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1. Prologue

On October 18, 1996, hundreds of people, including many mathematicians, gathered
at Kerepesi Cemetery in Budapest to pay their last respects to Paul Erdős. If there was
one theme suggested by the farewell orations, it was that the world of mathematics had
lost a legend, one of its great representatives. On October 21, 1996, in accordance with
his last wishes, Paul Erdős’ ashes were buried in his parents’ grave at the Jewish cemetery
on Kozma street in Budapest.

Paul Erdős was one of this century’s greatest and most prolific mathematicians. He is
said to have written about 1500 papers, with almost 500 co-authors. He made fundamental
contributions in numerous areas of mathematics.

There is a Hungarian saying to the effect that one can forget everything but one’s first
love. When considering Erdős and his mathematics, we cannot speak of “first love”, but of
“first loves”, and approximation theory was among them. Paul Erdős wrote more than 100
papers that are connected, in one way or another, with the approximation of functions.
In these two short reviews, we try to present some of Paul’s fundamental contributions to
approximation theory.

A list of Paul’s papers in approximation theory is given at the end of this article.
These are referenced in this article in the form [ab.n], indicating the n-th item in the
year 19ab. This list is a sublist of the official list, of publications by Erdős, in [GN],
with a list of additions and corrections available at the website www.acs.oakland.edu/

∼grossman/erdoshp.html. Other references in this article (such as the reference [GN]
just used) are listed just prior to that list of Erdős’ approximation theory papers.

Numerous articles and obituaries on Erdős have appeared (see, e.g., the web page
www.math.ohio-state.edu/∼nevai/ERDOS/), and more will undoubtedly appear. The
interested reader might wish to look at the article by L. Babai which appeared in [Ba].
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2. PAUL ERDŐS AND POLYNOMIALS

Tamás Erdélyi

I will discuss some of Erdős’ results related to polynomials that attracted me most.
This list reflects my personal taste and is far from complete even within the subdomains
I focus on most, namely polynomial inequalities, Müntz polynomials, and the geometry of
polynomials.

The two inequalities below (and their various extensions) play a key role in proving
inverse theorems of approximation. Let Pn denote the set of all algebraic polynomials of
degree at most n with real coefficients.

Markov’s Inequality. The inequality

‖p′‖L∞[−1,1] ≤ n2‖p‖L∞[−1,1]

holds for every p ∈ Pn.

Bernstein Inequality. The inequality

|p′(y)| ≤ n
√

1− y2
‖p‖L∞[−1,1]

holds for every p ∈ Pn and y ∈ (−1, 1).

For Erdős, Markov- and Bernstein-type inequalities had their own intrinsic interest and
he explored what happens when the polynomials are restricted in certain ways. It had been
observed by Bernstein that Markov’s inequality for monotone polynomials is not essentially
better than for arbitrary polynomials. Bernstein proved that if n is odd, then

sup
p

‖p′‖L∞[−1,1]

‖p‖L∞[−1,1]
=

(

n+ 1

2

)2

,

where the supremum is taken over all 0 6= p ∈ Pn that are monotone on [−1, 1]. This is
surprising, since one would expect that if a polynomial is this far away from the “equioscil-
lating” property of the Chebyshev polynomial, then there should be a more significant

Typeset by AMS-TEX



improvement in the Markov inequality. In the short paper [40.04], Erdős gave a class of
restricted polynomials for which the Markov factor n2 improves to cn. He proved that
there is an absolute constant c such that

|p′(y)| ≤ min

{

c
√
n

(1− y2)
2 ,

en

2

}

‖p‖L∞[−1,1] , y ∈ [−1, 1] ,

for every polynomial of degree at most n that has all its zeros in R \ (−1, 1). This result
motivated several people to study Markov- and Bernstein-type inequalities for polynomials
with restricted zeros and under some other constraints. Generalizations of the above
Markov- and Bernstein-type inequality of Erdős have been extended in many directions
by many people including Lorentz, Scheick, Szabados, Varma, Máté, Rahman, Govil, and
others. Many of these results are contained in the following, due to P. Borwein and T.
Erdélyi [BE]: there is an absolute constant c such that

|p′(y)| ≤ c min

{

√

n(k + 1)

1− y2
, n(k + 1)

}

‖p‖L∞[−1,1] , y ∈ [−1, 1] ,

for every polynomial p of degree at most n with real coefficients that has at most k zeros
in the open unit disk.

