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Abstract—Bounds on the rates of grain-correcting codes are
presented. The lower bounds are Gilbert–Varshamov-like ones,
whereas the upper bounds improve on the previously known
result by Mazumdar et al. Constructions of t-grain-correcting
codes of length n for certain values of n and t are discussed.
Finally, an infinite family of codes of rate approaching 1 that
can detect an arbitrary number of grain errors is shown to exist.
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I. INTRODUCTION

The essential building blocks of conventional magnetic

recording media are so-called grains which are arbitrarily-

shaped two-dimensional magnetizable units assuming one of

two possible types of polarity. In modern technologies, the

writing medium is partitioned into cells, typically larger in

size than the grains, thereby determining how the process of

setting a value to a cell is carried out, namely, the process

boils down to magnetizing all the grains within the boundaries

of this cell. Recently, a novel mechanism was proposed by

Wood et al. [23] that enables to magnetize areas that are

proportionate in their size to the size of grains effectively

creating a different type of medium where the grain polarity

is determined by the last bit written into the grain. However,

recording with areal densities this high introduced new errors

to the grains located in the immediate vicinity of the grain

being written, which made the case for a technique called

bit-patterned media recording. This technique makes use of

regularly-shaped magnetic units insulated from one another

by a nonmagnetic substance to circumvent the aforementioned

problem brought on by the high-density writing. However, this

technique is not without its own flaws, as it necessitates a

faultless synchronization of the write head position over the

magnetic units. This, coupled with the specific geometry of the

write head whose magnetic field extends across several units,

may cause overlapping patterns of errors in shingled writing

on the bit-patterned media [5]. Iyengar et al. [7] modeled the
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one-dimensional versions of both media as write channels and

studied their information-theoretic properties.

Mazumdar et al. [17] considered a combinatorial error

model describing the one-dimensional granular medium. In

what follows, we will define a somewhat generalized version

of that model by augmenting it with the overlapping error

patterns occurring during shingled writing on bit-patterned

media. Let 〈s〉 denote the set {0, 1, . . . , s−1} for any positive

integer s. Let Σ = 〈q〉 be an alphabet for an integer q ≥ 2.1

A grain (of length 2) ending at location e ∈ 〈n〉 \ {0} in a

word x = (xi)i∈〈n〉 of length n over Σ causes the value of xe
to equal that of xe−1. Given n consecutive positions on the

medium (where words of length n over Σ are to be written),

define a grain pattern as a set S ⊆ 〈n〉 \ {0} containing

all the locations in these n positions where grains end. We

will commonly refer to the elements of S (which indicate

grain locations) simply as grains. Thus, a grain pattern S
inflicts errors to a word x = (xi)i∈〈n〉 over Σ by means

of the smearing operator σS that yields an output word

y = (yi)i∈〈n〉 = σS(x) over Σ in the following way: for

any index e ∈ 〈n〉 \ {0},

ye =

{
xe−1 if e ∈ S
xe otherwise

.

We will say that a grain pattern has overlaps if there exist

two grains e, e′ ∈ S such that e′ = e+1; otherwise the grain

pattern will be called nonoverlapping. It should be pointed

out that we use the term “overlaps” with respect to grains

in a borrowed sense to uniformize two similar error models;

the physical notion of grains does not really apply to the

application of [5] and [7].

Example 1.1: Let Σ = 〈3〉 (q = 3), n = 6, x = 102022,

S = {1, 3, 5} and S ′ = {1, 2}. Then σS(x) = 112222 and

σS′(x) = 110022. The grain pattern S is nonoverlapping

whereas the grain pattern S ′ has overlaps.

For a positive integer t and x,y ∈ Σn, we say that x and

y are t-confusable if there exist grain patterns S,S ′ of size

at most t for which σS(x) = σS′(y). Words x and y are

confusable if they are t-confusable for some finite t; otherwise,

we say that they are non-confusable. A code C of length n
over Σ (namely, a nonempty subset of Σn) is called t-grain-

correcting if no two distinct codewords in C are t-confusable.

A code C will be called ∞-grain-correcting if any pair of dis-

tinct codewords in C are non-confusable. Let M
(N)
q (n, t) and

M
(O)
q (n, t) denote the largest size of any t-grain-correcting

1The application of [5] and [7] supports our model for q = 2; the motivation
for studying the nonbinary case is mainly theoretical at this stage.
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code of length n over Σ when overlaps are disallowed and

allowed, respectively (readily, M
(N)
q (n, t) ≥ M

(O)
q (n, t) for

any q, n, and t). For τ ∈ [0, 1] and j ∈ {N,O}, define the

(asymptotic) rate of ⌈τn⌉-grain-correcting codes over Σ as

R(j)
q (τ) = lim sup

n→∞

1

n
logqM

(j)
q (n, ⌈τn⌉).

The main objective of this paper is obtaining lower and

upper bounds on M
(j)
q (n, t) and on R

(j)
q (τ) for j ∈ {N,O}.

In Section II, we compute asymptotic Gilbert–Varshamov-

like lower bounds on R
(j)
q (τ) for different values of q, using

several results from [11] and [15]. The main effort in this

method will be to estimate the size of a set of ordered pairs

of t-confusable words of length n taken from some subset X
of Σn. To this end, we will make a reduction from ordered

pairs of t-confusable words of length n to cycles of length n
in a specifically designed directed graph, and the growth rate

of the number of these cycles will then be assessed using the

tools of the Markov-chain machinery.

In Section III, we find an upper bound on M
(j)
2 (n, t)

using a general technique of Abdel-Ghaffar and Weber [1]

and improve the best known upper bound on R
(N)
2 (τ). This

technique, like many of its counterparts, is essentially based

on sphere-packing argument. However, unlike the traditional

Hamming-metric setting, the sizes of spheres of some fixed

radius around binary words with respect to the granular error

model, as defined above, are not all equal, thereby invalidating

the simple upper bound, obtained in the Hamming-metric

setting, as the size of the space divided by the size of a sphere

around, say, the all-zero word 0n. Bounding the sizes of all

the spheres from below does not lend itself to a good upper

bound either, as there is a large discrepancy between the sizes

of spheres and some of them (e.g., those around the words 0n

and 1n) might be very small. The technique of Abdel-Ghaffar

and Weber suggests to overcome these problems by sorting

the spheres around all the binary words in an increasing order

of their sizes and by packing the space 〈2〉n with spheres in

that order as long as their collective size is less than 2n.

In Section IV, we present constructions of binary t-grain-

correcting codes of length n for some values of n and t
and show the optimality and the uniqueness of some of

these codes. Most of the constructions are based on a simple

construction from [17, Sec. 2] for ∞-grain-correcting codes.

Finally, in Section V, we demonstrate how to obtain codes of

rate approaching 1 (as n → ∞) that can detect an arbitrary

number of grain errors for any alphabet size q.

We mention that the grain error model somewhat resembles

bitshift errors, typical in magnetic recording systems with peak

detection [12], [13], [16, Sec. 7.1], [20]; such errors occur

due to the misdetection of recorded pairs of 01’s as 10’s and

vice versa, thereby shifting the read 1 in those pairs from its

designated position one position to the left or to the right.

Another similar error model appears to be that of overreach

errors, which may be found in phase-change memories [8,

Sec. 3]; these errors are characterized by smearing the recorded

1’s to the adjacent (from the left and/or from the right) 0’s

causing misdetection of those 0’s as 1’s.

II. GILBERT–VARSHAMOV-LIKE BOUNDS

We start by stating the main result of this section, the proof

of which appears in Section II-B.

Let

Hq(p) = −p logq p− (1−p) logq(1−p) + p logq(q−1) (1)

be the q-ary entropy function and let λ(·) denote the spectral

radius of a square real matrix.

Theorem 2.1: Let q ≥ 2 be an integer, and let

A(N) =

0 1 2

0 1+(q−1)h2 2(q−1)hz (q−1)(q−2)h2z2

1 2h+(q−2)h2 (q−1)h2z 0
2 2h+(q−2)h2 0 0

(2)

and

A(O) =
0 1

0 1+(q−1)h2 2(q−1)hz+(q−1)(q−2)h2z2

1 2h+(q−2)h2 (2q−3)h2z
(3)

be parametric real matrices. Then for j ∈ {N,O},

R(j)
q (τ) ≥ sup

p∈[0,1],z∈(0,1]
h∈(0,∞)

{
2Hq(p)− logq λ(A(j)(z, h))

+ 2τ logq z + 2p logq h
}
. (4)

This section is organized as follows. In Section II-A, we

list the definitions (following the notation in [15, Sec. 3]) and

the known results which will be of use later in Section II.

In Section II-B, we prove Theorem 2.1, using the tools

mentioned in Section II-A. In a nutshell, the proof relies on

counting cycles of a certain type in a specifically designed

finite directed graph. The cycles will be shown to correspond

to pairs of words (x,y) along with a (minimal) grain pattern

S that makes them confusable (i.e., S is a minimal grain

pattern for which σS(x) = σS(y)). Section II-C compares the

lower bounds obtained from Theorem 2.1 with known results.

Finally, we conclude by considering in Section II-D the more

general error model where grains can be of length larger than 2
and describe how the technique of Section II-B can be adapted

to yield lower bounds on the rate of binary codes that correct

such error patterns.

A. Definitions and useful tools

1) Graphs and Markov chains: Let G = (VG, EG) be a

(finite) directed graph with state set VG and edge set EG ⊆
VG × VG, without parallel edges. The graph G will be called

primitive if there exists a positive integer s such that for any

ordered pair of states (v, v′) of VG there is a path of length s
from v to v′ in G.

Let P : EG → [0, 1] be a probability distribution on EG,

namely,
∑

e∈EG
P (e) = 1. A stationary Markov chain is a

probability distribution P on EG such that

∑

v′:e=(v′,v)∈EG

P (e) =
∑

v′:e=(v,v′)∈EG

P (e)
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for any v ∈ VG. The (stationary) probability π(v) to be in a

state v ∈ VG in a random walk on G according to a stationary

Markov chain P is

π(v) =
∑

v′:e=(v,v′)∈EG

P (e).

For a path γ = (vi)i∈〈n+1〉 of length2 n in G, let Pγ : EG →
[0, 1] be the empirical probability distribution of γ, namely,

for e ∈ EG,

Pγ(e) =
1

n

∣∣∣{i ∈ 〈n〉 : (vi, vi+1) = e}
∣∣∣;

it is readily verified that when γ is a cycle (namely, when

v0 = vn), Pγ is a stationary Markov chain on EG.

For a probability distribution P : EG → [0, 1], a positive

integer k and a vector function f : EG → R
k, denote by

EP {f} the expected value of f with respect to P , that is,

EP {f} =
∑

e∈EG

P (e)f(e). (5)

Finally, for an integer q ≥ 2, the entropy rate of a stationary

Markov chain P is defined as

Hq(P ) = −
∑

v∈VG:

π(v)>0

∑

v′:e=(v,v′)∈EG
s.t. P (e)>0

P (e) logq
P (e)

π(v)
.

2) Optimizing concave functions: We proceed by citing

special cases of [15, Lemma 2] and [15, Lemma 5] which

are consequences of well-known results on optimizing con-

vex (concave) functions subject to linear equality and linear

inequality constraints (also see [3, Lemma 2], [14, pp. 312–

316], [18, Ch. 2, Th. 25], and [19, Sec. 28]) and which are

to be employed in the following subsection. In both lemmas,

M(f ;U) denotes the set of all stationary Markov chains P on

a graph G such that EP {f} ∈ U ⊆ R
k, for a given function

f : EG → R
k.

Lemma 2.2: Let G = (VG, EG) be a primitive directed

graph and f : EG → R
k be a function. Let U be an open

rectangular parallelepiped
∏

i∈〈k〉 (s̃i, si) and let Γn denote

the set of all cycles of length n in G. Then

lim
n→∞

1

n
logq

∣∣{γ ∈ Γn : EPγ
{f} ∈ U

}∣∣ = sup
P∈M(f ;U)

Hq(P ).

Let k be a positive integer. For a graph G = (VG, EG),
vectors of positive real indeterminates z = (zi)i∈〈k〉 and

h = (hi)i∈〈k′〉, and functions f = (fi)i∈〈k〉 : EG → R
k

and f ′ = (f ′i)i∈〈k′〉 : EG → R
k′

, define the parametric real

matrix AG(z,h) (whose rows and columns are indexed by

VG) as

[AG(z,h)]v,v′∈VG
=

{
zf(e)hf ′(e) if e = (v, v′) ∈ EG

0 otherwise
,

(6)

where zf(e)hf ′(e) =
∏

i∈〈k〉 z
fi(e)
i ·∏i∈〈k′〉 h

f ′
i(e)

i .

