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1. Mahler Measure

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)| dx1

x1
. . .

dxn

xn
(1)

There is a simple expression for the Mahler measure in the one-variable case, as a
function on the roots of the polynomial. The question is, what happens with several
variables?

2. Polylogarithms

Definition 2 The kth polylogarithm is the function defined by the power series

Lik(x) :=
∞

∑

n=1

xn

nk
x ∈ C, |x| < 1 (2)

This function can be continued analytically to C \ (1,∞).
In order to avoid discontinuities, and to extend this function to the whole complex plane,

several modifications have been proposed. Zagier [10] considers the following version:

Pk(x) := Rek





k
∑

j=0

2jBj

j!
(log |x|)jLik−j(x)



 (3)

where Bj is the jth Bernoulli number, Li0(x) ≡ −1
2 and Rek denotes Re or Im depending

on whether k is odd or even.
This function is one-valued, real analytic in P1(C) \ {0, 1,∞} and continuous in P1(C).

Moreover, Pk satisfy very clean functional equations. The simplest ones are

Pk

(

1

x

)

= (−1)k−1Pk(x) Pk(x̄) = (−1)k−1Pk(x)

there are also lots of functional equations which depend on the index k. For instance, for
k = 2, we have the well-known five-term relation1

D(x) + D(1 − xy) + D(y) + D

(

1 − y

1 − xy

)

+ D

(

1 − x

1 − xy

)

= 0 (4)

Polylogarithms appear in many examples as the Mahler measures of polynomials in
several variables.

1Note that P2 = D, the Bloch–Wigner dilogarithm
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The most famous and basic examples in two and three variables are due to Smyth [9]:

m(1 + x + y) =
1

π
D(ζ6) =

3
√

3

4π
L(χ−3, 2) (5)

m(1 + x + y + z) =
7

2π2
ζ(3) (6)

Note that Pk(1) = Lik(1) = ζ(k).

3. The two-variable case

In order to understand the formulas for the two variables polynomials, Rodriguez-Villegas
[8] has proposed the following construction inspired in Deninger’s work. This was later
developed by Boyd and Rodriguez-Villegas [1], [2].

Given a smooth projective curve C and x, y rational functions (x, y ∈ C(C)∗), define

η(x, y) = log |x|d arg y − log |y|d arg x (7)

Here

d arg x = Im

(

dx

x

)

(8)

is well defined in C in spite of the fact that arg is not. η is a 1-form in C \ S, where S is
the set of zeros and poles of x and y. It is also closed, because of

dη = Im

(

dx

x
∧ dy

y

)

= 0

Let P ∈ C[x, y]. Write

P (x, y) = ad(x)yd + . . . + a0(x)

P (x, y) = ad(x)
d

∏

n=1

(y − αn(x))

Then by Jensen’s formula,

m(P ) = m(ad) +
1

2πi

d
∑

n=1

∫

T1

log+ |αn(x)| dx

x
= m(ad) −

1

2π

∫

γ

η(x, y) (9)

Here γ is the union of paths in C = {P (x, y) = 0} where |x| = 1 and |y| ≥ 1. Also note
that ∂γ = {(x, y) ∈ C2 | |x| = |y| = 1, P (x, y) = 0}

We want to arrive to one of these two situations:

1. η is exact, and ∂γ 6= 0. In this case we can integrate using Stokes Theorem.

2. η is not exact and ∂γ = 0. In this case we can compute the integral by using Residue’s
Theorem.