Clarkson and Erdős wrote a seminal paper on the density of Müntz polynomials. Müntz’s
classical theorem characterizes sequences Λ := (λi)

∞
i=0 with

(1) 0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) := span{xλ0 , xλ1 , . . .} is dense in C[0, 1]. Here, M(Λ)
is the collection of all finite linear combinations of the functions xλ0 , xλ1 , . . . with real
coefficients, and C(A) is the space of all real-valued continuous functions on A ⊂ [0,∞)
equipped with the uniform norm. If A := [a, b] is a finite closed interval, then the notation
C[a, b] := C([a, b]) is used.

Müntz’s Theorem. Suppose Λ := (λi)
∞
i=0 is a sequence satisfying (1). Then M(Λ) is

dense in C[0, 1] if and only if
∑∞

i=1 1/λi = ∞.

The point 0 is special in the study of Müntz spaces. Even replacing [0, 1] by an interval
[a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue. Such an extension is, in large
measure, due to Clarkson and Erdős [43.02] and L. Schwartz [Sc]. In [43.02], Clarkson and
Erdős showed that Müntz’s Theorem holds on any interval [a, b] with a > 0. That is, for
any increasing nonnegative sequence Λ := (λi)

∞
i=0 and any 0 < a < b, M(Λ) is dense in

C[a, b] if and only if
∑∞

i=1 1/λi = ∞. Moreover, they described what kind of functions
are in the uniform closure of the span on [a, b] assuming

∑∞
i=1 1/λi < ∞. Further, they

showed that under the assumption
∑∞

i=1 1/λi < ∞ every function f ∈ C[a, b] from the
uniform closure of M(Λ) on [a, b] is of the form

(2) f(x) =
∞
∑

i=0

aix
λi , x ∈ [a, b) .



In particular, f can be extended analytically throughout the open disk centered at 0 with
radius b.

Erdős considered this result his best contribution to complex analysis. Later, by different
methods, L. Schwartz extended some of the Clarkson-Erdős results to the case when the
exponents λi are arbitrary distinct nonnegative numbers. For example, in that case, under
the assumption

∑∞
i=1 1/λi < ∞ every function f ∈ C[a, b] from the uniform closure of

M(Λ) on [a, b] can still be extended analytically throughout the region

{z ∈ C \ (−∞, 0] : |z| < b} ,

although such an analytic extension does not necessarily have a representation given by
(2). The Clarkson-Erdős results were further extended by Peter Borwein and the author,
from the interval [0, 1] to subsets of [0,∞) with positive Lebesgue measure. That is, if
Λ := (λi)

∞
i=0 is an increasing sequence of nonnegative real numbers with λ0 = 0 and

A ⊂ [0,∞) is a compact set with positive Lebesgue measure, then M(Λ) is dense in C(A)
if and only if

∑∞
i=1 1/λi = ∞. This result had been expected by Erdős and others for a

long time.

I find the following result of Erdős and Turán [50.08] especially attractive.

Theorem. If p(z) =
∑n

j=0 ajz
j has m positive real zeros, then

m2 ≤ 2n log

(

|a0|+ |a1|+ · · ·+ |an|
√

|a0an|

)

.

This result was originally due to Schur. Erdős and Turán rediscovered it with a short
proof.

