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Abstract—Modeling complex networks of cables inside structures
and modeling disjoint objects connected by cables inside large
computational domains with respect to the wavelength are two
problems that currently present many difficulties. In this paper, we
propose a 1D /3D hybrid method in time domain to solve efficiently
these two kinds of problems. The method, based upon finite difference
schemes, couples Maxwell’s equations to evaluate electromagnetic fields
in 3D domains and the transmission line equations to evaluate currents
and voltages on cables. Some examples are presented to show the
interest of this approach.

1. INTRODUCTION

In this paper, we are interested in the hybridization between two finite
difference time domain methods, one in 3D and one in 1D, to solve
respectively Maxwell’s equations and the Multiconductor Transmission
Line (MTL) equations. Indeed, for several 3D electromagnetic
problems, it can be more efficient to compute the currents on wire
models using locally a TL equation rather than a thin wire model
inside a global 3D computational domain [6]. In particular, this implies
a gain in term of computational cost, but also a more accurate solution
as far as realistic connection wires are concerned. In this paper, we
consider two kinds of configurations. The first one consists in the
study of complex networks having multiconductor cables and several
connection nodes at junctions inside a structure. This configuration
is typical of cables in embedded systems. The second configuration
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deals with the evaluation of induced currents and voltages on cables,
for large computational domains in which 3D structures or objets are
connected by wires. This configuration in typical of cables or pipes
connecting buildings, encountered in ground installation topologies.

The first numerical problem we are interested in is linked to
important industrial concerns, and one can find in the literature
several solutions based upon either thin wire models [1-4], or models
based on the coupling between a 3D time domain method to compute
the electromagnetics fields and a Multiconductor Transmission Line
Network (MTLN) equation to evaluate currents on cable harnesses in
the frequency domain. In [5-7], the authors apply Agrawal’s principle
based on voltage source terms coming from the incident electric field.
The main difficulty of a thin wire model is to represent accurately
the connectivity and the line parameters (R, L, G, C) of wires in
a network of cables. Indeed, in real cables, wires are included in
bundles which may be themselves included inside shielded or dielectric
conductors and the network is made by multi-wires cables connected
with junctions. In fact, the current obtained with thin wires models
proposed in the literature use averaged values for the line parameters
of the wire and the global models of connections are generally not
sufficient to describe finely the complexity of a realistic network of
cables. The other approach, consisting in coupling MTL equations
with a 3D numerical method, has also some limitations. The first one
is the difficulty of coupling a time domain and a frequency domain
methods. The second limitation concerns the coupling process itself.
Indeed, to compute the currents on the cables, the MTL equation uses
the values of the electric fields computed in the 3D domain without the
cable. This approach is fully consistent for the evaluation of the cable
response itself and is even an advantage for carrying out parametric
analysis of the nature of cables. However the currents on the cables
are not considered for evaluating the scattered fields, as it would be
required for a rigorous coupling model. Especially, such an approach
does not calculate properly the antenna mode current which can be
dominant in the middle of the cables [17], even if the transmission line
mode current dominates at the end loads. The alternative we propose
in our 1D/3D hybrid method is based on the same idea but, in order to
avoid the previous limitations, we consider a Finite Difference scheme
in the time domain to solve the MTL equations. The 3D electric fields
are considered as sources and the currents obtained on the cables are
also introduced as sources for the evaluation of electromagnetic fields.
So this approach enables taking into account complex cable network
topologies, still considering the influence of the currents on the cables
in the evaluation of the 3D electromagnetic fields.
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For the second kind of problems we are interested in intercon-
nected large structures. The evaluation of the fields inside the whole
computational domain implies an important computational cost in
terms of CPU and memory. Moreover, the dissipative or/and dis-
persive errors due to the 3D numerical scheme used to solve Maxwell’s
equations are sometimes important. To avoid these drawbacks, for dis-
joint objects a multi-domain method has been proposed to limit the
3D computational meshed domains only around the objects [8]. In
this article, the authors intend to the principle of a similar strategy
extended to the case of objects interconnected by multi-wires cables.
This strategy is based again on the coupling of the MTLN equations
with Maxwell’s equations.

