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Abstract. We present a general framework for automatic continuity
results for groups of isometries of metric spaces. In particular, we
prove automatic continuity property for the groups of isometries of the
Urysohn space and the Urysohn sphere, i.e. that any homomorphism
from either of these groups into a separable group is continuous. This
answers a question of Melleray. As a consequence, we get that the group
of isometries of the Urysohn space has unique Polish group topology and
the group of isometries of the Urysohn sphere has unique separable group
topology. Moreover, as an application of our framework we obtain new
proofs of the automatic continuity property for the group Aut([0, 1], λ),
due to Ben Yaacov, Berenstein and Melleray and for the unitary group
of the infinite-dimensional separable Hilbert space, due to Tsankov. The
results and proofs are stated in the language of model theory for metric
structures.

1. Introduction

It is well known that every group is isomorphic to the group of isometries
of a metric space (or even of a graph). Moreover, if G is the group of
isometries of a metric space X, then G carries the topology of pointwise
convergence on X. If the space X is separable and its metric is complete,
then G is separable and completely metrizable (i.e. Polish). In fact, the
coverse is also true and any Polish group is isomorphic to the group of
isometries of a separable complete metric space [14, Theorem 3.1]. Note
that if a group is isomorphic to the group of isometries of a space X, then
the structure of this group is completely determined by the metric properties
of X. In this paper, we exploit this observation to study the structure of
various groups of isometries.

Automatic continuity is a phenomenon that connects the algebraic and
topological structures and typically says that any map which preserves an
algebraic structure must automatically be continuous. One of the first in-
stances of this phenomenon appears in C*-algebras and Banach algebras,
where it is known that any homomorphism from an abelian Banach algebra
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into C is continuous. More nontrivial results concern continuity of deriva-
tions on C*-algebras. Sakai [46] (proving a conjecture of Kaplansky [26])
showed that any derivation on a C*-algebra is norm-continuous. This was
generalized first by Kadison [23] who improved it to the continuity in the
ultraweak topology and then by Ringrose [41] for derivations of C*-algebras
into Banach modules. Johnson and Sinclair [22] on the other hand, showed
automatic continuity for derivations on semi-simple Banach algebras. A
detailed account on this subject can be found in [7, 8].

In the context of groups and their homomorphisms, one of the first au-
tomatic continuity results has been proved by Dudley [9], who showed that
any homomorphism from a complete metric or a locally compact group into
a normed (e.g. free) group is continuous (see also [47] for a recent general-
ization to homomorphisms into free products). A general form of automatic
continuity phenomenon for groups has appeared in the work of Kechris and
Rosendal [30], with connection to the results of Hodges, Hodkinson, Lascar
and Shelah [19].

A topological group G has the automatic continuity property if for every
separable topological group H (or, equivalently, any Polish group H), any
group homomorphism from G to H is continuous. Recall [27, Theorem 9.10]
that any measurable homomorphism from a Polish group to a separable
group must be continuous and the existence of non-measurable homomor-
phisms on groups such as (R,+) can be derived from the axiom of choice.
So, similarly as amenability, automatic continuity property for a given group
can be interpreted in terms of nonexistence (on this group) of pathological
phenomena that can follow from the axiom of choice.

Kechris and Rosendal [30] showed that automatic continuity is a conse-
quence of the existence of comeager orbits in the diagonal conjugacy actions
of G on Gn for each n ∈ N (i.e. ample generics, cf [30, Section 1.6]) and dis-
covered a connection between ample generics for the automorphism groups
of homogeneous structures and the Fräıssé theory. In consequence, many
automorphism groups of homogeneous structures turned out to have the au-
tomatic continuity property. However, automatic continuity can hold also
for groups which do not have ample generics (and even have meager conju-
gacy classes). Rosendal and Solecki [45] proved that automatic continuity
property holds for the groups of homeomorphisms of the Cantor space and
of the real line, and for the automorphism group of (Q, <). Rosendal [42]
showed automatic continuity for the groups of homeomorphisms of compact
2-manifolds. A survey on recent results in this area can be found in [43].

The Urysohn space U is the separable complete metric space which is
homogeneous (i.e. any finite partial isometry of U extends to an isometry of
U) and such that any finite metric space embeds into U isometrically. It is
known that these properties of U determine it uniquely up to isometry and
that any separable metric space embeds into U [38, Theorem 5.1.29]. The
analogue of the Urysohn space of diameter 1 also exists and is called the
Urysohn sphere (or the bounded Urysohn space of diameter 1 ) and denoted
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by U1 (see [38, Remark 5.1.31]). The group of isometries of U is univer-
sal among Polish groups, i.e. any Polish group is its closed subgroup [13,
Theorem 2.5.2]. The Urysohn space, as well as its group of isometries, have
received a considerable amount of attention recently. Tent and Ziegler [52]
showed that the quotient of the group of isometries of U modulo the normal
subgroup of bounded isometries is a simple group and recently [51] proved
that the group of isometries of the bounded Urysohn space is simple. For
more on the structure of the Urysohn space and its group of isometries, see
the recent monographs [38, 14, 13] on this subject.

Kechris and Rosendal showed that the group of automorphisms of the
rational Urysohn space (which is the Fräıssé limit of the class of finite metric
spaces with rational distances) has ample generics and deduced from it that
the group Iso(U) has a dense conjugacy class [31, Theorem 2.2]. The question
whether the group of isometries of the Urysohn space has the automatic
continuity property has been asked by Melleray (cf. [5, Section 6.1]). One
of the main applications of the results of this paper is the following.

Theorem 1.1. The groups of isometries of the Urysohn space and the
Urysohn sphere have the automatic continuity property.

Theorem 1.1 has some immediate consequences on the topological struc-
ture of the above groups, in spirit of the results of Kallman [24, 25] and
Atim and Kallman [2]. The first one is an abstract consequence of auto-
matic continuity

Corollary 1.2. The group Iso(U) has unique Polish group topology.

Recall that a group is minimal if it does not admit any strictly corser
(Hausdorff) group topology (in this paper we consider only Hausdorff topolo-
gies on groups). The second corollary follows from minimality of the group
of isometries of the Urysohn sphere, proved by Uspenskij [54]

Corollary 1.3. The group Iso(U1) has unique separable group topology.

Theorem 1.1 will follow from the following abstract result, which isolates
metric (or model-theoretic) properties of a metric structure that imply that
the group of automorphisms (with the pointwise convergence topology) of
the structure has the automatic continuity property. The definitions of a
metric structure and the notions appearing in the statement of the theorem
are given in Sections 2 and 3.

Theorem 1.4. Suppose M is a homogeneous complete metric structure that
has locally finite automorphisms, the extension property and admits weakly
isolated sequences. Then the group Aut(M) has the automatic continuity
property.

Theorem 1.4 can be also applied to give a unified treatment of previously
known automatic continuity results for automorphism groups of some met-
ric structures. It is worth mentioning that up to now, these results have
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been proved with different methods, varying from case to case. In this pa-
per, we apply Theorem 1.4 to show the automatic continuity property for
the group Aut([0, 1], λ) (the group of measure-preserving automorphism of
the unit interval) and the group U(`2) (unitary operators of the infinite-
dimensional separable Hilbert space). Let us also mention that theorem 1.4
trivially covers the automatic continuity results for groups of automorphisms
of countable (discrete) structures considered in [31]. This is because in a
discrete structure any sequence is weakly isolated and the conjunction of the
extension property and locally finite automorphisms implies the existence
of ample generics in the automorphism group of that structure

Automatic continuity for the group Aut([0, 1], λ) has been proved in a
series of two papers [32, 5]. Kittrell and Tsankov [32] showed first that any
homomorphism from Aut([0, 1], λ) to a separable group must be continu-
ous in the strong topology of Aut([0, 1], λ) (see [28, Section 1]) and later,
Ben Yaacov, Berenstein and Melleray [5] proved a general result which im-
plies that any homomorphism which is continuous in the strong topology
on Aut([0, 1], λ) must be continuous in the weak topology on Aut([0, 1], λ)
(this approach has been recently simplified by Malicki [34]). The group
Aut([0, 1], λ) (with the weak topology) is isomorphic to the group of auto-
morphism of the measure algebra and applying Theorem 1.4 to the measure
algebra we get a new proof of automatic continuity.

Corollary 1.5 (Ben Yaacov, Berenstein, Melleray). The group Aut([0, 1], λ)
has the automatic continuity property.

After the work of Ben Yaacov, Berenstein and Melleray [5], Tsankov [53]
further showed the automatic continuity property for the infinite-dimensional
unitary group. Given that the group U(`2) is the automorphism group of
the Hilbert space `2 (or the isometry group of the sphere in `2), we can
apply Theorem 1.4 to the Hilbert space and get a new proof of this result.

Corollary 1.6 (Tsankov). The group U(`2) has the automatic continuity
property.

Our proof of Theorem 1.4 builds on the work of Kechris and Rosendal
[31] and Rosendal and Solecki [45]. In particular, we use the notion of ample
generics introduced in [31] and exploit some ideas of [45, Section 3]. The
verification of conditions of Theorem 1.4 in the case of the Urysohn space
uses a result of Solecki [48] that is based on earlier results of Herwig and
Lascar [17]. These result in turn, are connected to a theorem of Ribes
and Zalesskĭı [40], who showed separability of products of finitely-generated
subgroups of the free groups (this was later generalized by Minasyan [36] to
hyperbolic groups). In Section 8 we present a new proof of Solecki’s theorem
[48] in the style of Mackey’s construction of induced actions and based on
the separability result of Ribes and Zalesskĭı.

This paper is organized as follows. In Sections 2 and 3 we give an overview
of model-theoretic notions that appear in the statement of Theorem 1.4. In
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Sections 4 and 5 we prove a weak version of ample generics for the automor-
phism groups of metric structures and Section 6 includes a proof of Theorem
1.4. Section 7 contains a further result on triviality of homomorphisms to
groups admitting complete left-invariant metrics. In Section 8 we verify that
the assumptions of Theorem 1.4 are satisfied by the Urysohn space, which
proves Theorem 1.1. Sections 9 and 10 contain discussion of the cases of the
measure algebra and the Hilbert space and proofs of Corollaries 1.5 and 1.6.

Acknowledgement. Part of this work has been done during the author’s
stay at the University Paris 7 in the academic year 2013/14. The author is
grateful to Zoé Chatzidakis, Amador Mart́ın-Pizarro, Stevo Todorčević and
Todor Tsankov for many useful comments. The author also wishes to thank
Itäı Ben Yaacov, Alexander Kechris, Julien Melleray and Piotr Przytycki
for inspiring discussions and Maciej Malicki for useful comments on the first
version on this manuscript.

2. First-order continuous model theory

The techniques used in this paper are motivated by the framework and
language of model theory for metric structures, developed recently by Ben
Yaacov, Berenstein, Henson, Usvyatsov [4] and others. There are, however,
some details, that will vary from the original setting. In this paper, a met-
ric structure is a tuple (X, dX , f1, f2, . . .) where X equipped with dX is a
separable metric space and f1, f2, . . . are either closed subsets of Xn × Rm
(relations), for some n,m ∈ N, or continuous functions, from Xn × Rm to
Xk × Rl for some n,m, k, l ∈ N (here we consider the discrete topology on
R, i.e. demand continuity only on the arguments from X). Thus, a metric
structure is a two-sorted structure with the second sort being a subset of the
real line R. Let us note here that in the examples considered in this paper,
the structures will contain no relational symbols (only functions) and we
allow them in the definition only for sake of generality.

We do not require our metric structures to be complete (as metric spaces)
and we say that a metric structureX is complete if it is complete with respect
to dX .

Given a metric structure M we write Aut(M) for the group of automor-
phisms of M (i.e. bijections of the first sort of M which preserve both
the metric and each fn). Aut(M) is always endowed with the topology of
pointwise convergence and if M is complete, then Aut(M) is a Polish group.
Say that a metric structure X is homogeneous if every partial isomorphism
between finitely generated substructures of X extends to an automorphism
of X. Note that in case X is a metric space, this coicides with the usual
notion of homogeneity (sometimes also referred to as ultrahomogeneity).

The main difference between continuous logic and our approach lies the
syntax. We will consider only a first-order variant of the language. Terms
are either variables, elements of a structure (of the first sort or the second
sort), or expressions of the form f(τ1, . . . , τn), where τ1, . . . , τn are terms
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and f is a function symbol (e.g. the symbol for the distance function) of
appropriate kind (where the numbers and sorts of the variables are correct).
The first-order formulas in our language will be of the form

• τ = σ, or R(τ1, . . . , τn), where τ, σ, τ1, . . . , τn are terms and R is a
relational symbol,
• if ϕ and ψ are first-order formulas and x is a variable of the first sort,

then ∃xϕ, ∀xϕ, ¬ϕ, ϕ ∨ ψ are first-order formulas as well (quantifi-
cation is only allowed over the first sort).

As usual, a first-order sentence is a first-order formula without free vari-
ables. The truth value of a first-order sentence in a metric structure is
defined as in the classical setting (it is either 0 or 1). We will use the
symbol ≺ for an elementary substructure, in the following (classical) sense:
given a metric structure X and its substructure Y ⊆ X we write Y ≺ X if
for every first order sentence σ with parameters in Y , if σ is true in Y , then
σ is true in X.

Given a metric structure X and a tuple ā = (a1, . . . , am) of elements of
X, a quantifier-free type over ā is a set of quantifier-free formulas ϕ(x̄, ā, r̄)
with parameters r̄ from the second sort, for a fixed sequence of variables
x̄ = (x1, . . . , xn) of the first sort. A quantifier-free type is a quantifier-free
type over the empty tuple. Quantifier-free types will be denoted by p(x̄) (to
indicate the variables), or simply p. If x̄ = (x1, . . . , xn), then we also say
that p(x̄) is a quantifier-free n-type over ā.