Lemma 2.3: Let G = (VG, EG) be a directed graph. Let

p = (pi)i∈〈k′〉 ∈ [0, 1]k
′

be a vector and let f : EG → R
k,

2A length of a path γ is the number of edges along γ. Since G has no
parallel edges, we will specify a path γ through the sequence of states along
γ.

f ′ : EG → R
k′

be functions. Let U be a closed rectangular

parallelepiped
∏

i∈〈k〉 [0, si]. Then

sup
P∈M(f;U):

EP {f′}=p

Hq(P ) = inf
z,h

{
logq λ(AG(z,h))

−
∑

i∈〈k〉
si logq zi −

∑

i∈〈k′〉
pi logq hi

}
,

where λ(·) denotes the spectral radius of a square real matrix,

z = (zi)i∈〈k〉 ranges over (0, 1]k and h = (hi)i∈〈k′〉 ranges

over (0,∞)k
′

.

3) Basic bound: For an integer q ≥ 2, an alphabet Σ = 〈q〉,
positive integers t and n, a subset X ⊆ Σn, and a word x ∈ X ,

let R(N)
t (x;X ) and R(O)

t (x;X ) be the sets of all the words in

X that are t-confusable with x when overlaps are disallowed

and allowed, respectively.

Example 2.4: Let Σ = 〈2〉. It can be readily verified that

R(N)
2 (0000; Σ4) = R(O)

2 (0000; Σ4)

= {0000, 0100, 0010, 0001, 0101}

and

R(N)
2 (0101; Σ4) = R(O)

2 (0101; Σ4) = 0Σ3=
{
0y : y ∈ Σ3

}
.

Using the standard Gilbert–Varshamov-type argument, one

can obtain the following lower bound on M
(N)
q (n, t) and

M
(O)
q (n, t):

M (j)
q (n, t) ≥ |X |

max{|R(j)
t (x;X )| : x ∈ X}

, (7)

where j ∈ {N,O} and X is any subset of Σn. Namely, we

pick up a word x of X and remove from X the words of

R(j)
t (x;X ); we repeat the process until X is empty. Note,

however, that the sets R(j)
t (x;X ) for various words x ∈ X

may have different sizes, as demonstrated in Example 2.4;

therefore, replacing the size of a largest such set in the

denominator of (7) with the size of the average set (when

x ranges over X ) is clearly advantageous and, as we will see

later on, produces better lower bounds on the rates of grain-

correcting codes.

For j ∈ {N,O}, let

W
(j)
t (X ) =

∑

x∈X

∣∣∣R(j)
t (x;X )

∣∣∣. (8)

Namely, W
(N)
t (X ) and W

(O)
t (X ) are the number of ordered

pairs of t-confusable words in X when overlaps are disallowed

and allowed, respectively. The following lemma, whose goal

is to replace the denominator of the right-hand side of (7)

with the average set 1
|X |W

(j)
t (X ), is essentially a reformulation

of [11, Lemma 1] for grain-correcting codes (also see [12,

Sec. 3]). The lemma is a centerpiece of this section, with most

of the rest of the section devoted to developing tight upper

bounds on the asymptotic growth rate of W
(j)
t (X ) for j ∈

{N,O}.
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Lemma 2.5: Let n, t be positive integers and let X ⊆ Σn.

Then, for j ∈ {N,O},

M (j)
q (n, t) ≥ |X |2

4W
(j)
t (X )

. (9)

Proof: For any positive integer t and j ∈ {N,O}, let

R(j)

t (X ) =
W

(j)
t (X )

|X | =
1

|X |
∑

x∈X

∣∣∣R(j)
t (x;X )

∣∣∣.

At most half of the sets R(j)
t (x;X ) for x ranging over X

have size greater than 2R(j)

t (X ), or else the average size of

R(j)
t (x;X ) over all x ∈ X would exceed R(j)

t (X ). Therefore,

there are at least |X | /2 words x ∈ X such that |R(j)
t (x;X )| ≤

2R(j)

t (X ). Denote this subset of X by X ′. Clearly, for any

x ∈ X ′,
∣∣∣R(j)

t (x;X ′)
∣∣∣ ≤

∣∣∣R(j)
t (x;X )

∣∣∣ ≤ 2R(j)

t (X ).

Therefore, by iteratively picking up a word x of X ′ and

removing the set R(j)
t (x;X ′) from X ′, we can construct a

t-grain-correcting code of size at least |X ′| /(2R(j)

t (X )) ≥
|X | /(4R(j)

t (X )).

Remark 2.6: We can get rid of the factor 4 in the

denominator of the right-hand side of (9) by following the

proof in [21], but it will have no effect on the asymptotic

analysis we are about to do.

Remark 2.7: One readily observes that R(j)
t (x; 〈q〉n),

for j ∈ {N,O} and a word x ∈ 〈q〉n, is contained in

the Hamming sphere of radius 2t around x. Therefore the

traditional Gilbert–Varshamov bound ̺
(GV)
q (τ) = 1−Hq(2τ)

(where Hq(p) is the q-ary entropy function defined in (1)

and τ = t/n) on the rate R
(j)
q (τ) for j ∈ {N,O} can be

obtained from Lemma 2.5 by taking X = 〈q〉n and bounding

|R(j)
t (x; 〈q〉n)| from above by the size of the Hamming sphere

of radius 2t. This specific selection of X , for the fixed values

of q and n, clearly maximizes the numerator in the right-hand

side of (9), yet does not necessarily minimize the entire right-

hand side. Indeed, as we will see later on, it will be beneficial

to select sets X with smaller asymptotic growth rate than that

of 〈q〉n (namely, rate smaller than 1), such that the growth

rate of W
(j)
t (X ) is smaller than Hq(2τ) and the growth rate

of the right-hand side of (9) is greater than 1−Hq(2τ).

B. Proof of Theorem 2.1

This subsection is structured as follows. First, we define two

finite directed graphs G(N) and G(O) in Section II-B1 and then,

in Section II-B2, make a reduction from the ordered pairs of

t-confusable words of length n to certain cycles of length n in

these two graphs. Next, in Section II-B3, we find upper bounds

on the growth rate of W
(N)
t (X ) and W

(O)
t (X ) for certain sets

X of words with prescribed empirical distribution of runs

and, subsequently, lower bounds on R
(N)
q (τ) and R

(O)
q (τ).

Throughout this subsection, Σ = 〈q〉 for some integer q ≥ 2.

1) Graph presentations: Define two finite directed graphs

G(N) = (V (N), E(N)), G(O) = (V (O), E(O)) corresponding to

the scenarios without and with grain overlaps, respectively.

The paths in each graph will correspond to pairs of words

combined with the minimal grain pattern that makes them

confusable (in the nonoverlapping and overlapping settings).

Let Σ = {a : a ∈ Σ} be a set where every element a
designates a symbol whose original value a ∈ Σ was overrun

by a grain error. The set of states V (N) ⊆ (Σ∪Σ)2 is defined

as V (N) = V0 ∪ V1 ∪ V2 where

V0 = {ℓr : ℓ = r ∈ Σ} ,
V1 =

{
ℓr : ℓr ∈ Σ2, ℓ 6= r

}
∪
{
ℓr : ℓr ∈ Σ2, ℓ 6= r

}
, and

V2 =
{
ℓr : ℓr ∈ Σ2, ℓ 6= r

}
.

The states of V0 correspond to the case where the symbols

in the same position in two observed words are identical; the

states of V1 correspond to the case where such symbols in the

two words are different and one grain (applied either to the

first or to the second word as designated by the bar), which

does not overlap with other grains, is sufficient to make the

two symbols equal; for q ≥ 3, the states of V2 correspond to

the case where such symbols in the two words are different and

a pair of grains that do not overlap is necessary to make these

symbols equal (for q = 2, we will disregard V2 altogether).

The set of states V (O) ⊆ Σ2 is defined as V (O) = V0 ∪ V3
where

V3 =
{
ℓr : ℓr ∈ Σ2, ℓ 6= r

}
.

The states of V3 correspond to the case where the symbols

in the same position in two words are different and one grain

(possibly overlapping with others) is sufficient to make those

symbols equal. Observe that, in contrast to V (N), the states of

V (O) do not encapsulate any information on the grain patterns

due to the fact that, by definition, in the overlapping scenario,

a grain may start before another grain has ended, whereas

in the nonoverlapping setting we are forced to convey the

information on where a grain ended from one state to the

next.

Specifically, for q = 2 (which will be our running example

throughout most of this section),

V0 = {00, 11} , V1 = {01, 01 , 10, 10} ,
V2 = {01 , 10} , and V3 = {01, 10}

(the states of the set V2 will have no incoming edges for

q = 2 in G(N), that is why for q = 2, we will disregard

V2 completely).

Next, we define the edge sets E(N) and E(O). Define the

function φ : Σ∪Σ → Σ as φ(a) = φ(a) = a for every a ∈ Σ.

There is an edge in E(N) from state v = ℓr to state v′ = ℓ′r′

if

[N1] v′ ∈ V0; or

[N2] v ∈ V0, v′ ∈ V1, and either ℓ = ℓ′ ∈ Σ or r = r′ ∈
Σ; or

[N3] v, v′ ∈ V1, and either ℓ = r′ ∈ Σ or ℓ′ = r ∈ Σ; or

[N4] v ∈ V0, v′ ∈ V2, ℓ 6= φ(ℓ′), and r 6= φ(r′).

Edges satisfying Condition [N1] correspond to two pairs of

symbols (represented by v = ℓr and v′ = ℓ′r′) seen at the
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same consecutive positions in two observed words,

. . . ℓℓ′ . . . and . . . rr′ . . . ,

where no grain needs to be applied to equalize ℓ′ to r′; edges

satisfying Condition [N2] correspond to consecutive pairs v
and v′ with no grain ending at v and with one grain (which

does not overlap with other grains) applied to equalize ℓ′ to

r′; edges satisfying Condition [N3] correspond to consecutive

pairs v and v′ with a grain ending at the first pair in one word

forcing another grain, which does not overlap with others, to

be applied to the other word to make the values of v′ equal;

and edges satisfying Condition [N4] correspond to locations

where a pair of grains that do not overlap needs to be applied

to both words to equalize ℓ′ to r′ (which can only occur when

q ≥ 3).

There is an edge in E(O) from v = ℓr to v′ = ℓ′r′ if

[O1] v′ ∈ V0; or

[O2] v ∈ V0 and v′ ∈ V3; or

[O3] v, v′ ∈ V3, ℓr 6= r′ℓ′, and either ℓ = r′ or r = ℓ′; or

[O4] v, v′ ∈ V3 and ℓr = r′ℓ′.

Edges satisfying Conditions [O1]–[O3] are similar in their

description to their counterparts [N1]–[N3], respectively. Un-

like Condition [N4], however, Condition [O4] corresponds to

consecutive pairs where a grain overlapping with another grain

might be applied. Notice that to equalize ℓ′ to r′, a grain

ending at v′ can be applied to either of the two words. Like

Condition [N4], Condition [O3] can only occur when q ≥ 3.

Example 2.8: For Σ = 〈3〉, consider the following path

of length 5 in G(N):

γ = (vi)i∈〈6〉 = 11 22 20 12 00 12 .

The states v0, v1, and v4 belong to the set V0, the states v2
and v3 belong to the set V1, whereas the state v5 belongs to

the set V2. The edges (vi, vi+1) for i = 0, 1, 2 correspond

to Conditions [N1]–[N3], respectively, and the edge (v4, v5)
corresponds to Condition [N4]. Now, for the same alphabet Σ,

consider the following path of length 7 in G(O):

γ = (vi)i∈〈8〉 = 11 22 20 12 00 12 21 12 .

Here the states v0, v1, v4 belong to the set V0 whereas the

states v2, v3, v5, v6, and v7 belong to the set V3. The edges

(vi, vi+1) for i = 0, 1, 2 correspond to Conditions [O1]–

[O3], respectively, and the edges (v5, v6) and (v6, v7) both

correspond to Condition [O4].

