
Chapter 4

Traceability in the Co-evolution of Architectural

Requirements and Design

Antony Tang, Peng Liang, Viktor Clerc, and Hans van Vliet

Abstract Requirements and architectural design specifications can be conflicting

and inconsistent, especially during the design period when requirements and architec-

tural design are co-evolving. One reason is that stakeholders do not have up-to-date

knowledge of each other’s work to fully understand potential conflicts and incon-

sistencies. Specifications are often documented in a natural language, which also

makes it difficult for tracing related information automatically. In this chapter,

we introduce a general-purpose ontology that we have developed to address this

problem. We demonstrate an implementation of semantic wiki that supports trace-

ability of co-evolving requirements specifications and architecture design.

4.1 Introduction

Let us begin by considering a typical software architecting scenario:

A team of business analysts and users work on a new software system in an organization. The

business analysts and users document the business goals, use-case scenarios, system and data

requirements in a requirements document. The team of software and system architects studies

this document, which is in a draft version, and they start to create some designs. The

architects realize that more information from the stakeholders is required, and they must

validate the usability requirements with the operators to ensure they understand the efficiency

requirements of the user interface; they also realize that they must understand the data

retention and storage requirements from the business managers; finally, they have to analyze

the performance requirements of the system. They find that the performance of retrieving data

is slow and that hinders the data entry task. They have to discuss and resolve this issue

together with the business analysts who represent the business operation unit. In the mean-

time, the business analysts have decided to add new functionalities to the system . . .

In this scenario, many people are involved in the development of the system, and

the knowledge used in the development is discovered incrementally over time.

Common phenomena such as this occur every day in software development. Three

problematic situations often arise that lead to knowledge communication issues in

software design.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_4, # Springer-Verlag Berlin Heidelberg 2011

35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24065693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The first problematic situation is that knowledge is distributed. System develop-

ment always involves a multitude of stakeholders and each stakeholder possesses

only partial knowledge about some aspects of a system. In this case, business users

only know what they want, but they do not know how to make it work, and vice

versa for the architects. In general, requirements are specified by many stakeholders

such as end-users, business managers, management teams, and technology

specialists. Architecture designs, in turn, are specified by architects, application

software designers, database specialists, networking specialists, security specialists,

and so on. As a result, the requirements and architectural design specifications that

are created by different stakeholders are often conflicting and inconsistent.

Secondly, information is imperfect. Not all information about requirements and

architecture design is explicitly documented and retrievable. The requirements and

architecture design are for the most part recorded in specifications but some

knowledge will remain only in the heads of those who are deeply involved in the

software development project. The vast number of requirements and design entities

in large-scale systems can potentially hide requirements and design conflicts. These

conflicts can remain undetected until the relevant design concerns are considered in

certain views and with certain scenarios. Additionally, not all relationships between

the design entities and the requirements statements are captured sufficiently in the

specifications to allow stakeholders to detect potential conflicts.

Thirdly, requirements and architecture design can co-evolve over time.
Requirements and insight into how these requirements may be implemented evolve

over time through exploration, negotiation, and decision-making by many people.

In the scenario given at the beginning of this chapter, architects understand the

performance constraints in data retrieval that the business users have no knowledge

of. Because of the performance constraint, compromises in the design and require-

ments will have to be made. Sometimes, requirement decisions that have profound

impact on the architecture design can be made before the start of the design acti-

vities. In this way, requirements documents can be signed off before architecture

design commences. However, agreeing on these important requirement decisions

is not always possible.

Owing to these issues, it is obvious that the development of requirements

specifications and the architectural design specifications would overlap in time,

implying that these specifications can co-evolve simultaneously. In order to allow

stakeholders to communicate the potential impacts and conflicts between require-

ments and the architectural design during their co-evolution, different stakeholders

must be able to trace between requirements and design to assess the viability of the

solution during this process.

Traceability between requirements and design has been studied previously

[1–4]. These methods use static trace links to trace different types of requirements,

design, and code objects. They employ different ways to construct traces. However,

these methods suffer from two issues: (a) the need to laboriously establish the trace

links and maintain them as a system evolves; (b) they do not support on-going

design activities. An improvement to these methods is to provide dynamic tracing at

different levels of design abstraction. An example of this dynamism is a scoped

36 A. Tang et al.

approach to the traceability of product line and product levels [5]. However,

this approach is not suitable for general purpose traceability of requirements to

architecture design.

In this research, we investigate how requirements and design relationships can

become traceable when requirements and design objects are both incomplete and

evolving simultaneously, and the static trace links used by conventional traceability

methods are insufficient and out-of-date. Our work provides a general ontological

model to support the traceability of co-evolving architectural requirements and

design. Based on this ontology, we have applied semantic wikis to support trace-

ability and reasoning in requirements development and architecture design.

This remaining of this chapter is organized as follows. Section 4.2 describes

the issues on current traceability management from requirements to architecture

design. Section 4.3 presents the traceability use cases for co-evolving architec-

ture requirements and design with a metamodel that supports this traceability.

Section 4.4 introduces the implementation of Software Engineering Wiki (SE-

Wiki), a prototype tool that supports the dynamic traceability with an underlying

ontology based on the traceability metamodel. Section 4.5 presents three concrete

examples of using SE-Wiki to perform the traceability use cases. We conclude this

chapter in Section 4.6.

4.2 Issues in Finding the Right Information

Requirements traceability is the ability to describe and follow the life of require-

ments [1]. Ideally, such traceability would enable architects and designers to find

all relevant requirements and design concerns for a particular aspect of software

and system design, and it would enable users and business analysts to find out

how requirements are satisfied. A survey of a number of systems by Ramesh

and Jarke [2] indicates that requirements, design, and implementation ought to be

traceable to ensure continued alignment between stakeholder requirements and

various outputs of the system development process. The IEEE standards recom-

mend that requirements should be allocated, or traced, to software and hardware

items [6, 7].

On the other hand, [1] distinguishes two types of traceability: pre-requirements
specification and post-requirements specification. The difference between these

two traceability types lies in when requirements are specified in a document.

With the emergence of agile software development and the use of architecture

frameworks, the process of requirements specification and design becomes more

iterative. As a result, the boundary between pre- and post-requirement traceability

is harder to define because of the evolving nature of requirements specification

activity.

In this section, we examine the knowledge that is required to be traced, the

challenges of using conventional requirements traceability methods that are based

on static information, and compare that with an environment where information

4 Traceability in the Co-evolution of Architectural Requirements and Design 37

changes rapidly and the capabilities to trace such dynamic requirements infor-

mation must improve.

4.2.1 Architectural Knowledge Management and Traceability

Architectural knowledge is the integrated representation of the software architec-

ture of a software-intensive system (or a family of systems), the architectural design

decisions, and the external context/environment. For facilitating better design

decision-making, architects require “just-in-time” knowledge [8]. Just-in-time

knowledge refers to the right architectural knowledge, provided to the right person,

at any given point in time.