We say that an n-tuple b̄ = (b1, . . . , bn) of elements of a metric structure
X realizes a given quantifier-free n-type p over ā (write b̄ |= p) if X |= ϕ(b̄, ā)
for every ϕ(x̄, ā) ∈ p (the definition of satisfaction in a model is the natural
one). Given Y ⊆ X with ā ∈ Y n and a quantifier-free type n-type p over
ā we say that p is realized in Y if there is b̄ ∈ Y n such that b̄ |= p. Also,
abusing notation, if Y ⊆ Xk, then we say that p is realized in Y if if there is
b̄ ∈ Y such that b̄ |= p. The quantifier-free type of a tuple b̄ over ā, denoted
by qftp(b̄/ā) is then the set of all quantifier-free formulas ϕ(x̄, ā) such that
X |= ϕ(b̄, ā). If ā is the empty tuple, then we write qftp(b̄) for qftp(b̄/ā).
A quantifier-free type is consistent if there is a model that realizes it, and
a consistent quantifier-free type p is complete if whenever p ⊆ q and q is a
consistent quantifer-free type, then p = q.

Definition 2.1. Given n ∈ N, a quantifier-free n-type p over ā = (a1, . . . , an)
and ε > 0, say that p is an ε-quantifier-free n-type over ā if qftp(ā) ⊆ p and
d(xi, ai) = εi belongs to p for each i ≤ n and for some 0 ≤ εi < ε.

Given a metric structure X, k ∈ N and a complete quantifier-free k-type
p write p(X) = {ā ∈ Xk : ā |= p} and note that p(X) ⊆ Xk is Gδ (closed
if there are no relation symbols) in the topology of Xk, so if X is complete,
then p(X) becomes a Polish space.

Given three tuples ā, b̄ and c̄ in a metric structure X, write b̄ ≡ā c̄ if
qftp(b̄/ā) = qftp(c̄/ā). Also, write b̄ ≡ c̄ to denote b̄ ≡∅ c̄. If X is a
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homogeneous metric space, then the former is equivalent to the fact that
there is g ∈ Iso(X) with g � ā = id and g(c̄) = b̄.

Definition 2.2. Given a metric structure X, k ∈ N, a tuple ā ∈ Xk with
p = qftp(ā) and ε > 0, say that a subset Y ⊆ p(X) is relatively ε-saturated
over ā if every ε-quantifier-free k-type over ā which is realized in X, is also
realized in Y .

Note that if Y is relatively ε-saturated over ā, then in particular, Y con-
tains ā. Given two tuples ā, b̄ ∈ Xm and ε > 0 write dX(ā, b̄) < ε if
dX(ak, bk) < ε for every k ≤ m.

Definition 2.3. Suppose X is a homogeneous metric structure and ā ∈ Xk

for some k ∈ N. Write p for qftp(ā). Say that a sequence (ān : n ∈ N) of
elements of Xk is an isolated sequence in p if every ān realizes p and there
exists a sequence of εn > 0 and subsets Yn ⊆ p(X) such that for every n ∈ N
the set Yn is relatively εn-saturated over ān and for every sequence b̄n ∈ Yn
such that qftp(b̄n) = qftp(ān) and dX(ān, b̄n) < εn there is an automorphism
ϕ of X with ϕ(ān) = b̄n for every n ∈ N.

The following definition will be generalized in Definition 2.8 below.

Definition 2.4. Say that a metric structure X admits isolated sequences if
for every k ∈ N, every complete quantifier-free k-type p realized in X, for
every nonmeager set Z ⊆ p(X) there is a sequence (ān : n ∈ N) which is
isolated in p and ān ∈ Z for every n.

The above definitions are enough for the study of the Urysohn space and
the measure algebra but in order to deal with the Hilbert space we need to
introduce slightly more general notions.

Definition 2.5. Given a metric structure X, k ∈ N, ε > 0 and tuple ā ∈ Xk

write p = qftp(ā). Suppose T ⊆ p(X). Say that Y ⊆ Xk is T -relatively ε-
saturated over ā if for every b̄ ∈ T with dX(b̄, ā) < ε there is b̄′ ∈ Y such
that qftp(b̄/ā) = qftp(b̄′/ā).

Definition 2.6. Suppose X is a metric structure, ε > 0, k,m ∈ N, ā ∈ Xk

and p = qftp(ā). Say that a subset T ⊆ p(X) (m, ε)-generates an open set
over ā if there is a nonempty open set U ⊆ p(X) such that for every b̄ ∈ U
there is a sequence g1, . . . , gm ∈ Aut(X) such that

• gm . . . g1(ā) = b̄,
• gi(ā) ∈ T and dX(gi(ā), ā) < ε for each i ≤ m.

Note that, in particular, if T contains an open ball of radius ε around ā
(i.e. {b̄ ∈ p(X) : dX(b̄, ā) < ε}), then it (1, ε)-generates an open set over ā.
Therefore, the following definition is a generalization of Definition 2.2.

Definition 2.7. Suppose X is a metric structure, ε > 0, k,m ∈ N, ā ∈ Xk

and p = qftp(ā). Say that Y ⊆ p(X) is m-relatively ε-saturated over ā if
there is T ⊆ p(X) such that
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• Y is T -relatively ε-saturated over ā,
• T (m, ε)-generates an open set over ā.

Thus, if Y is relatively ε-saturated over ā, then it is 1-relatively ε-saturated
over ā.

Definition 2.8. Suppose X is a homogeneous metric structure and ā ∈ Xk

for some k ∈ N. Write p for qftp(ā). Say that a sequence (ān : n ∈ N) of
elements of Xk is a weakly isolated sequence in p if every ān realizes p and
there exists m ∈ N and a sequence of εn > 0 and subsets Yn ⊆ p(X) such
that for every n ∈ N the set Yn is m-relatively εn-saturated over ān and for
every sequence b̄n ∈ Yn such that qftp(b̄n) = qftp(ān) and dX(ān, b̄n) < εn
there is an automorphism ϕ of X with ϕ(ān) = b̄n for every n ∈ N. Given
m as above we will also say that the sequence is m-weakly isolated.

Definition 2.9. Say that a metric structure X admits weakly isolated se-
quences if there is m ∈ N such that for every k ∈ N, every complete
quantifier-free k-type p realized in X, for every nonmeager set Z ⊆ p(X)
there is a sequence (ān : n ∈ N) which is m-weakly isolated in p and ān ∈ Z
for every n. Given m as above we will also say that the structure admits
m-weakly isolated sequences.

Now, Definition 2.4 is a special case of Definition 2.9 since an isolated
sequence is obviously weakly isolated.

3. Metric structures

Automatic continuity for automorphism groups of metric structures will
depend on the model-theoretic properties of the structure. The key defini-
tions, which stem from the analysis of the work of Kechris and Rosendal
[31] are given below.

Below, and throughout of this paper, we use the convention that a finitely
generated substructure of a metric structure is always enumerated (a finitely
generated substructure is a tuple if there are no function symbols).

Definition 3.1. Let M be a metric structure, B,C ⊆M be finitely gener-
ated substructures. Given a finitely generated substructure A ⊆ B ∩ C say
that B and C are independent over A and write

B |̂
A

C

if for every pair of automorphisms ϕ : B → B, ψ : C → C such that A is
closed under ϕ and ψ and ϕ � A = ψ � A, the function ϕ ∪ ψ extends to an
automorphism of the substructure generated by B and C.

An abstract notion of stationary independence has been considered by
Tent and Ziegler in [52]. In general, the above notion is not a stationary
independence relation in the sense of [52, Definition 2.1] and satisfies only
the Invariance and Symmetry conditions (see also the remarks [52, Example
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2.2]). However, in all concrete cases, the examples of independence relation
considered in this paper will be the same as in [52]. The following is moti-
vated by a standard property of the independence relation in stable theories
(see [4, Theorem 14.12]).

Definition 3.2. Say that a metric structure M has the extension property
if for every pair B,C ⊆M of finitely generated substructures and a finitely
generated substructure A ⊆ B ∩C there is a finitely generated substructure
C ′ ⊆M with C ′ ≡A C such that B |̂

A
C ′.

Another property of the metric structures that we will need for automatic
continuity is connected with the extension theorems proved by Hrushovski
[20], Herwig and Lascar [17] and Solecki [48].

Definition 3.3. Say that a metric structure M has locally finite automor-
phisms if for every n ∈ N, for any finitely generated substructure N of M ,
for any partial automorphisms ϕ1, . . . , ϕn of N , there is a finitely generated
structure N ′ of M containing N such that every ϕi extends to an automor-
phism of N ′, for each i ≤ n.

Note that if finitely generated substructures of M are finite (e.g. when
there are no function symbols for functions from Mm to M), then M has
locally finite automorphisms if and only if for any finite substructure N
of M there is is a finite structure N ′ of M containing N such that every
isomorphism between finite substructures of N extends to an automorphism
of N ′.

4. First order logic for metric structures

Similarly as in the classical case, the Lω1ω-formulas in first-order logic for
metric structures are formed by allowing countable infinite conjunctions and
disjunctions of first order formulas as well as finite quantification. Note that
the formula qftp(x̄) = qftp(ȳ) belongs to Lω1ω. A property Φ of a metric

structures is called a first-order property if there is a set Φ̃ of Lω1ω-sentences
such that a metric structure M satisfies Φ if and only if M |= φ for every

φ ∈ Φ̃. Note that if φ is an Lω1ω-sentence and N ≺ M , then we have that
N |= φ if and only if M |= φ.

Lemma 4.1 (Löwenheim–Skolem). Suppose M is a metric structure and
for each ā, b̄ ∈M<ω let ϕāb̄ be an automorphism of M . For every countable
M0 ⊆ M there is a countable metric structure N ⊆ M with M0 ⊆ N , such
that N ≺M and N is closed under ϕāb̄ for each ā, b̄ ∈ N<ω.

Proof. The standard Löwenheim–Skolem argument shows that there is a
countable M1 with M0 ⊆M1 and M1 ≺M . Construct a chain of countable
first-order elementary substructures Mn ≺ M with Mn ⊆ Mn+1 such that
Mn+1 is closed under ϕāb̄ for every ā, b̄ ∈ M<ω

n . Write N =
⋃
nMn. Then

N is as needed. �
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Lemma 4.2. The property saying that a metric structure has locally finite
automorphisms is a first-order property for homogeneous metric structures.

Proof. For each n ∈ N write

x ∈ 〈x1, . . . , xn〉

for the Lω1ω-formula (in variables x, x1, . . . , xn) saying that x belongs to the
substructure generated by x1, . . . , xn. The formula is of the form

∨
k∈N x =

gk(x1, . . . , xn) where gk enumerate all compositions of function symbols
in the language. We also write y1, . . . , ym ∈ 〈x1, . . . , xn〉 for

∧
i≤m yi ∈

〈x1, . . . , xn〉.
Note that if a homogeneous metric structure M has locally finite auto-

morphisms and N is its finitely generated substructure, say by x1, . . . , xn
and k ∈ N, then there is a number n(p, k) ∈ N, depending only on the
quantifier-free type p of x1, . . . , xn and k such that any for any substructure
N1 isomorphic to N in M , and any set of partial automorphisms ϕ1, . . . , ϕk
of N1 there is a substructure N ′1 of M containing N1 and generated by
m ≤ n(p) elements such that every ϕi extends to an automorphism of N ′1.

Thus, a homogeneous metric structure M has locally finite automor-
phisms if and only if it satisfies the following Lω1ω-sentences, for every
n, k ∈ N, quantifier-free n-type p and every n1, . . . , nk ≤ n.

∀x1, . . . , xn [qftp(x1, . . . , xn) = p]⇒
∀y1

1, . . . , y
1
n1
, z1

1 , . . . , z
1
n1
y2

1, . . . , y
2
n2
, z2

1 , . . . , z
2
n2
, . . . , yk1 , . . . , y

k
nk
, zk1 , . . . , z

k
nk[ k∧

i=1

( ni∧
l=1

yil , z
i
l ∈ 〈x1, . . . , xn〉

)
∧ qftp(yi1, . . . , y

i
ni

) = qftp(zi1, . . . , z
i
ni

)

]
⇒

[ ∨
n≤m≤n(p,k)

∃x′1, . . . , x′m x′1 = x1 ∧ . . . ∧ x′n = xn

∧
j≤k
∃xk1, . . . , xkm ∈ 〈x′1, . . . , x′m〉

(
x′1, . . . , x

′
m ∈ 〈xk1, . . . , xkm〉

∧ qftp(x′1, . . . , x
′
m, y

k
1 , . . . , y

k
nk

) = qftp(xk1, . . . , x
k
m, z

k
1 , . . . , z

k
nk

)

)]
�

Lemma 4.3. The extension property is a first-order property for metric
structures.

Proof. The extension property is the conjunction of the following sentences,
for all n,m ∈ N and k ≤ min(n,m). Below, for a tuple x̄ = (x1, . . . , xn)
and σ ∈ Sn (the group of permutations of n) we write x̄σ for the tuple
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(xσ(1), . . . , xσ(n)).

