
SCRUM-PSP: Embracing Process Agility and Discipline

Guoping Rong, Dong Shao
Software Institute

Nanjing University
Nanjing, P.R.China
ronggp@gmail.com

He Zhang
National ICT Australia

University of New South Wales
he.zhang@nicta.com.au

Abstract—With the research and debates on software process,
the mainstream software processes can be grouped into two
categories, the plan-driven (disciplined) processes and the agile
processes. In terms of the classification, personal software
process (PSP) is a typical plan-driven process while SCRUM is
an agile-style instance. Although they are distinct from each
other per se, our research found that PSP and SCRUM may
also complement each other when SCRUM provides an agile
process management framework, and PSP provides the skills
and disciplines that a qualified team member needs to estimate,
plan and manage his/her job. This paper proposes an
integrated process model, SCRUM-PSP, which combines the
strengths of each. We also verified that this integrated process
by adopting it into a real project environment where typical
agile processes are favored, i.e. change-prone requirements,
rapid development, fast delivery, etc. As a result,
manageability and predictability which traditional plan-driven
processes usually benefit can also be achieved. The work
described in this paper is a worthy attempt to embrace both
process agility and discipline.

Keywords- PSP SCRUM Integration

I. INTRODUCTION

Personal Software Process (PSP) and SCRUM are
usually considered opposite to each other. PSP is a typical
plan-driven process which emphasizes discipline, whereas
SCRUM is a typical agile process which encourages agility.

PSP is a software process for individual software
engineers and was developed by Watts. S. Humphrey [5].
PSP includes well-defined steps, forms, standards and scripts.
It provides a measurement and analysis framework at
individual level to characterize and manage personal work.
The key metrics in PSP are time, size and defects. PSP also
defines the process improvement framework, which
describes the detailed practices at different maturity levels
and guides the self-improvement of individual developer. A
typical PSP process includes phases like planning, design,
code, compile, test and postmortem. A script is ready for
each phase. PSP is also a continuously evolving software
process, which suggests seven main levels. Each level
introduces new practices based on its prior levels. These
seven levels comprise the individual software process
improvement framework, and provide a roadmap towards a
mature software engineer.

Proposed by Takeuchi and Nonaka in 1987, SCRUM is
an iterative and incremental software development approach
to describe an efficient and flexible product development
process. It was refined, supplemented and introduced into

software industry by Ken Schawaber and Jeff Sutherland,
and became to take shape [1, 2].

The key feature of SCRUM lies in its iterative
development strategy. In each iteration, called a Sprint, the
team reviews the latest product requirements, selects the
technology used, and develops a consistent development
strategy based on the evaluation of both the team capability
and product requirements. In SCRUM, a Sprint typically
ranges from 2 to 4 weeks. There are defined goals and stable
requirements in one Sprint, which means all requirements
changes will be put aside until next Sprint. There is a Sprint
plan meeting at the beginning of a Sprint, during which the
team chooses and prioritizes the feature list to be developed
in this Sprint. A simple estimation is performed in the plan
meeting to derive the plan and balance the workload. A
SCRUM daily meeting is held to evaluate the progress and
issues. In SCRUM, a lot of work is done to prepare the
demonstration in the sprint review meeting, in which the
management gets to know the status of the product. The team
must hand over the planned deliverables at the end of the
sprint. The sprint retrospective meeting at the end of the
sprint provides a self-improving opportunity for the team, in
which the performance of the team and individuals are
summarized.

Like other agile processes, the performance of SCRUM
depends largely on the capability of involved team members.
In [3, 4], Turk et al. made a detailed description about the
prerequisites and limitations of SCRUM and other agile
processes. As Turk et al. pointed out, the team members
should have enough experiences and skills to define and
improve process in order to implement SCRUM. This
implies, the SCRUM team should consist of smart, capable,
and experienced staff who are able to support process
evolution effectively. As a management process framework,
however, few engineering practices are addressed by
SCRUM. As a result, it is common to combine SCRUM with
other agile practice-oriented process models, such as XP
(Extreme Programming) and LD (Lean Development). For
example, some typical XP practices such as pair-
programming and test-driven development are adopted by
SCRUM, because both SCRUM and XP are similar in
philosophy and values.

