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ABSTRACT

In a recent work, it was shown that the shearlet representation provides a useful formula for the reconstruction
of 3D objects from their X-ray projections. One major advantage of this approach is that it yields a near-optimal
rate of convergence in estimating piecewise smooth objects from 3D X-ray projections which are corrupted by
white Gaussian noise. In this work, we provide numerical demonstrations to illustrate the effectiveness of this
method and its performance as compared with other X-ray data restoration algorithms.
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1. INTRODUCTION

The Radon and X-ray transforms are the mathematical models underlying computed tomography (CT), a method
to determine the structural properties of solid objects from their projected information which is extensively used
in medical imaging (diagnostic radiology) and in industrial nondestructive testing (quality control). In the
3-dimensional setting, in particular, let the density function f of the object to be recovered be a compactly
supported integrable function. The X-ray transform P of f at (Θ, x) is the line integral of f over the straight
lines through the point x ∈ R3 with direction Θ ∈ S2, defined by

P (Θ, x)f =

∫
R
f(tΘ+ x) dt.

This is also called the projection of f onto Θ⊥, the plane having normal direction Θ. Note that Pf(Θ, x) does
not change if x is moved in the direction Θ. Hence, x is normally restricted to Θ⊥ so that Pf is a function on
the tangent bundle T = {(Θ, x) : Θ ∈ S2, x ∈ Θ⊥}.

The problem of interest is the reconstruction of f from its projected information and this requires the formal
inversion of the X-ray transform. This problem has an analytic solution and, in the 2D setting, an inversion
formula was derived by J. Radon15 already in 1917. However, the inversion of the Radon and X-ray transforms is
an ill-posed problem whose computation is very sensitive to small perturbations in the data. Since, in practical
applications, the projected information is known on a discrete set only, with a limited accuracy, and is corrupted
by noise, the inversion process requires an appropriate regularization to accurately recover the unknown function
f without blowing up the noise during reconstruction.

Several methods have been introduced to regularize the inverse problem associated with the Radon and X-ray
transforms, including Fourier methods, backprojection and singular value decomposition.13 The drawback of
these classical methods is that they typically filter out the high frequency features of the projected data, with
the result that the there is a loss of fine-scale detail in the reconstructed images. In contrast to these methods
that use basis functions depending solely on the operator to regularize the inversion, originally proposed by
Donoho,3 offers an alternative strategy to inverse problems which takes advantage the estimating capabilities
of a representation best suited to approximate the solution. This approach was applied to the study of the 2D
Radon transform by Candès and Donoho1 and by the authors,2, 4 who have recently extended this approach to
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the X-ray transform in the 3D setting.6 These new methods exploit the properties of curvelets and shearlets, a
new generation of multiscale representation systems, to derive reconstruction formulas which have particularly
robust in the case of noisy Radon and X-ray data corrupted.

In this paper, we focus on the CT reconstruction problem in the 3D setting, which is the case of most
interest in practical applications. In a recent work,6 the authors have employed the multidimensional shearlet
representation within the framework of the wavelet-vaguelettes decomposition to derive a new expansion formula
for the 3D X-ray transform. Taking advantage of the special ability of 3D shearlets to sparsely represent piecewise
smooth data, they derived an algorithm for the inversion of X-ray transform from noisy X-ray projections whose
error rate is provably near-optimal. This algorithm is based on a thresholding scheme on the noisy shearlet
coefficients associated with the decomposition of the 3D X-ray transform. Specifically, for a given noise level ε,
the proposed thresholding scheme can be tuned so that the estimator will attain the essentially optimal mean
square error (MSE) O(log(ε−1)ε2/3), as ε → 0. This is the first published result to yield an essentially optimal
MSE rate for the recovery of noisy 3D x-ray data.

The goal of this paper is to present the first numerical implementation attempting to take advantage of
this new approach. Note that the theoretical result was derived under ‘academic’ assumption that the X-ray
projections are known for all values (Θ, x). In the following, we consider the more realistic setting of spiral
tomography, where the X-ray radiation sources are assumed to be located along a spiral containing the object
of interest. We show that also in this setting a shearlet-based approach provides a very effective method for 3D
reconstruction from X-ray projected data which are corrupted by additive white Gaussian noise.