∀x1, . . . , xn ∀y1, . . . , ym (x1 = y1 ∧ . . . ∧ xk = yk)

⇒
[
∃y′1 . . . , y′m(y′1 = y1 ∧ . . . ∧ y′k = yk) ∧ qftp(y1 . . . ym) = qftp(y′1 . . . y

′
m)

∧
∧
σ∈Sn

∧
τ∈Sm

(
σ � k : k → k ∧ σ � k = τ � k

(
qftp(x̄) = qftp(x̄σ) ∧ qftp(ȳ′) = qftp(ȳ′τ )

)
⇒ qftp(x̄, ȳ) = qftp(x̄σ, ȳτ )

)]
�

Corollary 4.4. Suppose M is a homogeneous metric structure which has
locally finite automorphisms and the extension property. Let ϕā be an auto-
morphism of M for each ā ∈M<ω. Then there is a countable homogeneous
metric structure N ⊆ M which is dense in M , has locally finite automor-
phisms, the extension property and is closed under all automorphisms ϕā for
ā ∈ N<ω.

Proof. Let M0 be countable dense in M and for each ā, b̄ ∈ M<ω which
generate isomorphic substructures, let ϕāb̄ be an automorphism of M which
maps ā to b̄. If ā, b̄ ∈ M<ω are of different cardinality or do not generate
isomorphic substructures, then put ϕāb̄ = ϕā. By Proposition 4.1, there is
a countable substructure N ≺M which contains N0 and is closed under all
ϕāb̄ for ā, b̄ ∈ N<ω. The latter clearly implies that N is homogeneous and
closed under ϕā for ā ∈ N<ω. Lemmas 4.3 and 4.2 imply that N has the
extension property and locally finite automorphisms. �

5. Ample generics

If a metric structure is countable and has a discrete metric, then its
automorphism group is a subgroup of S∞ and for such groups Kechris and
Rosendal [31] developed machinery for proving automatic continuity. Recall
that a topological group G has ample generics if for every n ∈ N there is a
comeager class in the diagonal conjugacy action of G on Gn (i.e. the action
g · (g1, . . . , gn) = (gg1g

−1, . . . , ggng
−1)).

Recall [18] that given a continuous action of a Polish group G on a Polish
space X, a point x ∈ X is turbulent if for every open neighborhood U ⊆ G
of the identity and every open V 3 x, the local orbit O(x, U, V ) = {x′ ∈ X :
∃g1, . . . , gn ∈ U∀i ≤ n gi . . . g1x ∈ U ∧ x′ = gn . . . g1x} is somewhere dense.
If G is a subgroup of S∞, then a point x ∈ X is turbulent if and only if for
every open subgroup U ≤ G the set Ux = {gx : g ∈ U} is somewhere dense
[31, Proposition 3.2]. Also, in the case of a continuous action of a Polish
group, if a point is turbulent and has a dense orbit, then its orbit is actually
comeager. This is because in such case the orbit of a turbulent point cannot
be meager and hence has to be meager in its closure [31, Proposition 3.2].
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The groups of automorphisms of metric structures can be endowed with
many topologies and this is the starting point of the analysis of Ben Yaacov,
Berenstein and Melleray [5], who consider two types of topologies: the Polish
topologies of pointwise convergence and variants of strong (non separable)
topologies. We are, however, primarily interested in separable topologies
on these groups. By default, the topology on Aut(M) is that of pointwise
convergence with respect to the metric on M . However, if M is countable
(but perhaps not complete with respect to its metric), we will also consider
the topology inherited from the group S∞, which coincides with the point-
wise convergence topology with respect to a discrete metric on M . If M is
countable, then we refer to this topology by saying that the group Aut(M)
is treated as a subgroup of S∞. It can be also viewed as the topology of
pointwise convergence on the automorphism group of the structure M en-
dowed with a discrete metric and the original distance function dM treated
as a part of the structure.

Below, and throughout this paper, we use the following notation. If G acts
on M and ā = (a1, . . . , an) ∈M<ω, then Gā = {g ∈ G : ∀i ≤ n g(ai) = ai}.

Lemma 5.1. Suppose M is a countable homogeneous metric structure. If M
has locally finite automorphisms and the extension property, then Aut(M)
has ample generics as a subgroup of S∞.

Proof. Write G for Aut(M). Fix n ∈ N to find a generic tuple in Gn.

Enumerate as (an : n ∈ N) with infinite repetitions all tuples a = (A, ~ϕ,B, ~ψ)

with ~ϕ = (ϕ1, . . . , ϕn), ~ψ = (ψ1, . . . , ψn) such that A ⊆ B are finitely
generated substructures of M (possibly generated by the empty set) and
for each i ≤ n we have ϕi ⊆ ψi, and ϕi : A → A, ψi : B → B are
automorphisms.

By induction on k construct a sequence of increasing finitely generated
substructures Dk ⊆ M together with tuples of increasing automorphisms
~γk = (γ1

k , . . . , γ
n
k ) with γik : Dk → Dk for each i ≤ n. Using back-and-forth

and homogeneity make sure that
⋃
kDk = M and for each i ≤ n the function⋃

k γ
i
k is an automorphism of M . Additionally, for each k make sure that

if ak = (Ak, ~ϕk, Bk, ~ψk) and Ak ⊆ Dk are such that

~ϕk = (ϕ1
k, . . . , ϕ

n
k), ~ψk = (ψ1

k, . . . , ψ
n
k ),

ϕik � Ak : Ak → Ak, ψ
i
k � Ak = ϕik � Ak and ϕik ⊆ γik for each i ≤ n,

then there is g ∈ GAk
with gγik+1g

−1 ⊇ ψik for each i ≤ n.

(∗)

At the induction step k first use locally finite automorphisms to find D′k ⊇
Dk such that the first k-many elements of M are in D′k and each ϕik ex-

tends to an automorphism γik
′

of D′k. Next, use the extension property to
find a finitely generated substructure B′k of M with B′k ≡Ak

Bk such that
B′k |̂ Ak

D′k. Let g ∈ GAk
witness that B′k ≡Ak

Bk, i.e. g(B′k) = Bk. Define

Dk+1 to be the substructure generated by D′k and B′k and for each i ≤ n
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define γik+1 so that γik+1 � D
′
k = γik

′
and γik+1 � B

′
k = g−1ψig and use the

assumption B′k |̂ Ak
D′k to extend it to Dk+1. Note that g witnesses that

(∗) is satisfied at the step k.
After this construction is done, write gi =

⋃
k γ

i
k and note that gi is an

automorphism of M , for each i ≤ n. To see that ~g = (g1, . . . , gn) is generic,
it is enough to see that ~g is turbulent under the diagonal conjugacy action
of Aut(M) on Aut(M)n and has a dense orbit.

To see the turbulence, fix an open neighborhood O of the identity in
Aut(M), and, say, O = Gā for a finite tuple ā ⊆ M . We need to see that
O · ~g is somewhere dense. Find m such that ā ⊆ Dm and write Vi for
{f ∈ Aut(M) : f � Dm = gi � Dm}. Note that gi � Dm : Dm → Dm is an
automorphism for each i ≤ n. We claim that O ·~g is dense in V1 × . . .× Vn.
To see that, fix a nonempty open subset W ⊆ V1 × . . . × Vn and without
loss of generality assume W = W1 × . . . ×Wn. Since M has locally finite
automorphisms, we can assume that Wi = {f ∈ Aut(M) : f ⊇ ψi} for each
i ≤ n, where each ψi : B → B is an automorphism of a finitely generated
substructure B of M . Note that ψi ⊇ gi � Dm for each i ≤ n.

We need to see that (O ·~g)∩ (W1× . . .×Wn) 6= ∅. Let k ∈ N be such that

ak = (Ak, ~ϕk, Bk, ~ψk) with Ak = Dm, Bk = B, ~ϕk = (g1 � Dm, . . . , gn � Dm)

and ~ψ = (ψ1, . . . , ψn). By (∗) at the step k, there is g ∈ GAk
⊆ Gā such

that ggig
−1 ⊇ ψi for each i ≤ n and so we are done.

The fact that the orbit of ~g is dense follows by analogous arguments. �

Recall that a subset S of a group G is called countably syndetic if G can
be written as

⋃
n anS for some sequence an ∈ G. A subset S of G is called

symmetric if S−1 = S.

Corollary 5.2. Suppose M is a countable homogeneous metric structure
and G = Aut(M). If M has locally finite automorphisms and the extension
property, and W ⊆ Aut(M) is symmetric and countably syndetic, then there
is a finite tuple ā ⊆M such that Gā ⊆W 10.

Proof. This is an abstract consequence of ample generics [31, Lemma 6.15]
and thus follows from Lemma 5.1. �

6. Automatic continuity

In [45] Rosendal and Solecki isolated an abstract property of a group that
implies automatic continuity. We say that G is Steinhaus (cf. [49]) if there
is a natural number k ≥ 1 such that for every symmetric countably syndetic
set S ⊆ G the set Sk = {s1 · . . . · sk : s1, . . . , sk ∈ S} contains a nonempty
open set in G. In such a case G is also called k-Steinhaus. If a group G is
Steinhaus, then G has the automatic continuity property [45, Proposition
2].

We will need the following lemma.
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Lemma 6.1. Suppose X is a complete homogeneous metric structure that
has locally finite automorphisms and the extension property and let G =
Aut(X). If W ⊆ G is symmetric and countably syndetic, then there is
ā ∈ X<ω such that Gā ⊆W 10.

Proof. Suppose otherwise. This means that for each k ∈ N and a ∈ Xk

there is fā ∈ G with fā(ā) = ā and fā /∈ W 10. Let gn ∈ G be such that
G =

⋃
n gnW . Use Corollary 4.4 to find a countable, dense X0 ⊆ X such

that X0 ≺ X and X0 is closed under each gn as well as under fā for each
ā ∈ (X0)<ω. Since X0 is elementary in X, it has locally finite automorphisms
and the extension property by Lemmas 4.2 and 4.3.

WriteW0 for the set of those automorphisms ofX0 whose unique extension
to X belongs to W .

Claim 6.2. W0 is symmetric and countably syndetic in Aut(X0).

Proof. It is clear that W0 is symmetric. To see that it is countably syndetic,
pick f0 ∈ Aut(X0) and let f ∈ Aut(X) be the unique extension of f0 to X.
Now, there is n ∈ N and s ∈ W such that f = gns. Since s = g−1

n f leaves
X0 invariant, we have that s0 = s � X0 ∈ Aut(X0) and s0 ∈W0. �

Now, this gives a contradiction since by Corollary 5.2, (W0)10 contains an
open neighborhood of the identity in Aut(X0), i.e. there is ā ∈ (X0)<ω such
that every automorphism of X0 which fixes ā belongs to (W0)10. Write f0

for fā � X0 and note that f0 /∈ (W0)10, by the density of X0, contradiction.
This proves the lemma. �

Theorem 6.3. Suppose X is a complete homogeneous metric structure that
admits weakly isolated sequences, has locally finite automorphisms and the
extension property. Then the group Aut(X) is Steinhaus.

Proof. Write G for Aut(X). Suppose m ∈ N is such that X admits m-
weakly isolated sequences. We will show that G is (24m + 10)-Steinhaus.
The same argument also shows that if X admits isolated sequences then G
is 24-Steinhaus. Let W ⊆ G be symmetric and countably syndentic. Let
gn ∈ G be such that G =

⋃
n gnW .

Let ā be such as in Lemma 6.1 and k ∈ N such that ā ∈ Xk. Write
ā = (a1, . . . , ak), p for qftp(ā) and Z = {w(ā) : w ∈ W} ⊆ p(X). Note
that since p(X) =

⋃
n gnZ, the set Z is nonmeager in p(X). Choose an

m-weakly isolated sequence ān such that each ān belongs to Z and for each
n ∈ N let vn ∈ W be such that ān = vn(ā). Let εn > 0, and Tn, Xn ⊆ p(X)
witness that the sequence of ān is m-weakly isolated (i.e. Xn is Tn-relatively
εn-saturated in X and Tn (m, εn)-generates an open set over ān).

Given two subspaces X ′, X ′′ of X and a set C of partial automorphisms
from X ′ to X ′′, say that a subset G0 of G is full for C if every element of C
can be extended to an element of G0 (cf. [45, Claim 1]).

Claim 6.4. There is n ∈ N such that W 2 is full for

Cn = {ϕ : ān → ballX(ān, εn) ∩Xn : ϕ is an isomorphic embedding}.
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Proof. First note that there is n ∈ N such that gnW is full for Cn. If not,
then for each n ∈ N there is ϕn ∈ Cn such that ϕn cannot be extended to
an element of gnW . Since ān are isolated, there is an automorphism ϕ of
X which extends all the ϕn. Then ϕ /∈

⋃
n gnW , which is a contradiction.

Now, if gnW is full for Cn, then so is W 2 = (gnW )−1(gnW ) as Cn contains
the identity. �

Fix n as in Claim 6.4 and write T = v−1
n (Tn).

Claim 6.5. We have

{g ∈ G : dX(ā, g(ā)) < εn and g(ā) ∈ T} ⊆W 24.

Proof. Let g ∈ G be such that g(ā) ∈ T and dX(ai, g(ai)) < εn for each
i ≤ k.

Let Y = v−1
n (Xn). Note that since vn is an automorphism and Xn is Tn-

relatively εn-saturated over ān, we get that Y is T -relatively εn-saturated
over ā. Thus, there is b̄ ∈ Y with

qftp(b̄/ā) = qftp(g(ā)/ā).

By homogeneity of X, there is w1 ∈ Gā such that w1(g(ā)) = b̄. Note that
w1 ∈W 10 as Gā ⊆W 10.

Look at vnw
−1
1 gv−1

n ∈ G and note that it maps ān to ballX(ān, εn) ∩Xn

because vn maps Y to Xn. By Claim 6.4 and the choice of n, there is w2 ∈
W 2 which is equal to vnw

−1
1 gv−1

n on ān. This means that w−1
2 vnw

−1
1 gv−1

n ∈
Gān and thus v−1

n w−1
2 vnw

−1
1 g ∈ Gā. Therefore, v−1

n w−1
2 vnw

−1
1 g ∈ W 10 and

thus g ∈W 24. �

Now note that T (m, εn)-generates an open set over ā, so let U ⊆ p(X)
be nonempty and such that for every b̄ ∈ U there is a sequence g1, . . . , gm ∈
Aut(X) such that

• gm . . . g1(ā) = b̄,
• gi(ā) ∈ T and dX(gi(ā), ā) < εn for each i ≤ m.