However, modern software development requires not
only adaptability which is better inspired by agile processes,
but also predictability which is better supported by plan-
driven processes. With a thorough review of PSP and
SCRUM, we found that they are not conflicting to each other.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24065713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PSP is an individual level process, focusing on the
improvement of software engineer’s process capability,
while SCRUM is a team level process framework,
concentrating on team cooperation and adaptability to project
environment. In this paper, we propose an integrated
software process named SCRUM-PSP, which systematically
combines the strengths of SCRUM and PSP. Compared to
traditional SCRUM, the SCRUM-PSP provides more
concrete practices that guide and support the development
team to achieve better manageability, more reasonable
estimation, and quality in control.

The rest of the paper is structured as follows. Section 2
provides a brief introduction to the related work of this paper.
Section 3 explains the iterative process life-cycle and typical
iteration of SCRUM-PSP in detail. Section 4 describes the
application of SCRUM-PSP in a real project. Some process
data were collected and analyzed to verify the performance.
Section 5 further discusses several limitations on SCRUM-
PSP model at this stage. The paper is concluded in Section 6
with the suggestions on future continuous research.

II. RELATED WORK

A technical note from SEI [6] has verified that there are
hardly any conflicts between agile and plan-driven processes.
Experience and research in XP and other processes
[6,7,8,9,10] have shown that agile and plan-driven processes
can supplement each other. Barry Boehm and Richard
Turner’s work [11] demonstrates that there exists
supplementation as well as need by modern software
engineering.

While all the effort above addressed the feasibility to
combine different processes, there still remain important
issues of implementation of the combination, e.g., 1) how to
set up a team? 2) how to select candidate processes to be
integrated? and 3) how to integrate the processes?

1) How to set up the team? Alistair Cockburn and Jim
Highsmith emphasize several critical people factors for agile
methods: amicability, talent, skill, and communication[17].
Skills of design, coding and testing are easily recognized for
agile methods, but skills of estimating, planning, quality
management might be neglected or even misunderstood by
some agile method advocators. As we discussed above, PSP
focuses on increasing self-management and self-
improvement skills for software engineers, and is suitable to
be used to recruit and set up a qualified team. Suphak
Suwanya and Werasak Kurutach[18] propose a software
process improvement model, in which PSP is used to train
developers to build discipline and SCRUM is used to
manage software projects. But we believe PSP offers more
than a training tool.

2) How to select candidate processes to be integrated?
The desired new process should provide both the
adaptability and predictability which meets the needs of
modern software development. Besides, we also expect the
integrated process provides more concrete practice guidance
for the team. Hence we select PSP and SCRUM as the
candidate processes. PSP provides not only detailed practice

to guide software development but also discipline and
quantitative management to achieve predictability for
individual software engineer. While SCRUM is an process
“wrapper” for both agile and non-agile practices[6].

3) How to integrate the processes? PSP should work
well with SCRUM, but detailed instructions must be
provided to the process performers. In the integrated process
proposed, PSP can be used not only to manage personal
work but also to improve the process capability of team
members when a Sprint and SCRUM is used to construct
team. Detailed steps and instructions are also provided to
support development teams. Our specific methods used to
integrate PSP and SCRUM are depicted in the following
sections.

III. SCRUM-PSP

SCRUM-PSP is designed as two layers. The lifecycle layer
describes the main process framework. There are several
iterations turning customer requirements into final products.
Figure 1 depicts a typical SCRUM-PSP with multiple
iterations. The iteration layer describes specific steps within
iteration. Usually, there are five phases in one iteration,
namely Launch (L)/Re-Launch (RL), Plan (P), Requirement
& Design (R&D), Construction(C) and iteration
Postmortem (PM), as depicted in Figure 2.

A. SCRUM-PSP Lifecycle

SCRUM-PSP is an iterative process in the first place. The
whole development work is divided into several iterations.
At the early stage of the first iteration, the team discusses
the development strategy. Typical development strategy
includes priority of requirements, number of iterations,
cycle time and phases in each iteration. Usually, the cycle
time is fixed for about one month, but it’s up to the team’s
choices to make the duration flexible. Under either situation,
the plan is reliable and practical due to introducing PSP
methods in estimation and planning activities based on the
historical data.

Fig. 1 Lifecycle of SCRUM-PSP

B. SCRUM-PSP Iteration

1) Launch. An iteration starts with a launch phase.
During launch, the team is established by identifying the
team goals and the iteration goals. The team members build
relationship, are assigned roles and reach consensus about
all the goals. The launches in iterations other than the first
one are called a re-launch. Although team building is not a
required task during re-launch, new team goals and iteration
goals usually still need to identified and throughly discussed
to reach consensus among team members.

