
Migrating a Large Scale Legacy Application to
SOA: Challenges and Lessons Learned

Ravi Khadka∗, Amir Saeidi∗, Slinger Jansen∗, Jurriaan Hage∗, Geer P. Haas†
∗Department of Information and Computing Sciences, Utrecht University, The Netherlands

{r.khadka, a.m.saeidi, slinger.jansen, j.hage}@uu.nl
†IBM, The Netherlands

geer.haas@nl.ibm.com

Abstract—This paper presents the findings of a case study of
a large scale legacy to service-oriented architecture migration
process in the payments domain of a Dutch bank. The paper
presents the business drivers that initiated the migration, and
describes a 4-phase migration process. For each phase, the
paper details benefits of using the techniques, best practices
that contribute to the success, and possible challenges that are
faced during migration. Based on these observations, the findings
are discussed as lessons learned, including the implications of
using reverse engineering techniques to facilitate the migration
process, adopting a pragmatic migration realization approach,
emphasizing the organizational and business perspectives, and
harvesting knowledge of the system throughout the system’s life
cycle.

I. INTRODUCTION

In the current business environment, enterprises are pres-

sured to respond to changes in the market, laws and regula-

tions, and to remain efficient and innovative to reap benefits

from on-demand and new business opportunities. In order to

manage these changes and remain competitive, flexibility is

required within the enterprise, supported by technology [1].

Technology support itself is constantly evolving with the ad-

vancement of new computing paradigms and improvements in

hardware infrastructures. Enterprise systems should therefore

be designed to enable continuous evolution and to remain

responsive to new business opportunities, realizing better re-

use and maintainability, and to improve business-IT alignment

to achieve business goals [1]. One of the obstacles to adapt to

such changes is the presence of legacy systems [2]. Despite

their well-known disadvantages, such as being inflexible and

hard to maintain, legacy systems are still vitally important

to enterprises as they support complex core business pro-

cesses; they cannot simply be removed as they implement

and execute critical business logic effectively and accurately.

Unsurprisingly, the knowledge contained in these systems is

of significant value to an enterprise. On the other hand, proper

documentation, skilled manpower, and resources to evolve

these legacy systems are scarce. Therefore, momentum is

growing to evolve those legacy systems within new techno-

logical environments such as Service-Oriented Architecture

(SOA) as SOA facilitates the reuse of existing assets [3].

The SOA paradigm is favored by loose-coupling, flexible

composition of business services, re-usability, and abstraction

from the underlying technology platforms. Hence, migration

from legacy systems to SOA enables enterprises to achieve

flexibility for collaboration, agility within a constantly chang-

ing environment [3] and thus enabling business-IT alignment.

With these claimed benefits, there has been an increasing

interest in academia to investigate approaches for migrating

legacy systems to SOA [4].

This paper presents the findings of a case study of the

migration of a large scale legacy system from a Dutch

bank to a SOA. For reasons of confidentiality, hereinafter

the bank is referred to as “NedBank”. The paper describes

a 4-phase migration process that is used in NedBank. For

each phase, the paper identifies the benefits of using par-

ticular techniques/methods within that phase, best practices

that helped to achieve success, and possible challenges that

were faced during migration. Based on these observations,

the paper presents the lessons learned from the case study.

The findings of the paper not only emphasize the benefits of

using reverse engineering techniques to facilitate the migration

process, but also urges academia to pay attention to business

and organizational aspects. The business and organizational

aspects include governance of the migration process, early

involvement of the existing technical staff, and knowledge

harvesting of the system.

The paper is structured as follows: Section II discusses

related work; Section III explains the research approach and

current technological landscape of the payments domain of

NedBank; Section IV presents the migration process and

discusses benefits, best practices and challenges faced during

the migration; Section V analyzes and presents the findings as

lessons learned. In Section VI, the paper concludes with some

potential future work.

II. RELATED WORK

De Lucia et al. [5] describe an approach and tools to migrate

legacy applications to web applications. Sneed [6], [7] has

contributed several wrapping techniques to migrate COBOL

applications to SOA. A plethora of research has been reported

on migrating legacy applications to SOA. They are reflected

in the survey [4]. However, considerably fewer real world case

studies of legacy to SOA migration are reported. Nasr et al. [8]

describe two large scale industrial case studies of legacy to

SOA migration; Colosimo et al. [9] present an empirical study

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24065856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of legacy migration in Italian companies; Kokko et al. [10]

report on SOA adoption process in nine Finnish organizations.