In [39.02], Erdős proved that the arc length from 0 to 2π of a real trigonometric poly-
nomial f of degree at most n satisfying |f(ϑ)| ≤ 1 is maximal for cosnϑ. An interesting
question he posed quite often is the following: Let 0 < a < b < 2π. Is it still true that
the variation and arc-length in [a, b] is maximal for cos(nϑ + α) for a suitable α? The
following related conjecture of Erdős was open for quite a long time: Is it true that the
arc length from −1 to 1 of a real algebraic polynomial of degree at most n is maximal for
the Chebyshev polynomial Tn? This was proved independently by Kristiansen [Kr2] and
by Bojanov [Boj].

A well-known theorem of Chebyshev states that if p is a real algebraic polynomial of
degree at most n and z0 ∈ R \ [−1, 1], then |p(z0)| ≤ |Tn(z0)| · ‖p‖L∞[−1,1], where Tn is the
Chebyshev polynomial of degree n. The standard proof of this is based on zero counting
which can no longer be applied if z0 is not real. By letting z0 ∈ C tend to a point in
(−1, 1), it is fairly obvious that this result cannot be extended to all z0 ∈ C. However, a
surprising result of Erdős [47.08] shows that Chebyshev’s inequality can be extended to all
z0 ∈ C outside the open unit disk.



Erdős and Turán were probably the first to discover the power and applicability of an
almost forgotten result of Remez. The so-called Remez inequality is not only attractive
and interesting in its own right, but it also plays a fundamental role in proving various
other things about polynomials. For a fixed s ∈ (0, 2), let

Pn(s) := {p ∈ Pn : m({x ∈ [−1, 1] : |p(x)| ≤ 1}) ≥ 2− s} ,

where m(·) denotes linear Lebesgue measure. The Remez inequality concerns the problem
of bounding the uniform norm of a polynomial p ∈ Pn on [−1, 1] given that its modulus is
bounded by 1 on a subset of [−1, 1] of Lebesgue measure at least 2− s. That is, how large
can ‖p‖L∞[−1,1] (the uniform norm of p on [−1, 1]) be if p ∈ Pn(s)? The answer is given in
terms of the Chebyshev polynomials. The extremal polynomials for the above problem are
the Chebyshev polynomials ±Tn(x) := ± cos(n arccosh(x)), where h is a linear function
which maps [−1, 1− s] or [−1 + s, 1] onto [−1, 1].

One of the applications of the Remez inequality by Erdős and Turán [40.05] deals with
orthogonal polynomials. Let w be an integrable weight function on [−1, 1] that is positive
almost everywhere. Denote the sequence of the associated orthonormal polynomials by
(pn)

∞
n=0. Then a theorem of Erdős and Turán [40.05] states that

lim
n→∞

[pn(z)]
1/n = z +

√

z2 − 1

holds uniformly on every closed subset of C \ [−1, 1].

Erdős and Turán [38.05] established a number of results on the spacing of zeros of
orthogonal polynomials. One of these is the following. Let w be an integrable weight

function on [−1, 1] with
∫ 1

−1
(w(x))−1 dx =: M < ∞ , and let

(1 >) x1,n > x2,n > · · · > xn,n (> −1)

be the zeros of the associated orthonormal polynomials pn in decreasing order. Let

xν,n = cosϑν,n , 0 < ϑν,n < π , ν = 1, 2, . . . , n .

Let ϑ0,n := 0 and ϑn+1,n := π . Then there is a constant K depending only on M such
that

ϑν+1,n − ϑν,n <
K log n

n
, ν = 0, 1, . . . , n .

This result has been extended by various people in many directions.

Erdős and Freud [74.13] worked together on orthogonal polynomials with regularly
distributed zeros. Let α be a nonnegative measure on (−∞,∞) for which all the moments

µm :=

∫ ∞

−∞

xm dα(x) , m = 0, 1, . . .



exist and are finite. Denote the sequence of the associated orthonormal polynomials by
(pn)

∞
n=0. Let x1,n > x2,n > · · · > xn,n be the zeros of of pn in decreasing order. Let N(α, t)

denote the number of positive integers k for which

xk,n − xn,n ≥ t(x1,n − xn,n) .