We claim that
{g ∈ G : g(ā) ∈ U} ⊆W 24m+10.

To see this, let g ∈ G be such that g(ā) ∈ U and let b̄ = g(ā). Find g1, . . . , gm
as above and note that by Claim 6.5 we have that gi ∈W 24 for each i ≤ m.
Now, g−1gm . . . g1 ∈ Gā, so g ∈W 24m+10, as needed.

The set {g ∈ G : g(ā) ∈ U} is open in G, so we have that G is (24m+10)-
Steinhaus. This ends the proof. �

7. Triviality of homomorphisms

In this section we study the circumstances under which one can exclude
nontrivial homomorphisms from the groups of the form Aut(M) to certain
topological groups H. Given two groups G and H say that G is H-trivial if
any homomorphism from G to H is trivial. Tsankov [53] concluded (from
the minimality of the unitary group) that whenever H is a separable group
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which admits a complete left-invariant metric, then the unitary group is H-
trivial. In this section, we isolate an abstract property of a metric structure
M which implies that Aut(M) is H-trivial for H as above and in Section 10
we will see that this property is satisfied by the Hilbert space. The same is
true for the group Aut(X,µ) but here it follows immediately from the fact
that Aut(X,µ) is simple [10]. The unitary group is not simple but (similarly
as the group of isometries of the Urysohn space [52]) has a maximal proper
normal subgroup [11]. We do not know, however, if the methods below apply
to U.

Given a subset N of a metric structure M and ā ∈ M<ω, say that N
is relatively saturated over ā if it is α-relatively saturated over ā for every
α ∈ [0,∞).

Definition 7.1. Suppose M is a homogeneous metric structure and ā ∈Mk

for some k ∈ N. Write p for qftp(ā). Say that a sequence (ān : n ∈ N) of
elements of Mk is an independent sequence in p if every ān realizes p and
there exists a sequence of subsets Nn such that Nn is relatively saturated
over ān such that for every sequence b̄n ∈ Nn with qftp(b̄n) = qftp(ān) there
is an automorphism ϕ of M with ϕ(ān) = b̄n for every n ∈ N.

Definition 7.2. Say that a metric structure M admits independent se-
quences if for every k ∈ N and ā ∈ Mk, for every sequence (s̄n : n ∈ N) of
finite tuples of elements of M , there is a sequence ān which is independent
in qftp(ā) and is such that ān+1 ≡s̄n ān holds for each n ∈ N.

Theorem 7.3. Suppose X is a complete metric structure that admits inde-
pendent sequences, has locally finite automorphisms and the extension prop-
erty. Then the group Aut(X) is H-trivial for every Polish group H which
has a complete left-invariant metric.

Proof. Write G for Aut(X) and suppose H has a complete left-invariant
metric. Fix ϕ : G → H and we will show that ϕ is trivial. To do this, it is
enough to see that whenever U ⊆ H is an open neighborhood of the identity,
then ϕ(G) ⊆ U .

Let then U ⊆ H be an open neighborhood of the identity. Find V ⊆ H
open neighborhood of the identity such that V 22 ⊆ U and write T = ϕ−1(V ).
Note that T ⊆ G is countably syndetic, so by Lemma 6.1, there is k ∈ N
and ā ∈ Xk such that Gā ⊆ T 10. Write p for the quantifier-free type of ā.

Let dH be a complete left-invariant metric on H and pick a decreasing
sequence of open neighborhoods Vn of the identity in H with V0 = V such
that diamdH (Vn) ≤ 2−n. Let also Wn ⊆ H be open symmetric neighbor-
hoods of the identity in H with (Wn)10 ⊆ Vn. Note that each ϕ−1(Wn)
is countably syndetic in G. Using Lemma 6.1, by induction on n > 0
pick increasing sequence s̄n of finite tuples of elements of X such that
Gs̄n ⊆ ϕ−1(Wn)10 ⊆ ϕ−1(Vn). Let s̄0 be the empty tuple.

Write ā0 = ā. Using the assumption that X admits independent se-
quences, pick a sequence gn ∈ G for n > 0 such that gn ∈ Gs̄n and the
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sequence (ān : n > 0) defined as an+1 = gn(ān), forms an independent se-
quence in p. Let Xn ⊆ X witness the that the sequence is independent, so
that each Xn is relatively saturated over ān.

Let fn = gn . . . g0 and write hn = ϕ(fn). Note that h−1
n is dH -Cauchy in

H and hence convergent. Thus, hn is convergent in H too. Let h = limn hn.

Claim 7.4. There is n such that fnT
2f−1
n is full for

Cn = {ϕ : ān → Xn : ϕ is an isomorphic embedding}.
Proof. We will first prove that there is a sequence bn ∈ G such that G =⋃
n bnTf

−1
n . This will follow from the fact that there is a sequence an ∈ H

such that H =
⋃
n anV h

−1
n by taking bn such that ϕ(bn) = an.

To see the latter fact, pick an so that they are dense in H and we claim
that H =

⋃
n anV h

−1
n . Indeed, if x ∈ H, then note that the sequence

zn = xhn = xϕ(gn) . . . ϕ(g0)

is convergent in H to z = xh. Pick a subsequence akn converging to z. Since
zkn converges to z, we get that dH(zkn , akn)→ 0. Thus, dH(a−1

kn
zkn , 1H)→ 0

as well and there is n such that a−1
kn
xhkn ∈ V and then x ∈ aknV h−1

kn
.

Now, note that there is n ∈ N such that bnTf
−1
n is full for Cn. If not,

then for each n ∈ N there is ϕn ∈ Cn such that ϕn cannot be extended to
an element of bnTf

−1
n . As the sequence ān is independent, there is an auto-

morphism ϕ of X which extends all the ϕn. But then ϕ /∈
⋃
n anTf

−1
n ,

which is a contradiction. Finally, if anTf
−1
n is full for Cn, then so is

fnT
2f−1
n = (anTf

−1
n )−1(anTf

−1
n ) since Cn contains the identity. This proves

the claim. �

We need to prove that G ⊆ ϕ−1(U). Let g ∈ G be arbitrary. Fix n as in
Claim 7.4 and note that fn(ā) = ān. Let Y = f−1

n (Xn). Note that Y and
X realize the same quantifier-free n-types over ā. This follows from the fact
that Xn is relatively saturated over ān and fn is an automorphism.

Thus, there is b̄ ∈ Y such that

qftp(b̄/ā) = qftp(g(ā)/ā).

Let w1 ∈ Gā be such that w1(g(ā)) = b̄. Note that w1 ∈ T 10 as Gā ⊆W 10.
Look at fnw

−1
1 gf−1

n ∈ G and note that it maps ān to Xn as fn maps Y

to Xn. By Claim 7.4, there is y ∈ fnT 2f−1
n which is equal to fnw

−1
1 gf−1

n on
ān. Write y = fnw2f

−1
n for some w2 ∈W 2 and note that

y−1(fnw
−1
1 gf−1

n ) = fnw2w
−1
1 gf−1

n ∈ Gān .
Therefore, w2w

−1
1 g = f−1

n (y−1(fnw
−1
1 gf−1

n ))fn fixes ā, which means that

w2w
−1
1 g ∈ T 10

and thus g ∈ T 22 ⊆ ϕ−1(U).
This shows that G ⊆ ϕ−1(U) and since U ⊆ H was an arbitrary open

neighborhood of the identity, we have that ϕ is trivial. This ends the proof.
�
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8. The Urysohn space

There is no essential difference in verifying that the Urysohn space and
the Urysohn sphere satisfy the assumptions of Theorem 1.4. We will focus
only on the Urysohn space.

Locally finite automorphisms for the Urysohn space have been already
shown by Solecki [48], who proved that for any finite metric space X and
finitely many partial isometries of X, there is a metric space Y containing
X such that all these partial isometries extend to isometries of Y . Solecki
derived his result from an extension theorem of Herwig and Lascar [17].
The theorem of Herwig and Lascar is connected to the Rhodes’ Type II
Conjecture proved independently by Ash [1] and by Ribes and Zalesskǐı
[40]. The latter results concern the profinite topology on the free groups (cf.
also [39]).

Recall that the profinite topology on a free group Fn is the one with
the basis at the identity consisting of finite-index subgroups of Fn. In the
literature, the fact that a set A ⊆ Fn is closed in the profinite topology is
usually referred to as by saying that A is separable. A classical result of M.
Hall, Jr. [16] says that any finitely generated subgroup of Fn is separable.
Note that it also implies that any coset of a finitely generated subgroup of Fn
is separable (since the multiplication is continuous in the profinte topology).
The main result of Ribes and Zalesskǐı [40] states that products of finitely
many finitely generated subgroups of Fn are also separable. Again, note
that it immediately implies that products of finitely many cosets of finitely
generated subgroups of Fn are separable as well.

An abstract connection between the theorem of Ribes and Zalesskǐı and
extensions of partial isometries was discovered by Rosendal [44], who ex-
pressed it in the language of finitely approximable actions and, in particu-
lar, gave a new proof of the result of Solecki [48]. On the other hand, the
paper of Solecki [48] contains a very elegant argument on the extensions of
one isometry. That argument is done in the style of Mackey’s constructions
of induced actions [33, Page 190] (cf. [3, 2.3.5]) and a similar argument
has been used by Hrushovski [20] in the context of extensions of partial
isomorphisms of graphs.

Below, we present a new proof of Solecki’s theorem [48], which exploits
the ideas used in the case of one isometry in [48, Section 3] and is also done
in the style of Mackey’s construction of induced actions.

Theorem 8.1 (Solecki). The Urysohn space has locally finite automor-
phisms.

Proof (à la Mackey). By the finite extension property of the Urysohn space,
it is enough to show that for every finite metric space X, for every tuple
ϕ1, . . . , ϕn of partial isometries of X there is a finite metric space Y ⊇ X
such all ϕ1, . . . , ϕn extend to isometries of Y .
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Let X be a finite metric space. Write

δ = min{dX(x, y) : x, y ∈ X,x 6= y}

and let ∆ = diam(X). Suppose ϕ1, . . . , ϕn are partial isometries of X.
Write a1, . . . , an for the generators of the free group Fn. Write also A for

the set {a1, . . . , an, a
−1
1 , . . . , a−1

n } and Wn for A∗ (the set of all words over
A). For a word w ∈Wn with w = v1 . . . vk, vi ∈ A and x ∈ X say that w(x)
is defined if there is a sequence of points xj ∈ X (j ≤ k) with x0 = x and

xj+1 = ϕi(xj) if vk−j = ai and xj+1 = ϕ−1
i (xj) if vk−j = a−1

i . If w(x) is
defined, then write w(x) = y for y = xk as above. We also use the notation
w(x) if w belongs to Fn (using the reduced word for w).

For each x, y ∈ X write T yx for the set of w ∈ Fn such that w(x) = y.

Claim 8.2. For every x, y ∈ X the set T yx is either empty or a coset of a
finitely generated subgroup of Fn.

Proof. If T yx is nonempty, then let w ∈ Fn be such that w(x) = y. Note
that whenever w′ ∈ T yx , then w−1w′ ∈ T xx . Now, T xx is a finitely generated
subgroup of Fn: it is the fundamental group of the graph whose vertices
are the points in X and (labelled) edges connect x, y if ϕi(x) = y for some
i ≤ n. Therefore, T yx = wT xx is a coset of a finitely generated subgroup. �

Claim 8.3. For every m ∈ N and x1, y1, . . . , xm, ym ∈ X the set T y1x1 ·. . .·T
ym
xm

is closed in Fn in the profinite topology.

Proof. This follows from the Ribes–Zalesskǐı theorem [40] and Claim 8.2. �

We need to define an extension of X. It will be obtained by dividing X×
Fn by certain equivalence relation ' so that x 7→ (x, e)/ ' is an embedding.
We will have to make sure that the extension is finite and define a metric on
it so that the embedding is isometric. Before we make this definition precise,
let us comment on how the metric on (X×Fn)/ ' will be defined. Note that
there is a partial distance function d0 on X × Fn, namely for (x,w), (y, w)
with x, y ∈ X and w ∈ Fn we put d0((x,w), (y, w)) = dX(x, y). Now, if
' is an equivalence relation on X × Fn, then there is a natural distance
function on (X × Fn)/ ' defined as follows. If C,D ∈ (X × Fn)/ ', then
put d(X×Fn)/'(C,D) to be the minimum of ∆ and the sums of the form

(∗∗)
m−1∑
i=0

d0(zi, z
′
i+1)

such that z0, z1, z
′
1, . . . , zm−1, z

′
m−1, z

′
m ∈ X × Fn, the value d0(zi, z

′
i+1) is

defined for each 0 ≤ i < m and there is a sequence C0, . . . , Cm of elements
of X × Fn/ ' with C0 = C,Cm = D and z0 ∈ C1, z′m ∈ Cm and zj , z

′
j ∈ Cj

for 0 < j < m.
Now we will define the equivalence relation ' and check the details of

the construction described above. For that, we need a couple of definitions.
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Given x, y ∈ X, a chain from x to y is a sequence

z0, z1, z
′
1, . . . , zm−1, z

′
m−1, zm, z

′
m ∈ X

such that z0 = x, zm = y and for each 1 ≤ i ≤ m there exists wi ∈Wn such
that wi(zi) = z′i. The distance of a chain z0, z1, z

′
1, . . . , zm−1, z

′
m−1, zm, z

′
m

is defined as
∑m−1

i=0 dA(zi, z
′
i+1). A word realization of a chain as above

is a sequence of words w1, . . . , wm ∈ Wn such that wi(zi) = z′i for each
1 ≤ i ≤ m. Call a chain trivial if it has a word realization w1, . . . , wm ∈Wn

such that w1 · . . . · wm = e holds in Fn.
Let now M ∈ N be such that Mδ > ∆. Note that since X is finite,

there are only finitely many nontrivial chains z0, z1, z
′
1, . . . , zm, z

′
m ∈ X with

m ≤ M . For each nontrivial chain z0, z1, z
′
1, . . . , zm, z

′
m ∈ X with m ≤ M ,

the set T
z′1
z1 · . . . ·T

z′m
zm is a closed subset of Fn which does not contain e. Using

Claim 8.3, find a finite index normal subgroup HCFn which is disjoint from

every T
z′1
z1 · . . . · T

z′m
zm as above.