The use of reverse engineering techniques in software

evolution has been extensively researched. Various research

roadmaps and surveys (e.g., Bennett et al. [11], Muller et

al. [12], Canfora et al. [13]) have been presented. As per the

interest of this research, extracting program quality metrics

has been reported in [14], [15] and details of use of software

visualization in reverse engineering & re-engineering has been

reported in a survey by Koschke [16]. Data-intensive legacy

system migration has been reported by Henrard et al. [17].

III. RESEARCH BACKGROUND

The current research has adopted an exploratory case study

method [18], primarily reporting on how the migration is

carried out and seeking new insights about which activities are

performed during migration. Data collection in this case study

is performed based on the participant observation method [18],

wherein two of the researchers were directly involved in the

migration project. The data collection included the following:

(i) consulting documentation to identify the need for and goals

of the migration process; (ii) workshops & informal discus-
sions to discuss the progress of the migration in real time, and

(iii) semi-structured interviews to understand various aspects

of the migration process. In total six semi-structured interviews

were conducted. The interviews were conducted in English and

lasted between 60-120 minutes. Prior to the interviews, each

expert was introduced to an interview protocol, a document

detailing the objectives of the interview with some sample

questions, and a glossary of the technical terms to attain a

common understanding.

Research Context: NedBank is one of the largest banks

in the Netherlands with more than 900 branches worldwide.

Triggered by the Single Euro Payment Area (SEPA) initiative

of the European Union, NedBank started the migration of its

core banking systems under a project that started in 2010

and is expected to end in 2018. The main objective of this

project is to renovate and migrate its legacy systems to SOA.

The estimated cost of the project is 600M Euro. The project

is subdivided into 6 different portfolios: channel support,

payments, current accounts, customer reporting, counter, and

sales & product agreements. After an initial investigation, this

research is scoped to the migration of the payments domain

because of the following two reasons: (i) the subsystems

within the payments domain are diverse with respective to

programming languages, hardware and operating systems in

use, and (ii) the payments domain is of prime importance in

the day-to-day operation of the banking business.

The payments domain is responsible for the overall manage-

ment of banking transactions including foreign transactions,

and interest & cost calculation per transaction of NedBank

customers. The subsystems within the payments domain are

considered to have high impact on the business of NedBank

and have a high priority within the banking system. The

payments domain was one of the first domains to adopt

automatization in NedBank. Over the years, the subsystems of

the payments domain have been subjected to frequent changes

which have resulted in a “spaghetti architecture” [19] posing

long-term problems such as increased complexity, inflexibile

to changes and evolution, and increasing maintenance and

running costs. Currently, the payments domain consists of five

major legacy subsystems as detailed in Table I.

TABLE I
DETAILS OF THE SUBSYSTEMS IN THE PAYMENTS DOMAIN

Subsystem Language Platform LOC
CalculateInterest COBOL IBM Z/OS 401,761
ForeignAccount COBOL HP Tandem 2,193,570
BalanceCheck COBOL HP Tandem 817,882
AccountAgreement COBOL IBM Z/OS 529,055
ReportCustomer COBOL HP Tandem 587,519

To better understand the basic working principles of and

dependencies between these systems, a use case is described

in which a customer is created and (s)he withdraws money

from an Automated Teller Machine (ATM). Figure 1 depicts

a high level sequence diagram, in which every directed edge

between two subsystems implies a coupling between the two.

�������	
������

	������ ������������ �������������	��� ����	��������	

�����
�

�	������
�����

�	�����

	������

�����������	������

�����������	������

�����������	������

�����	� �
�����

������!���������

����	��
�����

������������

���������

"#���	���$�"#���	���$�

������

������

%�	��
�
������

���������

�����������	������

Fig. 1. Sequence diagram depicting coupling within the payments domain

A new contract for opening an account is created in a

Siebel-based sales environment in one of the local branches.

During the account opening process, Siebel requests several

AccountAgreement services in order to get an account number

and to create agreements for the customer. The account and

agreement creation are processed in real-time. Upon open-

ing an account for a customer, the other four subsystems

(BalanceCheck, ReportCustomer, ForeignAccount and Calcu-
lateInterest) are updated accordingly. When the customer with-

draws money from an ATM, initially the request is validated

with the agreements stored in the BalanceCheck subsystem

and the withdrawn amount is reserved from the customer’s

account. Such individual banking transactions are stored in a

flat file and at the end of the day, the flat file is updated with the

transactional information from the ForeignAccount subsystem:

a subsystem responsible for recording the foreign transactions.

Afterwards, the flat file is processed by the CalculateInterest
subsystem that is responsible for interest, commission and

cost calculations, and synchronizing the updated records to

the other subsystems.