The distribution function β of the zeros is defined, when it exists, as

β(t) = lim
n→∞

n−1Nn(α, t) , 0 ≤ t ≤ 1 .

Let

β0(t) =
1

2
− 1

π
arcsin(2t− 1) .

A nonnegative measure α for which the array xk,n has the distribution function β0(t) is
called an arc-sine measure. If dα(x) = w(x) dx is absolutely continuous and α is an arc-
sine measure, then w is called an arc-sine weight. One of the theorems of Erdős and Freud
[74.13] states that the condition

lim sup
n→∞

(γn−1)
1/(n−1)(x1,n − xn,n) ≤ 4

implies that α is arc-sine and

(3) lim
n→∞

(γn−1)
1/(n−1)(x1,n − xn,n) = 4 .

They also show that the weights wa(x) := exp(−|x|a), a > 0, are not arc-sine. It is
further proved by a counter-example that even the stronger sufficient condition (3) in the
above-quoted result is not necessary in general to characterize arc-sine measures. As the
next result of their paper shows, the case is different if w has compact support. Namely
they show that a weight w, the support of which is contained in [−1, 1], is arc-sine on
[−1, 1] if and only if

lim sup
n→∞

(γn)
1/n ≤ 2 .

A set A ⊂ [−1, 1] is called a determining set if all weights w, the restricted support
{x : w(x) > 0} of which contain A, are arc-sine on [−1, 1]. A set A ⊂ [−1, 1] is said to
have minimal capacity c if for every ǫ > 0 there exists a δ(ǫ) > 0 such that for every
B ⊂ [−1, 1] having Lebesgue measure less than δ(ǫ) we have cap(A \B) > c− ǫ . Another
remarkable result of this paper by Erdős and Freud is that a measurable set A ⊂ [−1, 1] is
a determining set if and only if it has minimal capacity 1/2.

Erdős’ paper [58.05] with Herzog and Piranian on the geometry of polynomials is semi-
nal. In this paper, they proved a number of interesting results and raised many challenging
questions. Although quite a few of these have been solved by Pommerenke and others,
many of them are still open. Erdős liked this paper very much. In his talks about poly-
nomials, he often revisited these topics and mentioned the unsolved problems again and



again. A taste of this paper is given by the following results and still unsolved problems
from it. As before, associated with a monic polynomial

(4) f(z) =

n
∏

j=1

(z − zj) , zj ∈ C ,

let
E = E(f) = En(f) := {z ∈ C : |f(z)| ≤ 1} .

One of the results of Erdős, Herzog, and Piranian tells us that the infimum of m(E(f)) is
0, where the infimum is taken over all polynomials f of the form (4) with all their zeros
in the closed unit disk (n varies and m denotes the two-dimensional Lebesgue measure).
Another result is the following. Let F be a closed set of transfinite diameter less than
1. Then there exists a positive number ρ(F ) such that, for every polynomial of the form
(4) whose zeros lie in F , the set E(f) contains a disk of radius ρ(F ). There are results
on the number of components of E, the sum of the diameters of the components of E,
some implications of the connectedness of E, some necessary assumptions that imply the
convexity of E. An interesting conjecture of Erdős states that the length of the boundary
of En(f) for a polynomial f of the form (4) is 2n + O(1). This problem seems almost
impossible to settle. The best result in this direction is O(n) by P. Borwein [Bor] that
improves an earlier upper bound 74n2 given by Pommerenke.

One of the papers where Erdős revisits this topic is [73.01], written jointly with Ne-
tanyahu. The result of this paper states that if the zeros zj ∈ C are in a bounded, closed,
and connected set whose transfinite diameter is 1 − c (0 < c < 1), then E(f) contains a
disk of positive radius ρ depending only on c.