Given a path γ = (ℓiri)i∈〈n〉 of length n−1 in G(N), define

the sets

L(γ) = {i : ℓi ∈ Σ} and R(γ) = {i : ri ∈ Σ} .
When the path γ is in G(O), let

L(γ) = {i : ℓi 6= ri, ri−1 6= ℓi} ,
R(γ) = {i : ℓi 6= ri, ℓi−1 6= ri} .

In addition, for an edge e ∈ (ℓr, ℓ′r′) in G(O), define the

function µ : E(O) → 〈2〉 by

µ(e) =

{
1 if e satisfies Condition [O4]

0 otherwise
,

and extend this definition to any path γ = (ℓiri)i∈〈n〉 in G(O)

by

µ(γ) =
∑

i∈〈n−1〉
µ(ℓiri, ℓi+1ri+1).

A path γ in G(N) starting in V0 represents a pair

(x = (φ(ℓi))i∈〈n〉,y = (φ(ri))i∈〈n〉)

of confusable words in Σn, as well as grain patterns S =
L(γ),S ′ = R(γ) that cause the corresponding overrun words,

σS(x) and σS′(y), to be equal. A path γ in G(O) starting in

V0 represents a pair

(x = (ℓi)i∈〈n〉,y = (ri)i∈〈n〉)

of confusable words in Σn and 2µ(γ) confusing grain patterns

S = L(γ)∪M(γ),S ′ = R(γ)∪M
′(γ) where (M(γ),M′(γ)) is

a partition of the set (of size µ(γ)) of indices i ∈ 〈n〉 \ {0} of

(the terminal states of) edges of γ that satisfy Condition [O4].

Indeed, µ(γ) is the number of positions along γ where

overlapping grains, if switched from x = (φ(ℓi))i∈〈n〉 to the

corresponding position in y = (φ(ri))i∈〈n〉 (or vice versa),

will still make x and y confusable. For completeness, let

µ(γ) = 0 when γ is in G(N).

Example 2.9: Continuing Example 2.8, consider again the

path

γ = (vi)i∈〈6〉 = 11 22 20 12 00 12

in G(N). This path corresponds to the pair of overrun words

122101 and 120202 (the grain-free words are x = 122101
and y = 120202), and the bars indicate the grain patterns

S = L(γ) = {3, 5} ,S ′ = R(γ) = {2, 5} that make x and y

confusable.

Next, consider the path

γ = (vi)i∈〈8〉 = 11 22 20 12 00 12 21 12

in G(O). Here L(γ) = {3, 5}, R(γ) = {2, 5}, and µ(γ) = 2,

so that the pair of words 12210121 and 12020212 can be

confused by any of the four pairs of grain patters S = L(γ)∪
M(γ), S ′ = R(γ) ∪ M

′(γ), where (M(γ),M′(γ)) is either

(∅, {6, 7}), ({6} , {7}), ({7} , {6}), or ({6, 7} , ∅).
The adjacency matrices A

(N)
G and A

(O)
G of the graphs G(N)

and G(O) that are constructed as described above are shown

in Table I for the case q = 2. The entries of these matrices

are either 0 or 1 (since there are no parallel edges) and the

subscript of each entry denotes the type of the corresponding

edge. Notice that for q = 2, there are no edges satisfying

Condition [N4] in G(N), due to the aforementioned omission

of V2, and there are no edges satisfying Condition [O3] in

G(O). Also notice that for any q, the graphs G(N) and G(O)

are primitive, because each entry in (A
(N)
G )2 and in (A

(O)
G )2

is strictly positive.

2) Reduction from pairs of t-confusable words to graph

cycles: To make the presentation and the computation simpler,

we will switch to a different criterion of confusability till the

end of this subsection. Given a positive integer t, we will call

two words x,y t-confusable in the wide sense (or t-cws, in

short) if there exist grain patterns S and S ′ such that

|S|+ |S ′| ≤ 2t and σS(x) = σS′(y).
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TABLE I

ADJACENCY MATRICES A
(N)
G

AND A
(O)
G

, FOR q = 2.

A
(N)
G

=

V0

{

V1























V0
︷ ︸︸ ︷

00 11

V1
︷ ︸︸ ︷

01 01 10 10

00 1N1 1N1 0 1N2 1N2 0
11 1N1 1N1 1N2 0 0 1N2

01 1N1 1N1 0 0 0 1N3

01 1N1 1N1 0 0 1N3 0
10 1N1 1N1 0 1N3 0 0
10 1N1 1N1 1N3 0 0 0

A
(O)
G

=
V0

{

V3

{

V0
︷ ︸︸ ︷

00 11

V3
︷ ︸︸ ︷

01 10

00 1O1 1O1 1O2 1O2

11 1O1 1O1 1O2 1O2

01 1O1 1O1 0 1O4

10 1O1 1O1 1O4 0

Since any t-confusable pair of words is also t-cws, it follows

that any t-grain-correcting code in the wide sense is also t-
grain-correcting in the ordinary sense. Our results will actually

apply to the wide-sense notion of confusability.3 Under the

ordinary confusability criterion, a path γ in G(O) starting in

V0 and representing a pair (x,y) of t-confusable words in

Σn has 2µ(γ) pairs of confusing grain patterns S , S ′ such

that |S|+ |S ′| is minimal and at least one of these confusing

pairs of patterns satisfies |S| , |S ′| ≤ t; under the wide-sense

confusability criterion, all of the 2µ(γ) confusing grain patterns

S , S ′ satisfy |S|+ |S ′| ≤ 2t. Due to this relaxed confusability

notion, to determine that a path γ in G(j), for j ∈ {N,O},

represents a pair of t-cws words, it is sufficient to calculate the

value of the expression |L(γ)|+ |R(γ)|+µ(γ) (which equals

|S|+ |S ′| for any of the 2µ(γ) pairs of grain patterns S ,

S ′, either nonoverlapping or overlapping, making x and y

confusable).

Hereafter in this subsection, fix n to be a positive integer

denoting the length of codewords. The following lemma (with

proof given in Appendix A) establishes a correspondence

between ordered pairs of t-cws words and paths in G(N) or

G(O).

Lemma 2.10: Let t be a positive integer, t ≤ n. For j ∈
{N,O}, let W(j)

t denote the set of all t-cws (ordered) pairs

(x,y) ∈ Σn × Σn and let Π
(j)
t be the following set of paths

(of length n−1) in G(j):

Π
(j)
t =

{
γ=(vi)i∈〈n〉 : v0 ∈ V0, |L(γ)|+|R(γ)|+µ(γ) ≤ 2t

}
.

Then there exists a one-to-one4 mapping from W(j)
t to Π

(j)
t

that maps t-cws word pairs ((xi)i∈〈n〉, (yi)i∈〈n〉) to paths

(ℓiri)i∈〈n〉 such that xi = φ(ℓi) and yi = φ(ri), for all

i ∈ 〈n〉.
For j ∈ {N,O}, let Γ(j) denote the set of all the cycles in

G(j) of length n that start and terminate in the same state of V0.

Define the functions f (N) : E(N) → 〈3〉2, f (O) : E(O) → 〈3〉2

3Though we do not currently have a general proof for this phenomenon,
our numerical results show that the relaxation of the notion of confusability
does not result in worse bounds while using our technique.

4In fact, one can prove that this mapping is also onto Π
(j)
t , but the one-

to-one property will suffice for the forthcoming discussion.

by

f (N)(e) = (ν(e) χ(e)) and f (O)(e) = (ω(e) χ(e))

for any edge e, where the functions ν : E(N) → 〈3〉, ω :
E(O) → 〈3〉, χ : E(N) ∪ E(O) → 〈3〉 are defined next: for an

edge e = (ℓr, ℓ′r′),

ν(e) =





2 if e satisfies Condition [N4]

1 if e satisfies either Condition [N2], or [N3]

0 otherwise

,

(10)

ω(e) =





2 if e satisfies Condition [O2] for ℓ=r/∈{ℓ′, r′}
1 if e satisfies Condition [O2] for ℓ=r∈{ℓ′, r′}
1 if e satisfies either Condition [O3], or [O4]

0 otherwise

,

(11)

χ(e) =





2 if φ(ℓ) 6= φ(ℓ′) and φ(r) 6= φ(r′)

1 if φ(ℓ) = φ(ℓ′) and φ(r) 6= φ(r′),

or φ(ℓ) 6= φ(ℓ′) and φ(r) = φ(r′)

0 otherwise

. (12)

The function ν(e) counts the smallest number of grains

making ℓℓ′ and rr′ confusable for j = N; the function ω(e)
counts the smallest number of overlapping grains making ℓℓ′

and rr′ confusable for j = O; and the function χ(e) counts

the number of transitions (i.e., symbol changes) in ℓℓ′ and

in rr′, namely, we add 1 if φ(ℓ) 6= φ(ℓ′) and another 1 if

φ(r) 6= φ(r′).
Now, set τ, p ∈ (0, 1), let ǫ > 0, and define

Uτ,p,ǫ = {(u1 u2) : −ǫ < u1 < 2τ+ǫ, |u2 − 2p| < 2ǫ} .

Also, for j ∈ {N,O}, let

Γ (j)
τ,p,ǫ = Γ (j)

τ,p,ǫ(n) = {γ ∈ Γ(j) : EPγ
{f (j)} ∈ Uτ,p,ǫ},

where EPγ
{f (j)} is the expected value of f (j) with respect

to the empirical probability distribution Pγ , as defined in (5).

The set Γ
(j)
τ,p,ǫ for j ∈ {N,O} stands for all the cycles of

length n in G(j) representing pairs of words (x,y) that can

be confused by at most (2τ+ǫ)n grains (either overlapping or

not, depending on j) and whose total number of transitions is

within 2(p±ǫ)n. Additionally, for j ∈ {N,O} and the same

τ, p, ǫ, let

Π(j)
τ,p,ǫ = Π(j)

τ,p,ǫ(n) =
{
γ ∈ Π

(j)
⌈τ(n−1)⌉ :

∣∣EPγ
{χ}−2p

∣∣ ≤ ǫ
}
.

The set Π
(j)
τ,p,ǫ includes all paths of length n−1 in G(j)

representing pairs of words (x,y) that can be confused by at

most 2 ⌈τ(n−1)⌉ grains (either overlapping or not, depending

on the context) and whose total number of transitions is within

(2p±ǫ)(n−1). The following lemma characterizes the relation

between the sizes of Π
(j)
τ,p,ǫ and Γ

(j)
τ,p,ǫ, for sufficiently large

values of n.

Lemma 2.11: Let τ, p ∈ (0, 1) and ǫ > 0. Then, for

j ∈ {N,O} and n ≥ 2/ǫ,
∣∣∣Π(j)

τ,p,ǫ(n)
∣∣∣ ≤

∣∣∣Γ (j)
τ,p,ǫ(n)

∣∣∣ .
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Proof: We will prove the lemma for the case without overlaps;

when overlaps are allowed, the proof is similar. For a path

γ ∈ Π
(N)
τ,p,ǫ, one has

|L(γ)|+ |R(γ)| ≤ 2 ⌈τ(n− 1)⌉ and
∣∣EPγ

{χ} − 2p
∣∣ ≤ ǫ.

We can draw an edge from the last state of γ to the first one

(by the construction of G(N), there is an edge to a state of V0
from any state of G(N)) to create a cycle γ′ of length n. Since

|L(γ)|+ |R(γ)| = |L(γ′)|+ |R(γ′)| ,

we have EPγ′

{
f (N)

}
∈ [0, 2τ ]× [2p−2ǫ, 2p+2ǫ] for n ≥ 2/ǫ.

Hence |Π(N)
τ,p,ǫ| ≤ |Γ (N)

τ,p,ǫ|.
3) Lower bounds on the rates: In the subsequent lemma,

we bound the growth rate of |Π(j)
τ,p,ǫ(n)| from above for j ∈

{N,O}.

Lemma 2.12: Let τ ∈ (0, 1). Then for j ∈ {N,O},

lim sup
ǫ→0

lim sup
n→∞

1

n
logq

∣∣∣Π(j)
τ,p,ǫ(n)

∣∣∣ ≤ K(j)(τ, p) , (13)

where, for j ∈ {N,O},

K(j)(τ, p) = inf
z∈(0,1], h∈(0,∞)

{
logq λ(A

(j)
G (z, h))

− 2τ logq z − 2p logq h
}
.