From the information in Table I, it is obvious that the sub-

systems of the payments domain are combined with heteroge-

neous IT infrastructures with variations in the COBOL dialects

used, and the hardware platforms on which they operate. The

subsystems range from internally developed subsystems like

CalculateInterest to third party built-in packaged subsystems

such as ForeignAccount. The subsystems are efficient in terms

of performance, capable of effectively analyzing, processing

and synchronizing millions of records. Nevertheless, to achieve

such performance, various features within the subsystems are

duplicated and/or updated in ad-hoc manner, increasing system

complexity. The increase in complexity has now become a

bottleneck to the changeability of the subsystems within the

payments domain.

Additionally, based on our observations (interview, doc-

umentation, workshops and informal discussion), the main

business goals of the NedBank upon migrating to a SOA are

(i) accelerating time-to-market, (ii) reducing costs in the pay-

ments domain, (iii) transparency in ownership & governance

of the products, and (iv) preventing knowledge erosion.

IV. THE MIGRATION PROCESS

In this section, we explain the legacy to SOA migration

process of the payments domain. Due to the complexity and

tight coupling between the subsystems of the payments do-

main, the activities within the migration process are performed

in a phased, controlled manner based on the business prior-

ities. The migration approach consists of the following four

phases, being: (i) Forming a migration program management

committee, (ii) Developing a logical target-architecture, (iii)

Analyzing the gap, and (iv) Realizing the migration.

A. Forming a Migration Program Management Committee

The legacy to SOA migration process needs to be capable

of addressing various kinds of issues including business,

organizational and technical issues [8]. The migration process

involves a long term investment of resources and is aimed

at conducting a large-scale migration by performing activities

with minimal dependencies and maximal parallelization. Thus,

to establish a suitable planning and management, a governing

body, the Program Management Committee, was created. It

includes various stakeholders representing senior management

officials, business architects representing the different business

units, software architects and technical managers, external con-

sultants and application developers. The committee is divided

into the following teams with specific responsibilities: a Steer-
ing Committee to develop a strategic policy for the migration;

a Core Team to develop the business-IT alignment strategy;

a Program Management team to manage the payment portfo-

lio; a Business Change Management team to ensure proper

alignment of business goals with the IT architecture; and

an Architecture Board to develop an architectural governance

within the payments domain. The role of the Business Change
Management and Architecture Board is crucial, in particular,

in developing and executing the migration process, aligning

the business goals with the architectural requirements, and

coordinating architectural priorities inline with the business

goals.

Benefits, Challenges and Best Practices: A legacy to SOA

migration is a multifaceted process that involves technical,

organizational and business issues [20]. To manage such a

multifaceted process, a central governing body with suitable

governance of the entire migration process is indispensable.

Needless to say, a legacy to SOA migration is a complex and

challenging process and any failure can threaten the success

and fortune of an enterprise [21]. In particular, software

failures in the financial domain not only cost millions but

also decrease customer confidence1. In this migration process,

the formation of the Program Management Committee has

suitably fulfilled the need of such a governing body and hence,

contributes towards a successful migration. The teams within

the Program Management Committee have clear responsibil-

ities such that any unpredicted changes were systematically

resolved. For instance, any Request For Change (RFC) is

primarily resolved by the Business Change Management and

Architecture Board unless the RFC has high business priority

and higher estimated cost than a chosen threshold value.

Then, the RFC is forwarded with recommendations from

the Business Change Management and Architecture Board to

the Core Team and to the Steering Committee for further

considerations.

Realizing that a large scale migration to SOA is not only a

technical endeavor, the existing knowledge within the technical

staff need to be utilized. The involvement of technical staff

(legacy system developers and maintainers) in the committees

facilitated the knowledge transfer to the migration team. It

is a recurring phenomenon that the technical staff is hesitant

to share knowledge due to the fear that their expertise may

become redundant due to migration. This phenomenon was

countered here by involving the technical staff to actively

participate in the migration process.

B. Developing a Logical Target-Architecture

Initially, a logical target-architecture conforming to the

business goals was developed. A logical target-architecture

forms the organizing logic for business processes and IT in-

frastructure, in which the business components are contained.

Developing a logical target-architecture that conforms to the

business goal was not an easy task. To start with, a group of

members from the migration project initially participated in a

workshop to define a functional architecture: an architectural

model that identifies features that contribute to achieving the

business goals. The team members included business process

analysts and business architects from the Business Change
Management team along with software architects and appli-

cation developers from the Architectural Board. Various other

external consultants and experts from financial software ven-

dors also participated in the workshop. Together they provided

1IT failure of Royal Bank of Scotland (RBS): http://goo.gl/xpDjy

the initial blueprint of the functional architecture. Following

the first workshop, three more workshops were conducted

that resulted in identifying various business components to

realize the initial functional architecture as shown in Figure 2.