Write Z for X ×Fn and define an equivalence relation ' on Z as follows.
Given w1, w2 ∈ Fn write

(x1, w1) ' (x2, w2)

if there is v ∈ Fn with w−1
2 w1H = vH and v(x1) = x2. Given (x,w) ∈ Z

write [x,w] for its '-class.
Write Y for Z/ ' and note that Y is finite. The latter follows from the

fact that if Fn/H = {d1H, . . . , dtH}, then Y = {[x, di] : x ∈ X, i ≤ t}. Now,
define a metric dY on Y as follows. Let dY ([x,w], [y, v]) be the minimum of
∆ and the set of sums of the form

m−1∑
i=0

dX(zi, z
′
i+1)

for sequences z0, z1, z
′
1, . . . , zm, z

′
m of elements of X such that

• z0 = x, zm = y,
• and there are wi ∈ Fn (for 0 ≤ i ≤ m) with w0 = w,wm = v and

(z′i, wi−1) ' (zi, wi) for each 1 ≤ i ≤ m.

Note that a sum as above is equal to 0 exactly when zi = z′i+1 for every
i < m and hence the definition of dY does not depend on the representatives
of '-classes and defines a metric on Y . Note that this definition coincides
with the formula given by (∗∗).

Define an embedding of X into Y via x 7→ [x, e]. We claim that this
is an isometric embedding and that each ϕi extends to an isometry of Y .
The second part is clear given the first one since for each i ≤ n the map
[x,w] 7→ [x, aiw] is well-defined and is easily seen to be an isometry of Y
which extends ϕi. Thus, we only need to show that x 7→ [x, e] is an isometric
embedding.
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Claim 8.4. For any x, y ∈ X and w ∈ Fn the distance dY ([x, e], [y, w]) is
equal to the minimum of ∆ and the minimal distance of a chain from x to
y which has a word realization v1, . . . , vk such that v1 · . . . · vkH = wH.

Proof. If z0, z1, z
′
1, . . . , zm, z

′
m in X are such that

dY ([x, e], [y, w]) =
m−1∑
i=0

dX(zi, z
′
i+1)

and w0, . . . , wn in Fn are such that w0 = e, wm = w and (z′i, wi−1) ' (zi, wi)
for each 1 ≤ i ≤ m, then find vi ∈ Fn (for 1 ≤ i ≤ m) such that viH =
w−1
i−1wiH and vi(z

′
i) = zi. Then z0, z1, z

′
1, . . . , zm, z

′
m is a chain and v1, . . . , vm

is its word realization with v1 . . . vmH = w−1
0 w1 . . . w

−1
m−1wmH = wmH =

wH.
On the other hand, if z0, z1, z

′
1, . . . , zm, z

′
m in X forms a chain from x to y

with a word realization v1, . . . , vk such that v1 · . . . · vkH = wH, then write
w0 = e and wi = wi−1vi for 1 ≤ i < m and wm = w. Then the sequence
z0, z1, z

′
1 . . . , zm, z

′
m together with w0, . . . , wm satisfies the conditions in the

definition of dY . �

Consequently, as dX(x, y) ≤ ∆, by Claim 8.4, we have that dY ([x, e], [y, e])
is the minimal distance of the chains from x to y which have a word real-
ization w1, . . . , wk with w1 · . . . · wk ∈ H. Say that a chain c from x to y
realizes the distance if the distance of c is equal to dY ([x, e], [y, e]). We need
to show that if a chain c realizes the distance from x to y, then its distance
is equal to dX(x, y).

Claim 8.5. Suppose x, y ∈ X and c is a chain from x to y with a word
realization w1, . . . , wm ∈ Wn. If wi = via and wi+1 = a−1vi+1 for some
1 ≤ i < m with vi, vi+1 ∈ Wn and a ∈ A, then there is a chain c′ from x to
y which has the same distance as c and a word realization w′1, . . . , w

′
m ∈Wn

such that w′j = wj for j 6= i, i+ 1, wj = vi for j = i, i+ 1.

Proof. Write c = (z0, z1, z
′
1, . . . , zm, z

′
m). Let ϕ = ϕk if a = ak and ϕ = ϕ−1

k

if a = a−1
k . Consider the chain c′ = (y0, y1, y

′
1, . . . , ym, y

′
m) with yj = zj for

j 6= i and y′j = z′j for j 6= i + 1, and yi = ϕ(zi), y
′
i+1 = vi+1(zi+1). The

distance of c′ is the same as that of c since

d(yi, y
′
i+1) = d(ϕ(zi), vi+1(zi+1)) = d(zi, ϕ

−1(vi+1(zi+1)))

as ϕ is an isometry. And we have ϕ−1(vi+1(zi+1)) = wi+1(zi+1) = z′i+1. �

Given two chains c = (z0, z1, z
′
1 . . . , zm, z

′
m) and c′ = (z0, z1, z

′
1 . . . , zk, z

′
k),

both from x to y, say that c is shorter than c′ if m < k and the distance of
c is not greater than that of c′. Say that a word realization w1, . . . , wm of a
chain has a trivial element if there is 0 < i < m with wi = e.

Claim 8.6. If a chain c = (z0, z1, z
′
1 . . . , zm, z

′
m) from x to y has a word

realization w1, . . . , wm with a trivial element, then there is a chain from
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x to y which is shorter than c and has a word realization w′1, . . . , w
′
k with

w1 . . . wm = w′1 . . . w
′
k.

Proof. Suppose wi = e, i.e. zi = z′i. Consider the chain

z0, . . . , zi−1, z
′
i−1, zi+1, z

′
i+1, . . . , zm, z

′
m

and note that w1, . . . , wi−1, wi+1, . . . , wm ∈ Wn is its word realization. The
fact that this chain is shorter than c follows from the triange inequality. �

Claim 8.7. If a chain c = (z0, z1, z
′
1 . . . , zm, z

′
m) from x to y has a word

realization w1, . . . , wm and zi = z′i+1 for some 0 < i < m, then there is
a chain from x to y which is shorter than c and has a word realization
w′1, . . . , w

′
k with w1 . . . wm = w′1 . . . w

′
k.

Proof. If zi = z′i+1, then consider the chain c′ of y0, y1, y
′
1, . . . , ym−1, y

′
m−1

with yj = zj for j < i, yj = zj+1 for j ≥ i, y′j = z′j for j ≤ i and y′j = z′j+1

for j > i. Note that it is still a chain from x to y with a word realization
w′1, . . . , w

′
m−1 with w′j = wj for j < i, w′i = wiwi+1 and w′j = wj+1 for

j > i. �

Claim 8.8. If chain c = (z0, z1, z
′
1 . . . , zm, z

′
m) from x to y realizes the

distance from x to y and cannot be made shorter, then m = 1 and zm = z′m.

Proof. Note that by Claim 8.7 and the assumption that Mδ > ∆ we have
that m ≤ M . First note that the chain must be trivial. Indeed, since
otherwise, for any word realization w1, . . . , wm of c we have w1 . . . wm ∈
T
z′1
z1 · . . . · T

z′m
zm and the latter set is disjoint from H if the chain is nontrivial.

Now, since the chain is trivial, it has a word realization w1, . . . , wm such
that w1 . . . wm = e. Now, if m ≥ 2, then Claims 8.5 and 8.6 imply that the
chain can be made shorter. Therefore, m = 1 and wm = e. �

Note finally that since (x, y, y) is a chain from x to y, Claim 8.8 implies
that dY ([x, e], [y, e]) = dX(x, y) and we have that x 7→ [x, e] is an isometric
embedding, as needed. This ends the proof.

�

Lemma 8.9. The Urysohn space has the extension property.

Proof. This is a standard amalgamation argument. Note that since the
language of metric spaces does not have any function symbols, instead of
finitely generated structures, we talk about finite tuples. Suppose then that
b̄ = (b1, . . . , bn), c̄ = (c1, . . . , cm), ā = (a1, . . . , ak) are finite tuples in U.
Write B = {b1, . . . , bn}, C = {c1, . . . , cm}, A = {a1, . . . , ak} and suppose
A ⊆ B ∩ C. Let C ′ be copy of C with B ∩ C ′ = A and let D = B ∪
C ′ be a metric space with the metric dD such that dD � B = dU � B,
dD � C ′ = dU � C (under the natural identification) and if b ∈ B, c ∈ C ′,
then dD(b, c) = min{dU(b, a) + dU(a, c) : a ∈ A}. Assume without loss of
generality that D is embedded into U over B and note that C ′ ≡A C and
C ′ |̂

A
B. This ends the proof. �
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To check that the Urysohn space admits isolated sequences, we need to
introduce a couple of definitions. Given a metric structure M and a tuple
ā ∈Mk and ε > 0 write ballM (ā, ε) for {x ∈M : dM (x, ai) < ε for some i ≤
k}. Suppose M is a homogeneous metric structure, ā ∈Mk for some k ∈ N
and p = qftp(ā). We say that a sequence (ān : n ∈ N) of elements of p(M) is
isometrically isolated if there exists a sequence of εn ∈ (0,∞) and isometric
embeddings

ηn : ballM (ā, εn)→M

such that ηn(ā) = ān and for every sequence b̄n ∈ rng(ηn) such that qftp(b̄n) =
qftp(ān) and dM (ān, b̄n) < εn there is an automorphism ϕ of M with
ϕ(ān) = b̄n for every n ∈ N.

Note that any isometrically isolated sequence is isolated since if p =
qftp(ā) and η : ballM (ā, ε)→M is an isometric embedding for some ε > 0,
then {b̄ = (b1, . . . , bk) ∈ p(M) : ∀i ≤ k bi ∈ rng(ηn)} is relatively ε-
saturated over η(ā).

Given k ∈ N, say that a sequence (ān : n ∈ N) of k-tuples of elements of a
metric structure M is nontrivial convergent if it is convergent as a sequence
in Mk and if ā∞ = (a∞1 , . . . , a

∞
k ) is its limit and ān = (an1 , . . . , a

n
k), then

ani 6= a∞j and ani 6= amj for any (n, i) 6= (m, j) ∈ N2. In particular, ani 6= anj
for every n ∈ N and i 6= j. Note that, in case k = 1, a nontrivial convergent
sequence is a convergent sequence such that all its elements are distinct and
different from its limit.

A basic property of the Urysohn space that we will use in the arguments
below, due to Huhunaǐsvili [21] (cf. [38, Proposition 5.1.20]), says that any
partial isometry between compact subspaces of U can be extended to an
isometry of U.

Lemma 8.10. For every k ∈ N and a quantifier-free k-type p, any nontrivial
convergent sequence in p is isometrically isolated in p.

Proof. Let p be the quantifier-free type of ā ∈ Uk. Write ā = (a1, . . . , ak)
and let δij = dU(ai, aj) for i, j ≤ k.

Let ān be a nontrivial convergent sequence in p. Assume that ān converges
to ā∞ = (a∞1 , . . . , a

∞
k ). Write ān = (an1 , . . . , a

n
k) for each n ∈ N. For each

n,m ∈ N and i, j ≤ k let δnmij = dU(ani , a
m
j ) and δn∞ij = dU(ani , a

∞
j ) and note

that limm,n→∞ δ
nm
ij = δij and limn→∞ δ

n∞
ij = δij .

For each n ∈ N choose εn > 0 such that εn < δnmij for each m 6= n and
i, j ≤ k as well as εn < δnnij = δij for all i 6= j, i, j ≤ k. Such an εn > 0

exists since the sequence (ān : n ∈ N) is nontrivial and limm→∞ δ
nm
ij =

dU(ani , a
∞
j ) > 0.

For each n ∈ N write An for ball({an1 , . . . , ank}, εn). Note that An is a
disjoint union of balls around the points ani . Consider the metric space B′

which is the disjoint union
⋃
n∈NB

′
n with each B′n a copy of An (say the copy

of ani in Bk is ani
′) and let the metric on B′ be defined so that it is equal

to the original metric dU on each B′n and if x, y ∈
⋃
n∈NB

′
n are such that
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x ∈ B′n and y ∈ B′m with n 6= m and x ∈ ball(ani
′, εn), y ∈ ball(amj

′, εm),
then

dB′(x, y) = δnmij .

Note that dB′ is a metric by the choice of the numbers εn. Now let B∞ =
{a∞1 ′, . . . , a∞k ′} be a copy of {a∞1 , . . . , a∞k } and let B = B′ ∪ B∞ with the
metric dB = dB′ on B′, dB = dB∞ on B∞ and if x ∈ B′ is such that x ∈ Bn
with x ∈ ball(anj

′, εn) and i ≤ k, then

dB(x, a∞i
′) = δn∞ji .