2) Plan. The development strategy and plan is set up in
the plan phase. To be specific, there are several main tasks
in the plan phase including size estimation, task and quality
plan development, risk assessment and strategy selection
and other necessary plans development.

 Size Estimation. Differing from formal designs, the
conceptual design aims at helping the team clarify the scope
of the project, so as to predict the project size effectively.
The strategy is quite simular to developing a WBS (Work
Breakdown Structure), breaking the work to a level that
historical data is available or the size is small enough so that
it can be estimated with confidence. The requirements are
understood roughly at that time. In our real project cases, we
found that usually, with detailed conceptual design, the
estimation does not differ much from the final actual value
of the project size. Therefore, the project schedule plan
which is based on the empirical estimation could be
practical and realistic.

 Task and Quality Plan. Task plan is developed based
on size estimation results and team resource estimation
results. The rationale behind is that all the software
engineers should have enough resource to complete the
allocated tasks regardless of the project deadline. Then, each
engineer can determine the schedule plan according to
his/her resource level(hours each week). If the schedule plan
does not match the project deadline, alternative plans should
be developed and approved by stakeholder.

The quality plan identifies the quality index that will be
tracked based on quality goals. In SCRUM-PSP, it is
recommended to track core PSP quality indices such as
phase yield, review rate, PQI and A/FR[5]. Phase yield is
calculated as the defects removed during a phase (Review,
Compile, UT, etc.) as a percentage of those present at the
start of the phase plus those injected during that phase.
Review rate can be used as guideline to help development
team conduct reviews and inspection. In [13], Chris F.
Kemerer and Mark C. Paulk suggested that the code
inspection rate should be lower than 200 LOC per hour or 4
pages per hour for documentation. It has been justified in
[13,14,15] that there is a high correlation between these
quality indices and the quality of final product. PQI is the
product of five values, namely design quality, design review
quality, code review quality, code quality and program
quality.

 Design quality requires the time spent on design
phase should be longer than the time spent on coding phase.

 Design review quality requires that the time spent on
design review phase should be longer than half of the time
spent on design phase.

 Code review quality requires that the time spent on
code review phase should be longer than half of the time
spent on coding phase.

 Code quality requires that the defect density of
complie phase (if exists) should be no more than 10
defects/KLOC.

 Program quality requires that the defect density of
unit test phase should be no more than 5 defects/KLOC. A
product value closer to 1.0 indicates a better quality of the
process. A/FR is calculated as the appraisal cost divided by
failure cost. Usually the appraisal cost means the time spent
on reviews and inspections and the failure cost means the
time spent on compile and unit test. A value more than 2.0
is suggest for A/FR.

 Risk assessment and strategy selection. The team
identifies and evaluates the risks of the project. The risk is
evaluated by possibility and impact. All risks need to be
tracked except those of extreme low possibility and impact.
Besides, risk assessment helps the selection of development
strategy, which is explained in detail by Barry Boehm and
Richard Turner with balanced strategy selection [11]. The
team will choose the most suitable strategy according to the
risks that the team will face in future.

 Other necessary plans development. Apart from
schudule plan, several other plans are developed at this step
as well. Some typical plans include configuration plan,
quality plan, data collection plan and project monitoring
plan.

 Configuration plan. Configuration management is
essential for team software development. A good

configuration plan can guide the change control of
configuration repository which leads to integrity and
consistency of the work products.

 Data collection plan. To support objective data
based decision, several basic measures are suggested by
SCRUM-PSP, the time spent in each phase, the size of the
program and the defects injected and removed in all the
phases. Data collection plan defines the procedure to collect
and store these data. Project team uses this plan to guide the
data collection during the development process.

 Project monitoring plan. SCRUM-PSP uses daily
meeting and earned value to track the progress of the project.
Earned value is caculated as the percentage of total plan
time that each task represents [5]. A 0-100 rule is applied to
caculate the cumulative earned value, which means that 0
value is earned for partially completed task unless the task is
totally completed. Using some tools, SCRUM-PSP can
monitor the project status and predict complete dates in a
real-time manner and take corrective actions as early as
possible. The project monitoring plan defines the activities
mentioned here.

3) Requirements and design. The requirements
Elicitation and high-level design is performed in this phase.