Architectural knowledge should capture not just the outcomes of a design but

also the major architectural decisions that led to it [9]. Capturing the architectural

decisions facilitates a better decision-making process in shorter time, saving rework

and improving the quality of the architecture [10, 11]. Hence, it is important to not

only trace to the resulting architecture design, but also to the decisions, including

their rationale, that led to that design.

Sound management of architectural knowledge can help in providing just-in-

time knowledge by building upon two important knowledge management strategies

[12]. Personalisation implies providing knowledge that urges the knowledge

workers to interact with each other, by making known who possesses certain

knowledge. Codification, on the other hand, focuses on identifying, eliciting,

and storing the knowledge in e.g., repositories.

A hybrid strategy that uses both personalisation and codification aspects can be

beneficial to sound architectural knowledge management, especially in the iterative

process of architecting. When tracing back and forth between requirements and

architecture, architects need specific support with adequate information relevant

for addressing the design issues at hand. Hence, the proposed traceability method

using semantic wikis is aligned with the current knowledge management strategy.

4.2.2 Requirements and Architecture Design Traceability

During the development life cycle, architects and designers typically use specifications

of business requirements, functional requirements, and architecture design. Traceabil-

ity across these artifacts is typically established as a static relationship between entities.

An example would be to cross-reference requirement R13.4 which is realized by

module M_comm(). It is argued by [3] that relating these pieces of information helps

the designers tomaintain the system effectively and accurately, and it can lead to better

quality assurance, change management, and software maintenance. There are different

ways in which such traceability between requirements and architecture design can be

38 A. Tang et al.

achieved. Firstly, use a traceability matrix to associate requirements to design entities

in a document [13]. This is typically implemented as a table or a spreadsheet.

Traceability is achieved by finding the labels in a matrix and looking up the relevant

sections of the documents. Secondly, use a graphical tool in which requirements and

design entities are represented as nodes and the relationships between them as arcs.

Traceability is achieved by traversing the graph. Examples of such a system are

provided by [2, 14]. Thirdly, use some keyword- and metadata-based requirements

management tools. The metadata contains relationships such as requirement X is

realized by component Y. The user would, through the tool, access the traceable

components. Examples of such systems are DOORS [15], RequisitePro [16],

and [17]. Fourthly, automatically generate trace relationships through supporting infor-

mation such as source code [4], or requirements documents [18, 19].

Traceability is needed not only for maintenance purpose when all the designs are

complete and the system has been deployed; static traceability methods can work

well under this circumstance. Traceability is also needed when a system design is in

progress, and the relationships between requirements and design entities are still

fluid. The following scenarios are typical examples:

• When multiple stakeholders make changes to the requirements and the architec-

ture design simultaneously during development

• Stakeholders are working from different locations and they cannot communicate

proposed changes and ideas to the relevant parties instantly

• Requirements decisions or architectural decisions may have mutual impact on

each other, even conflict with each other, but these impacts are not obvious when

the two parties do not relate them

Under these circumstances, static traceability methods would fail because it is

difficult to establish comprehensive traceability links in a documentation-based

environment. In real-life, potential issues such as these are discussed and resolved

in reviews and meetings. Such a solution requires good communication and man-

agement practice for it to work. A solution was proposed to use events to notify

subscribers who are interested in changes to specific requirements [20]. This,

however, would not serve for situations in which many new requirements and

designs are being created.

In order to address this issue, this chapter outlines the use of a query-based

traceability method to allow architects and requirements engineers to find relevant

information in documents. This method applies a software engineering ontology to

requirements and architecture design documentation.

4.2.3 Applying Semantic Wikis in Software Engineering

Software development is from one perspective a social collaborative activity.

It involves stakeholders (e.g., customers, requirements engineers, architects,

4 Traceability in the Co-evolution of Architectural Requirements and Design 39

programmers) closely working together and communicating to elicit requirements

and to create the design and the resulting software product. This collaboration

becomes more challenging when an increasing number of projects are conducted in

geographically distributed environments – Global Software Development (GSD)

becoming a norm. In this context, many CSCW (Computer Supported Collabora-

tive Work) methods and related tools have been applied in software engineering to

promote communication and collaboration in software development [21], but the

steep learning-curve and the lack of openness of these methods and tools inhibit

their application in industrial projects.

Semantic wikis combine wiki properties, such as ease of use, open collaboration,

and linking, with Semantic Web technologies, such as structured content, know-

ledge models in the form of ontologies, and reasoning support based on formal

ontologies with reasoning rules [22, 23]. As such, a semantic wiki intends to extend

wiki flexibility by allowing for reasoning with structured data: semantic annotations

to that data correspond to an ontology that defines certain properties. Once these

semantic annotations are created, they are then available for extended queries and

reasoning [22]. The combination of these features provides an integrated solution to

support social collaboration and traceability management in software development.

From one perspective, semantic wikis can facilitate social collaboration and com-

munication in software development. Normal wikis have been used by the software

industry to maintain and share knowledge in software development (e.g., source

code, documentation, project work plans, bug reports, and so on) [24], requirements

engineering [25], and architecture design [26]. With the semantic support of an

underlying ontology and semantic annotations, semantic wikis can actively support

users in understanding and further communicating the knowledge encoded in a wiki

page by – for example – appropriately visualizing semantically represented project

plans, requirements, architecture design, and the links between them [22]. From the

other perspective, the underlying ontologies that support semantic wikis are com-

posed of the concepts from software engineering and the problem domains, and the

relationships between these concepts can be formally specified by the RDF [27] and

OWL [28] ontology languages. This ontology representation helps users to search

for semantic annotations encoded in the semantic wikis through concept

relationships and constraints, and provides reasoning facilities to support dynamic

traceability in software development.

Semantic wikis have been applied to different areas of software engineering,

mostly in research environments. One application focuses on combining documents

from Java code, and to model and markup wiki documents to create a set of

consistent documents [29]. Ontobrowse was implemented for the documentation

of architecture design [30]. Softwiki Ontology for Requirements Engineering

(SWORE) is an ontology that supports requirements elicitation [31]. So far,

we know of no ontological model that supports the traceability between require-

ments and architectural design.

40 A. Tang et al.

4.3 What Needs to be Traced and Why?

4.3.1 Architectural Design Traceability

Many requirements traceability methods implicitly assume that a final set of

requirements specifications exists from which traceability can be performed.

Some methods require users to specify the traces manually [32], whilst others

automatically or semi-automatically recover trace links from specifications [3, 17].

The assumption that a definitive set of unchanging documents exists does not

always hold because tracing is also required when requirements and architecture

design are being developed. This is a time when requirements and architecture

design co-evolve. Architectural design activities can clarify non-functional

requirements and trade-offs can compromise business requirements. During this

time, a set of final specifications are not ready but traceability between related items

can help architects find their ways.

Traceability between requirements and architecture design is generally based on

the requirements and design specifications, but the other types of documented

knowledge should also be traceable to the architecture design. This knowledge

often defines the context of a system, e.g., technology standards that need to be

observed in a design or the interface requirements of an external system.

