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Glossary

Mechanism: a machine or part of a machine that performs a particular task computation:
the use of a computer for calculation.

Computable: Capable of being worked out by calculation, especially using a computer.
The term simulation will be both used to denote the modeling of a physical system by a

computer, as well as the modeling of the operation of a computer by a mechanical
system; the difference will be clear from the context.
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I. Definition of the Subject and Its Importance

Mechanical devices for computation appear to be largely displaced by the widespread use
of microprocessor-based computers that are pervading almost all aspects of our lives.
Nevertheless, mechanical devices for computation are of interest for at least three
reasons:

(a) Historical: The use of mechanical devices for computation is of central importance in
the historical study of technologies, with a history dating to thousands of years and with
surprising applications even in relatively recent times.

(b) Technical & Practical: The use of mechanical devices for computation persists and
has not yet been completely displaced by widespread use of microprocessor-based
computers. Mechanical computers have found applications in various emerging
technologies at the micro-scale that combine mechanical functions with computational
and control functions not feasible by purely electronic processing. Mechanical computers
also have been demonstrated at the molecular scale, and may also provide unique
capabilities at that scale. The physical designs for these modern micro and molecular-
scale mechanical computers may be based on the prior designs of the large-scale
mechanical computers constructed in the past.

(¢) Impact of Physical Assumptions on Complexity of Motion Planning, Design, and
Simulation

The study of computation done by mechanical devices is also of central importance in
providing lower bounds on the computational resources such as time and/or space
required to simulate a mechanical system observing given physical laws. In particular, the
problem of simulating the mechanical system can be shown to be computationally hard if
a hard computational problem can be simulated by the mechanical system. A similar
approach can be used to provide lower bounds on the computational resources required to
solve various motion planning tasks that arise in the field of robotics. Typically, a robotic
motion planning task is specified by a geometric description of the robot (or collection of
robots) to be moved, its initial and final positions, the obstacles it is to avoid, as well as a
model for the type of feasible motion and physical laws for the movement. The problem
of planning such as robotic motion planning task can be shown to be computationally
hard if a hard computational problem can be simulated by the robotic motion-planning
task.

II. Introduction to Computational Complexity

Abstract Computing Machine Models.

To gauge the computational power of a family of mechanical computers, we will use a
widely known abstract computational model known as the Turing Machine, defined in
this section.

The Turing Machine. The Turing machine model formulated by Alan Turing [1] was
the first complete mathematical model of an abstract computing machine that possessed



universal computing power. The machine model has (i) a finite state transition control for
logical control of the machine processing, (ii) a tape with a sequence of storage cells
containing symbolic values, and (iii) a tape scanner for reading and writing values to and
from the tape cells, which could be made to move (left and right) along the tape cells.

A machine model is abstract if the description of the machine transition mechanism or
memory mechanism does not provide specification of the mechanical apparatus used to
implement them in practice. Since Turing’s description did not include any specification
of the mechanical mechanism for executing the finite state transitions, it can’t be viewed
as a concrete mechanical computing machine, but instead is an abstract machine. Still it is
valuable computational model, due to it simplicity and very widespread use in
computational theory.

A universal Turing machine simulates any other Turing machine; it takes its input a pair
consisting of a string providing a symbolic description of a Turing machine M and the
input string x, and simulates M on input x. Because of its simplicity and elegance, the
Turing Machine has come to be the standard computing model used for most theoretical
works in computer science. Informally, the Church-Turing hypothesis states that a Turing
machine model can simulate a computation by any “reasonable” computational model
(we will discuss some other reasonable computational models below).

Computational Problems. A computational problem is: given an input string specified
by a string over a finite alphabet, determine the Boolean answer: 1 is the answer is YES,
and otherwise 0. For simplicity, we generally will restrict the input alphabet to be the
binary alphabet {0,1}. The input size of a computational problem is the number of input
symbols; which is the number of bits of the binary specification of the input. (Note: It is
more common to make these definitions in terms of language acceptance. A language is a
set of strings over a given finite alphabet of symbols. A computational problem can be
identified with the language consisting of all strings over the input alphabet where the
answer is 1. For simplicity, we defined each complexity class as the corresponding class
of problems.)