The paper is organized as follows. In section 2, we recall the construction of 3D shearlets. In section 3,
we recall the main theoretical results about the shearlet-based representation of the X-ray transform and its
application to the optimal reconstruction from noisy X-ray data. Finally, in section 4, we present our new
numerical demonstrations.

2. THE SHEARLET REPRESENTATION

In dimension D = 3, a shearlet system is obtained by appropriately combining 3 systems of functions associated
with the following pyramidal regions in the 3D Fourier space:

P1 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ2ξ1 | ≤ 1, | ξ3ξ1 | ≤ 1

}
,

P2 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ2 | < 1, | ξ3ξ2 | ≤ 1

}
,

P3 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ3 | < 1, | ξ2ξ3 | < 1

}
.

To define such systems, let b be a univariate function such that b̂ ∈ C∞, 0 ≤ b̂ ≤ 1, b̂ = 1 on [− 1
16 ,

1
16 ] and b̂ = 0

outside the interval [−1
8 ,

1
8 ]. For ξ = (ξ1, ξ2, ξ3) ∈ R3, define ϕ by

ϕ̂(ξ) = ϕ̂(ξ1, ξ2, ξ3) = b̂(ξ1) b̂(ξ2) b̂(ξ3) (1)

and W (ξ) =

√
|ϕ̂(2−2ξ)|2 − |ϕ̂(ξ)|2. It follows that |ϕ̂(ξ)|2 +

∑
j≥0 |W (2−2jξ)|2 = 1 for ξ ∈ R3.

Notice that each function Wj =W (2−2j ·) has support in the Cartesian corona

Cj = [−2−2j−1, 2−2j−1]3 \ [−2−2j−4, 2−2j−4]3 ⊂ R3, (2)

and the functions W 2
j , j ≥ 0, produce a smooth tiling of the frequency plane into Cartesian coronae:∑

j≥0

|W (2−2jξ)|2 = 1 for ξ ∈ R3 \ [−1
8 ,

1
8 ]

3. (3)

Next, let v ∈ C∞(R) be such that v(0) = 1, v(n)(0) = 0 for all n ≥ 1, supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u+ 1)|2 = 1 for |u| ≤ 1. (4)



Hence, for d = 1, 2, 3, ℓ = (ℓ1, ℓ2) ∈ Z2, the 3D shearlet systems associated with the pyramidal regions Pd are
defined as the collections

{ψ(d)
j,ℓ,k : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3}, (5)

where

ψ̂
(d)
j,ℓ,k(ξ) = | detA(d)|−j/2W (2−2jξ)V(d)(ξA

−j
(d)B

[−ℓ]
(d) ) e

2πiξA−j
(d)

B
[−ℓ]

(d)
k
, (6)

V(1)(ξ1, ξ2, ξ3) = v( ξ2ξ1 )v(
ξ3
ξ1
), V(2)(ξ1, ξ2, ξ3) = v( ξ1ξ2 )v(

ξ3
ξ2
), V(3)(ξ1, ξ2, ξ3) = v( ξ1ξ3 )v(

ξ2
ξ3
), the anisotropic dilation

matrices A(d) are given by

A(1) =

4 0 0
0 2 0
0 0 2

 , A(2) =

2 0 0
0 4 0
0 0 2

 , A(3) =

2 0 0
0 2 0
0 0 4

 ,

and the shearing matrices are defined by

B
[ℓ]
(1) =

1 ℓ1 ℓ2
0 1 0
0 0 1

 , B
[ℓ]
(2) =

 1 0 0
ℓ1 1 ℓ2
0 0 1

 , B
[ℓ]
(3) =

 1 0 0
0 1 0
ℓ1 ℓ2 1

 .

Notice that (B
[ℓ]
(d))

−1 = B
[−ℓ]
(d) .