Since the subspace of B consisting of the points ani
′ and a∞i

′ for n ∈ N and
i ≤ k is compact and isometric to the subspace of U consisting of the points
ani and a∞i for n ∈ N and i ≤ k, the Huhunaǐsvili theorem [21] implies that
the map ani

′ 7→ ani and a∞i
′ 7→ a∞i extends to an isometric embedding η of

B into U.
For each n ∈ N write Bn for the image of B′n under η. Note that each

Bn is an isometric copy of ball(ā, εn). We claim that the sets Bn (treated
as the embeddings of ball(ā, εn)), together with the numbers εn witness
that ān is isometrically isolated. For that, pick a sequence of isometric
embeddings ϕn : {an1 , . . . , ank} → Bn with dU(ϕn(ani ), ani ) < εn for each i ≤ k.
Consider a partial isometry ϕ′ of U with dom(ϕ′) =

⋃
n∈N{an1 . . . , ank} ∪

{a∞1 , . . . , a∞k } such that ϕ′(a∞i ) = a∞i and ϕ′(ani ) = ϕn(ani ). Note that ϕ′ is
a partial isometry of the Urysohn space with compact domain, so again by
the Huhunaǐsvili theorem [21], there is an isometry ϕ ∈ Iso(U) that extends
ϕ′. Clearly, ϕ extends each ϕn, which shows that Bn are as needed and the
sequence is isometrically isolated. This ends the proof. �

Proposition 8.11. The Urysohn space admits isolated sequences.

Proof. Suppose p is the quantifier-free k-type of a tuple ā = (a1, . . . , ak).
First note that we can assume that ā consists of distinct elements. Indeed,
otherwise one can remove repetitions from ā and work with a quantifier-free
m-type q for some m < k. Then, for every m-tuple b̄ ∈ q(M) there is a
unique tuple b̄′ ∈ p(M), which contains b̄ such that

• if (b̄n : n ∈ N) is isolated in q, then (b̄′n : n ∈ N) is isolated in p,
• the map b̄ 7→ b̄′ is a homeomorphism of q(M) and p(M).

Now, suppose Z ⊆ p(U) is nonmeager. Without loss of generality (re-
stricting to an open subset of p(U) if neccessary), assume that Z is non-
meager in every nonempty open set. Pick any ā∞ ∈ p(U) with ā∞ =
(a∞1 , . . . , a

∞
k ) and note that a∞i 6= a∞j for i 6= j. Using the assumption

that Z ∩ V is nonmeager for every open neighborhood V of ā∞, construct a
sequence ān of elements of Z convergent to ā∞ such that if ān = (an1 , . . . , a

n
k),

then ani 6= a∞j and ani 6= amj for any n,m ∈ N and i, j ≤ k with (n, i) 6= (m, j).
This sequence is then nontrivial convergent and hence isolated by Proposi-
tion 8.10. �
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9. The measure algebra

Recall that given a standard probability space (X,B, µ) we define the
equivalence ≈ on B by A ≈ B if µ(A∆B) = 0 and the measure algebra is
the family of equivalence classes of sets in B. Given A ∈ B write [A] for its ≈-
equivalence class (although we will often abuse notation and write only A in-
stead of [A]). The measure algebra is then the family of ≈-classes of the sets
in B. It becomes a metric space with the metric dMALG([A], [B]) = µ(A∆B)
and we treat it as a metric structure together with this metric, the operation
of symmetric difference ∆ and the empty set as a constant. We write MALG
for the structure (B/≈, dMALG,∆, ∅). The Sikorski duality [27, Theorem
15.9] connects automorphisms of MALG and measure-preserving bijections
on the space X. In particular, it implies that the group of automorphisms
of MALG with the topology of pointwise convergence is isomorphic to the
group of measure-preserving bijections Aut(X,µ) with the weak topology
(see [28, Section 1]). For more details about the measure algebra and the
standard measure space we refer the reader to [37, Chapter 22] and to [12,
Chapter 32].

Throughout the proofs below we often use the fact (cf [29, Lemma 7.10])
that whenever A,B ⊆ X have the same measure, then there is a measure-
preserving bijection f : X → X such that f(A) = B. Below, given a finite
subalgebra A of MALG, we write atom(A) for the set of atoms of A.

Lemma 9.1. The measure algebra MALG has locally finite automorphisms.

Proof. Note that finitely generated substructures of MALG are finite sub-
algebras. Thus, to show locally finite automorphism we need to prove the
following. For every finite subalgebra A ⊆ MALG there exists a finite al-
gebra B ⊆ MALG with A ⊆ B such that every partial automorphism of A
extends to an automorphism of B. To see this, we need a couple of notions.
Given finite A ⊆ B ⊆ MALG and A1, A2 ∈ A say that A1 and A2 are iden-
tically partitioned by B if the sets {µ(A1 ∩ B) : B ∈ atom(B), B ⊆ A1} and
{µ(A2 ∩ B) : B ∈ atom(B), B ⊆ A2} (both counted with repetitions) are
equal (up to a permutation). Note that if A ⊆ B ⊆ MALG are finite and
such that every A1, A2 ∈ A of the same measure are identically partitioned
by B, then any partial automorphism of A extends to an automorphism of
B. Moreover, it is enough to guarantee this for A1 and A2 disjoint.

Say that a finite extension A ⊆ B is good if every two atoms of A of the
same measure are identically partitioned by B. Note that this is a transitive
relation and if A ⊆ B is good and A1, A2 ∈ A are identically partitioned by
A, then A1 and A2 are identically partitioned by B.

Enumerate as ((Ai, Bi) : 1 ≤ i < N) the set of all pairs A,B of disjoint
sets in A of the same measure. By induction on i ≤ N construct a sequence
of finite subalgebrasAi ⊆ MALG withA0 = A such that for every 1 ≤ i ≤ N
we have

• Ai−1 ⊆ Ai is good
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• Ai and Bi are identically partitioned by Ai+1.

After this is done, the algebra B = AN will be as needed.
It is enough to describe the induction step construction of Ai+1 from Ai.

Note first that (by shrinking Ai and Bi if neccessary) we can assume that
for every A,B ∈ atom(Ai) with A ⊆ Ai and B ⊆ Bi we have µ(A) 6=
µ(B). Write R = {µ(A) : A ∈ atom(Ai), A ⊆ Ai} and S = {µ(B) : B ∈
atom(Ai), B ⊆ Bi}, so that R ∩ S = ∅. Write a = µ(Ai) = µ(Bi) and let
U ⊆ X be a measurable set of measure a. Let C1 be the algebra of subsets of
Ai equal to Ai � Ai and C2 be the algebra of subsets of Bi equal to Ai � Bi.
Find two algebras C′1 and C′2 of subsets of U such that C′1 is isomorphic to
C1, C′2 is isomorphic to C2 and C′1, C′2 are (stochastically) independent. Fix
measure-preserving bijections ϕ : Ai → U , ψ : Bi → U such that ϕ maps C1

to C′1 and ψ maps C2 to C′2. Write C′ for the algebra of subsets of U generated
by C′1 and C′2 and let C be the algebra of subsets of Ai ∪Bi generated by the
preimages ϕ−1(C) and ψ−1(C) for C ∈ C′. Note that the sets Ai and Bi are
identically partitioned by the algebra generated by Ai and C. Note also that
if C ⊆ Ai is an atom of Ai of measure r, then C is partitioned by C into
sets of measures r · µ(D) for D ∈ atom(C2) and analogously, if E ⊆ Bi is an
atom of Ai of measure s, then D is partitioned by C into sets of measures
s · µ(F ) for F ∈ atom(C2). In order to construct a good extension of Ai,
partition every atom A ∈ atom(Ai) that is disjoint from Ai ∪Bi as follows:

(i) if µ(A) ∈ R, then partition A into sets of measures µ(A) · µ(D), for
D ∈ atom(C2),

(ii) if µ(A) ∈ S, then partition A into sets of measures µ(A) · µ(F ), for
F ∈ atom(C1).

Let Ai+1 be an extension of Ai generated by all the partitions as in (i) and
(ii) above and by C. Now Ai+1 is a good extension of Ai and the sets Ai
and Bi are identically partitioned by Ai+1. This ends the construction and
the proof. �

Lemma 9.2. The measure algebra MALG has the extension property.

Proof. Suppose A,B,C are finitely generated subalgebras of MALG with
A ⊆ B ∩ C. Write A1, . . . , An for the set of atoms of A. Find an auto-
morphism ϕ of the measure space which fixes A1, . . . , An and within each
Ai sends the atoms of C contained in Ai to sets which are (stochastically)
independent from the atoms of B contained in Ai. It is easy to see that
ϕ(C) |̂

A
B. �

To see that MALG admits isolated sequences, we need to understand
which quantifier-free ε-types are realized over finite tuples in MALG.

Definition 9.3. Suppose k ∈ N and P = (A1, . . . , Ak) is a partition of X
into positive measure sets. Let E = (eij : 1 ≤ i, j ≤ k) be a matrix of reals.
Say that E is P-additive if the following conditions hold:

• eii ≥ 0 and 0 ≤ eij ≤ µ(Ai) + µ(Aj) for every i, j ≤ k,
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• the following equations are satisfied:

eii =
∑
j 6=i

µ(Ai) + µ(Aj)− eij

eii =
∑
j 6=i

µ(Ai) + µ(Aj)− eji

Claim 9.4. Suppose P = (A1, . . . , Ak) is a partition of X into positive
measure sets and ϕ ∈ Aut(MALG). Let eij = dMALG(Ai, ϕ(Aj)). Then the
matrix E = (eij : 1 ≤ i, j ≤ k) is P-additive.

Proof. Let f : X → X be a measure-preserving bijection that induces ϕ.
For i 6= j write εij = µ(f(Ai) ∩Aj). Note that

eij = µ(f(Ai)∆Aj) = µ(Aj) + µ(Aj)− 2εij .

This implies that

eii = µ(f(Ai)∆Ai) = 2
∑
j 6=i

εij =
∑
j 6=i

µ(Ai) + µ(Aj)− eij

On the other hand,

eii = µ(f(X \Ai)∆(X \Ai)) = 2
∑
j 6=i

εji =
∑
j 6=i

µ(Ai) + µ(Aj)− eji.

�

Lemma 9.5. Let ā = (A1, . . . , Ak) be a partition of X into positive measure
sets and let p = qftp(ā). Suppose C1, . . . , Ck are such that Ci ⊆ Ai for each
i ≤ k and µ(C1) = . . . = µ(Ck) > 0. Let

M = {(B1, . . . , Bk) ∈ p(MALG) : ∀i 6= j ≤ k Bi∩Aj ⊆ Cj ∧ Ai\Bi ⊆ Ci}.
Then M is relatively 2µ(C1)-saturated over ā.

Proof. Write ε = 2µ(C1). Let E1, . . . , Ek ∈ MALG be such that µ(Ei∆Ai) <
ε and qftp(E1, . . . , Ek) = p. Write eij = µ(Ei∆Aj) and note that E = (eij :
i, j ≤ k) is ā-additive by Claim 9.4. We need to find (B1, . . . , Bk) ∈M such
that µ(Bi∆Aj) = eij for each i, j ≤ k. For each i 6= j write

εij =
1

2
(µ(Ai) + µ(Aj)− eij)

and note that by ā-additivity we have∑
j 6=i

εji =
1

2
eii <

1

2
ε = µ(Ci)

Thus, we can find disjoint measurable sets Dji ⊆ Ci such that µ(Dji) = εji.
Write Di =

⋃
j 6=iDji and note that µ(Di) = 1

2eii. Put Bi = Ai\Di∪
⋃
j 6=iDij

and note that since (by ā-additivity)∑
j 6=i

εji =
∑
j 6=i

εij
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we have that µ(Bi) = µ(Ai). The sets Bi are pairwise disjoint since the sets
Dij are disjoint and so qftp(B1, . . . , Bk) = qftp(A1, . . . , Ak). Also, we have

µ(Bi∆Aj) = µ(Bi) + µ(Aj)− 2εij = eij

if j 6= i and

µ(Bi∆Ai) = 2
∑
j 6=i

εij = eii.

This shows that (B1, . . . , Bk) is as needed and M is relatively ε-saturated
over ā. �

Definition 9.6. Let ā = (A1, . . . , Ak) be a tuple in MALG such that ā is
a partition of X into positive measure sets. Write p for qftp(ā). Given a
sequence ān = (An1 , . . . , A

n
k) in p say that it is weakly independent if there is

a sequence ((Cn1 , . . . , C
n
k ) : n ∈ N) such that

• Cni ⊆ Ani for each i ≤ k and n ∈ N,
• µ(Cn1 ) = . . . = µ(Cnk ) > 0 for each n ∈ N,
• all sets {Cni : i ≤ k, n ∈ N} are pairwise disjoint,
• if m 6= n, then Cni ⊆ Am1 for every i ≤ k.

Lemma 9.7. If a sequence ān in MALG is weakly independent, then it is
isolated.

Proof. Let k ∈ N be such that each ān = (An1 , . . . , A
n
k) is an k-element

partition of X. Suppose ((Cn1 , . . . , C
n
k ) : n ∈ N) witnesses that the sequence

is weakly independent and let εn = 2µ(Cn1 ). Write p for the quantifier-free
type of ān and let

Mn = {(B1, . . . , Bk) ∈ p(MALG) : ∀i 6= j ≤ k Bi∩Anj ⊆ Cnj ∧Ani \Bi ⊆ Cni }.
We claim that the sequence of sets Mn together with εn witness that the

sequence ān is isolated. The fact that Mn is relatively εn-saturated over ān
follows directly from Lemma 9.5.