The paper is organized into four sections. The mathematical
formulations and numerical approximations using the finite difference
schemes for the 3D Maxwell and MTLN equations are recalled in
Section 2. Then, in Section 3, we give the principle of the proposed
1D/3D hybridization method for the study of complex networks inside
structures. Some examples are presented to validate the approach on
generic test-cases that include multi-wires cables, through comparisons
with results found in the literature or obtained by other methods.
These examples show the advantages of the proposed 1D/3D hybrid
method. Finally, in Section 4, we present our 1D/3D hybrid method
adapted for large computational domains in terms of wavelength,
typically a set of buildings located on a common ground reference,
and interconnected by cables. In particular, we describe the principle
of the hybridization strategy in this particular case and we give some
examples to show the advantages of the method in terms of memory
storage and CPU time.

2. MATHEMATICAL FORMULATIONS AND
NUMERICAL APPROXIMATIONS

The two physical models used in this work are Maxwell’s equations
and the MTLN equations. To evaluate numerically the solution of
these equations, we use for both systems a Finite Differences Time
Domain (FDTD) method. In this section, we recall the equations and
describe the numerical schemes used for their resolution.



412 Muot et al.

2.1. Maxwell’s Equations and Yee’s Scheme

Let Q C R? be a bounded domain where we define an electric E and a
magnetic H fields. These fields satisfy Maxwell’s equations given by:

VxE+p,H =0

VXH—EO%—FJ (1)
E(t=0)=0; H(t=0)=0
n X E=0on 0N

where 02 defines the boundary of 2 and J a given source of current. To
simulate the infinite space, JP. Berenger proposed a Perfectly Matched
Layer (PML) formalism where the condition nx E = 0 is always applied
on 02 [12]: this condition does not limit our model.

To solve the Equation (1), K. S. Yee [9] proposed an efficient
well known finite differences numerical method based upon a leap-frog
scheme in time and in space [10, 11].

2.2. Multiconductor Transmission Line Equations

The MTLN equations represents the propagation of currents and
voltages along a set of parallel conductors. In the case of a common
ground reference, the current vector I and the voltage vector V on a
conductor are given by [13,17]:

{L31+fﬂ' 9 + Eine

p) (2)
CI +GV =—

where R, L, G and C define matrices containing the line parameters,
so called “per-unit-length” (p.u.l) electrical parameters and Ej,. an
incident electromagnetic field source vector. The inductance matrix L
and the capacitance matrix C' depend on the geometry of the wires, the
local 3D geometry and the characteristics of the surrounding medium.
They are evaluated by considering a common reference ground made
by the local geometry. This ground is used for defining the voltage V'
on each wire of the multi-wires model. From a circuit point of view, a
MTL can be represented by a set of elementary cells defined as shown
in Figure 1.

In the particular case of an homogeneous medium and considering
v as the speed of the light in the medium, we can write LC = 1/v%.
Writing ¢ = CV, we can write the system of Equation (2) in an
equivalent form by eliminating V:

6t RI_ 28(]_’_ m(,
_ o (3)
o+ éa=-%
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Figure 1. I and V the unknowns and p.u.l parameters on a
transmission-line cell (simple case of a one-wire transmission line).

GROUND

These equations are consistent with Holland’s formalism [1] which is
usually used for taking into account thin wires in the FDTD method.

To complete the previous system of equations, some boundary
conditions are applied at the end of each segment:

e ¢ = 0 when the conductor is connected to a Perfectly Electric
Conductor (PEC) plane;

e [ = 0 when the conductor is not connected;

. Zfil I; = 0and V (i,5) € [1,N]> V; = V; for a junction of N
perfectly connected conductors.

To solve the system of Equation (3), we use a FDTD method based
upon a leap-frog scheme in space and in time as for the Yee method. In
this approach, all the conductors are split into several segments and,
on each segment i, we define three unknowns: two charges (qi1;, ¢2;)
located at the two ends of the segment, and a current I; defined in the
middle of the segment. In the FDTD scheme, the charges are evaluated
at times t, = ndt and the currents at times ¢,/ = (n + 1/2)dt for
n =1, N, where N defines the number of iterations in time and dt the
time step.