In discussing the support for the traceability of group activities, [1] noted that

Concurrent work is often difficult to coordinate, so the richness of information can
be lost. There are some issues with supporting concurrent updates. Firstly, the

information upon which a trace link is based has changed. For example, the

requirement statement has changed. The trace link will need to be investigated

and may be updated because information that is linked through it may be irrelevant

or incorrect. It is laborious and therefore error prone to keep trace links up to date as

requirements and designs change. Secondly, many decision makers exist and many

parts of the requirements and designs can be changed simultaneously. In this

situation, not all relevant information can be communicated to the right person at

the right time. For instance, a business user adding a requirement to the system may

not know that this change has a performance impact on the architecture design, thus

she/he may not be aware that such a decision requires an architectural design

assessment. In this case, some hints from an intelligent tracing system could help

to highlight this need.

4.3.2 Traceability Use Cases in Co-evolving Architectural
Requirements and Design

In order to develop traceability techniques to support requirements-architecture

design co-evolution, we have developed a set of traceability use cases. These use

4 Traceability in the Co-evolution of Architectural Requirements and Design 41

cases show examples of typical activities of architects that require support by a

reasoning framework (see Sect. 4.1). The use cases are described following a

technique introduced in [33] providing a scenario, problem and solution descrip-

tion, and a detailed description of the scenario.

Scenario 1 – Software Reuse An architect wants to check if existing software

can be reused to implement a new functional requirement, and the new functionality

is similar to the existing functionality.

Problem The architect needs to understand the viability of reusing software to

satisfy existing and new functional and quality requirements.

Solution The architect first finds all the architecture components that realize the

existing functional requirements which are similar to the new functional require-

ment. Then, the architect can trace the existing architecture components to deter-

mine what quality requirements may be affected, and whether the existing software

is supporting the new requirement.

Scenario description

1. The architect thinks that the existing software can support a new functional

requirement which is similar to existing functional requirements.

2. The architect selects the existing functional requirements and identifies all the

software components that are used to realize them.

3. For each software component found, the architect identifies the related architec-

tural structure and the quality requirements.

4. The architect assesses if the existing quality requirements are compatible with

the quality requirements of the new functional requirement.

5. If so, the architect decides to reuse the components to implement the new

functional requirement.

Scenario 2 – Changing Requirement An architect wants to update the archi-

tecture design because of a changing functional requirement.

Problem The architect needs to understand the original requirements and the

original architecture design in order to cater for the change.

Solution The architect first finds all existing requirements that are related to the

changing requirement. Then the architect identifies the decisions behind the origi-

nal design. The architect can assess how the changing requirement would affect

related existing requirements and the original design.

Scenario description

1. The architect identifies all the related artifacts (e.g., related requirements, archi-

tectural design decisions, and design outcomes) concerning the changing

requirement.

2. The architect evaluates the appropriateness of the changing requirement with

related existing requirements.

3. The architect extracts previous architectural design decisions and rationale for

the changing requirement.

4. The architect identifies new design issues that are related to the changing

requirement.

42 A. Tang et al.

5. The architect proposes one or more alternative options to address these new

issues.

6. The architect evaluates and selects one architectural design decision from

alternative options. One of the evaluation criteria is that the selected decision

should not violate existing architectural design decisions and it should satisfy the

changing requirement.

7. The architect evaluates whether the new architectural design outcome can still

satisfy those non-functional requirements related to the changing functional

requirement.

Scenario 3 – Design Impact Evaluation An architect wants to evaluate the

impact a changing requirement may have on the architecture design across versions

of this requirement.

Problem The architect needs to understand and assess how the changing

requirement impacts the architecture design.

Solution The architect finds all the components that are used to implement the

changing requirement in different versions, and evaluates the impact of the chang-

ing requirement to the architecture design.

Scenario description

1. The architect extracts all the components that realize or satisfy the changing

requirement in different versions, functional or non-functional.

2. The architect finds all the interrelated requirements in the same version and the

components that implement them.

3. The architect evaluates how the changes between different versions of the

requirement impact on the architecture design, and can also recover the decision

made for addressing the changing requirement.

In order to support these traceability scenarios, a dynamic traceability approach

is needed. This approach would require the traceability relationships to remain up-

to-date with evolving documentation, especially when the stakeholders work with

different documents and some stakeholders do not know what others are doing.

In summary, the following traceability functions need to be provided for such an

approach to work effectively:

• Support the update of trace links when specification evolves – this function

requires that as documents are updated, known concepts from the ontology are

used automatically to index the keywords in the updated documents, thereby

providing an up-to-date relationship trace information.

• Support flexible definition of trace relationships – the traceability relationships

should not be fixed when the system is implemented. The application domain

and its vocabulary can change and the ways designers choose to trace informa-

tion may also change. Thus the trace relationships should be flexible to accom-

modate such changes without requiring all previously defined relationships to be

manually updated.

• Support traceability based on conceptual relationships – certain concepts have

hierarchical relationships. For instance, performance is a quality requirement,

4 Traceability in the Co-evolution of Architectural Requirements and Design 43

response time and throughput are requirements that concretize a performance

requirement. A user may wish to enquire about the quality requirements of a

system, the performance requirements, or, even more specifically, the response

time of a particular function.

• Concurrent use by requirements engineers and architects – business architects,

requirements engineers, data architects, and software architects typically work

on their respective areas concurrently. They, for instance, need to find the latest

requirements that affect their design, then make some design decisions and

document them. As they do, their decisions in turn may impact the others who

are also in the process of designing. The concurrent nature of software develop-

ment requires that this knowledge and its traces are up-to-date.

4.3.3 Traceability Metamodel

The Traceability metamodel for Co-evolving Architectural Requirements and

Design (T-CARD) is based on the IBIS notations (Issue, Position, Argument, and

Decision) [34] to represent design argumentation. This metamodel is constructed

to satisfy the traceability use cases identified earlier. The concepts and the

relationships of T-CARD are presented in UML notation, grouped into the problem

space and the solution space, as shown in Fig. 4.1. It consists of the following

concepts:

Arguments
(rationale)

Position
(Alternatives)

Issue

Architectural
Requirement Decision

Design
Outcome

StakeholderRequirement

Problem Space

Solution Space

Architecture
Structure

Component

Functional
Requirement

Non-Functional
Requirement

relate to

depend on

depend on

is proposed by

relate to

result inis realized by

address

support/object to

Fig. 4.1 Traceability metamodel for co-evolving architectural requirements and design

44 A. Tang et al.

Stakeholder: refers to anyone who has direct or indirect interest in the system.

A Requirement normally is proposed by a specific Stakeholder, which is the
original source of requirements.

Requirement: represents any requirement statements proposed by a specific Stake-
holder, and a Requirement can relate to other Requirements. There are

generally two types of requirements: Functional Requirements and Non-Func-
tional Requirements, and a Requirement is realized by a set of Design
Outcomes. Note that the general relationship relate to between Requirements
can be detailed further according to the use case scenarios supported.

Architectural Requirement: is a kind of Requirement, and Architectural
Requirements are those requirements that impact the architecture design. An

Architecture Requirement can also relate to other Architectural Requirements,
and the relate to relationship is inherited from its superclass Requirement.