(14)

Proof: For z ∈ (0, 1] and h,m ∈ (0,∞), let the matrices

A
(N)
G (z, h) and A

(O)
G (z, h), with rows and columns indexed by

the sets of states V (N) and V (O), respectively, be defined as

a special case of (6):

[
A
(N)
G (z, h)

]

v,v′∈V
=

{
zν(e)hχ(e) if e = (v, v′) ∈ E(N)

0 otherwise

and

[
A
(O)
G (z, h)

]

v,v′∈V
=

{
zω(e)hχ(e) if e = (v, v′) ∈ E(O)

0 otherwise
,

where ν(e), ω(e), χ(e) are as defined in (10)–(12). Applying

Lemma 2.2 with G = G(j), U = Uτ,p,ǫ, and f = f (j), for

j ∈ {N,O}, and combining the result with Lemma 2.11, we

conclude that

lim sup
n→∞

1

n
logq |Π(j)

τ,p,ǫ(n)| ≤ sup
P∈M(f(j);Uτ,p,ǫ)

Hq(P ) .

By the continuity of the functions P 7→ EP (f
(j)), for j ∈

{N,O}, and P 7→ Hq(P ),

lim sup
ǫ→0

lim sup
n→∞

1

n
logq |Π(j)

τ,p,ǫ(n)| ≤ sup
P∈M(f(j);Uτ,p)

Hq(P ) ,

where Uτ,p = {(u 2p) : u ∈ [0, 2τ ]}. Applying Lemma 2.3

first with (G, f, f ′, U,p) = (G(N), ν, χ, [0, 2τ ], 2p) and then

with (G, f, f ′, U,p) = (G(O), ω, χ, [0, 2τ ], 2p) yields the up-

per bounds on the growth rate of |Π(j)
τ,p,ǫ(n)| for j ∈ {N,O},

as shown in (13) and (14).

Now, we can find lower bounds on R
(j)
q (τ) for j ∈ {N,O}.

Proposition 2.13: Let τ ∈ (0, 1). Then for j ∈ {N,O},

R(j)
q (τ) ≥ ̺(j)q (τ)

△

= sup
p∈[0,1]

{
2Hq(p)−K(j)(τ, p)

}
,

where Hq(p) is the q-ary entropy function defined in (1), and

K(j)(τ, p), for j ∈ {N,O}, are defined in (14).

Proof: For a word x = (xi)i∈〈n〉 ∈ Σn and symbols a, a′ ∈ Σ,

let

κ(x; a, a′) = {i ∈ 〈n−1〉 : (xi, xi+1) = (a, a′)} .
For ǫ > 0, let Xp,ǫ(n) be the set of all the words x in Σn

such that for any a, a′ ∈ Σ,
∣∣∣∣
κ(x; a, a′)

n−1
− p

q(q−1)

∣∣∣∣ ≤
ǫ

2q(q−1)
for a 6= a′

and ∣∣∣∣
κ(x; a, a′)

n−1
− 1−p

q

∣∣∣∣ ≤
ǫ

2q
for a = a′.

It is well-known [2, Sec. 12.1] that

lim
ǫ→0

lim
n→∞

1

n
logq |Xp,ǫ(n)| = Hq(p). (15)

It follows from Lemma 2.10 that for j ∈ {N,O},

lim sup
ǫ→0

lim sup
n→∞

1

n
logq

∣∣∣W(j)
⌈τ(n−1)⌉(Xp,ǫ(n))

∣∣∣

≤ lim sup
ǫ→0

lim sup
n→∞

1

n
logq

∣∣∣Π(j)
τ,p,ǫ(n)

∣∣∣ ,
(16)

where W
(j)
⌈τn⌉(·) is defined in (8) (note that the one-to-one

mapping W(j)
⌈τn⌉ → Π

(j)
⌈τn⌉ in Lemma 2.10 preserves the

number of transitions for each preimage (x,y) ∈ W(j)
⌈τn⌉).

Therefore, for j ∈ {N,O} and every p ∈ (0, 1),

R(j)
q (τ)

(9)

≥ lim sup
ǫ→0

lim sup
n→∞

1

n

(
2 logq |Xp,ǫ(n)|

− logq

∣∣∣W(j)
⌈τ(n−1)⌉(Xp,ǫ(n))

∣∣∣
)

(16)

≥ lim
ǫ→0

lim
n→∞

2

n
logq |Xp,ǫ(n)|

− lim sup
ǫ→0

lim sup
n→∞

1

n
logq

∣∣∣Π(j)
τ,p,ǫ(n)

∣∣∣
(13),(15)

≥ 2Hq(p)−K(j)(τ, p).

Now, we are in the position to prove the main theorem of

this section.

Proof of Theorem 2.1: To simplify the computations of

̺
(j)
q (τ) for j ∈ {N,O}, we merge states in G(j) to reduce the

order of the matrix A
(j)
G while preserving its spectral radius

for j ∈ {N,O}, as described in [16, Sec. 4.6]. This is similar

to the standard procedure for reducing the number of states

in a presentation of a constrained system using the Moore

algorithm5 [16, Sec. 2.6]. The states of V0 can be merged into

5While the reduced graph may have parallel edges, we apply state merging
just so that we can compute the spectral radius of a smaller matrix.
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superstate 0, the states of V1 in G(N) and of V3 in G(O) —

into superstate 1, whereas the states of V2 — into superstate

2. The merging ends up with the reduced matrices A(N)
G and

A(O)
G , which are equal to the matrices A(N) and A(O) from (2)

and (3), respectively, whose spectral radii equal those of A
(N)
G

and A
(O)
G , respectively.

The lower bound ̺
(j)
q (τ) of Proposition 2.13 for j ∈ {N,O}

equals

sup
p∈[0,1]

{
2Hq(p)−K(j)(τ, p)

}
= sup

p∈[0,1],z∈(0,1]
h∈(0,∞)

{
2Hq(p)

− logq λ(A(j)
G (z, h)) + 2τ logq z + 2p logq h

}
,

which concludes the proof of the theorem.

The supremum in the right-hand side of (4) is attained when

h =
p

1−p
∂

∂z
(λ(A(j)

G (z, h))) =
2τ

z
λ(A(j)

G (z, h))

∂

∂h
(λ(A(j)

G (z, h))) =
2p

h
λ(A(j)

G (z, h)) .

Remark 2.14: For q = 2, the matrices A
(N)
G and A

(O)
G can

be further reduced to

A(N)
G = A(O)

G =
0 1

0 1 + h2 2hz
1 2h h2z

,

whose spectral radius equals

1

2

(
1+h2+h2z + α(z, h)

)
,

where

α(z, h) =
√

(1+h2+h2z)2 − 4h2z(h2−3) ,

so that the lower bound ̺
(N)
2 (τ) = ̺

(O)
2 (τ) of Theorem 2.1 is

attained when

h =
p

1−p

τ =
h2z

2α(z, h)

h2z−h2+7+α(z, h)

h2z+h2+1+α(z, h)

p =
h2

α(z, h)

(
1 + z

h2z−3h2+7+α(z, h)

h2z+h2+1+α(z, h)

)
.

It turns out that for q = 2, ̺
(N)
2 (τ) = ̺

(O)
2 (τ) for any τ ∈

[0, 1]. This phenomenon is due to the fact that when q = 2,

for any path γ′ ∈ Π
(O)
t that corresponds to a pair of t-cws

words (x,y), there exists a path γ ∈ Π
(N)
t for the same pair

of words: the path γ is obtained by moving overlapping grains

from M(γ′) to R(γ′) and from M
′(γ′) to L(γ′) until M(γ′)

and M
′(γ′) are empty.

Remark 2.15: One can see that the set X from which

the codewords are taken for the code attaining the bound of

Theorem 2.1 is completely characterized by the prescribed

frequencies with which consecutive pairs of symbols appear in

the words of X ; these frequencies, in turn, are characterized

only by the parameter p. We can further specify X by

characterizing it by the prescribed frequencies with which

consecutive k-tuples of symbols appear in the words of X , for

some positive integer k ≥ 3. This may result in better lower

bounds on the rates of grain-correcting codes at the expense of

introducing more variables to the optimization process (due to

the increase of the order of the adjacency matrices A(N)
G and

A(O)
G ). However, at least for q = 2 and k = 3, while we

obtain some gain in the lower bounds compared to the results

of Theorem 2.1, such a gain is rather marginal in the range of

values of τ where those lower bounds are above 0.5.

C. Comparison with existing results

Theorem 2.1 strictly improves on the traditional (Hamming-

distance) Gilbert–Varshamov bound,

̺
(GV)
2 (τ) = 1−H2(2τ),

on the entire interval (0, 0.25]; however, on the interval

[0.0566, 0.25] it falls short of the simple lower bound of

0.5 which is realized by an ∞-grain-correcting code (see

Construction 4.2 in Section IV). The difference between

̺
(N)
2 (τ) = ̺

(O)
2 (τ) and ̺

(GV)
2 (τ) on the interval (0, 0.0566]

does not exceed 0.012 (see Figure 2 in Section II-D and

Figure 4 in Section III).

Figure 1 depicts the functions τ 7→ ̺
(N)
q (τ) and τ 7→

̺
(O)
q (τ) for q ∈ {16, 1024} along with the corresponding tradi-

tional Gilbert–Varshamov bounds ̺
(GV)
q (τ) : τ 7→ 1−Hq(2τ).

Both ̺
(N)
q (τ) and ̺

(O)
q (τ) strictly improve on ̺

(GV)
q (τ) on the

entire interval (0, 0.5] (and ̺
(N)
q (τ) is strictly above ̺

(O)
q (τ)).

Moreover, both ̺
(N)
q (τ) and ̺

(O)
q (τ) converge to the line

τ 7→ 1−τ on that interval when q → ∞: this convergence

readily follows from substituting z = 1/
√
q and h = 1

into (14) and noticing that λ(A(N)
G (z, h)) and λ(A(O)

G (z, h))
are bounded from below by the minimal row sum (q+o(q))
and from above by the maximal row sum (2q+o(q)) in the

adjacency matrix [4, Ch. 13].

✲τ

✻

̺q(τ)

0

0.5

1

0.5

✛ τ 7→ 1−τ

✛ ̺
(TVZ)
1024 (τ)

✛ ̺
(N)
1024(τ) ≈ ̺

(O)
1024(τ)

✻

̺
(N)
16 (τ)

✻

̺
(O)
16 (τ)

✲̺
(GV)
1024(τ)

✲̺
(GV)
16 (τ)

✛ ̺⋆
16(τ)

Fig. 1. Functions ̺
(N)
q (τ), ̺

(O)
q (τ), and ̺

(GV)
q (τ) for q ∈ {16, 1024}.
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For large values of q that are even powers of primes and

when overlaps are disallowed, the lower bound ̺
(N)
q (τ) is

worse on nearly the entire interval (0, 0.5) than the following

construction based on the family of linear [n, nR, ⌈τn⌉+1]
algebraic geometry codes by Tsfasman et al. [22], with rate

R ≥ 1− 1√
q−1

−τ−o(1) ,

where o(1) goes to 0 for n→ ∞. By an averaging argument,

there exists at least one coset of a code of this family whose

intersection, C(TVZ), with the set

{c = (ci)i∈〈n〉 ∈ Σn : ci 6= ci+1 for any i ∈ 〈n−1〉} (17)

is of rate at least

logq
∣∣C(TVZ)

∣∣
n

≥ R− 1 + logq (q−1).

Since adjacent symbols in each codeword in C(TVZ) are dif-

ferent, grain errors become erasures, hence C(TVZ) is a ⌈τn⌉-

grain-correcting code of rate at least

̺(TVZ)
q (τ) = logq (q−1)− 1√

q−1
−τ−o(1) .

Remark 2.16: By the same token, when overlaps are

allowed, one can construct a family of ⌈τn⌉-grain-correcting

codes of length n and rate at least

1

2
logq

⌈
q2−1

4

⌉
− 1√

q−1
− τ − o(1) .

Specifically, instead of the set in (17) one can take the set

(Σ1Σ2)
n/2 where Σ1 = 〈⌊q/2⌋〉, Σ2 = 〈q〉 \ 〈⌊q/2⌋〉, and n

is even.

A similar reasoning applied to the family of linear codes

guaranteed by the Gilbert–Varshamov bound in the Hamming

metric yields ⌈τn⌉-grain-correcting codes (when overlaps are

disallowed) of rate at least

̺⋆q(τ) = logq (q−1)−Hq(τ) .