 Requirements Elicitation. Requirements
development in SCRUM-PSP is relatively simple. Based on
the results of conceptual design, the team discusses the
feature list to be developed in the current iteration, usually
the product representative answers the questions to clarify
the requirements. A software requirement specification is
then developed based on the discussion and reviewed by
both the product representative and the team. During one
iteration, requirement changes are recorded but not
implemented straightway.

 High-level design. High-level design deals with the
overall architecture of the system, establishing a complete,
correct and extensible foundation for the product. A good
architecture improves the efficiency and quality of
development and testing, adapts to requirement changes and
reduces the risks of rework. In fact, requirement and design
go not sequentially but simultaneously in SCRUM-PSP. It is
suggested to postpone decisions, which means to keep a few
alternative plans and make decisions with more detailed
information about the requirements when some technical
obstacles come across.

There is no regulation on specific design methods, but
some suggested criteria for a complete and consist design
which can be taken as a guideline of design are available.
The criteria is summarized in Table 1

Such a completeness standard can be applied in a wide
variety of design levels, in order to establish a consistent and
reviewable design specification.

 Reviews. Both requirement specification and high-
level design specification should be reviewed by all the
team members. During the reviews in this phase, to remove

the defects is not the only purpose, but to form common
vision of the product.

Table 1. The criteria for a complete design [5].
Dynamic Static

External Operational
Specification

Functional
Specification

Internal State
Specification

Logic
Specification

4) Construction. The main purpose of construction

phase is to construct the software system according to
requirements specification and design specification.
SCRUM-PSP requires a PSP2.1 process for each module
constructed by individual software engineers. At the end of
construction, integration test and system test are optional
tasks for a certain iteration, the team will decide their test in
terms of the strategy selected.

 PSP Iteration. A PSP2.1 process consists of eight
phases, namely planning, detailed design, detailed design
review, code, code review, compile, unit test and personal
postmortem.

 Planning: To produce a detailed plan for developing
the program defined by the module requirements. Probe [5]
method is used to help the software engineer do more
accurate and reasonable estimation. Differ from the team
plan phase in figure 2, personal historical data is used in
module-level size estimation and time estimation. Besides,
linear regression is also used to make the estimation more
reasonable.

 Detailed Design: To produce a detailed design
specification for the program defined by the module
requirements.

 Detailed Design Review: To review a detailed
design developed during the design phases by individual
software engineer. It’s suggested to use a customized
checklist to improve the efficiency of review.

 Code: To transform the design specification into
programming language statements.

 Code Review: To review the code developed during
the coding phases by individual software engineer. It’s
suggested to use a customized checklist to improve the
efficiency of review.

 Compile: To translate the programming language
statements into executable code. Most syntax defects will be
removed during this phase. This phase is an optional phase
determined by the development environment.

 Unit Test: To verify that the executable code
satisfies the requirements.

 Personal Postmortem: To summarize and analyze
the project process data. The data includes both plan value
and actual value of size, quality and time. Work products
from personal postmortem lay foundation for the iteration
postmortem.

Besides, to achieve high yield and A/FR, we add two
inspections in detailed design and code. During the
inspection, more than two developers inspect the same work
product.

 Detailed Design Inspection: To inspect detailed
design documents with team after the work product is
reviewed by the owner. This activity must be conducted
before entry to the code phase.

 Code Inspection: To inspect code with team after it
is reviewd by the owner. Although code inpection can be
put either before unit test or after unit test, we suggestion
developers do the code inspection before the unit test.

5) Iteration Postmortem: The main tasks in postmortem
phase are iteration product demonstration and process
retrospect.

 Iteration product demonstration. This is a very
important activity to verify iteration products. In a typical
demonstration, senior management, customer
representatives and other colleagues are invited. The team
should introduce iteration goals, team performance and
work products achieved in this iteration. A workable system
must be demonstrated in this activity. Through real system
demonstration, team work results can be learned and

acknowledged by the management and the customer
representative, the team motivation gets improved.

 Evaluation. During the demonstration, senior
management and customer representatives will evulate the
current software product. The team collects feedback and
suggestions, hence the team can understand better about the
expections from stakeholders. Besides, since senior
managers are invited to attend the demonstration, the team
will take the commitments much more seriously than
usually.

