, and do

the following.

(i) Simulate Ŝi+1,k by the Euler scheme with time step h
m

for the pair (S, Y ) starting

from (si, Yi,k).

13



(ii) (Maximization step) Set β̂+
k = (1 + λ)Ŝi+1,k − sie

r. Find the unique solution κi

of the equation
n∑

k=1

(κiβ̂
+
k + 1)p−1β̂+

k = 0. (40)

With this κi, now we calculate wi, where wi is the current wealth before the

portfolio manager changes the allocation of stock and risk-free account. In the

Summary 3.2, we know ξi = κiwie
r and

Ŵi,k = ξi−1Ŝi,k + (wi−1 − ξi−1si−1)e
r − λ(ξi − ξi−1)Ŝi,k. (41)

We rewrite this equation with ξi = κiwie
r; then we have

Ŵi,k(1 + λκie
rŜi,k) = ξi−1[(1 + λ)Ŝi,k − si−1e

r] + wi−1e
r. (42)

Thus we have

Ŵi,k =
1

(1 + λκierŜi,k)
{ξi−1[(1 + λ)Ŝi,k − si−1e

r] + wi−1e
r}. (43)

We note that we can calculate the right side of the above equation since at time

i, we have all information up to time i − 1, the simulated stock price at time i,

which is Ŝi,k and κi. Then we have wi = 1
n

∑n
k=1 Ŵi,k. Then with this wi and κi,

we calculate ξi = κiwie
r. Calculate ξi − ξi−1.

If ξi − ξi−1 > 0, then set the i-th step optimal strategy ξ∗i = ξi.

If ξi − ξi−1 < 0, then find the solution κ′i of the equation

n∑

k=1

(κ′iβ̂
′
k + 1)p−1β̂′k = 0, (44)

where β̂′k = (1 − λ)Ŝi+1,k − sie
r. To calculate ξi = κ′iwie

r, we should calculate

wi = 1
n

∑n
k=1 Ŵi,k. Similarly to the procedure of finding Ŵi,k in the case of

ξi − ξi−1 > 0, we see

Ŵi,k =
1

(1− λκ′ierŜi,k)
{ξi−1[(1− λ)Ŝi,k − si−1e

r] + wi−1e
r}. (45)

So now we have wi and then we calculate ξi = κ′iwie
r. We accept this as our

optimal strategy in our algorithm, i.e. ξ∗i = ξi.

4.) Calculation of Û(0) : Now we calculate the initial maximal expected future utilities

U(0, s0, w0). In Proposition 3.1, we saw that a good approximation for U(0) is the

average of the terminal wealth utilities i.e.

1

n

n∑

k=1

(wN,k)
p

p
, (46)
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where n is the number of scenarios. First, we simulate a large number of scenarios s̄

by using the algorithm in Step 1 and Step 2. Then we use the algorithm in Step 3

to calculate optimal strategies for each scenario s̄. With these optimal strategies, we

calculate the terminal wealth utilities for each scenario, and then compute the average

of these utilities as in (46).

5 Optimization, recommendations, and conclusion

We run our algorithms above with the following typical parameter choices: m = 50, n = 5000,

p = 0.4, r = 0.02, the number of scenarios s = 300, the initial wealth w0 = $100, 000,

α = 0.05, µ = 5, σ(Y0) = 0.25 for a variety of N ’s and λ’s. The time horizon is 1 year.

The results are summarized in figure 1 and figure 2, table 1, table 3, and table 2. The

vertical axis in figure 1 and figure 2 is Û(0), the expected utility of the terminal wealth, and

the horizontal axis is trading frequency N . First, we notice that for each transaction cost

rate, λ, each graph has optimal transaction numbers N∗, which maximizes the Û(0) in figure

1 and figure 2. More specifically, looking at table 3, which corresponds to the case λ = 0.008,

we see that Û(0) is increasing from N = 2 to about N = 32, and decreases from then on.

This means that if the transaction cost rate is 0.8%, the optimal trading frequency is about

32 trades per year, they get the highest return on their investment in this case. Second, the

tail of each graph eventually becomes zero as N increases, as seen in figure 1 for all but the

very smallest λ. In table 1, which corresponds to 10% transaction cost rate, an unreasonably

high λ, the expected future utility is seen to get to 0 much faster than in the other cases,

and the trader can evidently not make any profit at all unless she trades very infrequently.

The optimal trading frequency N∗, estimate for each λ as the point where the corre-

sponding graph in figure 1 or figure 2, is seen to increases as λ decreases, an effect that is

to be expected, and which we have quantified in table 2: this table 2 shows the optimal

trading frequency N∗ as a function of λ, which increases quickly as the transaction cost rate

decreases to 0.