The functions τ 7→ ̺
(TVZ)
1024 (τ) and τ 7→ ̺⋆16(τ) are shown

in Figure 1 alongside the other bounds (we have not drawn

̺
(TVZ)
16 (τ) as it is always worse than ̺⋆16(τ)). It can be observed

that ̺
(N)
16 (τ) and ̺

(O)
16 (τ) are strictly above ̺⋆16(τ), whereas

̺
(N)
1024(τ) is above ̺

(TVZ)
1024 (τ) only in the interval [0, 0.06] ∪

[0.44, 0.5].

D. Generalization to arbitrary grain length when q = 2

In this subsection, we consider the generalization of the

grain error model for Σ = 〈2〉, where we allow the grains

to be of any length up to a prescribed integer g. In this

case, since the grains are allowed to be of different lengths,

the size of the confusing grain patterns alone does not make

for a good definition of confusability. Instead, we suggest to

call two words t-confusable if they can be confused by grain

patterns such that the sum of the grain lengths in each grain

pattern does not exceed 2t (the factor of 2 makes this definition

coincide with our earlier definition of t-confusability for grains

of length 2). Additionally, a generalization of the definition of

a grain pattern is called for. As in the previous subsection,

we will eventually switch to the wide-sense confusability, and

due to an argument similar to that of Remark 2.14, the lower

bounds of the nonoverlapping and the overlapping scenario

will coincide in the current setting as well, hence throughout

this subsection (unless explicitly stated otherwise) we will

refer to the nonoverlapping scenario.

Refine the previous definition (see Section I) of a grain

pattern as a set S(g) ⊂ 〈n−1〉×(〈n〉 \ {0}) such that any pair

(b, e) ∈ S(g), denoting the beginning and the end6 of a grain,

satisfies b < e < b+g. In a nonoverlapping grain pattern for

any two pairs (b1, e1), (b2, e2) ∈ S(g) one has either e1 < b2
or e2 < b1. We prohibit grains from being nested, viz., we

disallow7 the existence of grains (b1, e1), (b2, e2) such that

b1 < b2 < e2 < e1. A grain pattern S(g) inflicts errors to a

codeword c = (ci)i∈〈n〉 over an alphabet Σ of size q by means

of the smearing operator σ = σS(g) that yields an output word

y = (yi)i∈〈n〉 = σ(c) over Σ in the following way. For any

index i ∈ 〈n〉,

yi =

{
ci if no pair (b, e) ∈ S(g) satisfies b < i ≤ e

cb ∃e : (b, e) ∈ S(g) and b < i ≤ e
.

Finally, for a positive integer t, two words x,y ∈ Σn will be

called t-confusable if there exist grain patterns S = S(g) and

S ′ = S ′(g) such that
∑

(b,e)∈S
(e−b+1) ≤ 2t,

∑

(b,e)∈S′

(e−b+1) ≤ 2t,

and σS(x) = σS′(y); and, as before, a code of length n over

Σ is called t-grain-correcting if no two distinct codewords in

the code are t-confusable.

Given an alphabet A, let vs(A) =
{
a(s) | a ∈ A

}
for any

s ∈ 〈g〉. The set of states V (N) of the graph G(N) will now

contain pairs from the alphabet (
⋃

s∈〈g〉 vs(Σ))
2 : the subscript

(s) in an alphabet symbol a(s) will denote the distance from

the beginning of the grain that overran symbol a at a given

position. For brevity, we will write a instead of a(0) and a
instead of a(1); thus, Σ = v0(Σ) and Σ = v1(Σ) (compare

with the counterparts in Section II-B). Specifically, we define

V (N) =
⋃

s∈〈g〉 V
(N)
s where V

(N)
0 = {00, 11} and for s ∈

〈g〉 \ {0},

V (N)
s =

{
01(s)

}
∪
{
0(s)1

}
.

The new definition of the operator φ(·) is φ(a(s)) = a for every

alphabet symbol a and every s ∈ 〈g〉; that is, the operator φ(·)
strips off the subscript from a symbol returning the symbol

back to its original alphabet. There is an edge in E(N) from

v = ℓr to v′ = ℓ′r′ if

[N1’] v′ ∈ V
(N)
0 ; or

6Under this new definition, a grain of length 2 is represented by a pair
(e−1, e) in contrast with our earlier notation for grains of length 2 (as defined
in Section I), where a grain was represented only by the index of its ending
position e.

7In bit-patterned media recording, nested grain errors might occur. The
restriction on grain nesting proves helpful in the construction of the respective

graph G(N), because otherwise we would have to encapsulate the hierarchy
of the nested grains in the states of the graph which would quickly render
the computation impractical, as then the number of states would grow
exponentially with g.



10

[N2’] for some s ∈ 〈g−1〉, either ℓ = ℓ′ ∈ Σ and rr′ ∈
vs(Σ)vs+1(Σ), or ℓℓ′ ∈ vs(Σ)vs+1(Σ) and r = r′ ∈
Σ; or

[N3’] for some s ∈ 〈g〉 \ {0}, either ℓ = r′ ∈ Σ, ℓ′r ∈
v1(Σ)vs(Σ) and φ(ℓ′) = φ(r), or ℓ′ = r ∈ Σ, ℓr′ ∈
vs(Σ)v1(Σ) and φ(ℓ) = φ(r′).

We redefine the component ν(·) of the vector function f (N)

as follows, while leaving the component χ(·) intact (compare

with (10)):

ν(e) =





2 if e satisfies Condition [N2’] where

either ℓ′ ∈ v1(Σ) or r′ ∈ v1(Σ)

2 if e satisfies Condition [N3’]

1 if e satisfies Condition [N2’] where,

for s ≥ 2, either ℓ′ ∈ vs(Σ) or r′ ∈ vs(Σ)

0 otherwise

.

We switch again to the wide-sense notion of confusability,

namely, given a positive integer t, we will call two words

x,y t-confusable in the wide sense if there exist grain patterns

S = S(g) and S ′ = S ′(g) such that

∑

(b,e)∈S
(e−b+1) +

∑

(b,e)∈S′

(e−b+1) ≤ 4t

and σS(x) = σS′(y). It can be verified that the counterparts of

Lemmas 2.10, 2.11, Proposition 2.13, and Theorem 2.1 hold

also with this generalization. The reduced adjacency matrix

A(N)
G is of order g×g and is obtained after merging the states

of V
(N)
s into one superstate s for every s ∈ 〈g〉:

[
A(N)

G (z, h)
]

s,s′
=





1+h2 if (s, s′) = (0, 0)

2h if s 6= 0 and s′ = 0

2hz2 if (s, s′) = (0, 1)

h2z2 if s 6= 0 and s′ = 1

z if s /∈ {0, g−1} and s′ = s+1

0 otherwise

.

Example 2.17: For g = 4,

A(N)
G (z, h) =

0 1 2 3

0 1+h2 2hz2 0 0
1 2h h2z2 z 0
2 2h h2z2 0 z
3 2h h2z2 0 0

.

Similarly to Theorem 2.1, one can obtain lower bounds

̺
(j)
2 (τ, g) on the rate of ⌈τn⌉-grain-correcting codes of length

n when j ∈ {N,O} and grains of length at most g are allowed.

Next, we present an analysis for the case when g → ∞. By an

argument akin to the one made in Remark 2.14, for any pair

of overlapping grain patterns of total length at most 4t that

confuse two given t-cws binary words (x,y), there exists a

pair of nonoverlapping grain patterns of total length at most 4t
that confuse x and y; therefore, for any integer g ≥ 2, we have

̺
(N)
2 (τ, g) = ̺

(O)
2 (τ, g). For the simplicity of computations,

we keep assuming that j = N.

The characteristic polynomial Q(N)(ζ) = Q(N)(ζ; z, h) of

A(N)
G (z, h) can be verified to be

Q(N)(ζ) = ζg−2
[
ζ2 − (1+h2+h2z2)ζ + h2z2(h2−3)

− (1− (z/ζ)g−2)
z3h2(ζ + 3− h2)

ζ − z

]
.

For8 g → ∞, Q(N)(ζ) converges to

ζg−1

ζ−z
(
ζ2−(1+z+h2+h2z2)ζ + h2z2(h2−3) + z(1 + h2)

)
,

the largest root of which, λ(A(N)
G ), equals

λ(A(N)
G ) =

1

2

(
1 + z + h2 + h2z2+

√
(1 + z + h2 + h2z2)2 − 4(h2z2(h2 − 3) + z(1 + h2))

)
.

(18)

Using (18) to find the expression for K(N)(τ, p), defined

in (14), and plugging this expression into Theorem 2.1 yield

a lower bound

ξ(τ) = lim
g→∞

̺
(N)
2 (τ, g)

on the rate of ⌈τn⌉-grain-correcting codes of length n when

g → ∞ (and therefore n → ∞) and overlaps are disallowed.

Figure 2 depicts ξ(τ) along with ̺
(N)
2 (τ) = ̺

(N)
2 (τ, 2) for

τ ∈ [0, 0.0566] and the lower bound 0.5 attained by Con-

struction 4.2 (to be presented later on) for τ ∈ [0.0566, 0.25].
For comparison, we present the Gilbert–Varshamov bounds

̺
(GV)
2 (τ) = 1 − H2(2τ) (corresponding to ordinary binary

⌈τn⌉-error-correcting codes) and ̺
(GV)
2 (2τ) = 1 − H2(4τ)

(corresponding to binary ⌈2τn⌉-error-correcting codes); read-

ily, ξ(τ) and ̺
(N)
2 (τ) improve on ̺

(GV)
2 (2τ) and ̺

(GV)
2 (τ),

respectively, on the entire interval9 [0, 0.25].
Remark 2.18: We mention that it is also possible to obtain

Gilbert–Varshamov-like bounds in the general case when the

values of q and g are arbitrary positive integers greater than

1. Both reduced adjacency matrices A(N)
G and A(O)

G are then

of order
(
g+1
2

)
×
(
g+1
2

)
when q ≥ 3.

III. UPPER BOUNDS

In this section, we restrict the discussion to q = g = 2
and compute upper bounds on the size M

(j)
2 (n, t) of t-grain-

correcting codes of length n for j ∈ {N,O}. Given any word

x = (xi)i∈〈n〉 in Σn and a positive integer t, let B(N)
t (x) and

B(O)
t (x) be the sets of all words y ∈ Σn for which there

exists a grain pattern S of size |S| ≤ t such that σS(x) = y

when overlaps are disallowed and allowed, respectively. Since

a grain ending at location e alters x only when xe−1 6= xe,

we can assume without loss of generality (w.l.o.g.) that the

grain pattern S consists only of grains at such locations. In

8We are abusing notation here, implying by g → ∞ that n → ∞, while
keeping the ratio between the sum of grain lengths and the word length to be
at most 2τ .

9When the grain lengths are allowed to extend up to g, then, by our
definition of a t-grain-correcting code, such a code should be able to correct
as many as 2t(1−1/g) = 2τn(1−1/g) actual errors. Hence the comparison

with ̺
(GV)
2 (2τ) when g → ∞.
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✲
τ

✻

̺
(N)
2 (τ, g)

0.5

0

1

0.0566 0.25

❄

̺
(N)
2 (τ)

✲ξ(τ)

✛ ̺
(GV)
2 (τ)

✲̺
(GV)
2 (2τ)

Fig. 2. Functions ̺
(N)
2 (τ) and ξ(τ).

particular, |S| ≤ r(x)−1 where r(x) is the number of runs10

in x.

Suppose now that for any x ∈ Σn we have a lower bound

ψ(j)(r) = ψ
(j)
n,t(r) on |B(j)

t (x)| that depends (other than on n
and t) only on the number of runs r = r(x) in x and that is

nondecreasing as a function of r for j ∈ {N,O}. Let N(r)
be the number of words x ∈ Σn with r runs (i.e., N(r) =
2
(
n−1
r−1

)
), and, for j ∈ {N,O}, let U (j) be a largest set of

words in Σn such that
∑

x∈U(j)

ψ(j)(r(x)) ≤ 2n

(if we list the words x in Σn according to increasing values

of ψ(j)(r(x)), then U (j) can be assumed to consist of the first∣∣U (j)
∣∣ words in this list). Since ψ(j)(r) is nondecreasing in

r, we can group words with the same number of runs till the

largest integer w such that
w∑

r=1

N(r)ψ(j)(r) ≤ 2n, (19)

and thus,
∣∣∣U (j)

∣∣∣ =
w∑

r=1

N(r) +
⌊2n −∑w

r=1 N(r)ψ
(j)(r)

ψ(j)(w+1)

⌋
. (20)

10By a run we mean a consecutive subword xi xi+1 . . . xi′ of x such
that xi = xi+1 = . . . = xi′ , where xi−1 6= xi (if i > 0) and xi′ 6= xi′+1
(if i′ < n−1).