Issue: represents a specific problem to be addressed by alternative solutions

(Positions). It is often stated as a question, e.g., what does the data transport layer
consist of?

Position: is an alternative solution proposed to address an Issue. Normally one or

more potential alternative solutions are proposed, and one of them is to be

selected as a Decision.
Argument: represents the pros and cons argument that either support or

object to a Position.
Decision: is a kind of Position that is selected from available Positions

depending on certain Requirements (including Architectural Requirements),
and a Decision can also relate to other Decisions [35]. For instance,

a Decisionmay select some products that constrain how the application software

can be implemented.

Design Outcome: represents an architecture design artifact that is resulted from an

architecture design Decision.
Component and Architecture Structure: represent two types of Design Outcomes,

that an Architecture Structure can be some form of layers, interconnected modules

etc.; individual Components are the basic building blocks of the system.

The concepts in this metamodel can be classified according to the Problem and

Solution Space in system development. The Problem and Solution Space overlap:

Architectural Requirement and Decision, for example, belong to both spaces.

4.4 Using Semantic Wikis to Support Dynamic Traceability

Themetamodel depicted in Fig. 4.1 shows the conceptualmodel and the relationships

between the key entities in the Problem and Solution Space. This conceptual model,

or metamodel, requires an ontological interpretation to define the semantics of the

concepts it represents. In this section, we describe the ontology of our model to

support the use cases of co-evolving architectural requirements and design.

4 Traceability in the Co-evolution of Architectural Requirements and Design 45

An ontology defines a common vocabulary for those who need to share infor-

mation in a given domain. It provides machine-interpretable definitions of basic

concepts in that domain and the relations among them [36]. In software develop-

ment, architects and designers often do not use consistent terminology. Many

terms can refer to the same concept, i.e., synonyms, or the same term is used for

different concepts, i.e., homonyms. In searching through software specifications,

these inconsistencies can cause a low recall rate and low precision rate, respec-

tively [30].

An ontology provides a means to explicitly define and relate the use of software

and application domain related terms such as design and requirements concepts.

The general knowledge about an application domain can be distinguished from the

specific knowledge of its software implementation. For instance, system throughput

is a general concept about quality requirements and that is measurable; it can be

represented in a sub-class in the hierarchy of quality requirements class. In an

application system, say a bank teller system, its throughput is a specific instance of

a performance measure. Using an ontology that contains a definition for these

relationships, this enables effective searching and analysis of knowledge that are

embedded in software documents.

Ontology defines concepts in terms of classes. A class can have subclasses.

For instance, the throughput class is a subclass of efficiency, meaning that through-

put is a kind of performance measure. A throughput class can have instances that

relate to what is happening in the real-world. Some examples from an application

system are: the application can process 500 transactions per second or an operator
can process one deposit every 10 s.

A class can be related to another class through some defined relationships. For

instance, a bank teller system satisfies a defined throughput rate. In this case,

satisfies is a property of the bank teller system. The property satisfies links a specific
requirement to a specific throughput.

4.4.1 A Traceability Ontology for Co-evolving Architectural
Requirements and Design

An ontology requires careful analysis and planning. If an ontology is designed for

a single software application, then it may not be flexible and general enough to

support other systems. To support general traceability of requirements and archi-

tecture design specifications, we define an ontology using the requirements and

architecture metamodel (Fig. 4.1). The ontology (Fig. 4.2) is represented in a UML

diagram that depicts the class hierarchy and the relationships between the classes.

The dotted line represents the relationships between classes. The relationships are

defined in terms of the properties within a class.

In this model, there are five key concepts, represented by five groups of classes.

These concepts are commonly documented in requirements and architecture design

46 A. Tang et al.

specifications, and the ontology is designed to represent these key concepts in

software specifications:

• DC is a concept about the information of a document or a record. Dublin Core

Metadata Initiative (DCMI) is an open organization engaged in the development

of interoperable metadata standards that support a broad range of purposes and

business models [37]. We make use of the concept defined in dc:record to

identify the documents that are created for requirements and architecture pur-

pose. In particular, we make use of the elements defined in the DC concept to

support traceability of requirements and design across multiple versions of

a single document. For example, a DC instance can identify the creator, the

version, and the contributors of a requirement.

• Requirement is a concept that represents all the requirements of a system,

including functional and non-functional requirements. A requirement has a

unique identification and a description. These elements are implemented as

properties (sometimes also referred to as slots) of the Requirement class. The
properties of the Requirement class are inherited by all its subclasses. A require-

ment has an identifier and a description, so both functional and non-functional

requirements have these properties as well. For example, an instance of a

functional requirement would be a sub-class of Requirement. It would have

a req_id of R1.1.3; a req_descr of Change User Access; it can be realized_by
a component called DefineAccessRight. A user of the semantic wiki can ask the

system for all requirements, and both functional and non-functional require-

ments would be retrieved.

• Non-functional Requirement represents all the quality requirements that must be

satisfied by a system. Its subclasses such as efficiency and usability represent

-title
-subject
-description
-type
-source
-relation
-creator
-contributor
-date
-format
-identifier

DC

-qual_is_related_to_
-depends_on
-req_is_related_to
-realized_by
-depends_on

Functional Requirement

-req_id
-req_descr
-is_proposed_by

Requirement

-qual_attrribute_measures

Non-functional Requirement

qual_is_related_to

req_is_related_to

is proposed by

-satisfies

Architecture
-arch_structure_name
-arch_style
-comprises_of

Architecture Structure

-component_id
-component_descr

Component

comprises_of

satisfies

realized_by -design_decision
-decision_issue
-arguments
-results_in

Decision

results_in

depends_on

Efficiency
Usability

and other QAs

identifies

identifies

relation_supercede

Fig. 4.2 Ontology for traceability between requirements and architecture

4 Traceability in the Co-evolution of Architectural Requirements and Design 47

different types of non-functional requirements. Non-functional requirements

are sometimes measureable, e.g., throughputs. So, we use a property called

qual_attribute_measures to capture this information for all measurable

quality attributes.

• Decision represents the decisions that have been made. It has properties that

capture the issues, arguments of a decision. For instance, the arguments for

choosing an architecture design can be captured and linked to the design.

• Architecture represents the design outcomes of a decision, and the architecture

realizes all requirements, both functional and non-functional. Architecture has

two subclasses, Architecture Structure and Component. Architecture Structure
represents the architecture styles that are used in an architecture design, such as

multi-tier, web-based etc., whereas Component represents the individual build-
ing blocks that are used in an architecture. For instance, the ontology can capture

the instances of a web-server architecture style and use the comprise_of property
to link to components that generate dynamic HTML pages from a database

application component.