Here we will only care about the first case. Under certain conditions (see [8]) η can be
extended to C and becomes a closed form there. We need it to be exact. In fact, we have:
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Theorem 3

η(x, 1 − x) = dD(x) (10)

We will associate η with an element in H1(C \ S, R) in the following way. Given
[γ] ∈ H1(C \ S, Z),

[γ] →
∫

γ

η (11)

(we identify H1(C \ S, R) with H1(C \ S, Z)′).
Note the following

Theorem 4 η satisfies the following properties

1. η(x, y) = −η(y, x)

2. η(x1x2, y) = η(x1, y) + η(x2, y)

3. η(x, 1 − x) = 0 in H1(C, R)

As a consequence, η is a symbol, and can be factored through K2(C(C)) (by Matsumoto’s
Theorem). Then we can guarantee that η(x, y) is exact by having {x, y} is trivial in
K2(C(C)) ⊗ Q. (Tensoring with Q kills roots of unity, which is fine, since η is trivial on
them).

In general, if

x ∧ y =
∑

j

rjzj ∧ (1 − zj)

in
∧2(C(C)∗) ⊗ Q, then

η(x, y) = d





∑

j

rjD(zj)



 = dD





∑

j

rj [zj ]





We have γ ⊂ C such that

∂γ =
∑

k

εk[wk] εk = ±1

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Then

2πm(P ) = D(ξ) for ξ =
∑

k

∑

j

rj [zj(wk)]

In order to interpret Smyth’s case, take P (x, y) = x + y + 1. Writing x = e2πiθ, the
path of integration becomes

γ(θ) = 1 + e2πiθ, θ ∈ [1/6 ; 5/6] ⇒ ∂γ = [ξ6] − [ξ̄6]

2πm(x + y + 1) = D(ζ6) − D(ζ̄6) = 2D(ζ6)

4. The three-variable case
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We are going to extend this situation to three variables. We will take

η(x, y, z) = log |x|
(

1

3
d log |y|d log |z| − d arg y d arg z

)

+ log |y|
(

1

3
d log |z|d log |x| − d arg z d arg x

)

+log |z|
(

1

3
d log |x|d log |y| − d arg xd arg y

)

Then η verifies

dη(x, y, z) = Re

(

dx

x
∧ dy

y
∧ dz

z

)

We can express the Mahler measure of P

m(P ) = − 1

(2π)2

∫

Γ
η(x, y, z)

(we are taking P monic to simplify notation).
Where Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1}. We are integrating on a subset

of the surface {P (x, y, z) = 0}. The differential form is defined in this surface.
Suppose we have

x ∧ y ∧ z =
∑

rixi ∧ (1 − xi) ∧ yi

Since we have
η(x, 1 − x, y) = dω(x, y)

where

ω(x, y) = −D(x) d arg y +
1

3
log |y|(log |1 − x|d log |x| − log |x|d log |1 − x|)

Then
∫

Γ
η(x, y, z) =

∑

ri

∫

Γ
η(xi, 1 − xi, yi) =

∑

ri

∫

∂Γ
ω(xi, yi)

Where ∂Γ = {P (x, y, z) = 0}∩ {|x| = |y| = |z| = 1} = {P (x, y, z) = P (x−1, y−1, z−1) =
0} ∩ {|x| = |y| = 1}. Note that we are integrating now on a path {|x| = |y| = 1} inside the
curve {P (x, y, z) = P (x−1, y−1, z−1) = 0}. The differential form ω is defined in this new
curve (this way of thinking the integral over a new curve has been proposed by Maillot).
Now it makes sense to try to apply Stokes again. The condition is the following:

Supposse we have

[x]2 ⊗ y =
∑

ri[xi]2 ⊗ xi

Since we have
ω(x, x) = dP3(x)

Then we have as before:
∫

γ

ω(x, y) =
∑

ri P3(xi)|∂γ

5. The K-theory context
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We follow Goncharov, [5], [6]. Given a field F , we define subgroups Ri(F ) ⊂ Z[P1
F ] as

R1(F ) := [x] + [y] − [xy]

R2(F ) := [x] + [y] + [1 − xy] +

[

1 − x

1 − xy

]

+

[

1 − y

1 − xy

]

R3(F ) := certain functional equation of the trilogarithm

Define

Bi(F ) := Z[P1
F ]/Ri(F ) (12)

The idea is that Bi(F ) is the place where Pi naturally acts. We have the following
complexes:

BF (3) ⊗ Q : B3(F )Q

δ3

1−→ (B2(F ) ⊗ F ∗)Q

δ3

2−→ (∧3F ∗)Q

BF (2) ⊗ Q : B2(F )Q

δ2

1−→ (∧2F ∗)Q

BF (1) ⊗ Q : F ∗
Q

(Bi(F ) is placed in degree 1).