Now, let C(N) and C(O) be binary t-grain-correcting codes

of length n (when overlaps are disallowed and allowed,

respectively). By a sphere-packing argument, we have, for

j ∈ {N,O},
∑

c∈C(j)

ψ(j)(r(c)) ≤
∑

c∈C(j)

|B(j)
t (c)| ≤ 2n .

It follows from the definition of U (j) that
∣∣C(j)

∣∣ ≤
∣∣U (j)

∣∣ for

j ∈ {N,O}. Hence, from (20) we get, for j ∈ {N,O},

∣∣∣C(j)
∣∣∣ ≤

w∑

r=1

N(r) +
⌊2n −∑w

r=1 N(r)ψ
(j)(r)

ψ(j)(w+1)

⌋
,

where w is the largest integer that satisfies (19).

When overlaps are disallowed, we can bound |B(N)
t (c)| with

r(c) = r from below using

ψ
(N)
n,t (r) =

min{t,⌊ r
2⌋}∑

s=0

(
r−s
s

)
, (21)

which is the number of ways of choosing up to t non-

consecutive transitions out of the r−1 available transitions

between adjacent runs. When overlaps are allowed, we are

able to calculate the size of B(O)
t (c) with r(c) = r precisely,

namely,

ψ
(O)
n,t (r) =

min{t,r−1}∑

s=0

(
r−1

s

)
. (22)
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Both (21) and (22) are clearly nondecreasing functions in r.

The next theorem summarizes the above discussion and,

in fact, reformulates the sphere-packing bound that Abdel-

Ghaffar and Weber [1, Th. 5] first used in a different context

(see also [16, Sec. 7.3]).

Theorem 3.1: Let C(N) and C(O) be binary t-grain-

correcting codes of length n (when overlaps are disallowed

and allowed, respectively). Then, for j ∈ {N,O}, one has∣∣C(j)
∣∣ ≤ ∆(j)(n, t), where

∆(j)(n, t) = 2

w∑

r=1

(
n−1

r−1

)
+

⌊2n − 2
∑w

r=1

(
n−1
r−1

)
ψ
(j)
n,t(r)

ψ
(j)
n,t(w + 1)

⌋

(23)

and w is the largest integer such that
∑w

r=1

(
n−1
r−1

)
ψ
(j)
n,t(r) ≤ 2n−1 . (24)

The formulas for ψ
(N)
n,t (r) and ψ

(O)
n,t (r) are given in (21)

and (22), respectively.

✲t

✻

R
(j)
200(t)

0.865

0.823

0.78

1

0 16

✲R
(MBK)
200 (t)

✲R
(N)
200(t)

✲R
(O)
200(t)

Fig. 3. Functions R
(N)
200(t), R

(O)
200(t), and R

(MBK)
200 (t).

For j ∈ {N,O}, let R
(j)
n (t) = log2(∆

(j)(n, t))/n. Figure 3

depicts the functions t 7→ R
(j)
n (t) for n = 200 calculated at

t ∈ {1, 2, . . . , 16}.

Mazumdar et al. [17, Th. 3] obtained an upper bound on

M
(N)
2 (n, t) using a similar technique by considering a t-grain-

correcting code C of length n (when overlaps are disallowed)

and partitioning it into two subcodes

C1 =
{
c ∈ C : |r(c)− n/2| ≤

√
nt log2 n

}
and C2 = C\C1 .

The sizes of B(N)
t (c) for c ∈ C1 and c ∈ C2 were then bounded

from below by ψ
(N)
t (β) and 1, respectively, where β = β(n, t)

is taken as n/2−
⌊√

nt log2 n
⌋
. The obtained upper bound on

M
(N)
2 (n, t) is

∆(MBK)(n, t) =
2nt!

(β−1−3(t−1))t
+ 4

β∑

i=0

(
n− 1

i

)
. (25)

For specific values of n and t, this bound can be optimized

by taking β to minimize the right-hand side of (25). Let

R
(MBK)
n (t) =

1

n
log2

(
min

3t−2<β<n/2
∆(MBK)(n, t)

)
.

The function t 7→ R
(MBK)
200 (t) is depicted in Figure 3 as well. It

can be seen that the functions R
(j)
200(t) for j ∈ {N,O} improve

on R
(MBK)
200 (t) for all 1 ≤ t ≤ 16.

The limit of R
(N)
n (⌈τn⌉) as n → ∞ is identical to that

of R
(MBK)
n (⌈τn⌉) and is based on a lower bound on the

asymptotic growth rate Ψ(τ, z) of ψ
(N)
n,⌈τn⌉(⌈zn⌉) for fixed τ

and z. Indeed, in the asymptotic analysis (for n → ∞ and

fixed τ and z), the largest integer w = ⌈zn⌉ for which (24)

holds, translates into the smallest positive solution z = z†

of the equation H2(z) + Ψ(τ, z) = 1. This implies that the

asymptotic growth rate of the last summand of the right-hand

side of (23),

⌊2n − 2
∑w

r=1

(
n−1
r−1

)
ψ
(j)
n,t(r)

ψ
(j)
n,t(w + 1)

⌋
,

is at most 1−Ψ(τ, z†) = H2(z
†), which is exactly the growth

rate of the sum 2
∑w

r=1

(
n−1
r−1

)
. In other words, the asymptotic

growth rate of ∆(N)(n, t) is H2(z
†) where z† is the smallest

positive solution of H2(z) + Ψ(τ, z) = 1. If, like Mazumdar

et al., we bound Ψ(τ, z) from below by 1
2z · H2(2τ/z), we

will obtain the following upper bound on the rate of binary

⌈τn⌉-grain-correcting codes (when overlaps are disallowed)

for τ ≤ 0.0706:

R
(N)
2 (τ) ≤ ρ(MBK)(τ)

△

= H2(z
†) ,

where z† is the smallest positive solution of

H2(z) +
1
2z ·H2(2τ/z) = 1,

and this is exactly how [17, Prop. 4] is formulated. However,

if we use ψ
(N)
n,t (r) from (21) as a lower bound on |B(N)

t (c)|,
a better lower bound on Ψ(τ, z) can be obtained resulting in

a better upper bound on R
(N)
2 (τ) as stated in the following

theorem, which essentially follows the proof of Mazumdar et

al. in [17, Prop. 4].

Theorem 3.2: Let τ (N) (≈ 0.070958) be the smallest

positive solution of H2

(
5+

√
5

2 τ
)
+ 3+

√
5

2 H2

(
3−

√
5

2

)
τ = 1

(as an equation in τ ). Then for τ ∈ [0, τ (N)],

R
(N)
2 (τ) ≤ ρ(N)(τ)

△

= H2(z
∗),

where z∗ is the smallest positive solution of

H2(z) + (z−τ)H2

( τ

z−τ
)
= 1

(as an equation in z).

Remark 3.3: Let τ (O) (≈ 0.113546) be the smallest

positive solution of H2(2τ)+2τ = 1. Similarly to Theorem 3.2

and using (22), one can bound R
(O)
2 (τ) for τ ∈ [0, τ (O)] from

above by ρ(O)(τ)
△

= H2(z
⋆), where z⋆ is the smallest positive

solution of H2(z) + z ·H2(τ/z) = 1.

Figure 4 depicts the upper bounds ρ(N)(τ) and ρ(O)(τ) on

the rate of ⌈τn⌉-grain-correcting codes for n→ ∞ guaranteed

by Theorem 3.2 and Remark 3.3, respectively (for τ > τ (j),
the upper bounds become ρ(j)(τ) = ρ(j)(τ (j))). For compar-

ison, we present the upper bound ρ(MBK)(τ) stated in [17,

Prop. 4] and the lower bound ̺
(N)
2 (τ) found in Section II-B.

One can observe the visible improvement of ρ(N)(τ) over
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ρ(MBK)(τ) as well as the proximity of ρ(N)(τ) and ρ(O)(τ).
Recently, Kashyap and Zémor obtained in [9, Sec. 4] another

new upper bound on the rate of binary ⌈τn⌉-grain-correcting

codes (when overlaps are disallowed), using information-

theoretic arguments. Their bound, denoted in Figure 4 by

ρ(KZ)(τ), improves on ρ(N)(τ) for τ ≥ 0.02614.

✲
τ

✻

R
(j)
2 (τ)

0

0.5

1

0.0566 τ (N) 0.1 τ (O)

✲̺
(N)
2 (τ)

✟✟✟✯
ρ(N)(τ)

✟✟✟✟✯

ρ(O)(τ)

✟✟✟✙
ρ(MBK)(τ)

✟✟✟✯
ρ(KZ)(τ)

Fig. 4. Upper bounds ρ(N)(τ) and ρ(O)(τ) of Theorem 3.2 and Remark 3.3

along with ρ(MBK)(τ) and the lower bound ̺
(N)
2 (τ).

IV. CONSTRUCTIONS OF GRAIN-CORRECTING CODES

In this section, we present constructions of binary (q = 2) t-
grain-correcting codes of length n for specific values of n and

t, assuming a grain length g = 2. We also show the optimality

and the uniqueness of some of these codes.

The following lemma will be useful later on in determining

whether a pair of words is non-confusable (regardless of

whether overlaps are allowed or not); in fact, the lemma ap-

plies also to wide-sense confusability, as this term was defined

in Section II-B (see the discussion preceding Lemma 2.10).

Lemma 4.1: Let x = (xi)i∈〈n〉 and x′ = (x′i)i∈〈n〉 be

words in 〈2〉n such that x0 = x′0. Then x and x′ are non-

confusable if and only if there exists an index e ∈ 〈n−1〉
such that

xe = xe+1 6= x′e = x′e+1 (26)

(i.e., either xexe+1 = 00 and x′ex
′
e+1 = 11, or vice versa).

Proof: The “if” part of the lemma is immediate. Turning to

the “only if” part, assume that there does not exist an index

e ∈ 〈n−1〉 for which (26) holds. In what follows, we will

show by induction on i ∈ 〈n〉 that there necessarily exists a

pair of nonoverlapping patterns S and S ′ such that σS(x) and

σS′(x′) are identical on their first i+1 positions. The induction

basis is immediate as x0 = x′0 and we can take S = S ′ = ∅.

Assume now by induction that for i ∈ 〈n−1〉, there exists a

pair of nonoverlapping grain patterns Si,S ′
i ⊆ 〈i+1〉 such that

σSi
(x) and σS′

i
(x′) are identical on their first i+1 positions,

and Si ∩ S ′
i = ∅ (i.e., no grain from Si ends at the location

where a grain from S ′
i ends). We prove the inductive claim

for i+1. If xi+1 = x′i+1 then Si+1 = Si and S ′
i+1 = S ′

i;

otherwise, due to (26) not being satisfied, either [C1] xi = x′i
or [C2] xi = x′i+1 6= xi+1 = x′i.

[C1] Notice that when xi = x′i, replacing Si and S ′
i with

Si \ {i} and S ′
i \ {i}, respectively, produce grain

patterns that satisfy the induction hypothesis too,

hence for xi = x′i, we may assume that i /∈ Si ∪ S ′
i.

W.l.o.g., assume that xi = x′i = xi+1 6= x′i+1; in this

case, Si+1 = Si and S ′
i+1 = S ′

i ∪ {i+1} satisfy the

inductive claim for i+1.

[C2] In this case, w.l.o.g., i /∈ Si, and the grain patterns

Si+1 = Si ∪ {i+1} and S ′
i+1 = S ′

i satisfy the

inductive claim for i+1.

For i = n−1, we obtain nonoverlapping grain patterns S =
Sn−1 and S ′ = S ′

n−1 that make x and x′ confusable.

Mazumdar et al. presented in [17, Sec. 2] the following sim-

ple construction for ∞-grain-correcting codes when overlaps

are disallowed.

Construction 4.2: For any even positive n, the binary code

Cn = {c = (ci)i∈〈n〉 : c2s = c2s+1 for any s ∈ 〈n/2〉}
is an ∞-grain-correcting code of length n and size 2n/2. For

any odd positive n, the code Cn = (0 Cn−1) ∪ (1 Cn−1) is a

binary ∞-grain-correcting code of length n and size 2(n+1)/2.