The identification of the business components, referred to as

“componentization”, was one of the initial activities to realize

potential candidate services. The notion of componentization

is a way to construct a business component, which corresponds

to a feature contributing towards a business goal.

Channel support functionalityCounter support functionality

Customer Account related functionality

Product
Configurator

Current Account

Payment Facility

Distribution

Number
Pool

Interest Commission Cost

Payment Engine

SEPA

Vere Fens

Product
Agreement

Reporting

Internal
Command

Payment processing functionality

Service Book Entry

Payment
Channel2

Payment
Channel1Card Issuing Functionality

Fig. 2. Logical Target Architecture

Previously, such features were scattered over various sub-

systems. For instance, the “calculate interest” feature was

previously found in two subsystems: (i) CalculateInterest and

(ii) BalanceCheck. Earlier, “product agreements” feature was

also distributed over various subsystems. In the logical target-

architecture, related features are gathered within one logical

unit to ensure that architecture governance is easy, and to

minimize the product gaps within the payments domain.

Benefits, Challenges and Best Practices: Identifying busi-

ness components representing potential candidate services in

legacy to SOA migration is a challenging task. In this migra-

tion process, a goal-service modeling approach, proposed by

Arsanjani et al. [22], is followed. A goal-service modeling

approach is used to componentize the business component

because it ties services to the business goals. Each identified

candidate service was prioritized based on its business value.

Additionally, a catalogue for each business component was

created, indicating the degree of reusability by other compo-

nents and possible functional dependencies (coupling) with

other components in the logical architecture. Such a catalogue

provides an overview of components whose migration can

be performed independently, preferably in parallel with other

relatively independent components and hence, maximizing

parallelization of the migration process. In total, 44 different

high level features were identified.

C. Analyzing the Gap

The third phase of the migration process is to gather and

determine the information about the legacy system features

that can contribute to the realization of the logical target-

architecture. The payments domain consists of a mix of

many systems ranging from in-built COBOL system such as

CalculateInterest to a third party packaged application such as

ForeignAccount. There are not only variations in the COBOL

dialect, but also in the running platform such as IBM Z/OS, HP

Tandem Nonstop. Also, the documentation of most subsystems

was outdated. An investigation of the documentation quality

of the CalculateInterest system identified missing technical

documentation (TD), limited finalized/approved documenta-

tion, and fairly good functional documentation (FD). However,

the details of the TD and FD for features are still not

complete. Furthermore, the technical quality characteristics

such as coupling, maintainability, and duplication within the

subsystems were still unknown.

As a starting point, all the subsystems of the payments do-

main were analyzed using source code analyzers to determine

the program quality in terms of quality metrics including main-

tainability, module coupling, duplication and changeability.

These quality metrics were derived using reverse engineering

tools. Such quality metrics provided a better understanding of

the technical qualities of the subsystems within the payments

domain. Table II depicts an excerpt of the assessment results

of the subsystems in the payments domain in which Maint.

represents maintainability; Coup. represents coupling; Dup.

represents duplication; Change. represents changeability and

Test. represents testability metrics. Refer to [14], [15] for the

details and explanations of these metrics, as they are out of

the scope of this paper.

TABLE II
EXCERPT OF LEGACY ASSESSMENT RESULT

Name #prog Maint. Coup. Dup. Change. Test.
CalculateInterest 913 2.10 2.14 1.32 2.06 2.13
ForeignAccount 9249 1.07 2.47 1.24 1.95 1.80
BalanceCheck 2902 2.03 2.70 1.32 2.05 1.72
AccountAgreement 1364 2.45 3.69 1.34 2.33 1.77
ReportCustomer 918 2.25 3.04 1.23 2.24 1.82

Furthermore, to have an in-depth understanding of the

technical qualities of each COBOL program, a detailed anal-

ysis was carried out for each subsystem using proprietary

automated source code analyzers. Such a detailed analysis pro-

vided insights into individual COBOL programs within each

subsystem. For instance, individual programs were categorized

into good, bad and average based on their complexity. Figure 3

depicts an excerpt of a detailed program analysis derived

from source code analyzers of the CalculateInterest COBOL

programs. Due to space limitations, the detailed analysis is

not presented in this paper, but anonymized reports of the

CalculateInterest and the ForeignAccount are available2.