Now, let a segment 7 be connected at its ends by two others
segments ¢ — 1 and i + 1. Considering the system of Equation (3)
on a segment ¢ and the junction conditions, the numerical scheme to
evaluate the charges and the current is given by the following equations:

_ At g —qt E; Ay
IR (2 (1—p = )2 ard2 T Apine) R ot
i i or,) " a, S i
@it =auql — Bui (I?_l/Q - If__11/2>

+ —-1/2 —1/2
qgi = a2iQ2nz‘ — Bai (lz‘n+1 / lin / ) (4)
where

i G dli—1 Ci—1 Gi1
A=t <1—At2oi> + S22 00 <1—At20i_1>
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([ dl; G; dli—1 Ci—1 Gi—1
e (B ey B (13,8 )) [y g
Bri = At/A

The terms «ag; and (3y; are also defined by Equation (6), in which (i —1)
is replaced by (i + 1). In the previous expressions, At, dl;, dl;—; and
dl;+1 are respectively the time step and the lengths of the segments i,
t—1 and ¢+ 1 in the 1D mesh.

To ensure the stability of the numerical method, it is easy to show
that the time step At must satisfy At < min,(dl;/v).

To complete the numerical method associated to the MTL
equations, the values of the parameters R, L, G and C have to be
known. We have seen that L and C parameters depended on the
geometry and the characteristics of the medium. The R parameter is
defined by the conductivity of the wires as far as the ground is perfectly
conducting. Here, we also apply the commonly made approximation
that G is equal to 0, which is consistent with our approximation of an
homogeneous free space medium.

In this paper, we are interested by two kinds of MTL models. The
first one consists in bundles of conductors located inside 3D structures;
in this case the reference conductor is given by the cell boundary.
The second one consists in cables located above a perfectly conductor
or a real soil; in this case, the reference conductor is then made by
the ground. For some canonic configurations, one can find analytical
formulas that give the expressions of the MTLN parameters [14]. But
in general, this is not the case and a 2D Laplace equation needs to
be solved to evaluate them [15,16]. The method consists, first, in
considering a 2D geometrical cross-section of the cable bundles and
in assigning a potential value to each conductor, in order to have a
potential for the reference conductor equal to 0. Then the potential
variation U in the 2D section is evaluated by solving a Laplace’s
equation. Next, the charge (); of each conductor ¢ is evaluated by
integrating on their surface the quantity e(F - n) where n defines the

outside unit vector to the boundary and £ = VU. The capacitance

L Qi—Qy
4= U,—U;

and the inductance matrix L;; is obtained by L;Cy =1/ V2.

matrix between two conductors ¢ and j is then given by C

3. 1D/3D HYBRID METHOD FOR COMPLEX
NETWORKS

Taking into account realistic network of bundles in electromagnetic
simulations has always been an important issue for EMC problems.
Several studies have been done on this subject in the literature to
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obtain the most efficient model. Nevertheless, despite the progress
made by these studies, it is still difficult to give a satisfactory
simulation for a lot of industrial problems with complex interconnected
cable networks. In this section, we propose to handle this problem
by coupling 3D Maxwell’s equations for evaluating electromagnetic
fields and the 1D MTLN equations for evaluating currents on cables.
We show the advantages of this method on different test-cases. For
the selected test cases, we make the approximation of free space and
perfectly conducting common mode references, which allow to address
already a large set of problems. With these assumptions we can show
some comparisons with some other approaches, but the method itself
is not limited and could be applied in more general cases.

3.1. Coupling Parameters

In the proposed 1D/3D hybrid strategy, the electromagnetic fields
are evaluated by using Maxwell’s equations and the variations of
the currents and charges along the conductors inside the cables are
computed by a MTLN equation. So to solve the problem we have a
system of two coupled systems of equations derived from (1) and (3).
For Maxwell’s equations, the coupling term is the current density J
induced by the currents on the cables, and for the MTLN equations, the