Suppose now that b̄n = (Bn
1 , . . . , B

n
k ) are such that each b̄n belongs to

Mn and qftp(b̄n) = qftp(ān). We need to find ϕ ∈ Aut(MALG) such that
ϕ(ān) = b̄n for each n ∈ N. For every n ∈ N and i 6= j let Dn

ij = Bn
i ∩

Anj ⊆ Cnj and let εnij = µ(Dn
ij). For each i ≤ k write Dn

i =
⋃
j 6=iD

n
ji. Let

Eni = Ani \Bn
i ⊆ Cni and note that

µ(Eni ) =
∑
j 6=i

εnij =
∑
j 6=i

εnji

since µ(Bn
i ) = µ(Ani ). For every j 6= i find measurable sets Enji ⊆ Eni

such that Eni =
⋃
j 6=iE

n
ji and µ(Enji) = εnji. Now, for each n ∈ N find a

measure-preserving bijection

fn :
⋃
i≤k

Dn
i ∪ Eni →

⋃
i≤k

Dn
i ∪ Eni

such that
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• fn(Eni ) = Dn
i for each i ≤ k,

• fn(Dn
ij) = Enij for every i 6= j ≤ k

Let f : X → X be a measure-preserving bijection such that f ⊇ fn for
each n ∈ N and f is equal to the identity on the complement of the set⋃
n∈N

⋃
i≤kD

n
i ∪ Eni . Note that for m 6= n and i ≤ k, the set Dm

i ∪ Emi is
contained in Cmi , so the function fm maps An1 into itself and the domain of
fm is disoint from Ami for i > 1. This implies that f(Ani ) = Bn

i and hence
the autmomorphism of MALG induced by f is as needed. This ends the
proof. �

Proposition 9.8. The measure algebra MALG admits isolated sequences.

Proof. Suppose p is a quantifier-free k-type of a tuple ā = (A1, . . . , Ak)
in MALG. First note that we can assume that the elements of ā form a
partition of X into positive measure sets. Otherwise, one can consider the
atoms of the algebra generated by ā and work with a quantifier-free m-type q
for m equal to the number of these atoms. Then, for every m-tuple b̄ ∈ q(M)
there is a unique tuple b̄′ ∈ p(M), such that the algebras generated by b̄ and
b̄′ are the same and such that

• if (b̄n : n ∈ N) is isolated in q, then (b̄′n : n ∈ N) is isolated in p,
• the map b̄ 7→ b̄′ is a homeomorphism of q(M) and p(M).

Now, suppose Z ⊆ p(MALG) is nonmeager and assume (restricting to an
open subset if neccessary) that Z is nonmeager in every nonempty open set.
Construct a sequence of (An1 , . . . , A

n
k) ∈ Z and positive measure pairwise

disjoint sets Dn
i ⊆ Ani (for i ≤ k) together with positive reals δni such that

for every n ∈ N we have

(i) Dn
1 , . . . , D

n
k ⊆ Am1 if m < n,

(ii) µ(Dn
i ∩A

n+1
1 ) = δni for every i ≤ k,

(iii) dMALG(An+l+1
k , An+l

k ) < δnk /2
l+1 for every l ≥ 1,

(iv) µ(
⋂
m≤nA

m
1 \Dm

1 ) > 0.

After this is done, for every i ≤ k and n ∈ N put Cni = Dn
i ∩

⋂
m>nA

m
1

and note that by (ii) and (iii) above we have that µ(Cni ) > 0 for each i ≤ k
and n ∈ N. By shrinking the sets Cni if neccessary, we can assume that
µ(Cn1 ) = . . . = µ(Cnk ). Then the definition of Cni and condition (i) above
imply that if m 6= n, then Cni ⊆ Am1 . Given that Dn

i are pariwise disjoint,
so are the sets Cni and so the sequence (An1 , . . . , A

n
k) is weakly independent,

as witnessed by Cni and hence isolated by Lemma 9.7.

To perform the induction step, suppose we have constructed (Aj1, . . . , A
j
k) ∈

Z for j ≤ n, the sets Dj
i for i ≤ n and i ≤ k as well as δji for j ≤ n− 1 and

i ≤ k. Consider the open set

U = {(A1, . . . , Ak) ∈ p(MALG) : ∀i ≤ k dMALG(Ai, A
n
i ) ≤ min

m<n

δmi
2n−m+1

}.

Write also F =
⋂
m≤nA

m
1 \Dm

1 and note that by the inductive assumption

(iv), we have µ(F ) > 0. Using the fact that for any positive measure set
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E and i ≤ k the set {(A1, . . . , An) ∈ p(MALG) : µ(Ai ∩ E) = 0} is closed
nowhere dense, find (An+1

1 , . . . , An+1
k ) ∈ U ∩ Z such that

(a) µ(F ∩An+1
i ) > 0 for every i ≤ k,

(b) µ(An+1
1 ∩Dn

i ) > 0 for every i ≤ k.

Now, using (a) above, find Dn+1
i ⊆ An+1

i ∩ F such that

0 < µ(Dn+1
i ) <

1

2
µ(An+1

i ∩ F ).

This implies that the inductive condition (iv) will be satisfied at the next
step. Put δni = µ(An+1

1 ∩ Dn
i ) and note that δni > 0 by (b) above. Condi-

tion (iii) holds because (An+1
1 , . . . , An+1

k ) ∈ U and thus, this concludes the
induction step. This ends the proof. �

10. The Hilbert space

The orthogonal group O(`2) is the group of automorphism of the (real)
Hilbert space. The Hilbert space here is treated as the metric structure with
the first sort being (`2, 0,+) and the second sort being the real line with the
field structure (including the inverse function defined on non-zero elements
by x 7→ x−1 and mapping 0 to 0, as well as the function x 7→ −x) and
constants for the rationals. We also add to the language the multiplication
by scalars function · : R × `2 → `2 (i.e. (a, v) 7→ a · v) as well as the inner
product function 〈·, ·〉 : `2 × `2 → R.

Recall that by the Mazur–Ulam theorem [35] any isometry of a normed
vector space which preserves zero, is a linear isomorphism (in case of the
Hilbert space this is even simpler than the general case of the Mazur–Ulam
theorem), so we could also consider the structure only with the constant 0
and the inner product function. Still another way would be to look at the
unit sphere in the Hilbert space equipped only with the metric (as a metric
space with no additional structure) and then the orthogonal group would
be the group of isometries of the sphere. We will however, use the above
language, as it seems the most natural, and we will make use of it in order
to talk about substructures of the Hilbert space.

The unitary group U(`2) is the automorphism group of the complex
Hilbert space and the arguments below apply in the same way to the complex
Hilbert space, so we will focus only of the real Hilbert space.

Claim 10.1. If A is a finitely generated substructure of the Hilbert space,
then there exists a countable field K ⊆ R such that Q ⊆ K and A is a
finite-dimensional K-vector space

Proof. Let K consist of the elements of A which are of the second sort. Since
the language contains constants for the rationals, we have Q ⊆ K and since
the language contains the language of fields, K is a field. Clearly then A is a
K-vector space and the dimension is bounded by the number of generators
of A. �



AUTOMATIC CONTINUITY FOR ISOMETRY GROUPS 31

Lemma 10.2. The Hilbert space `2 has locally finite automorphisms.

Proof. In fact, `2 has the following stronger property. For any finitely gener-
ated substructure A ⊆ `2, any isomoprhism between finitely generated sub-
structures of A extends to an automorphism of A. To see this, let A1, A2 ⊆ A
be finitely generated substructures and ϕ : A1 → A2 be an isomorphism.
Let K and K1,K2 ⊆ K be such that A is a K-vector space, A1 is K1-vector
space and A2 is a K2-vector space. Write A′1 for the K-vector space gener-
ated by A1 and A′2 for the K-vector space generated by A2. Note that since
ϕ preserves the inner product, it is an isometry and since both K1 and K2

contain Q, the map ϕ can be extended to an isomorphism ϕ′ : A′1 → A′2.
Now, since K is a field, the usual Gram–Schmidt orthogonalization process
gives orthogonal bases {b11, . . . , b1k} and {b21, . . . , b2k} for the orthogonal com-
plements of A′1 in A and A2 in A (respectively). The map which extends ϕ
and maps b1i to b2i extends to an automorphism of A. �

Note that the above proof also shows that given a finitely generated
substructure A of the Hilbert space and its finitely generated substructure
C ⊆ A, we can form the orthogonal complement A 	 C inside A using the
standard Gram–Schmidt process. The extension property for the Hilbert
space is then straightforward and based on the following claim.

Claim 10.3. Given finitely generated substructures A,B,C ⊆ `2 with C ⊆
A ∩B, if A	 C ⊥ B 	 C, then A |̂

C
B.

Proof. This is elementary linear algebra and the proof is analogous to that
of Lemma 10.2. �

Corollary 10.4. The Hilbert space `2 has the extension property.

Proof. Given finite-dimensional subspaces A,B,C ⊆ `2 with C ⊆ A∩B find
a copy D ⊆ `2 of B 	 C which is orthogonal to A. Then C ⊕D witnesses
the extension property by Claim 10.3. �

Before we show that the Hilbert space admits isolated sequences, we need
a couple of lemmas. Below, given a closed subspace V ⊆ `2 and a vector
v ∈ `2 write πV (v) for the projection of v onto V . Also, ball`2(v, ε) stands
for the open ball {w ∈ `2 : ||w − v|| < ε} and S`2(v, ε) stands for the sphere
{w ∈ `2 : ||w − v|| = ε}. Recall also that v̄ = (v1, . . . , vk) ∈ `2 is an
orthonormal tuple if ||vi|| = 1 and vi ⊥ vj for i 6= j

Lemma 10.5. Suppose v̄ = (v1, . . . , vk) is an orthonormal tuple in `2 and let
H ⊆ `2 be an infinite-dimensional closed subspace. Suppose V1, . . . , Vk ⊆ `2
are closed infinite-dimensional subspaces such that vi ∈ Vi and Vi ⊥ Vj for
i 6= j. Write Hi = Vi ∩H and suppose Hi is infinite-dimensional and that
πHi(vi) 6= 0 for each i ≤ k. Then there exists ε > 0 such that for every
v̄′ = (v′1, . . . , v

′
k) such that

v̄′ ≡ v̄, v′i ∈ Vi and ||v′i − vi|| < ε
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for each i ≤ k, there exists v̄′′ = (v′′1 , . . . , v
′′
k) such that

v̄′′ ≡v̄ v̄′ and v′′i − vi ∈ Hi

for each i ≤ k.

Proof. Note that since the subspaces Vi are mutually orthogonal, it is enough
to prove the lemma for k = 1. Assume then V1 = `2 and write v = v1 so
that πH(v) 6= 0 (i.e. v 6⊥ H). We need to show that there exists ε > 0 such
that for every v′ ∈ S`2(0, 1) with ||v′−v|| < ε there exists v′′ ∈ S`2(0, 1) with
v′′−v ∈ H and v′′ ≡v v′. The latter is equivalent to ||v′′−v|| = ||v′−v|| (since
v′, v′′ have the same norm). Since v 6⊥ H, there exists w ∈ S`2(0, 1) such
that w 6= v and w− v ∈ H. Let ε = ||w− v||. Write S = S`2(0, 1)∩ (H + v)
and note that S = S`2(0, 1) ∩ A for some infinite-dimensional closed affine
subspace A of `2. Hence, S is homeomorphic to the sphere S`2(0, 1) and thus
is connected. By the intermediate-value theorem, the function f : S → R
given by f(s) = ||s − v|| assumes all values between 0 and ε on S, and
so for every v′ ∈ S`2(0, 1) with ||v′ − v|| < ε there exists v′′ ∈ S with
||v′′ − v|| = ||v′ − v||. This ends the proof. �

Lemma 10.6. Suppose v̄ = (v1, . . . , vk) is an orthonormal tuple in `2 and
V1, . . . , Vk ⊆ `2 are closed infinite-dimensional subspaces such that vi ∈ Vi
and Vi ⊥ Vj for i 6= j. Write

T = {w̄ = (w1, . . . , wk) : w̄ ≡ v̄ ∧ ∀i ≤ k wi ∈ Vi}.

Then T (2, ε)-generates an open set, for every ε > 0.

Proof. Fix ε > 0. Find v̄′ = (v′1, . . . , v
′
k) in `2 such that

• v̄′ ≡ v̄
• v′i ⊥ vj for every i 6= j
• for every i ≤ k we have πVj (vi) 6= 0 for every j 6= i.

For each i, j ≤ k write v′ij for πVj (v
′
i) and note that if i 6= j, then v′ij ⊥ vj .

Find δ > 0 such that for every i ≤ k the following holds: for every
sequence (v′′j : j 6= i, j ≤ k) of vectors in Vi such that ||v′′j − v′ji|| < δ there

exists ṽ ∈ Vi with ||ṽ|| = 1, ṽ ⊥ v′′j for every j 6= i and ||ṽ − vi|| < ε/2.

Assume without loss of generality that δ < ε/2. Write

U = {v̄′′ = (v′′1 , . . . , v
′′
k) : v̄′′ ≡ v̄ ∧ d`2(v̄′′, v̄′) < δ}.

Claim 10.7. For every v̄′′ ∈ U there are ϕ1, ϕ2 ∈ O(`2) such that

ϕ2ϕ1(v̄) = v̄′′

and ϕ1(v̄), ϕ2(v̄) ∈ T , as well as d`2(ϕ1(v̄), v̄) < ε and d`2(ϕ2(v̄), v̄) < ε.