It is easy to see that the code Cn from Construction 4.2 is

∞-grain-correcting even when overlaps are allowed; therefore,

M
(N)
2 (n,∞) =M

(N)
2 (n, ⌊n/2⌋) ≥M

(O)
2 (n, ⌊n/2⌋)

≥M
(O)
2 (n,∞) ≥ 2⌈n/2⌉,

where M
(N)
2 (n,∞) and M

(O)
2 (n,∞) denote the largest size of

any binary ∞-grain-correcting code of length n when overlaps

are disallowed and allowed, respectively. Conversely, from [17,

Prop. 1] it follows that M
(N)
2 (n, ⌊n/2⌋) ≤ 2⌈n/2⌉, thereby

implying the following result.

Theorem 4.3: For any positive integer n,

M
(N)
2 (n,∞) =M

(N)
2 (n, ⌊n/2⌋) =M

(O)
2 (n, ⌊n/2⌋)

=M
(O)
2 (n,∞) = 2⌈n/2⌉.

It turns out that Construction 4.2 is the only way to construct

binary ∞-grain-correcting codes of odd length n and size

2(n+1)/2.

Theorem 4.4: Let n be an odd positive integer. The binary

∞-grain-correcting code of length n and size 2(n+1)/2 is

unique (whether overlaps are allowed or not).

Proof: It suffices to show uniqueness for the case where

overlaps are disallowed, and our proof will be by induction

on n. For n = 1, there is clearly only one binary ∞-grain-

correcting code of size 2, which is 〈2〉.
Let now C be a binary ∞-grain-correcting code of odd

length n and size 2(n+1)/2, and let C0∗ ⊆ C be the set of

all codewords of C ending in either 00 or 01. Any two distinct

codewords of C0∗ are non-confusable, thus their prefixes

of length n−2 are non-confusable as well. Therefore, the

punctured code

C′
0∗ = {c : c00 ∈ C0∗ or c01 ∈ C0∗} ,

of length n−2, is ∞-grain-correcting. Likewise, the similarly

defined punctured code C′
1∗ is ∞-grain-correcting as well.

Hence, by Theorem 4.3 we have that max {|C′
0∗| , |C′

1∗|} ≤
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2(n−1)/2. On the other hand, |C0∗|+|C1∗| = |C′
0∗|+|C′

1∗| =
|C| = 2(n+1)/2, so |C′

0∗| = |C′
1∗| = 2(n−1)/2. Applying the

induction hypothesis to C′
0∗ and C′

1∗ yields that C′
0∗ = C′

1∗.

By Lemma 4.1, the only way a codeword of C′
0∗ = C′

1∗
can be a prefix of two distinct (non-confusable) codewords

in C is when their suffixes are 00 and 11. This implies

the uniqueness of the code C as well. The unique ∞-grain-

correcting code of length n and size 2(n+1)/2 is in fact

obtained from Construction 4.2.

Remark 4.5: We point out that despite the fact that the

induction step in the proof of Theorem 4.4 also holds when

C is a binary ∞-grain-correcting code of even length n and

size 2n/2, the proof cannot be generalized to include the even

values of n as well, as it is impossible to find a basis for such

an induction. Specifically, it is readily seen that there exist four

different binary ∞-grain-correcting codes of length 2, namely,

{00, 11} , {00, 10} , {01, 10} and {01, 11} . (27)

For even n ≥ 4, there exist at least four different construc-

tions of ∞-grain-correcting codes of size 2n/2, obtained by

prepending the prefixes in (27) to all the codewords of the code

Cn−2 obtained by Construction 4.2. Thus, for even n, a largest

construction of ∞-grain-correcting codes is not unique.

Construction 4.2 trivially yields ((n−3)/2)-grain-correcting

codes of odd length n and size 2(n+1)/2. We prove next that

this size is optimal for t = (n−3)/2.

Theorem 4.6: Let n ≥ 5 be an odd integer. Then

M
(N)
2 (n, (n−3)/2) =M

(O)
2 (n, (n−3)/2) = 2(n+1)/2.

Proof: Construction 4.2 implies the lower bound

M
(O)
2 (n, (n−3)/2) ≥ 2(n+1)/2 ,

hence it remains to prove that

M
(N)
2 (n, (n−3)/2) ≤ 2(n+1)/2 .

The rest of the proof is similar to that of Theorem 4.4.

The induction basis (M
(N)
2 (5, 1) = 8) can be verified by a

computer-based exhaustive search11 (also see Table II).

Let now C be a binary ((n−3)/2)-grain-correcting code

(when overlaps are disallowed) of odd length n ≥ 7, and let

C′
0∗ and C′

1∗ be defined as in the proof of Theorem 4.4. These

are ((n−5)/2)-grain-correcting codes of length n−2 such that

|C′
0∗|+|C′

1∗| = |C|. By the induction hypothesis,

|C| = |C′
0∗|+|C′

1∗| ≤ 2 · 2(n−1)/2 = 2(n+1)/2 .

Remark 4.7: Notice that the code Cn of Construction 4.2

is also ∞-grain-correcting under the criterion of wide-sense

confusability. Hence Theorems 4.3 and 4.6 hold in this wide

sense as well.

11W.l.o.g., we can assume that a largest 1-grain-correcting code C of length
5 is closed under complementation (i.e., if c ∈ C, then the word obtained
from c by changing each 0 to a 1 and each 1 to a 0 is also in C). Thus,
it suffices to verify that among any five words of length 5 starting with
a 0 there is at least one 1-confusable pair. On the other hand, the code
{00000, 00011, 00110, 01100} is clearly 1-grain-correcting.

Turning to binary (n/2−1)-grain-correcting codes of even

length n, we have the following result (for the proof, see

Appendix B).

Theorem 4.8: Let n ≥ 4 be an even integer. Then

M
(N)
2 (n, n/2−1) =M

(O)
2 (n, n/2−1) = 2n/2+2.

The value of M
(N)
2 (n, n/2−1) = M

(O)
2 (n, n/2−1) is

realized by the augmentation of the code Cn in Construc-

tion 4.2 with the words12 (0110)n/4 and (1001)n/4 when

n ≡ 0 (mod 4), or with the words (0110)(n−2)/401 and

(1001)(n−2)/410 when n ≡ 2 (mod 4) (see Appendix B).

Let M
(CWS)
2 (n, t) denote the size of a largest t-grain-

correcting code of length n when assuming wide-sense con-

fusability (notice that by Remark 2.14, it does not matter here

whether overlaps are allowed or not). The next theorem shows

that when n is even and t = n/2−1, the value of M
(CWS)
2 (n, t)

is strictly smaller than M
(O)
2 (n, t).

Theorem 4.9: Let n ≥ 4 be an even integer. Then

M
(CWS)
2 (n, n/2−1) = 2n/2.

Proof: Let C be a largest binary (n/2−1)-grain-correcting

code of length n; w.l.o.g., we can assume that C is closed under

complementation. The Hamming distance between two words

c1 and c2 in 0 〈2〉n−1
that are n/2-cws (that is, confusable)

yet not (n/2−1)-cws, has to be13 n−1, which, by Lemma 4.1,

means that

c1 = (01)n/2 and c2 = 00(10)n/2−1 .

Therefore, if {c1, c2} 6⊆ C, then C ∩ 0 〈2〉n−1
— and, by

closure under complementation, C itself — is an ∞-grain-

correcting code (in the wide sense), and the result is implied

by Theorem 4.3 and Remark 4.7.

Suppose now that {c1, c2} ⊆ C. Every word x ∈ 0 〈2〉n−1\
{c2} is (n/2−1)-cws with c1, since the Hamming distance

between x ∈ 0 〈2〉n−1 \ {c2} and c1 is at most n−2 and, in

addition, by Lemma 4.1, c1 is confusable with any word in

0 〈2〉n−1
. We then have C = {c1, c2, c1, c2}, i.e., |C| = 4 ≤

2n/2.

Using an inductive argument similar to that of Theorem 4.4,

one can also prove that for n ≥ 5, the binary ((n−3)/2)-grain-

correcting (in the wide sense) code of length n is unique.

An interesting (yet not provably optimal) construction of

binary 1-grain-correcting codes (bearing some resemblance

to the single asymmetric-error-correcting codes by Kim and

Freiman [10]) can be obtained by the augmentation of a

Hamming code with a subset of Cn. We state this result in

the following proposition.

12Recall that for a word x, the notation x
s stands for s repetitions of x.

13Since c1 and c2 are confusable, there exist grain patterns S1 and S2 such
that σS1

(c1) = σS2
(c2). W.l.o.g., we can assume that S1∩S2 = ∅, because

had there been a location e ∈ S1 ∩ S2, we could have obtained smaller
grain patterns without that location S′

1 = S1 \ {e} and S′
2 = S2 \ {e}

such that σS′
1
(c1) = σS′

2
(c2). This implies that |S1|+ |S2| is at most

the Hamming distance between c1 and c2, which is at most n−1, since

c1, c2 ∈ 0 〈2〉n−1. On the other hand, since c1 and c2 are not (n/2−1)-
cws, one has |S1|+ |S2| > 2(n/2−1) = n−2.
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Proposition 4.10: Let m ≥ 2 be an integer and let n =
2m−1. Then

M
(N)
2 (n, 1) =M

(O)
2 (n, 1) ≥ 2n−m+2(n−1)/2.

Proof: Consider a Hamming code C of length n with the

parity-check matrix whose columns range over all the nonzero

vectors in 〈2〉m in lexicographic order. Let

C′ =
{
x′ = 0(x′ix

′
i)i∈〈(n−1)/2〉 : w (x′) ∈ 4Z+2

}

and

C′′ =
{
x′′ = 1(x′′i x

′′
i )i∈〈(n−1)/2〉 : w (x′′) ∈ 4Z+1

}
,

where w (x) is the Hamming weight of the word x. Denote

C∗ = C′∪C′′. Any codeword c ∈ C is at Hamming distance 1,

2, or 3 and higher from a word x ∈ C∗. The only codeword

of C at distance 1 from x is x+10n−1 (with addition taken

componentwise modulo 2), but it is non-confusable with x.

Codewords of C at distance 2 from x differ from x on

coordinates 1+2i, 2+2i for some i ∈ 〈(n−1)/2〉, yet this

makes codewords of C at distance 2 non-confusable with x.

Codewords of C at distance 3 from x are not 1-confusable

with x merely because 1-confusable words are at Hamming

distance 2 (at most) from one another. Moreover, the code

C∗ ⊆ Cn is ∞-grain-correcting therefore C ∪ C∗ is a 1-grain-

correcting code of size 2n−m+2(n−1)/2.

Remark 4.11: Notice that the code C ∪C∗ in the proof of

Proposition 4.10 is also 1-grain-correcting in the wide sense.

Tables II and III contain the values of M
(N)
2 (n, t) and

M
(CWS)
2 (n, t), respectively, for small n and t obtained us-

ing computer search (backtracking-based searching for a

maximum independent set in a confusability graph [17,

Sec. 3-A]). Values marked in bold are guaranteed by Theo-

rems 4.3, 4.6, 4.8, or 4.9; values marked in italics are attained

by unique codes due to Theorem 4.4 (and variations thereof).

One can also observe that for (n, t) = (7, 1), the construction

in Proposition 4.10 gives a code of size 24 which is close

to the optimum M
(N)
2 (7, 1) = 26. Under the wide-sense

confusability criterion, the very same code (by Remark 4.11)

is a largest 1-grain-correcting code of length 7. It turns out that

for all pairs (n, t) for which M
(N)
2 (n, t) is listed in Table II,

we also have M
(O)
2 (n, t) = M

(N)
2 (n, t); with the exception

of (n, t) = (8, 2), this phenomenon can be explained by

Theorems 4.3, 4.6, or 4.8, or by the basic observation that

for t = 1 there can be no overlaps.

TABLE II
SIZES M

(N)
2 (n, t) OF LARGEST t-GRAIN-CORRECTING CODES OF LENGTH

n.

❍❍❍❍t
n

2 3 4 5 6 7 8 9

1 2 4 6 8 16 26 44

2 4 8 10 16 22

3 8 16 18 32

TABLE III
SIZES M

(CWS)
2 (n, t) OF LARGEST t-GRAIN-CORRECTING CODES OF

LENGTH n, ASSUMING WIDE-SENSE CONFUSABILITY.