Figure 4.2 depicts two class relationships: (a) class hierarchy represents an is-a
relationship. So efficiency is-a non-functional requirement, and therefore it is-a
requirement also; (b) a relationship between two disjoint classes is implemented

through the property of a class. An example is that a requirement is proposed by

a stakeholder. A stakeholder is represented in the ontology as a dc:contributor.
In this case, both the DC record and the requirement are two disjointed classes

linked together by the property field is_proposed_by in Requirement class.
All the important relationships in this ontology are described below:

• A DC record identifies a document, be it a requirements document or an

architecture design. This identification makes use of the standard elements

provided by the DC metamodel. The amount of information that is contained

in a document, whether it is one or a set of requirements, is up to the user. The

key elements are: (a) the title and subject identify a requirement or a design; (b)

the source identifies the version of a requirement; (c) the relation identifies if the
document supercedes another document; (d) the identifier is the URI of the
semantic wiki page. (e) the contributor identifies the stakeholders who contri-

bute to the requirement or the design.

• Functional Requirement depends_on a decision. If a decision or a rationale of

a design decision has been documented, then the requirement can be explained

by the documented decision.

• Functional Requirement qual_is_related_to non-functional requirements.

Often a requirements specification explicitly defines what quality is required

by a system. In such cases, traceability can be provided if this relationship is

captured in the ontology.

• Decision results_in an architecture. When business analysts and architects

capture a decision, the outcome or the architecture design of a decision, includ-

ing its rationale, can be traced to the decision. When results_in relationship

is used in combination with the depends_on relationship, architects can query

48 A. Tang et al.

what components are used to realize a specific requirement and why, for

instance.

• Functional Requirement is_realized_by an architecture design. Designers,

programmers, and testers often need to know the implementation relationships.

If a decision has been documented and included in the ontology, then this

relationship can be inferred from the original requirement. However, design

decisions are often omitted, and so the implied realization link between

requirements and design outcomes becomes unavailable. In order to circumvent

this issue, we choose to establish a direct relationship between requirements and

architecture.

• Architecture Design satisfies some non-functional requirements. This rela-

tionship shows that an architecture design can satisfy the non-functional

requirements.

Together these relationships mark and annotate the texts in requirements and

architecture specifications, providing the semantic meaning to enable architects

and analysts to query and trace these documents in a meaningful way. Each trace

link is an instance of the ontology relationships. Traceability is implemented by

a semantic wiki implementation that supports querying or traversing.

4.4.2 SE-Wiki Implementation

In this section, we describe a semantic wiki implementation for Software Engineer-

ing, called SE-Wiki, which is implemented based on Semantic MediaWiki (SMW)

[38]. We present how the ontology described in Sect. 4.4.1 is implemented with

other semantic features in SE-Wiki. SMW is one of the prototype implementations

of semantic wikis. There are two reasons for selecting SMW as the basis of SE-

Wiki: (1) SMW implements most of semantic functions, including ontology defini-

tion and import, semantic annotation and traceability, and semantic query etc.,

which provide fundamental capabilities to perform the use cases presented in

Sect. 4.3.2; and (2) SMW is a semantic extension of MediaWiki1, which is the

most popular wiki implementation on the Web, e.g., used by Wikipedia2. The

popularity and maturity of MediaWiki will make SE-Wiki easily adoptable by

industry.

The SE-Wiki uses and extends the capability of SMW by applying the semantic

features in the software engineering domain, from documentation, issue tracing,

reuse, and collaboration to traceability management. In this chapter, we focus on

the traceability management for the co-evolution of architectural requirements and

design, combined with the ontology that supports dynamic traceability between

1http://www.mediawiki.org/
2http://www.wikipedia.org/

4 Traceability in the Co-evolution of Architectural Requirements and Design 49

http://www.mediawiki.org/
http://www.wikipedia.org/

architectural requirements and design. The implementation details of SE-Wiki are

presented below.

Ontology support: as mentioned before, a semantic wiki is a wiki that has an

underlying ontology that is used to describe the wiki pages or data within pages in

the wiki. The ontology model elaborated in Sect. 4.4.1 is composed of four basic

constructs, which can be defined in SMW as shown in Table 4.1. For example,

[[Category:Requirement]] defines the class Requirement.
Semantic annotation: SMW only supports semantic annotation of wiki pages

without supporting semantic annotation of data within wiki pages. This means that

each semantic annotation in SMW is represented as a wiki page that belongs to

a certain concept in the ontology model. In SE-Wiki, it is quite easy to annotate

a requirement or architecture design artifact by adding text [[Category:Concept
Name]] in the editing box of the wiki page based on the ontology defined or

imported.

Semantic traceability refers to the semantic tracing between semantic

annotations. In common wikis implementation, traceability is established by links

between wiki pages without specific meaning of these links, while in semantic

wikis, the semantics of these links are specified and distinguished by formal

concept relationships in an ontology, which is beneficial to our purpose. For

example, Functional Requirement 001 is_proposed_by Stakeholder A. The
Functional Requirement 001 and Stakeholder A are semantic annotations that

belong to concept Functional Requirement and Stakeholder respectively. The

concept relationship is_proposed_by between Functional Requirement and
Stakeholder is used to trace semantically the relationship between the two

annotations. In SE-Wiki, a semantic tracing can be established by an instance of

Property in SMW between two wiki pages (i.e., semantic annotations), e.g., for

above example, we can add text [[is proposed by::Stakeholder A]] in the editing

box of Functional Requirement 001 to create the semantic tracing.

Semantic query is used to query semantically the data (i.e., semantic

annotations recorded in SE-Wiki) with semantic query languages, e.g., SPARQL

[39] or a special query language supported by SMW. The capability of semantic

queries is supported by the underlying ontology of the SE-Wiki, for example, show
all the Functional Requirements proposed by Stakeholder A. Two methods for

semantic query are provided in SE-Wiki: semantic search and in-line query.

Semantic search provides a simple query interface, and user can input queries and

Table 4.1 Ontology definition in SMW

Ontology construct SMWConstruct Example in SMW

Class Category [[Category:Requirement]]

Class property Property [[req id::FR-001]]

Class
relationship

Property that links to the

instance of other Class [[is proposed by::Stakeholder A]]

SubClassOf Category subcategorization

In the editing box of Category:Functional
Requirement, specify [[Category:
Requirement]]

50 A. Tang et al.

get the query results interactively. For example, query input [[Category:Functional
Requirement]][[is proposed by::Stakeholder A]] will return all the functional

requirements proposed by Stakeholder A. Semantic search is applicable to tempo-

rary queries that vary from time to time. In-line query refers to the query expression

that is embedded in a wiki page in order to dynamically include query results into

pages. Consider this in-line query: ask: [[Category:Requirement]][[is proposed
by::Stakeholder A]] | ?is proposed by. It asks for all the requirements proposed by

Stakeholder A. In-line query is more appropriate in supporting dynamic traceability

between software artifacts, e.g., when a functional requirement proposed by Stake-
holder A is removed from a requirements specification, the requirements list in the

wiki page of Stakeholder A will be updated automatically and dynamically.

Example uses of these semantic features supported in SE-Wiki for the trace-

ability use cases are further described in the next section.