The notation avg(WN) in the tables is the average of the terminal wealth over the number

of scenarios. The corresponding return for each frequency, is calculated over one year as

(Terminal Wealth - Principal)/Principal, and is reported in table 3 for λ = 0.008, as well

as in table 2 for all λ and their corresponding optimal rates. We notice the very important

fact that there can be a wide range of N ’s which has approximately the same return as the

return under the optimal N∗ frequency. For example, if λ = 0.008 then for 10 ≤ N ≤ 36, the

returns in this range are around 3.5% ∼ 3.6% which is almost same as the return of optimal

N∗ which is 3.66%. There is only a slight difference between the return for N∗ and for the

midpoint N̄ of the stated range. This can be interpreted as a kind of robustness result for

our portfolio: the trader may choose a frequency which is roughly of the same magnitude

as N∗, and still hope to get an optimal return. Our tables also allow one to determine
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Figure 1: Expected Utility of WN .
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Figure 2: Expected Utility of WN .

which frequencies will cause the portfolio to be less profitable on average than the risk free

account: since r is 2%, those N which have less than $102, 000 as their terminal wealth are

to be avoided. In the case of λ = 0.008, we see that this corresponds to N > N∗∗ = 64.

Lastly, let us consider the interesting question of the online daily trader with fixed $10

transaction cost per trade, and N = 252 trades per year (one trade per day). In order

to get that 252 corresponds to an optimal trading frequency, our algorithm yields that it

should come from a proportional transaction cost rate of λ∗ = 0.0018. We can rephrase

this information into fixed transaction costs. If each trade is approximately for P := $10
λ∗ '

$5, 500, then the proportional transaction cost corresponding to every such trade will be

λ∗( 10
λ∗ ) = $10. Therefore we conclude that a frequency of 252 per trades year (once per day),

with $10 transaction costs per trade, can be optimal, so long as each trade is sufficiently

large, in this case at least $5, 500.

Table 1: Û(0) for λ = 0.1
N Û(0) N Û(0) N Û(0) N Û(0) N Û(0)

2 245.85 22 247.39 42 131.95 62 72.05 82 33.99

4 247.62 24 234.76 44 93.71 64 52.69 84 35.60

6 257.05 26 238.81 46 119.28 66 57.34 86 32.05

8 253.99 28 205.41 48 90.74 68 55.62 88 34.46

10 260.23 30 178.01 50 82.66 70 39.76 90 33.63

12 258.67 32 213.55 52 103.45 72 52.09 92 32.09

14 258.43 34 210.21 54 87.13 74 48.73 94 34.20

16 256.78 36 196.76 56 74.71 76 48.24 96 31.85

18 253.26 38 132.58 58 59.49 78 39.04 98 36.06

20 248.21 40 122.38 60 71.73 80 35.84 100 31.58

Table 2: N∗
λ N∗ Û(0) avg(WN) N̄ return N∗∗

0.1 10 260.96 111324 10 11.32% 20

0.05 11 256.94 107084 12 7.08% 24

0.03 11 255.18 105261 12 5.26% 28

0.02 14 254.28 104338 14 4.34% 30

0.01 16 253.17 103200 22 3.20% 40

0.008 32 253.62 103663 24 3.66% 54

0.005 32 253.74 103784 43 3.78% 79

0.004 62 254.09 104135 62 4.14% 122

0.003 116 254.66 104725 118 4.73% 162

0.002 204 256.65 106778 234 6.78% 358
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Table 3: Û(0) for λ = 0.008
N Û(0) avg(WN) return N Û(0) avg(WN) return N Û(0) avg(WN) return N Û(0) avg(WN) return

2 252.87 102894.96 2.89% 28 253.26 103293.13 3.29% 54 252.47 102489.25 2.48% 80 249.61 99610.13 -0.39%

4 252.29 102306.38 2.31% 30 253.36 103393.52 3.39% 56 252.30 102311.87 2.31% 82 249.82 99824.66 -0.18%

6 252.95 102973.81 2.97% 32 253.62 103663.79 3.66% 58 251.96 101971.67 1.97% 84 249.84 99840.05 -0.16%

8 252.49 102510.98 2.51% 34 253.49 103527.24 3.53% 60 252.27 102289.13 2.29% 86 249.08 99086.43 -0.91%

10 253.48 103511.35 3.51% 36 253.50 103541.19 3.54% 62 252.26 102278.86 2.28% 88 249.21 99208.66 -0.79%

12 253.47 103508.19 3.51% 38 252.94 102970.19 2.97% 64 251.61 101618.78 1.62% 90 249.20 99201.32 -0.80%

14 253.50 103531.79 3.53% 40 252.79 102810.36 2.97% 66 251.68 101689.27 1.69% 92 248.54 98543.61 -1.46%

16 253.45 103490.67 3.49% 42 253.02 103051.51 3.05% 68 251.38 101387.07 1.39% 94 248.81 98816.69 -1.18%

18 253.53 103571.45 3.57% 44 252.76 102778.24 2.78% 70 250.75 100755.63 0.76% 96 247.83 97848.95 -2.15%

20 253.49 103524.61 3.52% 46 252.83 102854.02 2.85% 72 250.98 100987.70 0.99% 98 248.58 98590.53 -1.41%

22 253.51 103546.55 3.55% 48 252.54 102561.45 2.56% 74 250.63 100637.22 0.64% 100 243.57 93691.04 -6.31%

24 253.44 103479.92 3.48% 50 252.32 102340.37 2.34% 76 250.97 100975.55 0.98%

26 253.50 103533.49 3.53% 52 252.75 102773.63 2.77% 78 250.75 100754.01 0.75%
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