Proof. Fix v̄′′ in U . Note that, by the choice of δ, for each i ≤ k there exists
ṽi ∈ Vi such that ||ṽi|| = 1, ||ṽi− vi|| < ε/2 and ṽi ⊥ πVi(v′′j ) for every j 6= i.
Now, for every i ≤ k find wi ∈ Vi such that

(†) qftp(wi/vi) = qftp(v′′i /ṽi).
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Such vectors wi exist since each Vi is isomorphic to `2. Now, (†) implies that

qftp(wivi) = qftp(v′′i ṽi)

for each i ≤ k and hence the map ψi such that

ψi : wi 7→ v′′i , ψi : vi 7→ ṽi

is a partial automorphism of `2 for each i ≤ k. Now, since for i 6= j both the
domains and ranges of ψi and ψj are pairwise orthogonal, the map

⋃
i≤k ψi

is a partial automorphism of `2. Extend
⋃
i≤k ψi to ϕ2 ∈ O(`2). Find also

ϕ1 ∈ O(`2) such that
ϕ1 : vi 7→ wi

for each i ≤ k.
Note that since ||ṽi− vi|| < ε/2 and ||v′′i − vi|| < ε/2, we have ||v′′i − ṽi|| <

ε and hence (†) implies that ||wi − vi|| < ε for each i ≤ k. Therefore,
d`2(ϕ1(v̄), v̄) < ε. Also d`2(ϕ2(v̄), v̄) < ε, as well as ϕ1(v̄) ∈ T and ϕ2(v̄) ∈
T . As we clearly have ϕ2ϕ1(v̄) = v̄′′, this proves the claim. �

Claim 10.7 clearly means that T (2, ε)-generates an open set, so this ends
the proof. �

Lemma 10.8. Suppose v̄ = (v1, . . . , vk) is an orthonormal tuple in `2 and
let H ⊆ `2 be an infinite-dimensional closed subspace such that the vectors
πH(v1), . . . , πH(vk) are linearly independent. Write

N = {w̄ = (w1, . . . , wk) : w̄ ≡ v̄ ∧ ∀i ≤ k wi − vi ∈ H}.
Then there exists ε > 0 such that N is 2-relatively ε-saturated over v̄.

Proof. Write wj = πH(vi) for each i ≤ k.

Claim 10.9. There exist w′1, . . . , w
′
k ∈ H such that w′i ⊥ w′j and w′i ⊥ wj

for i 6= j ≤ k and w′i 6⊥ wi for every i ≤ k.

Proof. Inductively on i ≤ k construct w′i ∈ H such that w′i 6⊥ wi and w′i ⊥ wj
for j 6= i and w′i ⊥ w′j for j < i as well as

w1, w
′
1, . . . , wi, w

′
i, wi+1, . . . , wk

are linearly independent. Suppose w′1, . . . , w
′
i−1 have been constructed. Let

Wi = {w1, w
′
1, . . . , wi−1, w

′
i−1, wi+1, . . . , wk}⊥ ∩H

and note that since wi /∈ span(w1, w
′
1, . . . , wi−1, w

′
i−1, wi+1, . . . , wk), we have

that W ′i = Wi ∩ {wi}⊥ is a proper subspace of Wi. Also, W ′′i = Wi ∩
span{w1, w

′
1, . . . , wi, w

′
i, wi+1, . . . , wk} is a proper subspace of Wi since Wi

is infinite-dimensional. Now, W ′i ∪W ′′i do not cover Wi, so find w′i ∈ Wi \
(W ′i ∪W ′′i ) and note that it is as needed. �

Using Claim 10.9, find closed infinite-dimensional subspaces Vi for i ≤ k
such that for each i 6= j ≤ k we have

• vi ∈ Vi and Vi ⊥ Vj ,
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• H ∩ Vi is infinite-dimensional,
• πH∩Vi(vi) 6= 0.

Find ε > 0 as in Lemma 10.5 and let

T = {w̄ = (w1, . . . , wk) : w̄ ≡ v̄ ∧ ∀i ≤ k wi ∈ Vi}.
Then N is T -relatively ε-saturated by Lemma 10.5 and T (2, ε)-generates
an open set, by Lemma 10.6. This ends the proof. �

Definition 10.10. Say that a sequence of k-tuples ān in `2 is strongly lin-
early independent if there is a sequence of infinite-dimensional closed sub-
spaces Vn ⊆ `2 such that

• Vn ⊥ Vm for n 6= m,
• ām ⊥ Vn for n 6= m,
• the projections of the elements of ān to Vn are linearly independent.

Lemma 10.11. If p is a quantifier-free type of an orthonormal tuple in `2,
then any strongly linearly independent sequence in p(`2) is 2-weakly isolated.

Proof. Suppose ān = (an1 , . . . , a
n
k) is strongly linearly independent in p. Note

that an1 , . . . , a
n
k form an orthonormal tuple. Let

Nn = {v̄ = (v1, . . . , vk) ∈ p(`2) : ∀i ≤ k vi − ani ∈ Vn}.
We claim that there are εn > 0 such that the sequence of Nn and εn

witnesses that ān is 2-weakly isolated. For each n find εn > 0 as in Lemma
10.8 for v̄ = ān. Then Nn is 2-relatively εn-saturated over ān.

Suppose now that b̄n = (bn1 , . . . , b
n
k) ∈ Nn are such that qftp(b̄n) =

qftp(ān) for each n ∈ N and d`2(b̄n, ān) < εn. Then bni − ani ∈ Vn for
each i ≤ k. Find ϕn ∈ O(Vn) such that ϕn(πVn(ān)) = πVn(b̄n) and let
ϕ ∈ O(`2) be such that ϕ extends all the ϕn and is equal to the identity on
the orthogonal complement of the union of Vn’s. Then ϕ(ān) = b̄n for each
n ∈ N. This ends the proof. �

Proposition 10.12. The Hilbert space `2 admits 2-weakly isolated sequences.

Proof. Suppose p is a quantifier-free k-type of a tuple ā = (a1, . . . , ak) in `2.
First note that we can assume that the elements of ā form an orthonormal
set. Otherwise, one can consider a tuple which is an orthonormal basis for
the space spanned by ā and work with a quantifier-free m-type q for some
m ≤ n. Then, for every m-tuple b̄ ∈ q(M) there is a unique tuple b̄′ ∈ p(M)
such that the linear spans of b̄ and b̄′ are the same and

• if (b̄n : n ∈ N) is isolated in q, then (b̄′n : n ∈ N) is isolated in p,
• the map b̄ 7→ b̄′ is a homeomorphism of q(M) and p(M).

In fact, for simplicity of notation, assume that k = 1 (the argument for
arbitrary k is analogous).

Suppose now that Z ⊆ p(`2) is nonmeager. Restricting to an open subset
of p(`2) if neccessary, we can assume that Z is nonmeager in every nonempty
open subset of `2.
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Write Gr(`2) for the space of all closed subspaces of `2 and Gr(`2,∞) for
the space of infinite-dimensional closed subspaces of `2. The topology on
Gr(`2) is induced from the strong operator topology via the map V 7→ πV .
Write dGr for a compatible metric on Gr(`2). Note that there is a sequence
of functions ρn : Gr(`2,∞) → (0,∞) such that whenever Wn ∈ Gr(`2,∞)
is a decreasing sequence of infinite-dimensional closed subspaces of `2 and
dGr(Wn,Wn+1) < ρn+1(Wn), then

⋂
nWn is also infinite-dimensional.

By induction on n ∈ N find vectors an ∈ Z, positive reals δn and pairwise
orthogonal infinite-dimensional closed subspaces Wn ⊆ `2 such that:

(i) W1 ⊕ . . .⊕Wn is co-infinite dimensional,
(ii) πWn(an) 6= 0.
(iii) ||πWn∩ span(an+1)⊥(an)|| = δn,

(iv) if m < n, then am ⊥Wn

(v) if m < n, then we have

||πWm∩ (
⋃n

i=m+1 span(ai))⊥(am)|| > 1

2
δm,

(vi) if m < n and ε = ρn(Wm ∩ (
⋃n−1
i=m+1 span(ai))

⊥), then

dGr(Wm ∩ (
n⋃

i=m+1

span(ai))
⊥,Wm ∩ (

n−1⋃
i=m+1

span(ai))
⊥) < ε.

After this is done, put Vn = Wn ∩ (
⋃
m>n span(am))⊥. Note that Vn are

infinite-dimensional by (vi) and mutually orthogonal given that Wn are mu-
tually orthogonal. Also, (iv) and the definition of Vn imply that if n 6= m,
then am ⊥ Vn. The projection of an onto Vn is nonzero by the condition (v)
and hence ān is strongly linearly independent, as witnessed by Vn and hence
2-weakly isolated by Lemma 10.11.

To perform the induction step, suppose a1, . . . , an and W1, . . . ,Wn as well
as δ1, . . . , δn−1 are chosen. Using the fact that a proper subspace of `2 is
meager as well as the assumption that Z is nonmeager in any nonempty
open set, find an+1 ∈ Z which does not belong to span(

⋃n
i=1Wi ∪ {ai}) and

(††) an+1 6⊥Wn ∩ span(πWn(an))⊥

and an+1 is so close to an that for m < n we have

||πWm∩ (
⋃n

i=m+1 span(ai))⊥(am)|| > 1

2
δm

and for every m < n, writing εnm = ρn+1(Wm∩(
⋃n
i=m+1 span(ai))

⊥) we have

dGr(Wm ∩ (

n+1⋃
i=m+1

span(ai))
⊥,Wm ∩ (

n⋃
i=m+1

span(ai))
⊥) < εnm.

This implies that (v) and (vi) are satisfied at the induction step.
Note that the projection of an+1 to (span(

⋃n
i=1Wi ∪ {ai}))⊥ is nonzero.

Find an infinite-dimensional closed space Wn+1 such that



36 MARCIN SABOK

• Wn+1 is orthogonal to span(
⋃n
i=1Wi ∪ {ai}),

• the projection of an+1 onto Wn+1 is nonzero,
• W1 ⊕ . . .⊕Wn+1 is co-infinite dimensional.

This gives (i), (ii) and (iv). Finally, we claim that πWn∩ span(an+1)⊥(an) is
nonzero. Indeed, otherwise

an ⊥Wn ∩ span(an+1)⊥

and so

πWn(an) ⊥Wn ∩ span(an+1)⊥.

But then, since an+1 /∈W⊥n (by (††)), we have that

Wn ∩ (span(πWn(an)))⊥ = Wn ∩ (span(an+1))⊥

and so an+1 ⊥Wn∩(span(πWn(an)))⊥, which contradicts (††). Let then δn =
||πWn∩ span(an+1)⊥(an)|| > 0. This ends the construction and the proof. �

Finally, we verify that the stronger property discussed in Section 7 holds
for the Hilbert space. Say that a sequence of tuples ān ∈ `2 is a proper orthog-
onal sequence if the subspaces spanned by different ān are pairwise ortogonal
and the orthogonal complement of their union is infinite-dimensional.

Claim 10.13. Any proper orthogonal sequence in `2 is independent.

Proof. Let ān be a proper orthogonal sequence in the quantifier-free type
of a given ā and let Hn be a sequence of orthogonal infinite-dimensional
subspaces of the orthogonal complement of the space spanned by the vectors
in all ān’s. Write H ′n for the space spanned by Hn and ān and note that the
subspaces H ′n witness that the sequence ān is independent. �

Lemma 10.14. The Hilbert space `2 admits independent sequences.

Proof. Fix k ∈ N and ā = (a1, . . . , ak) ∈ Uk. Let (s̄n : n ∈ N) be a sequence
of finite tuples and without loss of generality assume that s̄n is a subtuple
of s̄n+1. We need to find an independent sequence ān in the quantifier-free
type of ā such that ān ≡s̄n ān+1. Find the sequence ān of tuples as well as
additional vectors vn so that

• The elements of ān are orthogonal to all elements of s̄n, to all ele-
ments of āi’s for i < n as well as to vn
• vn+1 is orthogonal to all elements of āi’s for i ≤ n
• ān ≡s̄n ān+1

The sequence is easy to construct using the fact that if b̄ and s̄ are two
tuples whose elements are pairwise orthogonal, then the orbit of b̄ with
respect to the stabilizer of s̄ contains vectors orthogonal to any finite tuple.
The sequence is then proper orthogonal, and hence independent by Claim
10.13. �



AUTOMATIC CONTINUITY FOR ISOMETRY GROUPS 37

11. Questions

There are still many natural examples of automorphism groups for which
the automatic continuity (and even the uniqueness of Polish group topology)
is open. Here we list some of them.

Question 11.1. Does the group of automorphisms of the Cuntz algebra O2

have the automatic continuity property?

Question 11.2. Does the group of automorphisms of the hyperfinite II1

factor have the automatic continuity property?

Question 11.3. Does the group of linear isometries of the Gurarǐı space
have the automatic continuity property?

Finally, the problem of uniqueness of separable topology for the group
Iso(U) remains open. For other groups considered in this paper, uniqueness
of separable topology follows from the combination of automatic continu-
ity property and minimality (or even total minimality which says that any
Hausdorff quotient of the group is minimal). For the unitary group this has
been proved by Stojanov [50] and for the group Aut([0, 1], λ) by Glasner [15]
(see also [6] for a recent general framework for these kind of results).

Question 11.4. Is the group Iso(U) minimal?
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[6] Itäı Ben Yaacov and Todor Tsankov. Weakly almost periodic functions, model-
theoretic stability, and minimality of topological groups. 2013. preprint.

[7] H. G. Dales. Automatic continuity: a survey. Bull. London Math. Soc., 10(2):129–183,
1978.

[8] H. G. Dales. Banach algebras and automatic continuity, volume 24 of London Math-
ematical Society Monographs. New Series. The Clarendon Press Oxford University
Press, New York, 2000. Oxford Science Publications.

[9] R. M. Dudley. Continuity of homomorphisms. Duke Math. J., 28:587–594, 1961.
[10] A. Fathi. Le groupe des transformations de [0, 1] qui préservent la mesure de Lebesgue
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