4.5 Examples of Using SE-Wiki

In this section, we present several examples of applying SE-Wiki for performing

the use cases presented in Sect. 4.3.2. We show how the semantic features in SE-

Wiki can be used to support the co-evolution of architectural requirements and

design. We draw these examples from the NIHR (National Institute for Health

Research of United Kingdom) Portal Project [40]. The system aims to provide

a single gateway to access information about health research and manage the

life-cycles of research projects for the broad community of NIHR stakeholders,

including e.g., researchers, managers, and complete research networks. We apply

the SE-Wiki to the requirements and design specifications from this project. Then

we demonstrate the use cases that we have defined to show SE-Wiki support for

the traceability in co-evolving architectural requirements and design.

As presented in Sect. 4.4.2, some basic semantic functions are provided by SE-

Wiki, including:

Ontology support: the underlying ontology concepts and the semantic relation-

ships between concepts are defined in SMW.

Semantic annotation is used to annotate a requirement or architecture design

artifact documented in a wiki page with a concept (i.e., Category in SMW).

Semantic traceability is supported by semantic tracing which is established

between semantic annotations, and semantic traces will follow the semantic

relationships defined at the ontology level.

Semantic query: the semantic annotations of requirements or architecture design

artifacts allow SE-Wiki to query the annotations semantically by simple or

complex queries. Queries can be entered manually through the query interface

or embedded as in-line query in the wiki pages.

With the support of these basic semantic functions, we demonstrate how the use

cases presented in Sect. 4.3.2 can be achieved with the examples from the NIHR

4 Traceability in the Co-evolution of Architectural Requirements and Design 51

Portal project. In order to implement the use cases, all the relevant requirements and

architecture specifications must be semantically annotated based on the traceability

ontology specified in Sect. 4.4.1, e.g., in a sample requirement statement: Student
would like to download course slides from course website., Student is annotated
as an instance of concept Stakeholder, would like to is annotated as an instance of

concept relationship is_proposed_by, and download course slides from course
website is annotated as an instance of concept Requirement.

These semantic annotations are performed by business analysts and architects

as they document the specifications. The main difference between this method and

some other requirements traceability methods is that individual requirement and

design are semantically annotated, and their traceability is enabled by reasoning

with the ontology concepts.

4.5.1 Scenario 1 Software Reuse

Description: An architect wants to check if existing software can be reused to

implement a new functional requirement, which is similar to existing functional

requirements that have been implemented (see Sect. 4.3.2).

Example: A new functional requirement Track Usage: The Portal tool should
be able to track usage of resources by all users is proposed by the Portal Manager.
The architect thinks that this new functional requirement is similar to an existing

functional requirement: i.e., Change User Access: The Portal tool should be able to
change user’s access rights to resources3. The architect wants to check if the

existing software (i.e., design outcomes/architecture) that is used to implement

the requirement Change User Access can be reused to implement the new require-

ment Track Usage, especially with regards to the quality requirements.

Since the requirements and architecture specifications are already semantically

annotated in SE-Wiki, semantic query can be employed to query the direct and

indirect tracing relationships from an instance of Functional Requirement (i.e., the
existing functional requirement Change User Access) to all the concerned Design
Outcomes that realize this functional requirement, and all the Non-Functional
Requirements that the Design Outcomes can satisfy. The snapshot of this

scenario through semantic query is shown in Fig. 4.3. The top part of this figure

is the editing box for semantic query input, and the lower part shows the query

results.

As described in the example, the architect first extracts all the Design Outcomes
that are used to realize the existing functional requirement Change User Access,
and then queries all the Non-Functional Requirements that are satisfied by these

Design Outcomes, in order to evaluate whether these Design Outcomes can be

3Resources in NIHR Portal project refer to all the information maintained by the Portal, e.g.,

sources of funding for different types of research.

52 A. Tang et al.

reused or not for the implementation of the new functional requirement Track
Usage. This query is composed of two parts: the query input in the upper left of

Fig. 4.3 [[Category:Design Outcome]][[realizes::Change User Access]] extracts
all the Design Outcomes that realize Change User Access requirement, i.e., REST
Structure and SOA Structure, which are directly related with Change User Access
requirement; the query input in the upper right ?satisfies [[Category:Non-Functional
Requirement]] returns all the Non-Functional Requirements, i.e., Integration
Requirement and Interoperability Requirement, which are indirectly related with

Change User Access requirement through the Design Outcomes.
With all the Non-Functional Requirements and their associated Design

Outcomes related to Change User Access requirement, which are all shown in

one wiki page, the architect can have a whole view of the implementation context

of the new functional requirement Track Usage, and assess the compatibility of

these Non-Functional Requirements with the Non-Functional Requirements related
to the new functional requirement. With this information, the architect will decide

whether or not to reuse these Design Outcomes for the implementation of the new

functional requirement Track Usage.
When new Design Outcomes are added to realize a requirement, in this case

the requirement Change User Access, the semantic query will return the latest

results (i.e., updated Design Outcomes realizing Change User Access). This allows
SE-Wiki to support dynamic changes to requirements and architecture design

which normal wikis cannot achieve with static trace links.

Under the current ontology definition, other possible software reuse scenarios

can be supported by SE-Wiki, some of them are:

• Find all components that support a particular kind of quality requirements, and

satisfy some quality requirements thresholds.

• Find all components that are influenced by two specific quality requirements

simultaneously.

Fig. 4.3 Scenario 1 through semantic query interface in SE-Wiki

4 Traceability in the Co-evolution of Architectural Requirements and Design 53

• Find the architecture design and all the components within it that support an

application sub-system.

• Trace all components that are influenced by a design decision to assess if the

components are reusable when the decision changes.

4.5.2 Scenario 2 Changing Requirement

Description: An architect wants to update an architecture design according to

a changing requirement (see Sect. 4.3.2).

Example: A functional requirement Change User Access: The Portal tool
should be able to change user’s access rights to resources. is changed into Change
User Access: The Portal tool should only allow System Administrator to change
user’s access rights to resources.Accordingly, the design based on this requirement

should be updated as well. To achieve this, the architect should make sure that

this changing requirement has no conflict with related existing requirements, and

understand the context of this requirement before updating the design. The architect

first extracts all the related artifacts concerning this changing requirement by

navigating to the wiki page of this requirement in SE-Wiki, which records all the

artifacts (e.g., requirements, architectural design decisions, and design outcomes)

related to this requirement as shown in Fig. 4.4.

In this wiki page, the architect can easily evaluate those related artifacts

concerning the changing requirement by navigating to their wiki pages. For exam-

ple, the changing requirement Change User Access is related to the requirement

Track Usage: The Portal tool should be able to track usage of resources by all
users. There are two types of traces shown in this page: outgoing and incoming

traces, which are both supported by the concept relationships defined in underlying

ontology. Outgoing traces are recorded by property, e.g., requirement ID, is
proposed by, etc. These outgoing traces show how this requirement relates to

other artifacts, in a one-to-one or often one-to-many relationships. Incoming traces

are shown in this page by in-line queries, which is another kind of semantic query

feature provided by SE-Wiki as presented in Sect. 4.4.2. There are three in-line

queries to show the incoming traces in Fig. 4.4, for example, the first incoming trace

Decision: Portal Personalization depends_on Change User Access is created by
in-line query ask:[[Category:Decision]] [[depend on::Change User Access]] | ?
depend on. These incoming traces show how other artifacts relate to this require-

ment. The advantage of incoming traces generated by in-line queries is that the

results of the in-line query shown in the wiki page will be updated dynamically

according to the query results at run-time, which is most beneficial to evaluate and

synchronize requirements and architecture design when both of them co-evolve

simultaneously by different stakeholders, for example, when a new Design Out-
come is made to realize the changing requirement Change User Access, then the
incoming traces about the Design Outcomes that realize Change User Access
will be updated automatically in this wiki page.