❍❍❍❍t
n

2 3 4 5 6 7 8 9

1 2 4 4 8 12 24 32

2 4 8 8 16 16 32

3 8 16 16 32

V. ERROR DETECTION

Two words x,y ∈ Σn are t-similar if there exists a grain

pattern S of size at most t for which either σS(x) = y

or σS(y) = x. A code C of length n over Σ is called t-
grain-detecting if no two distinct codewords in C are t-similar.

In what follows, we will show the existence of an ∞-grain-

detecting code C of length n over Σ = 〈q〉 with redundancy

n− logq |C| ≤ 1.5 logq(n)+O(1), for every q ≥ 2 (here O(1)
stands for an absolute constant, independent of n and q).

Let n be a positive integer and define

α(n) =

{⌈
n+1
2

⌉
if overlaps are disallowed

n if overlaps are allowed
.

For x ∈ Σn, let s(x) denote the sum of the indices of the

starting positions of runs of x. Let F denote the set of all

binary words whose number of runs is either ⌊n(q−1)/q⌋ or

⌊n(q−1)/q⌋+1 and which end with a run of length at least 2;

partition F into blocks according to the value of s(·) modulo

α(n). By the pigeonhole principle, there has to be a partition

block CF ⊆ F , of size at least |F| /α(n) with the property

that the value of s(x) modulo α(n) is the same for all x ∈ CF .

Denote this common value by sF .

Proposition 5.1: The code CF is an ∞-grain-detecting

code with redundancy

n− logq |CF | ≤ 1.5 logq n+O
( 1

n

)

(either when overlaps are allowed or not).

Proof: Let m = ⌊n(q−1)/q⌋. A grain pattern S applied to a

word x ∈ F produces a word y = σS(x) with a number of

runs r(y) which is either equal to r(x) or is less than r(x)
by at least 2. If the number of runs decreases by 2 (or more),

then

r(y) ≤ m−1 < m ≤ r(x),

and the error is detected. In particular, we will be able to detect

such an error when words of CF ⊆ F are transmitted.

Now, when the transmitted word x is from CF and r(y) =
r(x), we can detect the inflicted errors by comparing s(y) with

sF . Specifically, since the maximal size14 of S is α(n)−1, and

any single grain increases the value of s(x) by 1, the maximal

difference between s(y) and s(x) is α(n)−1, hence y and x

are in different partition blocks of F , viz., y /∈ CF .

14The maximal size of S when overlaps are allowed can be bounded from
above by ⌊n(q−1)/q⌋, rather than by n−1, but this will have no effect on
the asymptotic analysis we are about to do.
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The size of CF is at least

q

α(n)

((
n−2

m−1

)
(q−1)m−1 +

(
n−2

m

)
(q−1)m

)

≥ 1

α(n)

(
n

m

)
(q−1)m−1

≥ 1

3(q−1)
· 1

α(n)
√
n
· nn(q−1)m

mm(n−m)n−m

≥ 1

3(q−1)
· 1

n
√
n
qnHq(m

n )

≥ 1

3(q−1)
· 1

n
√
n
qnHq( q−1

q
− 1

n )

≥ 1

3(q−1)
· 1

n
√
n
qn−O( 1

n ) ,

where the second inequality follows from the known bounds

on factorials [6, Sec. 2.9]:
√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n) ,

where e is the base of natural logarithms. Therefore, the

redundancy of CF satisfies

n− logq |CF | ≤ 1.5 logq n+O
( 1

n

)
.

An immediate corollary of Proposition 5.1 is that the rate

of CF approaches 1 as n → ∞, regardless of the number of

grain errors to be detected.

APPENDICES

A. PROOF OF LEMMA 2.10

We prove the lemma for j = N; the proof for j = O is

similar. Let x = (xi)i∈〈n〉,y = (yi)i∈〈n〉 ∈ Σn be a pair of t-

cws words from W(N)
t . Then there exist grain patterns S,S ′ ⊂

〈n〉 \ {0} such that σS(x) = σS′(y) and |S|+ |S ′| (≤ 2t) is

the minimal possible sum of sizes of grain patterns that make

x and y confusable. Construct the path γ = (vi = ℓiri)i∈〈n〉
corresponding to (x,y) as follows: for each i,

ℓi =

{
x i (∈ Σ) if i ∈ S
xi (∈ Σ) otherwise

and

ri =

{
y i (∈ Σ) if i ∈ S ′

yi (∈ Σ) otherwise
.

Clearly, |L(γ)| = |S|, |R(γ)| = |S ′|, thus |L(γ)|+ |R(γ)| ≤ 2t.
Also, by construction, xi = φ(ℓi) and yi = φ(ri) for all

i ∈ 〈n〉. Next, we verify that γ is indeed a path in G(N).

Every vi constructed this way is indeed a state in V (N):

• It cannot be of the form ℓiri ∈ ΣΣ where ℓi 6= ri because

then σS(x) 6= σS′(y).
• It cannot be of the form ℓiri ∈ ΣΣ (or ∈ ΣΣ) where

φ(ℓi) = φ(ri) because then either σS(x) 6= σS′(y) or

grain i is redundant in S ′ (or in S), contradicting the

minimality of |S|+ |S ′|.

• It cannot be of the form ℓiri ∈ ΣΣ where φ(ℓi) = φ(ri)
because then σS\{i}(x) = σS′\{i}(y) contradicting the

minimality of |S|+ |S ′|.
To verify that γ is indeed a path in G(N), it is left to show

that there are edges between the constructed vi = ℓiri and

vi+1 = ℓi+1ri+1 for any i ∈ 〈n−1〉. Indeed, if vi+1 ∈ V0
then ℓi+1 = ri+1 and by Condition [N1], (vi, vi+1) ∈ E(N).

If vi+1 ∈ V1 and vi+1 ∈ ΣΣ (the case when vi+1 ∈ ΣΣ
is similar), then φ(ri) = ℓi+1 because otherwise σS(x) 6=
σS′(y). Hence vi can be only of the following forms:

• vi ∈ Σ2 where ℓi=ri=ℓi+1. This corresponds to Condi-

tion [N2].

• vi ∈ ΣΣ where ri=ℓi+1. This corresponds to Condi-

tion [N3].

If vi+1 ∈ V2 then vi ∈ V0 because otherwise σS(x) 6= σS′(y).
Moreover, ℓi = ri /∈ {φ(ℓi+1), φ(ri+1)} since otherwise

grain i+1 is redundant in S or in S ′. This corresponds to

Condition [N4]. Finally, since x0 = y0 (otherwise x and y are

non-confusable), one has v0 ∈ V0. From the above discussion

we conclude that γ ∈ Π
(N)
t .

To prove that the above mapping from ordered pairs in

W(N)
t to paths in Π

(N)
t is one-to-one, it remains to show

that the above construction creates different paths for two

different ordered pairs of t-cws words (x = (xi)i∈〈n〉,y =
(yi)i∈〈n〉) 6= (x′ = (x′i)i∈〈n〉,y

′ = (y′i)i∈〈n〉). W.l.o.g.,

assume that there exists s ∈ 〈n〉 \ {0} such that xs 6= x′s; then

state vs in the respective path γ in G(N) that was constructed

from (x,y) is different from state v′s in the path γ′ in G(N)

constructed from (x′,y′). Therefore γ 6= γ′.

B. PROOF OF THEOREM 4.8

It is easy to verify that the augmentation of Cn with

0110 0110 0110 0110 . . .

and its binary complement

1001 1001 1001 1001 . . .

results in an (n/2−1)-grain-correcting code (regardless of

whether overlaps are allowed or not), implying the lower

bound

M
(N)
2 (n, n/2−1) ≥M

(O)
2 (n, n/2−1) ≥ 2n/2+2.

Next, we prove the upper bound M
(N)
2 (n, n/2−1) ≤ 2n/2+2.

Let C be a binary (n/2−1)-grain-correcting code of length

n. For a word x = (xi)i∈〈n/2〉 ∈ 〈2〉n/2, define C(x) to be

the subcode of C with codewords containing x as a substring

on the even-indexed positions, namely,

C(x) =
{
c = (ci)i∈〈n〉 ∈ C : for all i ∈ 〈n/2〉 , c2i = xi

}
.

By Lemma 4.1, all codewords of C(x) are pairwise confusable.

Therefore, |C(x)| ≤ 2, as otherwise there would have existed

two distinct (confusable) words in C(x) at Hamming distance

less than n/2 apart, thus confusable by grain patterns S and

S ′ such that |S|+ |S ′| ≤ n/2−1. This, in turn, implies

that |S| , |S ′| ≤ n/2−1, viz., these two words in C(x)
are (n/2−1)-confusable, which contradicts the fact that C
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is an (n/2−1)-grain-correcting code. We will call a word

x ∈ 〈2〉n/2 a 0-profile, a 1-profile, or a 2-profile if |C(x)|
is 0, 1 or 2, respectively. For m = 0, 1, 2, denote the set

of m-profiles by Pm (clearly, |P2| = 2n/2− |P0| − |P1|).
We will shortly demonstrate a one-to-one mapping from

P2 \ {010101 . . . , 101010 . . .} to P0. This, in turn, will imply

that

|P0| ≥ |P2| − 2 = 2n/2− |P0| − |P1| − 2,

or, in other words, 2 |P0|+ |P1| ≥ 2n/2−2, which, combined

with the fact that

|C| = |P1|+2 |P2| = |P1|+2(2n/2−P0−P1)

= 2n/2+1−2 |P0| − |P1| ,
yields

|C| ≤ 2n/2+1 − (2n/2−2) = 2n/2+2 .

Define a mapping η : P2 \ {010101 . . . , 101010 . . .} →
P0 in the following way. Let x = (xi)i∈〈n/2〉 ∈ P2 \
{010101 . . . , 101010 . . .} and let j ∈ 〈n/2〉 \ {0} be the

smallest index for which xj−1 = xj . Now, let η(x) be defined

as the word y = (yi)i∈〈n/2〉 such that for any i ∈ 〈n/2〉, one

has

yi =

{
xi i 6= j

xi i = j
,

where xi is the binary complement of xi. Since x is a 2-profile,

we have

C(x) =
{
c = (xixi)i∈〈n/2〉, c

∗ = (xixi)i∈〈n/2〉
}
.

The word y has to be in P0, because had there existed a word

c′ = (cs)s∈〈n〉 ∈ C(y), it would have been either (n/2−1)-
confusable with c∗ (when c2j−1 = xj or c2j+1 = xj), or

(n/2−1)-confusable with c (when c2j−1 = c2j+1 = xj).

It is left to prove that η is one-to-one, namely, to refute

the existence of another 2-profile z = (zi)i∈〈n/2〉 ∈ P2 \
{010101 . . . , 101010 . . . ,x} such that η(x) = η(z) = y.

Suppose to the contrary that such a word z exists, and let

k ∈ 〈n/2〉 \ {0} be the smallest index such that zk−1 = zk;

clearly, j 6= k. Since η(z) = y, then, for any i ∈ 〈n/2〉,

yi =

{
zi i 6= k

zi i = k
.

In other words, xi = zi when i /∈ {j, k}, and xi = zi
otherwise. Since z is a 2-profile, we have

C(z) =
{
(zizi)i∈〈n/2〉, c̃ = (zizi)i∈〈n/2〉

}
.

It turns out that the words c∗ and c̃ are 2-confusable by grain

patterns without overlaps in each one of the possible cases:

• k = j+1. In this case, c∗ and c̃ are confusable by the

respective grain patterns {2j, 2j+2} and {2j+1, 2j+3}.

By definition, these grain patterns have no overlaps.

• k = j−1. In this case, c∗ and c̃ are confusable by the

respective grain patterns {2j−1, 2j+1} and {2j−2, 2j}.

By definition, these grain patterns have no overlaps.

• |k−j| ≥ 2. In this case, c∗ and c̃ are confusable by

the respective grain patterns {2j, 2k+1} and {2j+1, 2k}.

Since |k−j| ≥ 2, we have |2j−(2k+1)| ≥ 2 and

|(2j+1)−2k| ≥ 2, therefore these grain patterns have

no overlaps.

Notice that since j, k 6= 0 and j 6= k, either j or k has to be

at least 2, which means n ≥ 6. At any rate, c∗ and c̃ cannot

both be in a code correcting (n/2−1) ≥ 2 grain errors that

do not overlap, implying, in turn, that η is one-to-one.
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