Due to the support conditions on W and v, the shearlets (5) are band-limited. In particular, for d = 1, the

functions ψ̂
(1)
j,ℓ,k(ξ) can be written explicitly as

ψ̂
(1)
j,ℓ1,ℓ2,k

(ξ) = 2−2j W (2−2jξ) v
(
2j ξ2

ξ1
− ℓ1

)
v
(
2j ξ3

ξ1
− ℓ2

)
e
2πiξA−j

(1)
B

[−ℓ1,−ℓ2]

(1)
k
. (7)

It follows that their supports are the trapezoidal regions

{(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2ξ1 − ℓ12
−j | ≤ 2−j , | ξ3ξ1 − ℓ22

−j | ≤ 2−j},

which are contained inside the pyramid P1. As a → 0, these trapezoidal support regions become increasingly
more elongated, with the orientations controlled by ℓ1, ℓ2 (see Fig. 1).

A Parseval frame of shearlets for L2(R3) is obtained by combining the systems of shearlets associated with
the 3 pyramidal regions Pd, d = 1, 2, 3, together with a coarse scale system. To ensure the regularity and decay
of the system, the elements of the shearlet systems overlapping the boundaries of the pyramidal regions Pd in
the Fourier domain need to be slightly modified. Precisely, we define the 3D shearlet systems for L2(R3) as the
collections {

ϕk : k ∈ Z3
}∪{

ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , |ℓ2| ≤ 2j , k ∈ Z3, d = 1, 2, 3
}

∪{
ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 = ±2j , k ∈ Z3

}
(8)

consisting of:

• the coarse-scale shearlets {ϕk = ϕ(· − k) : k ∈ Z3}, where ϕ is given by (1);

• the interior shearlets {ψ̃j,ℓ,k,d = ψ
(d)
j,ℓ,k : j ≥ 0, |ℓ1||ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3}, where ψ(d)

j,ℓ,k is given by (6);

• the boundary shearlets {ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3} and {ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 =

±2j , k ∈ Z3}, obtained by joining together slightly modified versions of ψ
(1)
j,ℓ,k, ψ

(2)
j,ℓ,k and ψ

(3)
j,ℓ,k, for ℓ1, ℓ2 =

±2j . We refer to Ref.7 for details. Here it suffices to observe that the boundary shearlets are both compactly
supported and smooth in the frequency domain.
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Figure 1. Frequency support of a representative shearlet function ψ
(1)
j,ℓ,k, inside the pyramidal region P1. The orientation

of the support region is controlled by ℓ = (ℓ1, ℓ2); its shape is becoming more elongated as j increases (j = 4 in this plot)

For brevity, in the following we will denote the system of shearlets (8) using the notation:

{sµ, µ ∈M}, (9)

where M = Z3 ∪MI ∪MB , sµ = ϕµ if µ ∈ Z3 and sµ = ψ̃µ if µ ∈ MI ∪MB , and MI ,MB are the indices
associated with the interior shearlets and the boundary shearlets, respectively, given by

• MI = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1|&|ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3}

• MB = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3} ∪ {µ = (j, ℓ1, ℓ2, k) : j ≥
0, ℓ1, ℓ2 = ±2j , k ∈ Z3}

We have the following result.7

Theorem 2.1. The 3D shearlet system (9) is a Parseval frame for L2(R3). In addition, the elements of this
systems are C∞ and band-limited.

3. 3D X-RAY DATA RECOVERY VIA SHEARLET DECOMPOSITION

One of the main results from Ref. 6 is a decomposition formula allowing one to recover a function f ∈ L2(R3)
from the values of its X-ray transform using the shearlet representation. In order to present this result, we need
to introduce some definitions.

For a rational number α < 3, the Riesz potential Iα in R3 is the operator and Iα : C∞(R3) → C∞(R3),

defined by Îαf(ξ) = |ξ|−αf̂(ξ). Hence we define a new collection of functions {Uµ : µ ∈ M} associated with
shearlet system (9), whose elements are defined by

Uµ = 2−jPI−1sµ. (10)

Note that, while the functions sµ take values on R3, the new functions Uµ are defined in the tangent bundle T
associated with the X-ray transform. The factor 2−j in the definition of Uµ is useful to control the norm size,



which otherwise would increase with the scale parameters j due to the action of the Riesz potential operator on
f . Indeed, one can show6 that the functions {Uµ : µ ∈M} form a frame for L2(T ).