54 A. Tang et al.

In Scenario 2, the architect evaluates and finds that related requirement Track
Usage is not affected by the change of requirement Change User Access. But the
architect finds an issue Access Control by Identity caused by the changing require-

ment. To address this issue, a design option Identity Management: Provide an
identity management infrastructure in portal personalization management is

selected by the architect and documented as a Decision. A design outcome Identity
Management Component is designed to realize the changing requirement

Change User Access. All these updates on related artifacts are recorded in this

requirement wiki page through incoming and outgoing traces as shown in Fig. 4.5.

With the information found in this page, the architect can further evaluate

whether the newly-added decision Identity Management is compatible with other

existing Designs, e.g., Portal Personalization, and whether the updated Design
Outcomes still satisfy those related Non-Functional Requirements, e.g., Inte-
gration Requirement. TheDecisions andDesign Outcomesmay change accordingly

based on these further evaluations.

A number of other use cases that are similar to the changing requirement can also

be supported by SE-Wiki:

Fig. 4.4 Scenario 2 through in-line semantic query in SE-Wiki

4 Traceability in the Co-evolution of Architectural Requirements and Design 55

• Find all functional requirements that may be affected by the changing

requirement.

• Find all non-functional requirements that have quality impacts on a functional

requirement.

• Find all functional requirements that would be influenced by a change in the

non-functional characteristic of a system, e.g., performance degradation.

4.5.3 Scenario 3 Design Impact Evaluation

Description: Requirements are frequently changed from one software version to

the next, and an architect tries to evaluate and identify the impacts of the changing

requirements on architecture design, so that requirements and architecture design

are consistent.

Example: The requirement Change User Access is updated in the next version,

i.e., Version 1: The Portal tool should be able to change user’s access rights to
resources, and Version 2: The Portal tool should only allow System Administrator
to change user’s access rights to resources. The architect extracts different versions
of the requirement with the same requirement ID using a semantic query

Fig. 4.5 Updated results of scenario 2 through In-line semantic query in SE-Wiki

56 A. Tang et al.

(e.g., [[Category:Requirement]][[is identified by::DC 001]]), in which DC 001 is

the DC element to identify the version of a requirement. The architect finds the

components for implementing the requirements by clicking the wiki page of the

requirement in different versions. The architect then finds the other components

for implementing related requirements through reasoning support (e.g., iteratively

traverse all the related requirements), which is based on the reasoning rules and

relationships defined on ontology. According to the information, the architect can

identify the changes to the architecture design in two sequential versions of the

requirement. From that she/he can evaluate the change impacts to the architecture

design. A comparison of the wiki pages of requirements across two versions (left

side is a latest version of the requirement Change User Access, and right side is

a previous version of Change User Access, which is superseded by the latest

version) is shown in Fig. 4.6. The requirement changes between versions with

changed decisions and design (circled in Fig. 4.6) will be further evaluated for

design impact analysis.

A number of other use cases that employ the reasoning framework can also be

performed by SE-Wiki:

Fig. 4.6 Scenario 3 through comparison in SE-Wiki

4 Traceability in the Co-evolution of Architectural Requirements and Design 57

• An architect wants to get a list of open quality requirements for which architec-

tural decisions are needed.

• An architect wants to evaluate and detect the soundness of the software artifacts,

e.g., a design decision is wanted when an architecture is used to realize a

functional requirement.

• An architect can identify the architecture design components that have been

changed from the previous software version.

• Analysts or architects can find the latest changes to a requirement or a design of

interest.

• Analysts or architects can find changes that have been made by certain people or

within a certain period of time.

4.6 Conclusions

Large-scale software development involves many people/stakeholders who develop

requirements and architectural design. Often, these people are dispersed geographi-

cally, and the decisions that they make on the requirements and design evolve over

time. This situation has created a knowledge communication issue that can cause

conflicts and inconsistencies in requirements and design. Traceability methods

based on static trace links cannot address this problem because the stakeholders

often do not know what has been changed, let alone creating those trace links.

Moreover, specifications and communications such as emails and meeting minutes

are mostly documented in a natural language, making the search of related infor-

mation difficult.

We solve this problem by providing a new method that makes use of semantic

wiki technologies. We propose a general-purpose ontology that can be used to

capture the relationships between requirements and architectural design. These

relationships are derived from the use cases that we have identified. Semantic

MediaWiki has been used to implement SE-Wiki. SE-Wiki supports a traceability

metamodel and implements traceability use cases using a traceability ontology.

Furthermore, SE-Wiki supports semantic annotation and traceability, and the

annotated semantic wiki pages provide an information base for constructing seman-

tic queries. This approach allows business analysts and designers to find up-to-date

and relevant information in an environment of co-evolving requirements and

designs.

Acknowledgments This research has been partially sponsored by the Dutch “Regeling

Kenniswerkers”, project KWR09164, Stephenson: Architecture knowledge sharing practices in

software product lines for print systems, the Natural Science Foundation of China (NSFC) under

Grant No. 60950110352, STAND: Semantic-enabled collaboration Towards Analysis, Negotia-

tion and Documentation on distributed requirements engineering, and NSFC under Grant

No.60903034, QuASAK: Quality Assurance in Software architecting process using Architectural

Knowledge.

58 A. Tang et al.

References

1. Gotel OCZ, Finkelstein ACW (1994) An analysis of the requirements traceability problem.

In: IEEE International Symposium on Requirements Engineering (RE), 94–101

2. Ramesh B, Jarke M (2001) Towards reference models for requirements traceability. IEEE

Trans Software Eng 27(1):58–93

3. Spanoudakis G, Zisman A, Perez-Minana E, Krause P (2004) Rule-based generation of

requirements traceability relations. J Syst Softw 72(2):105–127

4. Egyed A, Grunbacher P (2005) Supporting software understanding with automated

requirements traceability. Int J Software Engineer Knowledge Engineer 15(5):783–810

5. Lago P, Muccini H, van Vliet H (2009) A scoped approach to traceability management. J Syst

Softw 82(1):168–182

6. IEEE (1996) IEEE/EIA Standard – Industry Implementation of ISO/IEC 12207:1995, Infor-

mation Technology – Software life cycle processes (IEEE/EIA Std 12207.0–1996)

7. IEEE (1997) IEEE/EIA Guide – Industry Implementation of ISO/IEC 12207:1995, Standard

for Information Technology – Software life cycle processes – Life cycle data (IEEE/EIA Std

12207.1–1997)