 Process retrospect. After iteration product
demonstration, iteration process retrospect meeting is then
held by the entire project team. In a typical retrospect
meeting, team leader leads the team discussion of the status
of the project, the deviation of estimation, the quality status,
the current risks and other issues. Based on historical
process data, the whole project team identifies improvement
opportunities. During these practices, full participation of
the team members is highly encouraged.

C. Application of SCRUM-PSP

SCRUM-PSP includes process elements from both
SCRUM and PSP communities, and aims to enhance
SCRUM with more concrete practices and improved

Fig. 3 Plan Structure of the Upgrading Project

manageability and predictability. Like all other methods, one
size does not fit all. Using the method raised by Barry
Boehm, Richard Turner and Cockburn [11, 12], we believe
SCRUM-PSP is more suitable for projects with the following
characteristics:

1) Project characteristic. SCRUM-PSP is suitable for
small to medium sized projects, in which complete
requirements cannot be clearly defined in the early stage of
project and with high risk of change; meanwhile fixed
delivery date is determined by several factors such as
marketing, customer constraints and budget etc. SCRUM-
PSP focuses on self-directed team, by which high
performance (short iteration time, high productivity, high
product quality, quick response to requirement changes and
predictive delivery time) can be expected.

2) Management characteristic. SCRUM-PSP requires a
product stakeholder who acts as the customer representative.
This commitment improves the efficiency and effectiveness
of requirements elicitation. SCRUM-PSP also requires a
team coach to facilitate team-building and team-working.
Similar to most coaches in a sports team, the coach in
SCRUM-PSP process acts as a mentor to all the team
members. He/She should have lots of experience on process
management and improvement. In addition, any
organization adopts SCRUM-PSP need to form a
management culture of empirical decision based on the
historical data. The project needs to be free in selecting
development strategies and processes, however, iterative
and incremental strategies are highly recommended. Besides,
a powerful and intuitive tool is a necessary support to data
collection, planing and progress tracking.

3) Technology characteristic. SCRUM-PSP does not
specify technology to acquire requirements and design
solutions, nor does SCRUM-PSP require specific
technology to implement and integrate the product.
SCRUM-PSP accepts both informal and formal
requirements specifications. The project team works with
product stakeholders to determine the priority of the
requirements.

4) Staff characteristic. SCRUM-PSP requires all the
team members receive a complete training on PSP before
they can participate in the project. All the team members are
knowledgeable in process improvements and evolution.
They are also fimilar with proces measurement and used to
make decision based on historical data. Besides, all the team
members should have no technology obstacles to a certain
project. Due to fixed deadline, formal training on
technology is usually not provided during the whole
lifecycle of SCRUM-PSP. In case where technology is

unfaimilar to some of the team members, certain resources
for training should be considered before launching the
project. To facilitate communication, all the team members
are suggested to be co-located.

IV. CASE STUDY: A SCRUM-PSP PILOT PROJECT

A. Project background

To verify whether the idea behind SCRUM-PSP is
feasible and useful, we applied SCRUM-PSP in one real
project. The main purpose of this project is to upgrade a
current web based application in use with more features. We
used this web based application in the past two years to
provide the student teams a project management supporting
tool. Mainly, the tool can be used in planning, earned value
tracking, quality status tracking and collection of process
data. When several improvements have been identified by
both students and faculty, we decided to upgrade this system
before the start of a new semester. Typical improvements
include project objectives such as to fix some defects, to
provide a mechanism to manage resource and arrange
schedule, to offer an onsite version of the system and a
mechanism to gather process data from different projects,
and further to establish an organizational process
performance baseline. Although some improvements are
explicit, several others such as resource management and
performance model still remain unclear.

B. Early stage

 There are several facts of this project, in which we
adopted SCRUM-PSP as the development process: (1) Some
requirements cannot be decided at the early stage and have a
high possibility to change; (2) As the students would use this
web application in one of the courses since the beginning of
the coming semester, the deadline of this project is not
negotiable; (3) All the five team members received a full
training on PSP; (4) The development team and the
requirements providers are co-located, which facilitates the
communication and discussion; (5) The existing system
provides good basis to support continuous and incremental
integration.