Recursively Computable Problems and Undecidable Problems. There is a large class
of problems, known as recursively computable problems, that Turing machines compute
in finite computations, that is, always halting in finite time with the answer. There are
certain problems that are not recursively computable; these are called undecidable
problems. The Halting Problem is: given a Turing Machine description and an input,
output 1 if the Turing machine ever halts, and else output 0. Turing proved the halting
problem is undecidable. His proof used a method known as a diagonalization method; it
considered an enumeration of all Turing machines and inputs, and showed a contradiction
occurs when a universal Turing machine attempts to solve the Halting problem for each
Turing machine and each possible input.

Computational Complexity Classes. Computational complexity (see [2]) is the amount
of computational resources required to solve a given computational problem. A
complexity class is a family of problems, generally defined in terms of limitations on the



resources of the computational model. The complexity classes of interest here will be
associated with restrictions on the time (number of steps until the machine halts) and/or
space (the number of tape cells used in the computation) of Turing machines. There are a
number of notable complexity classes:

P is the complexity class associated with efficient computations, and is formally defined
to be the set of problems solved by Turing machine computations running in time
polynomial in the input size (typically, this is the number of bits of the binary
specification of the input).

NP is the complexity class associated with combinatorial optimization problems which if
solved can be easily determined to have correct solutions, and is formally defined to be
the set of problems solved by Turing machine computations using nondeterministic
choice running in polynomial time.

PSPACE is the complexity class is defined to be set of problems solved by Turing
machines running in space polynomial in the input size.

EXPTIME is the complexity class is defined to be set of problems solved by Turing
machine computations running in time exponential in the input size.

NP and PSPACE are widely considered to have instances that are not solvable in P, and
it has been proved that EXPTIME has problems that are not in P.

Polynomial Time Reductions. A polynomial time reduction from a problem Q’ to a
problem Q is a polynomial time Turing machine computation that transforms any
instance of the problem Q’ into an instance of the problem Q which has an answer YES if
and only if the problem Q’ has an answer YES. Informally, this implies that problem Q
can be used to efficiently solve the problem Q’. A problem Q is hard for a family F of
problems if for every problem Q’ in F, there is a polynomial time reduction from Q’ to Q.
Informally, this implies that problem Q can be used to efficiently solve any problem in F.
A problem Q is complete for a family F of problems if Q is in C and also hard for F.

Hardness Proofs for Mechanical Problems. He will later consider various mechanical
problems and characterize their computation power:

* Undecidable mechanical problems; typically this was proved by a computable
reduction from the halting problem for a universal Turing machine problems to an
instance of the mechanical problem; this is equivalent to showing the mechanical
problem can be viewed as a computational machine that can simulate a universal
Turing machine computation.

* Mechanical problems that are hard for NP, PSPACE, or EXPTIME; typically
this was proved by a polynomial time reduction from the problems in the
appropriate complexity class to an instance of the mechanical problem; again, this
is equivalent to showing the mechanical problem can be viewed as a
computational machine that can simulate a Turing machine computation in the
appropriate complexity class.

The simulation proofs in either case often provide insight into the intrinsic computational
power of the mechanical problem or mechanical machine.

Other Abstract Computing Machine Models



There are a number of abstract computing models discussed in this Chapter, that are
equivalent, or nearly equivalent to conventional deterministic Turing Machines.

* Reversible Turing Machines. A computing device is (logically) reversible if
each transition of its computation can be executed both in forward direction as
well in reverse direction, without loss of information. Landauer [3] showed that
irreversible computations must generate heat in the computing process, and that
reversible computations have the property that if executed slowly enough, can (in
the limit) consume no energy in an adiabatic computation. A reversible Turing
machine model allows the scan head to observe 3 consecutive tape symbols and to
execute transitions both in forward as well as in reverse direction. Bennett [4]
showed that any computing machine (e.g., an abstract machine such as a Turing
Machine) can be transformed to do only reversible computations, which implied
that reversible computing devices are capable of universal computation. Bennett's
reversibility construction required extra space to store information to insure
reversibility, but this extra space can be reduced by increasing the time. Vitanyi
[5] give trade-offs between time and space in the resulting reversible machine.
Lewis and Papadimitriou [1] showed that reversible Turing machines are
equivalent in computational power to conventional Turing machines when the
computations are bounded by polynomial time, and Crescenzi and Papadimitriou
[6] proved a similar result when the computations are bounded by polynomial
space. This implies that the definitions of the complexity classes P and PSPACE
do not depend on the Turing machines being reversible or not. Reversible Turing
machines are used in many of the computational complexity proofs to be
mentioned involving simulations by mechanical computing machines.