δ3
1([x]3) = [x]2 ⊗ x δ3

2([x]2 ⊗ x) = x ∧ (1 − x) ∧ y δ2
1([x]2) = x ∧ (1 − x)

Proposition 5

H1(BF (1)) ∼= K1(F ) (13)

H2(BF (2)) ∼= K2(F ) (14)

H3(BF (3)) ∼= KM
3 (F ) (15)

Goncharov [5] conjectures:

H i(BF (3) ⊗ Q) ∼= K
[3−i]
6−i (F )

Where K
[i]
n (F ) is a certain quotient in a filtration of Kn(F ).

Note that our first condition is that x ∧ y ∧ z = 0 in H3(BF (3) ⊗ Q) and the second
condition is [xi]2⊗yi = 0 in H2(BF (3)⊗Q). Hence, everything can be translated as certain
elements in different K-theories must be zero, which is analogous to the two-variable case.

6. Example

The importance of the following example is that in spite of being quite hard to compute
the example by simple integrals, it can be solved with this algebraic method.

Consider

Res(x + ytm + tn+m, z + wtm + tn+m) = (z − x)n+m − (wx − yz)m(y − w)n

which reduces to compute the Mahler measure of:

z =
(1 − x)m(1 − y)n

(1 − xy)m+n
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η(x, y, z) = mη(x, y, 1 − x) + nη(x, y, 1 − y) − (m + n)η(x, y, 1 − xy)

= −mη(x, 1 − x, y) + nη(y, 1 − y, x) + mη(xy, 1 − xy, y) − nη(xy, 1 − xy, x)

∆ = m([xy]2 ⊗ y − [x]2 ⊗ y) − n([xy]2 ⊗ x − [y]2 ⊗ x)

Now

[x]2 + [y]2 + [1 − xy]2 +

[

1 − x

1 − xy

]

2

+

[

1 − y

1 − xy

]

2

= 0

Let

x1 =
1 − x

1 − xy
y1 =

1 − y

1 − xy

x̂1 = 1 − x1 ŷ1 = 1 − y1

then

∆ = m([y]2 ⊗ y + [x1]2 ⊗ y + [y1]2 ⊗ y) − n([x]2 ⊗ x + [x1]2 ⊗ x + [y1]2 ⊗ x)

Now note that x = x̂1

y1
, y = ŷ1

x1
.

= m([y]2 ⊗ y + [x1]2 ⊗ ŷ1 − [x1]2 ⊗ x1 + [y1]2 ⊗ ŷ1 − [y1]2 ⊗ x1)

−n([x]2 ⊗ x + [x1]2 ⊗ x̂1 − [x1]2 ⊗ y1 + [y1]2 ⊗ x̂1 − [y1]2 ⊗ y1)

= m([y]2 ⊗ y + [x1]2 ⊗ ŷ1 − [x1]2 ⊗ x1 − [ŷ1]2 ⊗ ŷ1 − [y1]2 ⊗ x1)

−n([x]2 ⊗ x − [x̂1]2 ⊗ x̂1 − [x1]2 ⊗ y1 + [y1]2 ⊗ x̂1 − [y1]2 ⊗ y1)

Recall that
xm

1 yn
1 x̂n

1 ŷm
1 = 1

in the curve.
Then

[x1]2 ⊗ yn
1 ŷm

1 − [y1]2 ⊗ xm
1 x̂n

1 = −[x1]2 ⊗ xm
1 x̂n

1 + [y1]2 ⊗ yn
1 ŷm

1

= −m[x1]2 ⊗ x1 + n[x̂1]2 ⊗ x̂1 + n[y1]2 ⊗ y1 − m[ŷ1]2 ⊗ ŷ1

Then

∆ = m([y]2 ⊗ y − [ŷ1]2 ⊗ ŷ1 − [x1]2 ⊗ x1 − [ŷ1]2 ⊗ ŷ1 − [x1]2 ⊗ x1)