At the early stage during the launch, the project team
worked together with product stakeholder to discuss the
requirements. Directed by a coach, the five team members
reached consensus on team goals and team roles. Then they
began to develop plans for the project. According to project
context, the team decided to divide the project into three
iterations. Based on acknowledged criteria, the team selected
five modules to develop in the first iteration, in which each
developer needed to establish a detailed plan for his/her
module. Then a schedule plan containing three iterations is
established and maintained (as shown in Fig. 3). In this
SCRUM-PSP process based schedule plan, each iteration

Fig.4 Weekly Report for the Third Week

contains all the phases defined in a typical SCRUM-PSP
process. For construction phase, a complete PSP2.1 process
is used. For the first iteration, a detailed plan is established
based on the latest agreed requirements. For the second and
the third iteration, only time box is defined. As the
development advances, we got more and more clear about
the project requirements and received more data gathered
from prior iterations, which enabled more accurate
estimation about the size and time of the new iterations. As a
result, we managed to finish all the improvements and
deployed the upgraded system before the start of the new
semester.

C. Mid stage

 To facilitate project management and data collection, we
used a web based supporting tool. This tool provides a set of
features such as estimation and planning (cf. Fig. 3), time log
recording, defect log recording, weekly reporting (cf. Fig. 4),
plan summary, process quality index summary (cf. Fig. 5
through Fig. 7), etc. To reduce difficulty, most features are
provided with similar style to the supporting tool [16] the
team members used when they were receiving PSP training.
Feedback from the practitioners indicates that this tool plays
a vital role to the success of SCRUM-PSP process project.
Weekly report is auto-generated by the supporting tool based
on the process data each team member recorded when they
were developing the system. The report provides rich
information for all the team members. Fig. 4 illustrates a
 weekly report for the third week of the pilot project, which
shows process data for both plan value and actual value.
From the process data, the project team can draw several
conclusions as the following:

1) For the earned value to date, the actual value is 36.48
which is less than planned value 40.00. This indicates that
the project team is a little behind the schedule.

2) For the hours to date, the actual value is 165.0, which
is bigger than the plan value 156.48. This indicates that the
team spent more time than planned.

3) For the to-date hours for tasks completed, the actual
value is 165.0, which is larger than the planned value 156.48.
This indicates that the team might a little under-estimate the
size and effort needed. EV per completed task hour to data
value also indicates similar conclusion.

4) From all the conclusions above, the project team
may have some progress issues. They spent more time than
planned while gained less earned value. Although there was
another possibility that the project team put some time into
some unfinished tasks which impact the earned value for
them.

With a discussion on the weekly meeting, the project
team determined the root cause of the issue and resolved it
by modifying the original estimation on size and effort
needed. In addition, they also managed to improve resource
level to nearly 12 hours per week for each developer to meet
the new situation.

D. Project summary

 After three iterations, the project team managed to
deploy the system before the deadline. All agreed
improvements to the original system have been implemented.
The process data were collected and summarized in Table 2.
The team achieved a less than 5% deviation in both size and
time estimation. Compared with an average time estimation
deviation 63% in the industry [19], we considered this
performance can be regarded as evidence of good
manageability and predictability of the example project.
Besides, we used PQI to control the process quality. This
helped to assess the quality of the components. PQI is a very
important quality assurance method in SCRUM-PSP. Fig. 4,
5 and 6 illustrate the actual PQI data during these three
iterations. We can see an improvement (the percentage of
shade area becomes more and more close to 100%) in these
figures which usually means improved quality. The project
result summary (Table 2) shows the decrease of the defect
density during integration testing through these three
iterations.

Iteration Iteration 1 Iteration 2 Iteration 3 Total
 P* A* P A P A P A

Size(LOC for JAVA) 3250 3641 4300 4107 1150 994 8700 8742
Time(Hour) 392.5 431.2 428.3 439.7 113.83 97.3 934.66 968.2
Productivity 8.28 8.44 10.04 9.34 10.10 10.22 9.31 9.03
Defects in Integration test 68.0 57 64.4 56 16.2 10 148.6 123
Defect Density (pKLOC) 20.9 15.7 14.98 13.64 14.1 10.06 17.8 14.07

Table 2 Process Data of the Upgrading Project

*P: Plan Value; A: Actual Value

V. DISCUSSION

Although it’s not a brand new idea to integrate different
processes, to combine two processes with conflicting values
is a challenge. PSP is an individual level process and
SCRUM is a team level process. This complementing
relation reduces the conflicts between the two processes in
integration. However, there still remain several possible
limitations, among which the project scale, the developers’
skill, consideration of data collection and usage and
reconciliation between agile and plan-driven are worthy to
discuss.