As a part of the legacy assessment, a call dependency

diagram of the subsystems was generated and analyzed based

upon number of incoming call (NIC) and number of out-

going calls (NOC). As a result, numerous computationally

intensive COBOL programs (with high NIC and high NOC)

and core libraries (with high NIC) within each subsystems

2http://goo.gl/bwqnq

Max Norm
Good

30 0 1000 15% 90 5000

Max Norm
Average

0 �30 2000 10% 120 10000

McCabe
Cobol

Program
Lines of
Code
(LoC)

Complexity
v(G)

Maintainability
Index
(MI)

Check
Maintainability
Index

Check
Miwoc

Check
Volume
NCLoC

Check
Comments

Check
McCabe

Check
Metrics

1 RT00000 464 20 53.4951227 Good Good Good Average Good Good
2 RT00100 1120 84 6.5556751 Average Average Good Bad Good Bad
3 RT00200 1273 85 2.7461408 Average Average Average Bad Good Bad
4 RT00400 559 26 38.7093703 Good Good Good Bad Good Good
5 RT00800 505 38 39.2838751 Good Good Good Bad Good Good
6 RT00900 1137 79 6.2149798 Average Average Good Bad Good Bad
7 RT01100 467 20 45.5457803 Good Good Good Bad Good Good
8 RT01200 542 28 40.7082519 Good Good Good Bad Good Good
9 RT01400 1011 67 20.4825089 Average Average Good Bad Good Average
10 RT01500 882 39 31.7499408 Good Good Good Average Good Average
11 RT01600 1853 115 �7.6646816 Bad Average Average Bad Bad Bad
12 RT01700 248 6 84.4787602 Good Good Good Good Good Good
13 RT01800 360 11 60.5492274 Good Good Good Bad Good Good

Fig. 3. Excerpt of a detailed program analysis of the CalculateInterest COBOL programs

were identified, following the work of Geet & Demeyer [23].

Such programs were later manually investigated to locate

features within the subsystems. Figure 4 depicts an excerpt

of the generated call dependency diagram of the CalculateIn-
terest subsystem in which the red-circled programs (RT23N,

RT23M, RT20K and RT009), for instance, could potentially

be core libraries of interest.

After the legacy assessment, an inventory of high level fea-

tures available within the subsystems of the payments domain

was created. The inventory of the features was created by

consulting the available documentation and interviewing the

technical staff of the subsystems. The latter method proved to

be very useful and confirms that the knowledge residing within

the organization is of the utmost importance. The inventory

of the high level features was then analyzed by the Business
Change Management and Architecture Board to determine the

priority and business value. The features were then mapped to

the logical components within the logical target-architecture

via the gap analysis method [24]. The mapping was performed

by focused workshops conducted for each subsystem in which

business analysts, application analysts, consultants, developers

and lead architects discuss and finalize the mapping of each

subsystem. This mapping approach was effective such that the

migration team not only identified the mappings, but also the

dependencies within the high level features of the subsystems.

Table III depicts an excerpt of the feature mapping of the

CalculateInterest and the AccountAgreement to the logical

target-architecture.

Benefits, Challenges and Best Practices: The “analyzing

the gap” phase enabled the migration team to catalogue the

existing features with the aim to maximize reuse features.

In particular, the use of reverse engineering tools/techniques

has facilitated understanding the current legacy assets, their

technical qualities, and identifying the potential features based

on call dependency diagrams. The “analyzing the gap” phase

has not only been effective in identifying, prioritizing and

determining the granularity of existing features, but also in

determining which feature is to be reused. The legacy assess-

ment activity contributed to identifying the technical program

quality in terms of software metrics such as maintainability,

module coupling, duplication, changeability. Such software

metrics have been extensively used in the software evolution

domain, for instance, to determine the reusability factor [6]. To

better understand the individual programs within each subsys-

tem, the program level quality metrics along with the program

visualization in the form of a call dependency diagrams were

generated using reverse engineering tools. Furthermore, the

interview sessions with the technical staff of the payments

domain proved to be extremely important. Needless to say,

intimate knowledge of the existing resources is essential to a

successful migration, and necessary steps should be taken to

harvest and preserve such existing knowledge.

D. Realizing the Migration
The payment domain of the bank has a heterogeneous

IT infrastructure with some of the features being efficient

and robust with respect to performance while others being

rigid commercial off-the-self (COTS) applications. In such a

scenario, relying on a single approach to realize migration is

not a viable solution. Thus, the migration process made the

following four explicit choices for realization:
1) Reuse and/or Upgrade: One of the key performance

indicators of a bank is accuracy and efficient processing of

voluminous financial transactions. In the payments domain,

some of the features are highly robust in terms of accurate

and efficient processing of transactions. Such features are

either reused or upgraded based on their business value and

the program quality characteristics derived in the “legacy

assessment” of the “analyzing the gap” phase. For example,

the “calculate interest” feature is reused. With regards to the

CalculateInterest subsystem, one of the business analysts says

“The clear separation in the features of the CalculateInterest
subsystem has eased our maintenance. Also, if we consider
rebuilding or splitting the features then the impact will be very
high– technically and economically and we are not sure if we
can achieve the current performance. Thus, for the time being
we decided to reuse the features of the CalculateInterest”.