objects  glectric fields taken in 3D and injected in 1D

! 3D domain

location of the bunﬁle (center) Pc

Sum of current injected

. 1D domain

center of the bundle Pc
conductors inside the bundle

currents evaluated in 1D and injected in 3D

Figure 2. Definition of the location of the coupling terms in the
1D/3D hybrid strategy.
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coupling term is given by the incident electric field (E). In our 1D/3D
hybridization strategy, we choose to evaluate the coupling terms with
respect to a common mode coupling model (one common reference for
each wire of the MTL). In this approximation the coupling term from
Maxwell’s equations to the MTLN equations is given by the electric
fields Fj(p.) taken along a central paths p.. In some situations, if the
conductors of the MTL are close to each other (like in cable harnesses),
the central path is defined by the centroid of the cable cross-section
(see Figure 2). More generally, central path must be associated to each
MTL conductor route. These values are introduced as incident fields
in the transmission line equations in Agrawal’s approach [17]. As far as
the coupling term J from the MTL equations in Maxwell’s equations is
concerned, in order to maintain a control on the energy for the coupled
system [4], the current density is given by the total current i.. This
value is given by the sum of the currents evaluated on each conductor
of the MTL and applied on the central path previously defined.

3.2. Numerical Examples

To validate our 1D /3D hybrid strategy, we present in this section three
examples of comparisons between results obtained with our method,
the thin wire formalism and the Time Domain Electric Field Integral
Equation (time EFIE) respectively.

3.2.1. Single Wire in Free Space

The first example consists in evaluating the current on a single
wire located along the z-axis in free space and illuminated by a
(Ey, Hy, K.) plane wave given with a Gaussian waveform:

E,(t) = 10° exp (—a?(t — 7)?) (6)

with 7 = 10/cos and a = 0.2 - 109571, ¢y being the free space velocity.
The length and the radius of the wire are respectively given by [ = 3m
and r» = 1cm. The wire is assumed in open circuit at its both ends
(current equal to 0). Figure 3 shows the current obtained at the
middle of the wire with our 1D /3D hybrid strategy, the Holland’s thin
wire formalism and the time domain EFIE method. We can see a
good agreement between all the curves and in particular between our
solution and the time domain EFIE solution, which can be considered,
for this example, as the reference solution. To show the need to take
into account the currents on the cable to evaluating the scattered fields,
the Figure 4 shows the comparison of the current on the cable with
and without taken into account the currents on the wire for computing

fields.
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Figure 3. Midpoint current on Figure 4. Midpoint current
one-wire cable. Comparisons be- on one-wire cable. Comparisons
tween different numerical meth- between our coupling method
ods. with and without taken into
account the currents on the wire
to compute the scattered fields.

3.2.2. MTL in Free Space

For the second example, we consider a canonical configuration made
of a MTL constituted of 9 parallel conductors, whose section is
represented in Figure 5. The incident field source, the length of the
conductors and the boundary conditions are the same as for the first
example. In this configuration, we assume the conductors close enough
in order to consider only one central path for which the incident electric
field is supposed to be identical for each conductor. In Figure 6,
we compare the solutions obtained with our 1D/3D hybrid strategy,
Berenger’s thin wire formalism which allows to take into account MTL
and the time domain EFIE method. Once again, we note in this
example the good agreement of our approach with the time domain
EFIE method (reference solution).

3.2.83. Antenna Configuration

The main interest of the third example is to investigate the ability of
our approach to address networks of cables with junctions. For this, we
consider a dipole antenna constituted of three branches. One of them
is made up of two parallel wires spaced by a distance e = 2c¢m, and
connected at the other branches made up of one-wires (see Figure 7).
The radius of all wires are equal to r = 0.2 mm, and the lengths of the
branches are equal to I = p = 1 m. The system is illuminated by the
same incident plane wave as for the previous examples. For this test
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between several numerical meth-
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Figure 7. Geometry of the antenna.

case, the classical thin wires formulations cannot be used because they
are not adapted to model the wire-connections in the junction.

Figure 8 gives the current at the middle of the left branch (node a)
and Figure 8(b) gives the currents at the middle of one of the two wires
(node b). The comparison is made with our 1D/3D hybrid strategy
and the time domain EFIE method. The currents obtained with the
two methods show good agreement. In particular this example shows
the interest of our 1D /3D hybrid approach to deal with realistic wire
connection problems.

In conclusion of these results, using our 1D/3D hybridization
strategy provides a general way to introduce complex multi-wire cables
in FDTD cells. The proposed numerical examples demonstrated the
validity of this method and its ability to solve adequately configurations
regularly encountered in cable network topologies.
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Figure 8. (a) Midpoint current on left branch and (b) midpoint
current on two wire part on a current node for Figure 7 configuration.
Numerical method comparisons.