1) The project scale factor. We believe the scale plays
an important role to the success of the pilot project. The
project scale is relatively small in terms of either the team
size (5 students) or the duration of the project (4.5 months).
While most software issues appear when the project scaling
up, more research and experiments need to be conducted to
make SCRUM-PSP more scalable to deal with projects with
more team members and longer duration.

2) The developers’ skill factor. The five students in this
pilot project are of the top level students in our school. They
have plenty experiences on both technology used in the
project and PSP, which help them adapt to SCRUM-PSP
rapidly and effectively. Whereas, how to apply SCRUM-
PSP to those inexperienced software engineers and to
achieve the similar benefits still needs further research and
experiments.

3) The consideration of data collection. SCRUM-PSP
highly relies on process data to help estimating the size and
time, tracking the progress and the quality status. However,
there is no agreement among all team members on
collecting process data. Some argue that measuring software
projects is of no use and is not so “agile”[20]. Our strategy
is to lower the effort of and the obstacle to software
engineers to measure their own process with supporting
tools. When software project teams expect to achieve not
only adaptability, but also predictability, data collection is
necessary.
Besides, more rational metrics should be proposed and
applied to SCRUM-PSP to guide the decision making. In
the case study, we found that high PQI did not lead to high
quality in the final product. The reason is that although
students were good at development, they lacked skills to do
effective verifications such as reviews and unit test. Hence
they did not identify and remove most defects before the
entry to the integration phase. PQI works well in PSP
assignments, where the problem is quite simple, but for real
projects, when problem is much more complicated and
difficult, simply measuring by PQI only is not enough.

4) Reconciliation between agile and plan-driven.
Serveal features of SCRUM-PSP make us believe the
essence of SCRUM such as empiricism, emergence self-
organization, prioritization and timeboxing still remain[21].

a) Empiricism requires continuous project monitoring
that allows the team and management make data based
decisions in real time. In SCRUM-PSP a supporting tool can
be used to collect process data such as phase time, product
size and defects. The plan value and actual value based on
and derived from the data can support team’s decisions.

b) Emergence implies that all solutions to all problems
will become clear as we work. SCRUM-PSP does not
require all the requirements clear enough to start the work,
nor does it require perfect high level design. All decisions
are based on currently known evidence of the project
context. When the context changes, the team will make new
decisions.

c) Self-organization requires the teams are empowered
to make the important decisions necessary to make the
project success. In SCRUM-PSP, team goals, team roles,
development strategy and processes are selected and defined
by the team. The team will also conduct weekly meetings
where they have a chance to make common decisions.
SCRUM-PSP coach will work with the team. He/she will
not make decisions on behalf of the team but help to
establish and maintain self-directed project team.

d) Prioritization means that some features are more
important than others. In SCRUM-PSP, the team need to
establish criteria to determine the importance and priority of
requirements.

e) Timeboxing means one week or serveral weeks will
be taken as a time box, usually fixed, during which the team
will try to solve portion of the whole problem to establish a
basis for the whole system and gain experience on the
project. SCRUM-PSP also provide similar feature by the
concept of iteration. Although the duration will not always
be fixed up to the team’s decision.

At the individual level, all the team members use PSP to
plan and track their work. With plenty of process data, each
team member is aware of the status of their own tasks. This
forms a solid basis for the whole team to know the status of
the project. Hence necessary corrective actions will be
conducted when significant deviations were identified to
ensure the success of the whole project.

Fig. 5 PQI in Iteration 1

Fig.6 PQI in Iteration 2

Fig.7 PQI in Iteration 3

VI. CONCLUSIONS

The agile community and plan-driven community should
not be taken as contradictory sides. Modern software projects,
in which project teams will face more challenges than ever
(variable requirements, fixed deadline etc.), require
adaptability as well as predictability. In the research behind
this paper, we add PSP process elements into typical
SCRUM process framework, in order to design an integrated
process that includes both agile features and plan-driven
features. Our approach (SCRUM-PSP) justifies that PSP
enhances SCRUM with concrete practices which will
provide more useful and effective guidance to software
developers. Besides, the manageability and predictability that
are well supported by PSP will benefit individual software
engineers with better planning and commitment. When every
software engineer’s work can be predicted, the team’s work
becomes predictable. Meanwhile, agile features such as
empiricism, emergence self-organization, prioritization and
timeboxing are also well supported by SCRUM-PSP.