Erőd attributes the following interesting result to Erdős and Turán and presents its
proof in his paper. If

(5) f(z) = ±
n
∏

j=1

(x− xj) , −1 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 ,

and f is convex between xk−1 and xk for an index k, then

xk − xk−1 ≤ 16√
n
.

It is not clear to me whether or not Erdős and Turán published this result.

An elementary paper of Erdős and Grünwald (Gallai) [39.07] deals with some geometric
properties of polynomials with only real zeros. One of their results states that if f is a
polynomial of the form (5), then

∫ xk+1

xk

|f(x)| dx ≤ 2

3
(xk+1 − xk) max

x∈[xk,xk+1]
|f(x)| .



Some extensions of the above are proved in [40.02]. In this paper, Erdős raised a number
of questions. For example, he conjectured that if t is a real trigonometric polynomial with
only real zeros and with maximum 1 then

∫ 2π

0

|t(ϑ)| dϑ ≤ 4 .

Concerning polynomials p ∈ Pn with all their zeros in (−1, 1) and with maxx∈[−1,1] |p(x)| =
1, Erdős conjectured that if xk < xk+1 are two consecutive zeros of p, then

∫ xk+1

xk

|p(x)| dx ≤ dn(xk+1 − xk) ,

where

dn :=
1

yk+1 − yk

∫ yk+1

yk

|Tn(y)| dy ,

Tn is the usual Chebyshev polynomial, and yk < yk+1 are two consecutive zeros of Tn.
(Note that dn is independent of k and that lim dn = 2/π.) These conjectures and more
have all been proved in 1974, see Saff and Sheil-Small [SaSh], and also Kristiansen [Kr1].

A paper of Erdős [42.05] deals with the uniform distribution of the zeros of certain
polynomials. Let

1 = x0 ≥ x1 > x2 > · · · > xn ≥ xn+1 = −1

and let xi = cosϑi, where ϑi ∈ [0, π]. Let ωn(x) =
∏n

i=1 (x− xi). Let 0 ≤ A < B ≤ π.
Let Nn(A,B) denote the number of ϑi in (A,B). Extending the results of an earlier paper
[40.08] of his with Turán, Erdős proved that if there are absolute constants c1, c2 > 0 such
that

c1f(n)

2n
≤ max

xk+1≤x≤xk

|ωn(x)| ≤
c2f(n)

2n
, k = 0, 1, . . . , n ,

then

Nn(A,B) =
B −A

π
n+O((logn)(log f(n))) .

The gap condition of Fabry states that if f(z) =
∑

akz
nk is a power series whose

radius of convergence is 1, and limnk/k = ∞, then the unit circle is the natural boundary
of f . Pólya proved the following converse result. Let (nk) be an increasing sequence of
nonnegative integers for which lim inf nk/k < ∞. Then there exists a power series

∑

akz
nk

with radius of convergence 1 and for which the unit circle is not the natural boundary.
Erdős [45.03] offers a direct and elementary proof of Pólya’s result.

Another notable paper of Erdős [47.02], joint with H. Fried, explores some connections
between gaps in power series and the zeros of their partial sums. Let f(z) = 1+

∑∞
n=1 anz

n

be a power series with radius of convergence 1. The power series is said to have Ostrowsky
gaps ̺ if there exists a ̺ < 1 and a pair of infinite sequences (mk) and (nk), with mk < nk



and limnk/mk > 1 such that |an| < ̺n for mk ≤ n ≤ nk. Let A(n, r) denote the number
of zeros of Sn(z) := 1+

∑n
i=1 aiz

i in the open disk centered at 0 with radius r. A theorem
of Erdős and Fried states that a necessary and sufficient condition that a power series have
Ostrowsky gaps is that there exists an r > 1 such that

lim inf
A(n, r)

n
< 1 .