−n([x]2 ⊗ x − [x̂1]2 ⊗ x̂1 − [y1]2 ⊗ y1 − [x̂1]2 ⊗ x̂1 − [y1]2 ⊗ y1)

∆ = m([y]2 ⊗ y − 2[ŷ1]2 ⊗ ŷ1 − 2[x1]2 ⊗ x1) − n([x]2 ⊗ x − 2[x̂1]2 ⊗ x̂1 − 2[y1]2 ⊗ y1)

We now need to check the path of integration.
Let us write x = e2iα, y = e2iβ , for −π

2 ≤ α, β ≤ π
2 . Also, we can suppose 0 ≤ α ≤ π

2
and

m(P ) = − 1

2π2

∫

−π

2
≤β≤π

2
, 0≤α≤π

2

η(x, y, z)
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Let a = sin α
sin(α+β) , b = sin β

sin(α+β) . Then

x1 = ae−iβ y1 = be−iα x̂1 = beiα ŷ1 = aeiβ

Now, a, b and be though as the sides of a triangle with angles α, β opposing a and b
respectively. See [4]. We know that we integrate in

0 ≤ b ≤ 1 1 − b ≤ a ≤ 1 + b

1 ≤ b b − 1 ≤ a ≤ 1 + b

And also
ambn = 1

Hence, if b1 is a root of b−
n

m = 1 + b with 0 ≤ b1 ≤ 1. If b2 is a root of b−
n

m = b − 1
with 1 ≤ b2. Then, the integration path is

b1 ≤ b ≤ b2

1 + b1 ≤ a ≤ b2 − 1

Then the limits are:

x1 : 1 + b1 ∼ 1 − b2

y1 : −b1 ∼ b2

x̂1 : −b1 ∼ b2

ŷ1 : 1 + b1 ∼ 1 − b2

Then

m(P ) =
1

2π2
(2n(P3(x̂1) + P3(y1))|b2−b1

− 2m(P3(ŷ1) + P3(x1))|1−b2
1+b1

)

=
2n

π2
(P3(b2) − P3(−b1)) −

2m

π2
(P3(1 − b2) − P3(1 + b1))

If we write c1 = b
1

m

1 and c2 = b
1

m

2 , we have c1 is a root of

xn+m + xn − 1 = 0

with 0 ≤ c1 ≤ 1. Also c2 is a root of

xn+m − xn − 1 = 0

with 1 ≤ c2.
Then

m(P ) =
2n

π2
(P3(c

m
2 ) − P3(−cm

1 )) − 2m

π2

(

P3

(

− 1

cn
2

)

− P3

(

1

cn
1

))

=
2n

π2
(P3(c

m
2 ) − P3(−cm

1 )) +
2m

π2
(P3 (cn

1 ) − P3 (−cn
2 ))
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7. What is next?

There are several open questions around this subject. We have been able to explain all
the known examples in three variables, except Condon’s example [3]

m(1 + x + (1 − x)(y + z)) =
28

5π2
ζ(3) (16)

(John is working on it).
Also, we would like to generalize this construction to more variables. There are several

examples that we would like to explain, including

m((1 + x)(1 + y)(1 + w) + (1 − x)(1 − y)(1 − w)z) =
93

π4
ζ(5) (17)

in [7].
The algebraic computation, although easier to perform than the integral, requires some

happy ideas that seem to be different for each case. it would be nice to have an algorithm to
perform such decompositions. It would be nice being able to determine beforehand whether
it is possible to achieve such decompositions or not in each example. (These questions are
unknown for the two-variable case as well).
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