2) Package Replacement: Numerous logical components

within the logical target-architecture cannot be directly

Fig. 4. Excerpt of a call dependency diagram of the CalculateInterest COBOL programs

TABLE III
EXCERPT OF FEATURE MAPPING TO THE LOGICAL TARGET-ARCHITECTURE

High Level feature Target Arch. Component Priority Remarks
CalculateInterest

Register data Bank Administration High –
Calculate interest Interest High Merge international interest
Bank guarantee commission Fees Medium –
Checkout coupon Interest Medium To be included in the Interest logical component

AccountAgreement
Opening accounts/contracts Product Agreement High Merge current agreements in current account
Account management Number Pool High –
Managing data rate Product Configurator Low Include tariff data from other components

mapped to existing features of the legacy applications. Thus,

some of the components in the target-architecture are being

replaced by a packaged solution. The decision to replace is

reached by assessing the technical program qualities and eco-

nomical feasibility of the feature. One of the examples of such

a replacement is within the features of the ForeignAccount
subsystem, which in itself is a third party packaged subsystem

responsible for international payments. Thus, the features of

the ForeignAccount subsystem are replaced by a packaged

solution. An application architect says “ForeignAccount is a
package software with very limited documentation and reusing
its features will lead to long-term maintenance problems in the
future. So we decided to replace it with a packaged solution”.

3) Customized Replacement: With the introduction of the

Euro currency, various laws and regulations within the pay-

ment domain have changed in the European Union. The

bank has to comply with such changes. One of the business

consultants emphasizes the importance of the SEPA stating

that “SEPA is one of the triggers for the renewal of the whole
payments infrastructure. It is also one of the main business
drivers for lowering cost. Such crucial features have to be
custom–built so that its maintenance and upgrade in the future
will be easy for us”.

4) Outsourcing: The final option is to outsource an entire

feature to an external party for development. This option

is chosen only if outsourcing contributes to the strategic

objectives of Payments (such as cost reduction) and must fulfill

the requirements as formulated in the outsourcing strategy-

guidelines to ensure that outsourcing is done via strategic

partners and only when no other option is viable. A lead

architect explains the need of outsourcing as “Features that
are of low business value and can be developed cheaply are
outsourced such as card authorization and card payments. This
helps us to focus on the high priority features.”

The selection of an appropriate realization option is based

on various factors such as business value of the logical

component, technical quality of the legacy assets, cost of

implementation and the importance of ease of upgrading/up-

dating.

Benefits, Challenges and Best Practices: Realization of

the migration is the starting point of implementing the logical

components. Realization is not only about deciding which

programming language is to be used, but also the associated

environment such as hardware and operating system. The

other factor that contributes to the success of realization is

the determination of the suitable granularity of the poten-

tial candidate services. In this migration project, there were

predefined guidelines provided by the program management

committee on deciding which realization option to use. The

guidelines were developed by considering “external vs internal

development” and “adoption of existing vs new technology”.

Figure 5 depicts the realization options based on development

and technology adoption criteria.

Reuse and/or
Upgrade

Customized
Replacement

Outsourcing Packaged
Replacement

New TechnologyExisting Technology

In
te

rn
al

E
xt

er
na

l
Technology

Development

Fig. 5. Realization Choices

A crucial criterion to determine the realization option was

the business value and priority of the logical component. For

instance, central to NedBank’s business are the calculation

of interest, commission and cost calculation features. The

logical components encompassing these features are reused

and/or upgraded from the existing ones. Upon deciding to

reuse and/or upgrade, the technical qualities of the features

are examined to estimate the migration time. It was not

always simple to reuse or upgrade, particularly for third party

packaged solutions that are not updated or supported by the

vendor anymore. For instance, the vendor who developed

COBOL running in HP Tandem Nonstop went through various

mergers and acquisitions such that the infrastructure is hardly

updated and maintained. In such cases, a suitable packaged

replacement is preferred. Any new logical component with

high business value falls under the “Customized Replacement”

option. A low priority logical component is outsourced to a

third party upon strictly fulfilling the “outsourcing” criteria.

V. LESSON LEARNED

A. Implications of Reverse Engineering Techniques

The reverse engineering techniques that are used in this

migration project had a significant role in finding the facts

of the current legacy programs and subsystems. In particular,

the use of such techniques in the “analyzing the gap” phase

to obtain various metrics and call dependency graphs not only

facilitated the creation of an inventory of the current assets, but

also identified computationally intensive COBOL programs.