Erdős [67.16] gives an extension of some results of Bernstein and Zygmund. Bernstein
had asked the question whether one can deduce boundedness of |Pn(x)| on [−1, 1] for
polynomials Pn of degree at most n if one knows that |Pn(x)| ≤ 1 for m > (1 + c)n values

of x with some c > 0. His answer was affirmative. He showed that if |Pn(x
(m)
i )| ≤ 1 for all

zeros x
(m)
i of the mth Chebyshev polynomial Tm with m > (1 + c)n, then |Pn(x)| ≤ A(c)

for all x ∈ [−1, 1], with A(c) depending only on c. Zygmund had shown that the same
conclusion is valid if Tm is replaced by themth Legendre polynomial Lm. Erdős established
a necessary and sufficient condition to characterize the system of nodes

−1 ≤ x
(m)
1 < x

(m)
2 < · · · < x(m)

n ≤ 1

for which
|Pn(x

(m)
i )| ≤ 1 , i = 1, 2, . . . , m , m > (1 + c)n

imply |Pn(x)| ≤ A(c) for all polynomials Pn of degree at most n and for all x ∈ [−1, 1],
with A(c) depending only on c. His result contains both that of Bernstein and of Zygmund
as special cases. Note that such an implication is impossible if m ≤ n+1, by a well-known
result of Faber.

Erdős wrote a paper [46.05] on the coefficients of the cyclotomic polynomials. The
cyclotomic polynomial Fn is defined as the monic polynomial whose zeros are the primitive
nth roots of unity. It is well known that

Fn(x) =
∏

d|n

(xn/d − 1)µ(d) .

For n < 105, all coefficients of Fn are ±1 or 0. For n = 105, the coefficient 2 occurs for the
first time. Denote by An the maximum over the absolute values of the coefficients of Fn.
Schur proved that lim supAn = ∞. Emma Lehmer proved that An > cn1/3 for infinitely
many n. In his paper [46.05], Erdős proved that for every k, An > nk for infinitely many
n. This is implied by his even sharper theorem to the effect that

An > exp [c (logn)4/3]

for n = 2 · 3 · 5 · · · · pk with k sufficiently large. Recent improvements and generalizations
of this can be explored in [Ma1-3].



Erdős has a note [49.08] on the number of terms in the square of a polynomial. Let

fk(x) = a0 + a1x
n1 + · · ·+ ak−1x

nk−1 , 0 6= ai ∈ R ,

be a polynomial with k terms. Denote by Q(fk) the number of terms of f2
k . Let Qk :=

minQ(fk), where the minimum is taken over all fk of the above form. Rédei posed the
problem whether Qk < k is possible. Rényi, Kalmár, and Rédei proved that, in fact,
lim inf Qk/k = 0, and also that Q(29) ≤ 28. Rényi further proved that

lim
n→∞

1

n

n
∑

k=1

Qk

k
= 0 .

He also conjectured that limQk/k = 0. In his short note [49.08], Erdős proves this conjec-
ture. In fact, he shows that there are absolute constants c1 > 0 and 0 < c2 < 1 such that
Qk < c2k

1−c1 . Rényi conjectured that limQk = ∞. He also asked whether or not Qk

remains the same if the coefficients are complex. These questions remained open (at least
in this paper).

Erdős has a number of papers on rational approximation. In [76.20], he proves that if f
is a non-vanishing continuous function defined on [0,∞) for which limx→∞ f(x) = 0, then
for every sequence of integers 0 := n0 < n1 < · · · satisfying

∑∞
i=1 1/ni = ∞, there is a

sequence of Müntz polynomials (pk) ⊂ span{xn0 , xn1 , . . .} for which

(6) lim
k→∞

∥

∥

∥

∥

1

f
− 1

pn

∥

∥

∥

∥

L∞[0,∞)

= 0 .

Using a result from the Clarkson–Erdős paper [43.02], he also observes, in [76.20], that if f
is a non-vanishing continuous function defined on [0,∞) for which there exists a sequence
(pn) ⊂ span{xn0 , xn1 , . . .} with 0 := n0 < n1 < · · · and

∑∞
i=1 1/ni < ∞ such that (6)

holds, then f is the restriction to [0,∞) of an entire function.