8. Farenhorst R, Izaks R, Lago P, van Vliet H (2008) A just-intime architectural knowledge

sharing portal. In: 7th Working IEEE/IFIP Conference on Software Architecture (WICSA),

125–134

9. Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Addison

Wesley, Boston

10. Ali-Babar M, de Boer RC, Dingsøyr T, Farenhorst R (2007) Architectural knowledge man-

agement strategies: approaches in research and industry. In: 2nd Workshop on SHAring and

Reusing architectural Knowledge – Architecture, Rationale, and Design Intent (SHARK/ADI)

11. Rus I, Lindvall M (2002) Knowledge management in software engineering. IEEE Softw 19(3):

26–38

12. Hansen MT, Nohria N, Tierney T (1999) What’s your strategy for managing knowledge?

Harv Bus Rev 77(2):106–116

13. Robertson S, Robertson J (1999) Mastering the requirements process. Addison-Wesley,

Harlow

14. Tang A, Jin Y, Han J (2007) A rationale-based architecture model for design traceability and

reasoning. J Syst Softw 80(6):918–934

15. IBM (2010) Rational DOORS – A requirements management tool for systems and advanced

IT applications. http://www-01.ibm.com/software/awdtools/doors/, accessed on 2010-3-20

16. IBM (2004) Rational RequisitePro - A requirements management tool. http://www-01.ibm.

com/software/awdtools/reqpro/, accessed on 2010-3-20

17. Hayes JH, Dekhtyar A, Osborne J (2003) Improving Requirements Tracing via Information

Retrieval. In: 11th IEEE International Conference on Requirements Engineering (RE),

138–147

18. Assawamekin N, Sunetnanta T, Pluempitiwiriyawej C (2009) Mupret: an ontology-driven

traceability tool for multiperspective requirements artifacts. In: ACIS-ICIS, . 943–948

19. Hayes JH, Dekhtyar A, Sundaram SK (2006) Advancing candidate link generation for

requirements tracing: the study of methods. IEEE Trans Software Eng 32(1):4–19

20. Cleland-Huang J, Chang CK, Christensen M (2003) Event-based traceability for managing

evolutionary change. IEEE Trans Software Eng 29(9):796–810

21. Mistrk I, Grundy J, Hoek A, Whitehead J (2010) Collaborative software engineering.

Springer, Berlin

22. Schaffert S, Bry F, Baumeister J, Kiesel M (2008) Semantic wikis. IEEE Softw 25(4):8–11

23. Liang P, Avgeriou P, Clerc V (2009) Requirements reasoning for distributed requirements

analysis using semantic wiki. In: 4th IEEE International Conference on Global Software

Engineering (ICGSE), 388–393

24. Louridas P (2006) Using wikis in software development. IEEE Softw 23(2):88–91

4 Traceability in the Co-evolution of Architectural Requirements and Design 59

http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-01.ibm.com/software/awdtools/reqpro/

25. Hoenderboom B, Liang P (2009) A survey of semantic wikis for requirements engineer-

ing. SEARCH http://www.cs.rug.nl/search/uploads/Publications/hoenderboom2009ssw.pdf,

accessed on 2010-3-20

26. Bachmann F, Merson P (2005) Experience using the web-based tool wiki for architecture

documentation. Technical Note CMU, SEI-2005-TN-041

27. Lassila O, Swick R (1999) Resource Description Framework (RDF) Model and Syntax. http://

www.w3.org/TR/WD-rdfsyntax, accessed on 2010-3-20

28. McGuinness D, van Harmelen F (2004) OWL web ontology language overview. W3C

recommendation 10:2004–03

29. Aguiar A, David G (2005) Wikiwiki weaving heterogeneous software artifacts. In: inter-

national symposium on wikis, WikiSym, pp 67–74

30. Geisser M, Happel HJ, Hildenbrand T, Korthaus A, Seedorf S (2008) New applications for

wikis in software engineering. In: PRIMIUM 145–160

31. Riechert T, Lohmann S (2007) Mapping cognitive models to social semantic spaces-collabo-

rative development of project ontologies. In: 1st Conference on Social Semantic Web (CSSW)

91–98

32. Domges R, Pohl K (1998) Adapting traceability environments to project-specific needs.

Commun ACM 41(12):54–62

33. Lago P, Farenhorst R, Avgeriou P, Boer R, Clerc V, Jansen A, van Vliet H (2010) The

GRIFFIN collaborative virtual community for architectural knowledge management. In:

Mistrk I, Grundy J, van der Hoek A, Whitehead J (eds) Collaborative software engineering.

Springer, Berlin

34. Kunz W, Rittel H (1970) Issues as elements of information systems. Center for Planning and

Development Research, University of California, Berkeley

35. Kruchten P (2004) An ontology of architectural design decisions in software-intensive

systems. In: 2nd Groningen Workshop on Software Variability Management (SVM)

36. Noy N, McGuinness D (2001) Ontology development 101: a guide to creating your first

ontology

37. Powell A, Nilsson M, Naeve A, Johnston P (2007) Dublin Core Metadata Initiative – Abstract

Model. http://dublincore.org/documents/abstract-model, accessed on 2010-3-20

38. Krotzsch M, Vrandecic D, Volkel M (2006) Semantic Mediawiki. In: 5th International

Semantic Web Conference (ISWC), 935–942

39. Prud’Hommeaux E, Seaborne A (2006) SPARQL Query Language for RDF. W3C working

draft 20

40. NIHR (2006) NIHR Information Systems Portal User Requirements Specification. http://

www.nihr.ac.uk/files/pdfs/NIHR4.2 Portal URS002 v3.pdf, accessed on 2010-3-20

60 A. Tang et al.

http://www.cs.rug.nl/search/uploads/Publications/hoenderboom2009ssw.pdf
http://www.w3.org/TR/WD-rdfsyntax
http://www.w3.org/TR/WD-rdfsyntax
http://dublincore.org/documents/abstract-model
http://www.nihr.ac.uk/files/pdfs/NIHR4.2 Portal URS002 v3.pdf
http://www.nihr.ac.uk/files/pdfs/NIHR4.2 Portal URS002 v3.pdf

	Chapter 4: Traceability in the Co-evolution of Architectural Requirements and Design
	4.1 Introduction
	4.2 Issues in Finding the Right Information
	4.2.1 Architectural Knowledge Management and Traceability
	4.2.2 Requirements and Architecture Design Traceability
	4.2.3 Applying Semantic Wikis in Software Engineering

	4.3 What Needs to be Traced and Why?
	4.3.1 Architectural Design Traceability
	4.3.2 Traceability Use Cases in Co-evolving Architectural Requirements and Design
	4.3.3 Traceability Metamodel

	4.4 Using Semantic Wikis to Support Dynamic Traceability
	4.4.1 A Traceability Ontology for Co-evolving Architectural Requirements and Design
	4.4.2 SE-Wiki Implementation

	4.5 Examples of Using SE-Wiki
	4.5.1 Scenario 1 Software Reuse
	4.5.2 Scenario 2 Changing Requirement
	4.5.3 Scenario 3 Design Impact Evaluation

	4.6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