We can now state the following result.7

Theorem 3.1. Let {sµ : µ ∈ M} be the Parseval frame of shearlets (9) and {Uµ : µ ∈ M} the system defined
by (10). For all f ∈ L2(R3) the following representation holds:

f = 2−1
∑
µ

2j [Pf, Uµ] sµ,

where [·, ·] is the inner product in L2(T ).

Thanks to the ability of the shearlet representation to approximate piecewise smooth functions with optimal
efficiently, this decomposition formula offers a very effective framework to reconstruct functions in this class from
their X-tray projections. To state the precise result, let us suppose that the observed 3D X-ray transform of a
function f is corrupted by white Gaussian noise as:

Y = Pf + εW, (11)

where W is a Wiener sheet and ε is measuring the noise level. This means that each measurement [Y, Uµ] of the
observed data is normally distributed with mean [Pf, Uµ] and variance ε2 ∥Uµ∥2L2(T ).

Projecting the data (11) onto the system {Uµ : µ ∈M} and rescaling, from Theorem 3.1 we obtain that

2j [Y,Uµ] = 2j [Pf, Uµ] + ε 2j [W,Uµ]

= 2⟨f, sµ⟩+ ε 2j nµ, (12)

where nµ is a (non-i.i.d.) Gaussian noise with zero mean and variance σµ = ∥Uµ∥2. This shows that, to estimate
f , we need to estimate the shearlet coefficients {⟨f, sµ⟩}, µ ∈M , from the data {[Y, Uµ]}. This estimate can be
accomplished by an appropriate thresholding rule. Namely, let N (ε) =M1(ε)∪N0(ε) be the significant shearlet
coefficients (note the dependence on the noise level ϵ) where

N0(ε) = {µ = k ∈ Z3 : |k| ≤ 22j+1}, and

M1(ε) = {µ = (j, ℓ, k, d) : j0 < j ≤ j1, |k| ≤ 22j+1, d = 1, 2, 3},

with j0 = 2
15 log2(ε

−1) and j1 = 1
3 log2(ε

−1). Hence we define the estimator f̃ of the function f by

f̃ =
∑

µ∈N (ε)

c̃µ sµ, (13)

where the coefficients c̃µ are obtained by the rule

c̃µ = Ts(2
j [Y,Uµ], ε

√
2 log(#N (ε))2jσµ), (14)

and Ts(y, t) = sgn(y)(|y| − t)+ is the soft thresholding function.

We can now state the main result about the recovery of f from noisy X-ray data. For a fixed constant A > 0,
we denote by M(A) the class of indicator functions of sets B ⊂ [0, 1]3 whose boundary Σ is twice differentiable
and can be written as

∪
α Σα, where α ranges over a finite index set and Σα = {(v, Eα(v)), v ∈ Vα ⊂ R2}, such

that ∥Eα∥C2(Vα) ≤ A for all α. Also, let C2
c ([0, 1]

3) be the collection of twice differentiable functions supported
inside [0, 1]3. Hence, we define the set E2(A) of functions which are C2 away from a C2 surface as the collection
of functions of the form

f = f0 + f1 χB,

where f0, f1 ∈ C2
c ([0, 1]

3), B ∈ M(A) and ∥f∥C2 =
∑

|α|≤2∥Dαf∥∞ ≤ 1. We have the following result from
Ref. 6.



Theorem 3.2. Let f ∈ E2(A) be the solution of the problem Y = Rf + εW and f̃ be the approximation to f
given by the formulas (13) and (14). Then there is a constant C > 0 such that

sup
E2(A)

E∥f̃ − f∥22 ≤ C log(ε−1) ε
2
3 , as ε→ 0,

where E is the expectation operator.