A typical result of Erdős, Newman, and Reddy [77.04] deals with rational approxima-
tions to e−x on [0,∞). They prove, among many other results, that if p and q are real
polynomials of degree at most n− 1 with n ≥ 2, then

∥

∥

∥

∥

e−x − p(x)

q(x)

∥

∥

∥

∥

L∞(N)

≥ (e− 1)ne−4n2−7n

n
(

3 + 2
√
2
)n−1 .

This should be compared with the approximation rate

∥

∥

∥

∥

e−x − 1

q(x)

∥

∥

∥

∥

L∞[0,∞)

≤ 2−n

with q(x) :=
∑n

k=0 x
k/(k!). A substantial collection of various results concerning various

kinds of rational approximation can be found in another paper of Erdős written jointly
with Reddy [76.46].



Erdős [62.01] proved a significant result related to his conjecture about polynomials
with ±1 coefficients. He showed that if

fn(ϑ) :=
n
∑

k=1

(ak cos kϑ+ bk sin kϑ)

is a trigonometric polynomial with real coefficients,

max
1≤k≤n

{max {|ak|, |bk|}} = 1 and
n
∑

k=1

(a2k + b2k) = An ,

then there exists a c = c(A) > 0 depending only on A for which limA→0 c(A) = 0 and

max
0≤ϑ≤2π

|f(ϑ)| ≥ 1 + c(A)√
2

(

n
∑

k=1

(a2k + b2k)

)1/2

.

Closely related to this is a problem for which Erdős offered $100 and which has become
one of my favorite Erdős problems: Is there an absolute constant ε > 0 such that the
maximum norm on the unit circle of any polynomial p(x) =

∑n
j=0 ajx

j with each aj ∈
{−1, 1} is at least (1 + ε)

√
n? Erdős conjectured that there is such an ε > 0. Even the

weaker version of the above, with (1+ ε)
√
n replaced by

√
n+ ε with an absolute constant

ε > 0, looks really difficult. (The lower bound
√
n+ 1 is obvious by the Parseval formula.)

Originally, Erdős and D.J. Newman conjectured that there is an absolute constant ε > 0
such that the maximum norm on the unit circle of any polynomial p(x) =

∑n
j=0 ajx

j

with each aj ∈ C , |aj| = 1 is at least (1 + ε)
√
n. An astonishing result of Kahane [K],

[L] disproves this by showing the existence of “ultra flat” unimodular polynomials with
modulus always between (1 − ε)

√
n and (1 + ε)

√
n on the unit circle for an arbitrary

prescribed ε > 0.

In [65.19], dedicated to Littlewood on his 80th birthday, Erdős gave an interesting
necessary condition insuring that a sequence of integers 0 ≤ n0 < n1 < · · · is not a
Zygmund sequence. More precisely, he showed that if 0 ≤ n0 < n1 < · · · is a sequence
that contains two subsequences (nki

)∞i=1 and (nli)
∞
i=1 satisfying

ki → ∞, ki < li < ki+1, li − ki → ∞, (nli − nki
)1/(li−ki) → 1 ,

then there is a power series
∑∞

k=0 akz
nk with |ak| → 0 that diverges everywhere on the

unit circle. The proof of this theorem utilizes probabilistic arguments which have been
used in several earlier papers.

An interesting paper of Erdős [54.07] with Herzog and Piranian deals with sets of di-
vergence of Taylor series and trigonometric series. A typical result of this paper states
that for every subset E of the unit circle with logarithmic capacity 0, there is a function



f(z) =
∑∞

n=1 anz
n so that f is continuous on the closed unit disk,

∑∞
n=1 anz

n diverges on
E, and the sequence of partial sums sn is uniformly bounded on the unit circle.