Our work is a worthy attempt to combine different
processes to meet the needs of modern software projects.
There still exist several interesting issues which need future
research, for example

a) How to apply PSP to other known processes? As we
know, PSP is a personal process, which can not only

improve individual software engineer’s skill, but also
manage personal work in software projects. Software
development is intellectual undertaking, which needs self-
directed development teams. PSP provides the skills for all
the developers to form self-directed team. In this sense, PSP
is able to support other agile style processes such as XP,
DSDM, Crystal, RUP, etc. However, more focused research
and experiments need to be conducted in the future.

b) How to combine best practices from various
methods and processes? Most published development
methods or processes contain indentified best practices in a
certain area. To combine these best practices to meet
various software project context is challenging. Criteria and
guidelines should be established to leverage software project
team’s better decisions and more efficient work.

REFERENCES
[1] K. Schawaber, M. Beedle, Agile Software Development with

SCRUM, NJ: Prentice Hall, 2001

[2] Entry SCRUM in Wiki website.
http://en.wikipedia.org/wiki/Scrum_(development)

[3] Turk, Dan; France, Robert; &Rumpe, Bernhard. (2002). “Limitations
of Agile Software Processes.” Proceedings of the Third International
Conference on eXtreme Programming and Agile Processes in
Software Engineering, p. 43-46, May 26-29, 2002, Alghero, Sardinia,
ITALY.

[4] Turk, D., France, R., Rumpe, B. “Agile SoftwareProcesses: Principles,
Assumptions and Limitations.” Technical Report. Colorado State
University, 2002.

[5] Watts S. Humphrey PSP: A Self-Improvement Process for Software
Engineers Addison-Wesley, 2005

[6] Hillel Glazer, Jeff Dalton, David Anderson, David J. Mike
Konrad,Sandy Shrum, “CMMI® or Agile:Why Not Embrace Both”
TECHNICAL NOTE, CMU/SEI-2008-TN-003.

[7] He Huang, Peiji Tao, Xianming, Liu, Qiang Cui “Research and
Practice of Reducing and Merging XP with Heavy Soft ware
Developing Process” Journal of Computer Engineering and
Applications 2003.22

[8] Hui Li, Peiji Tao, Wenfeng Li “ Combining XP and RUP to develop
small projects” Computer Engineering & Design 2005

[9] LanCao; Mohan, K; PengXu; Ramesh, B.“How extreme does extreme
programming have to be? Adapting XP practices to large-scale
projects”Proceedings of the 37th Annual Hawaii International
Conference onSystem Sciences, 2004.

[10] J Wäyrynen, M Bodén, G Boström “Security Engineering and
eXtreme Programming: an Impossible marriage?”Extreme
Programming and Agile Methods - XP/Agile Universe 2004Springer
Berlin / Heidelberg

[11] Barry Boehm Richard Turner Balancing agility and discipline: a
guide for the perplexed Addison-Wesley, 2004

[12] Cockburn, A. Agile Software Development.Bostom:Addison-Wesley
2002

[13] Chris F. Kemerer, Mark C. Paulk, “The Impact of Design and Code
Reviews on Software Quality: An Empirical Study Based on PSP
Data”, IEEE transactions on software engineering, 2009 Vol 35 no.4

[14] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski,
“SoftwareInspections: An Effective Verification Process,” IEEE
Software,vol. 6, no. 3, pp. 31-36, May/June 1989.

[15] R.L. Glass, “Inspections—Some Surprising Findings,” Comm.ACM,
vol. 42, no. 4, pp. 17-19, Apr. 1999

[16] SEI Supporting Tool web site,
http://www.sei.cmu.edu/tsp/tools/studypsp-form.cfm

[17] A. Cockburn and J. Highsmith, “Agile Software Development: The
People Factor,” Computer, Nov.2001, pp. 131-133.

[18] Suphak Suwanya and Werasak Kurutach “Applying Agility
Framework in Small and Medium Enterprises” ASEA 2009, CCIS 59,
pp. 102–110, 2009 Springer-Verlag Berlin Heidelberg 2009

[19] Extreme Chaos, The Standish Group International, 2001

[20] Tom Demarco “Software Engineering: An Idea Whose Time Has
Come and Gone?” IEEE Software, July/August 2009, pp95-96

[21] Tobias Mayer “The Essence of SCRUM”
http://agilethinking.net/essence-of-scrum.html