Furthermore, no estimator can achieve a rate better than ε
2
3 uniformly over E2(A), so that this estimator is

essential optimal for functions in this class.

4. RESULTS

A 3D Shepp-Logan Phantom and a “star” data set composed of various ellipsoids was created that allowed
us to create synthetic X-ray data. We simulated the X-ray data acquisition in a helical sampling scheme that
corresponds to one of classical acquisition geometries schemes used in actual CT devices.10 In particular, we
used the implementation of the Katsevich inversion formula proposed by Wunderlich.16 Figure 2 illustrates an
example of such X-ray data collected for the Phantom and its 3D reconstruction.

In our experiments, we added white Gaussian noise with standard deviation of σ = 0.02 to the X-ray data of
the Phantom and σ = 0.03 to the X-ray data of the “star”. For the N ×N ×N image datacubes, we assessed the
performance of our algorithm by using the peak signal-to-noise ratio (PSNR), measured in decibels (dB), given
as

PSNR = 20 log10
255N

∥f − f̃∥F
,

where ∥ · ∥F is the Frobenius norm, f is the known image datacube, and f̃ is the noisy or estimated image
datacube. Using this measure, the noisy x-rays datasets resulted in non-regularized reconstructions that had a
PSNR of 26.47 dB and 28.94 dB, respectively, for the Phantom and “star” datasets.

The shearlet14 regularization technique was implemented by estimating the standard deviation of the noise
for each decomposition level using a Monte Carlo simulation and the thresholding parameters were chosen to be
four times the estimated standard deviation of the noise for the finest decomposition scales and three times the
estimated standard deviations of the remain decomposition levels.

The results of the shearlet-based reconstructions are shown in Figures 3 to 5. The shearlet-based estimated
3D data cubes have a PSNR of 36.46 dB for the Phantom and of 38.04 dB for the “star”. For comparison
purposes, we implemented a wavelet-based regularlized reconstruction in a similar manner. The results of the
wavelet-based estimated 3D data cubes have a PSNR of 31.28 dB for the Phantom and of 35.48 dB for the “star”.
Besides not performing as well in terms of the measure of PSNR, the wavelet-based results clearly display more
severe artifacts that are blocky in nature.

5. CONCLUSION

In this work, we have shown that the shearlet representation provides a useful formula for the reconstruction of 3D
objects from their noisy X-ray projections. This shearlet-based regularization yields a theoretical near-optimal
rate of convergence in estimating piecewise smooth objects from 3D X-ray projections which are corrupted by
white Gaussian noise. We have demonstrated that this concept is viable for realistic data collection schemes and
have shown the method to perform better than methods which rely on non-directionally oriented representations
such as the wavelet representation.
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Figure 2. The image on the left is a display of the helical collected x-ray data. The image on the right is a reconstructed
3D Phantom from such data.
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Figure 3. (a) An illustration depicting where the sectional image slice shown in (b) comes from in the 3D Phantom
reconstruction. (b) A noisy 3D x-ray reconstuction image slice (PSNR = 26.47 dB). (c) An image slice of the 3D shearlet
based estimate (PSNR = 36.46 dB). (d) An image slice of the 3D wavelet based estimate (PSNR = 31.28 dB).
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Figure 4. (a) An illustration depicting where the sectional image slice shown in (b) comes from in the 3D Phantom
reconstruction. (b) A noisy 3D x-ray reconstuction image slice (PSNR = 26.47 dB). (c) An image slice of the 3D shearlet
based estimate (PSNR = 36.46 dB). (d) An image slice of the 3D wavelet based estimate (PSNR = 31.28 dB).
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Figure 5. (a) An illustration depicting where the sectional image slice shown in (b) comes from in the 3D “star”
reconstruction. (b) A noisy 3D x-ray reconstuction image slice (PSNR = 28.94 dB). (c) An image slice of the 3D shearlet
based estimate (PSNR = 38.04 dB). (d) An image slice of the 3D wavelet based estimate (PSNR = 35.48 dB).