In 1911, Lusin constructed a power series
∑∞

n=0 anz
n with an → 0 that diverges at every

point on the unit circle. Dvoretzky and Erdős [55.05] gave an interesting extension of this
result. They proved that if (bn) ⊂ C with |bn| ≥ |bn+1| for each n and

∑∞
n=0 |bn|2 = ∞ ,

then there exists a power series
∑∞

n=0 anz
n with each an equal to either bn or 0 that

diverges everywhere on the unit circle. Here the monotonicity condition cannot be entirely
dispensed with, since every power series

∑∞
n=0 anz

tn with an → 0 and
∑∞

n=0 tn/tn+1 < ∞
converges on a subset of the unit circle which is everywhere dense on the unit circle. The
condition

∑∞
n=0 |bn|2 = ∞ cannot be relaxed either by Carleson’s theorem. (Carleson’s

theorem was a conjecture when Dvoretzky and Erdős wrote their paper, so they commented
on this as the above assumption “probably cannot be relaxed at all, since it is conjectured
that every power series with

∑∞
n=0 bnz

n with
∑∞

n=0 |bn|2 < ∞ converges almost everywhere
in C.”)

Several topics from Erdős’s problem paper [76.14] have already been discussed before.
Here is one more interesting group of problems. Let (zk)

∞
k=1 be a sequence of complex

numbers of modulus 1. Let

An := max
|z|=1

n
∏

k=1

|z − zk| .

What can one say about the growth of An? Erdős conjectured that lim supAn = ∞. In
my copy of [76.14] that Erdős gave me a few years ago, there are some handwritten notes
(in Hungarian) saying the following. “Wagner proved that lim supAn = ∞. It is still
open whether or not An > nc or

∑n
k=1 Ak > n1+c happens for infinitely many n (with an

absolute constant c > 0). These are probably difficult to answer.” [W]

Erdős was famous for anticipating the “right” results. “This is obviously true; only a
proof is needed” he used to say quite often. Most of the times, his conjectures turned out
to be true. Some of his conjectures failed for the more or less trivial reason that he was
not always completely precise with the formulation of the problem. However, it happened
only very rarely that he was essentially wrong with his conjectures. If someone proved
something that was in contrast with Erdős’ anticipation, he or she could really boast to
have proved a really surprising result. Erdős was always honest with his conjectures. If
he did not have a sense about which way to go, he formulated the problem “prove or
disprove”. Erdős turned even his “ill fated” conjectures into challenging open problems.
The following quotation is a typical example for how Erdős treated the rare cases when a
conjecture of his was disproved. It is from his problem paper [76.14] entitled “Extremal
problems on polynomials”. For this quotation, we need to know the following notation.
Associated with a monic polynomial f(z) =

∏n
j=1 (z − zj), where zj are complex numbers,

let En(f) := {z ∈ C : |f(z)| ≤ 1}. In his problem paper Erdős writes (in terms of the
notation employed here): “In [7] we made the ill fated conjecture that the number of
components of En(f) with diameter greater than 1+ c (c > 0) is less than δc, δc bounded.
Pommerenke [14] showed that nothing could be farther from the truth, in fact he showed
that for every ǫ > 0 and k ∈ N, there is an En(f) which has more than k components



of diameter greater than 4− ε. Our conjecture can probably be saved as follows: Denote
by Φn(c) the largest number of components of diameter greater than 1 + c (c > 0) which
En(f) can have. Surely, for every c > 0, Φn(c) = o(n), and hopefully Φn(c) = o(nε) for
every ε > 0. I have no guess about a lower bound for Φn(c), also I am not sure whether
the growth of Φn(c), (1 < c < 4) depends on c very much.”

The list of Erdős’ truly ingenious and diverse results concerning polynomials and related
topics could be continued for many more pages. One cannot include even all the highlights
in a limited space. The reader may correctly think that there are more important results
of Erdős in approximation theory than those mentioned in this article. I was concentrating
on those results and problems of Erdős that meant the most to me so far and I am looking
forward to discovering the beauty in many of his papers that I have not had the chance to
read so far.