In addition to creating an inventory of the current assets,

using reverse engineering techniques has the following two

implications:

(i) Assisting in Selecting the Realization Approach: The use

of reverse engineering techniques has strongly facilitated the

selection of the realization approaches in the migration pro-

cess. The migration team used the program quality metrics

generated by the reverse engineering tools to estimate the

complexity of the programs. For example, in Figure 3, the

COBOL program RT01600 has high McCabe complexity and

a negative maintainability index (MI). Hence, RT01600 is a

potential candidate of replacement unless it has a low business

priority. Similarly, programs with good and average index

have potential for reuse. In case of identifying candidate

COBOL programs for services, the generation of call depen-

dency graphs of the subsystems was helpful. For instance,

based on the work of Van Geet et al. [23], the red-circled

programs (RT23N, RT23M, RT20K and RT009) of Figure 4,

were COBOL programs of interest as they have high number

of incoming calls (NIC). Thus, upon generating and analyzing

the call dependency graph those programs were investigated

by the existing programmers to identify their functionalities.

(ii) Knowledge Harvesting: Most of the documentation of

the subsystems was either outdated or incomplete. With the

results of the reverse engineering techniques, a considerable

amount of new information about the programs was identified

that were even unknown to the current maintainers of the

subsystems. For instance, 599 out of 21085 copybooks are not

used by the “CalculateInterest” subsystem. This finding was

a surprise to the current maintenance team of the subsystem.

Additionally, the flow graphs were generated to understands

the overall flow of the programs within the subsystem. These

artifacts helped to update the documentation.

B. Adopting a Pragmatic Realization Approach

In the realization phase of the migration process, a prag-

matic approach for executing the migration is adopted in which

the choices are based on various factors such as business value,

business priority, and the technical qualities of the features.

The initial choice of reusing the existing functionalities is

one of the notable benefits claimed by the proponents of

SOA for leveraging existing assets. However, in a large scale

legacy application, reuse is not always feasible. Therefore, the

migration process of NedBank suitably adapted other possible

realization methods for a successful migration. Additionally,

for large scale legacy applications that include heterogeneous

IT infrastructures (diverse programming languages, various

hardware and operating systems) there is no silver bullet

solution to realize the migration process. For a successful

migration process, any approach can contribute to the success

of the migration, provided that the approach is well defined,

and suited for the enterprise.

C. Emphasizing Organizational and Business Perspectives

Migration from legacy to a SOA environment is not only a

technical endeavor, but also involves significant issues from

the organizational and business perspective. Particularly in

the case of legacy systems having no or outdated documen-

tation, early involvement of existing technical staff in the

migration process is proven to be useful. The involvement

of the technical staff facilitates the knowledge transfer to the

migration team. The synergy between the technical staff and

the migration team that was observed in this migration process

was one of the key factors contributing towards the success of

the migration. Equally important is the focus of the “Program
Management Committee” in the business-IT alignment that

facilitated the migration to achieve the business goals. An

important lesson learned is that technical staff tends to resist

change because they fear that their expertise and professional

experience with legacy systems may become redundant due to

the introduction of SOA. Therefore, it is important to involve

the technical staff from the start of the migration process

and provide necessary training to adapt to new technology. In

the current migration process, the formation of various teams

under the “Program Management Committee” has actively

involved the technical staff whose knowledge about the legacy

systems have proven to be of significant importance.

D. Harvesting Knowledge to Prevent Knowledge Erosion
Apart from available documentation, existing knowledge in

the form of skills and experience within the technical staff

is one of the most important assets. Over the years, such

knowledge and skills become scarce resulting in knowledge

erosion due to factors such as ageing, and staff changing jobs.

Hence, suitable strategies such as conducting and archiving

interviews, and initiating knowledge transfer programs via

training should be undertaken to harvest and preserve such

existing knowledge. In the migration process of NedBank, the

involvement of the technical staff in the migration process has

significantly helped in knowledge harvesting and preservation

while creating inventories of the high level functionalities

of the subsystems. Some of technical staff were interviewed

and focused training programs were organized to facilitate

knowledge transfer. Additionally, the existing documentation

was updated or created in case if no documentation exists.

VI. CONCLUSION

In this paper, we present the findings of a case study

of a large scale legacy to SOA migration process within

the payments domain of a Dutch financial institution. The

paper presents the business drivers that initiated the migration,

and describes a 4-phase migration process. The migration

process equally focuses on the technical and the business &

organizational aspects of the migration. The migration process

starts by forming a “Program Management Committee” for

proper governance. Then, a logical-target architecture is devel-

oped based on the concept of componentization. The business

components within the logical target-architecture are aligned

to support the business goals. The logical target-architecture

is then mapped to the existing legacy features using a gap

analysis method. Such a gap analysis suitably supports the

potential of reusing the legacy features without significant

changes to the legacy systems itself– one of the key promises

of the SOA. The migration is then realized following the

pragmatic realization options of the migration process.
The paper presents an industrial report detailing how reverse

engineering techniques were employed to facilitate a large

scale legacy to SOA migration process. It illustrates the pain of

the practicalities and under-emphasized aspects of a large scale

migration project, and should be considered a call-to-action

for computer scientists to study the project environment, both

from a business and organizational point of view, as much as

they study the technical aspects of migration.
As to future research, we aim to exploit model-driven

modernization approaches to extract features from the sub-

systems. Another interesting research area is to investigate

how to automatically translate legacy applications to a modern

language.