4. 1D/3D HYBRID METHOD FOR LARGE
COMPUTATIONAL DOMAINS

In this section we are now interested in the evaluation of the EM
perturbations induced by an electromagnetic source on a set of 3D
objects, interconnected on long distances by cables, and covering very
large domain in terms of wavelength. For this kind of problem,
considering the whole computational domain with only a 3D FDTD
method implies an huge cost in terms of memory and CPU-time, as well
as a significant numerical error of dispersion due to the FDTD scheme.
To avoid these problems, we propose in this section an adaptation of
the 1D/3D hybridization strategy presented in the previous section.
For this approach, we propose to split the computation domain into
several sub-domains (see Figure 9) where the 3D FDTD method will
only be used on small domains located around the 3D objects. The
currents on wires linking these 3D domains are computed solving a 1D
MTL equation. In the following of this section, we will consider that
the 3D objects are buildings located on a PEC ground. We will see
that this approximation will allow to model a complex and realistic
configuration: a space launcher site.

4.1. Principle of the Method

In the configuration studied, we make one important assumption: the
buildings are far enough in terms of wavelength, one from each other;
so we can neglect for a building, the contribution of the external fields
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source computational domain

subdomain 1 subdomain 2 subdomain 3

object object
cable
Figure 9. Decomposition of the computational domain in
subdomains.
3D Domain
overlap
S wirein 1D
L e D
. St 2ot Sk
object | 1D Domain
wirein 3D exchanges

currents on wire

Figure 10. Hybridization process with an overlap on a part of the
cables.

scattered by one building on the other.

In the principle of this 1D/3D hybrid strategy, we couple the
MTLN equations and Maxwell’s equations, exchanging only currents
on wires. In the decomposition of the computational domain (see
Figure 9), we make the decomposition in such a way that a part of
the wire is located in the 3D domains of the 3D objects (subdomain 1
and subdomain 2 in Figure 9). An overlap with the wire in the 1D
domain is thereby done (see Figure 10).

In the hybridization process, we make the exchange on this
overlapping zone between the two domains between two types of
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currents:

- the current calculated by the 3D FDTD method, from the 3D
domain onto the 1D domain (see Figure 10);

- several currents from the 1D domain to the 3D domain on the
overlap area (see Figure 10). These currents ensure locally around
the cable the right distribution of the electromagnetic fields.

In this hybridization process, one difficulty consists in optimizing the
length of the overlapping area. Some numerical experiments have been
done to answer this question and a good choice consists in taking a
length of cable equal to the distance between the soil and the cable.

In this coupling process, we take into account on the cable located
in the 1D domain, the incident plane wave but not the fields scattered
by the structures. This field is only introduced on the parts of the
wire located in the 3D domains. Considering the assumptions made
previously on the interaction between the structures, in the 1D domain,
the fields scattered by them is smaller than the incident plane wave
and can be neglected. This is not true, when the distance between the
structure in terms of wavelengths is not important. In this case our
hybridizing method don’t give good results.

4.2. Numerical Examples

We propose two examples to validate and to show the interest of this
1D/3D hybrid strategy for taking into account 3D domains connected
by wires.

4.2.1. Wire Connected to Two Metallic Walls

The first example is a generic test case, defined by a wire connected
to two metallic walls. A voltage generator is located at one extremity
of the wire and we compute the current at the other end. Using our
1D /3D hybrid approach, we split the domain into 3 sub-domains as
described in Figure 11.

Figure 12 shows the comparison between the solutions obtained
with our hybrid approach and with a FDTD method by considering
the whole domain, noted “full-FDTD” in the following. We also draw
in Figure 12 the solution obtained using only a MTLN equation, which
can be considered by experience in this example very close to the
reference solution. We observe in these figures a good agreement
between all the solutions, with a better accuracy for our hybrid method
than the fullFDTD method. This can be explained by the fact that
in the 1D /3D hybrid approach the dispersive error is smaller than in
the fulllFDTD method. Indeed, it is well known that the dispersive
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Figure 12. Comparison between different solutions at the test-point

z =175m.

error for the FDTD scheme is smaller in 1D than in 3D. Finally in this
example, we can see the good behaviour of our 1D/3D hybrid strategy

and its advantage to minimize the dispersive errors.
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4.2.2. Soyuz Space Launcher Site

In the second example, we consider a simplified model of the Soyuz
space launcher site in Kourou, French Guyana (see Figure 13). The
evaluation of induced electromagnetic fields on such a complex set of
structures and interconnected buildings is a concrete and typical case of
targeted application of our method. In the numerical model of the site,
for the purpose of our demonstration, we consider only two buildings
on a PEC ground, connected by a cable and illumined by an incident
plane wave. We consider two polarizations, given by (E., —Hy, —k.)
and (E,, Hy, —k,) with a Gaussian waveform

E(t) = —Aa(2(a(t — 7)) = 1)elet=7)? (7)

where A = 2¢%%/(a++/2), @ = 13.3 and 7 = 1.25. The computational
domain is split into 3 sub-domains as shown in Figure 13.

Figure 14 shows the comparison between the solutions obtained
with the 1D/3D hybrid strategy and the ful-lFDTD method. For the
first polarization of the plane wave, we note a very good agreement
between the two solutions.

The results for the second polarization of the plane wave are
shown in Figure 15. In this case we also have a good agreement

Assemblage

Figure 13. Real space launching site Soyuz in Kourou, French
Guyana, and simplified model.
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for both solutions, but we can note small differences, which can be
explained by errors of dispersion in the full FDTD method. Indeed
in this configuration the incident plane wave is more coupled with the
cable than in the other polarization and the errors of propagation are
more important in the 3D computations.

For this last example, our proposed 1D /3D hybrid strategy leads
to a good result with an important gain in term of CPU-time (see
Table 1). Concerning the memory storage, the gain is not so obvious

60 60

@-@ FDTD-3D ®-®FDTD-3D
— Hybrid method| — Hybrid method

N
o o
Current in [mA]

Current in [mA]

N
o

-60

3 4 5 3 4
tin [us] tin [us]

@ (b)

Figure 14. Comparison between the 1D/3D hybrid method and the
fulllFDTD method on two test-points on the cable located inside the
first and the third subdomain, for the first polarization (E,, —H,, —k.).

60 40 b
®-®FDTD-3D -8 FDTD-3D
20|
a0t 1
201
— 201 <
z £ 10
£ 0 £ 0
g g
3 -20f 3 -lor
-20f
_40 L
_30 L
-60 . . . . -40
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Figure 15. Comparison between the 1D/3D hybrid method and
the full-FDTD method on two test-points on the cable located

inside the first and the third subdomain, for the second polarization
(Ey, Hy, —k2).
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but also exists. This remark is also true for the first generic test
case presented at the beginning of this section (wire connected to two
metallic walls), but the gains obtained are less obvious than for the
second one, due to its smaller global size. In conclusion, the 1D/3D
hybridization approach, proposed to model objects located on PEC
grounds and connected by wires in a large domain appears to be an
interesting method which provides a good solution, with the advantages
of decreasing the errors of dispersion and the costs in terms of CPU-
time and memory storage.

Table 1. CPU time and memory storage comparison between full-
FDTD and 1D/3D approaches for the two polarizations.

Full FDTD | 1D/3D method
CPU Time (s) 1h10mn 28 mn
Memory storage (MB) 1.6 MB 1.1MB

5. CONCLUSION

In this paper, we proposed a 1D /3D hybrid strategy to couple MTLN
equations on wires and Maxwell’s equations for solving EMC coupling
problems inside structure and for disjoint objects connected by wires
and located on a PEC ground. For the two types of problems, we
gave the principle of the hybridization process and some examples
of validation. Concerning the first type of problem, the 1D/3D
hybridization strategy allows taking into account complex networks of
multiconductor cables, considering the real cross-section of the cables
and the connections between wires. This is generally not possible
by using the usual thin wires formalism developed for the FDTD
method. In future developments, we hope extend these results for the
case of wires having no constraints on their locations in the mesh,
by modifying the reference ground for computing line parameters.
Concerning the second problem, our 1D/3D hybrid strategy allows
significant reduction of the CPU-time and partially of the memory
storage, by avoiding to consider a global 3D domain. The other
advantage of this method is to limit the errors of dispersion and finally
to obtain a more accurate solution. In the future, these promising
results could be extended for realistic soils, for which it is necessary to
take into account dispersive models in the MTLN equation.
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