REFERENCES

[1] M. van Sinderen, “Challenges and solutions in enterprise computing,”
Ent. Inf. Sys., vol. 2, no. 4, pp. 341–346, 2008.

[2] K. Bennett, “Legacy systems: coping with stress,” IEEE Soft., vol. 12,
no. 1, pp. 19–23, 1995.

[3] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, 2007.

[4] R. Khadka, A. Saeidi, A. Idu, J. Hage, and S. Jansen, “Legacy to
SOA evolution- a systematic literature review,” in Migrating Legacy
Applications: Challenges in Service Oriented Architecture and Cloud
Computing Environments, A. D. Ionita, M. Litoiu, and G. Lewis, Eds.
IGI Global, 2012, pp. 40–71.

[5] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora, “Developing
legacy system migration methods and tools for technology transfer,”
Soft.:Pract. Exp., vol. 38, no. 13, pp. 1333–1364, 2008.

[6] H. M. Sneed, “A pilot project for migrating COBOL code to web
services,” STTT, vol. 11, no. 6, pp. 441–451, 2009.

[7] H. M. Sneed, “Migrating from COBOL to Java,” in International
Conference on Software Maintenance. IEEE, 2010, pp. 1–7.

[8] K. Nasr, H. Gross, and A. van Deursen, “Realizing service migration in
industry–lessons learned,” J. Soft. Maint. Evol., 2011.

[9] M. Colosimo, A. D. Lucia, G. Scanniello, and G. Tortora, “Evaluating
legacy system migration technologies through empirical studies,” Inf.
Soft. Tech., vol. 51, no. 2, pp. 433–447, 2009.

[10] T. Kokko, J. Antikainen, and T. Systa, “Adopting soa–experiences from
nine finnish organizations,” in 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 129–138.

[11] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: a
roadmap,” in Future of Software Engineering. ACM, 2000, pp. 73–87.

[12] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,
and K. Wong, “Reverse engineering: a roadmap,” in Future of Software
Engineering. ACM, 2000, pp. 47–60.

[13] G. Canfora and M. Di Penta, “New frontiers of reverse engineering,” in
Future of Software Engineering. IEEE, 2007, pp. 326–341.

[14] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
maintainability,” in 6th International Conference on Quality of Informa-
tion and Communications Technology. IEEE, 2007, pp. 30–39.

[15] Y. Kanellopoulos, C. Tjortjis, I. Heitlager, and J. Visser, “Interpretation
of source code clusters in terms of the iso/iec-9126 maintainability
characteristics,” in European Conference on Software Maintenance and
Reengineering. IEEE, 2008, pp. 63–72.

[16] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” J. Soft. Maint. Evol.,
vol. 15, no. 2, pp. 87–109, 2003.

[17] J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut, “An industrial expe-
rience report on legacy data-intensive system migration,” in International
Conference on Software Maintenance. IEEE, 2007, pp. 473–476.

[18] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Emp. Soft. Eng., vol. 14, no. 2,
pp. 131–164, 2009.

[19] R. Heckel, R. Correia, C. Matos, M. El-Ramly, G. Koutsoukos, and
L. Andrade, “Architectural transformations: From legacy to three-tier
and services,” in Software Evolution, T. Mens and S. Demeyer, Eds.
Springer, 2008, pp. 139–170.

[20] S. Murer, B. Bonati, and F. Furrer, “Very large information system
challenge,” in Managed Evolution. Springer, 2011, pp. 3–34.

[21] R. N. Charette, “Why software fails,” Spectrum, vol. 42, no. 9, pp. 42–
49, 2005.

[22] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley, “SOMA:A method for developing service-oriented solutions,”
IBM Sys. J., 2008.

[23] J. Van Geet and S. Demeyer, “Lightweight visualisations of COBOL
code for supporting migration to SOA,” Symposium on Software Evolu-
tion, vol. 8, 2008.

[24] G. Lewis, E. Morris, and D. Smith, “Service-oriented migration and
reuse technique (SMART),” in Workshop on Software Technology and
Engineering Practice. IEEE, 2005, pp. 222–229.