* Cellular Automata. These are sets of finite state machines that are typically
connected together by a grid network. There are known efficient simulations of
Turing machine by cellular automata (e.g., see Wolfram [7] for some known
universal simulations). A number of the particle-based mechanical machines to be
described are known to simulate cellular automata.

* Randomized Turing machines. The machine can make random choices in its
computation. While the use of randomized choice can be very usefull in many
efficient algorithms, there is evidence that randomization only provides limited
additional computational power above conventional deterministic Turing
machines (In particular, there are a variety of pseudo-random number generation
methods proposed for producing long pseudo-random sequences from short truly
random seeds, that are which are widely conjectured to be indistinguishable from
truly random sequences by polynomial time Turning machines.) A number of the
mechanical machines to be described using Brownian-motion have natural
sources of random numbers.

There are also a number of abstract computing machine models that appear to be more
powerful than conventional deterministic Turing Machines.



* Real-valued Turing machines. In these machines due to Blum et al [8], each
storage cell or register can store any real value (that may be transcendental).
Operations are extended to allow infinite precision arithmetic operations on real
numbers. To our knowledge, none of the analog computers that we will describe
in this chapter have this power.

*  Quantum Computers. A guantum superposition is a linear superposition of basis
states; it is defined by a vector of complex amplitudes whose absolute magnitudes
sum to 1. In a quantum computer, the quantum superposition of basis states is
transformed in each step by a unitary transformation (this is a linear mapping that
is reversible and always preserves the value of the sum of the absolute magnitudes
of its inputs). The outputs of a quantum computation are read by observations that
that project the quantum superposition to classical values; a given state is chosen
with probability defined by the magnitude of the amplitude of that state in the
quantum superposition. Feynman [9] and Benioff [10] were the first to suggest the
use of quantum mechanical principles for doing computation, and Deutsch [11]
was the first to formulate an abstract model for quantum computing and show it
was universal. Since then, there is a large body of work in quantum computing
(see Gruska [12] and Nielsen [13]) and quantum information theory (see Jaeger
[14] and Reif [15]). Some of the particle-based methods for mechanical
computing described below make use of quantum phenomena, but generally are
not considered to have the full power of quantum computers.

II. The Computational Complexity of Motion Planning and Simulation of
Mechanical Devices

Complexity of Motion Planning for Mechanical Devices with Articulated Joints

The first known computational complexity result involving mechanical motion or robotic
motion planning was in 1979 by Reif [16]. He consider a class of mechanical systems
consisting of a finite set of connected polygons with articulated joints, which are required
to be moved between two configurations in three dimensional space avoiding a finite set
of fixed polygonal obstacles. To specify the movement problem (as well as the other
movement problems described below unless otherwise stated), the object to be moved, as
well as its initial and final positions, and the obstacles are all defined by linear
inequalities with rational coefficients with a finite number of bits. He showed that this
class of motion planning problems is hard for PSPACE. Since it is widely conjectured
that PSPACE contains problems are not solvable in polynomial time, this result provided
the first evidence that these robotic motion planning problems not solvable in time
polynomial in n if number of degrees of freedom grow with n. His proof involved
simulating a reversible Turing machine with n tape cells by a mechanical device with n
articulated polygonal arms that had to be maneuvered through a set of fixed polygonal
obstacles similar to the channels in Swiss-cheese. These obstacles where devised to force
the mechanical device to simulate transitions of the reversible Turing machine to be
simulated, where the positions of the arms encoded the tape cell contents, and tape
read/write operations were simulated by channels of the obstacles which forced the arms
to be reconfigured appropriately. This class of movement problems can be solved by



reduction to the problem of finding a path in a O(n) dimensional space avoiding a fixed
set of polynomial obstacle surfaces, which can be solved by a PSPACE algorithm due to
Canny [17]. Hence this class of movement problems are PSPACE complete. (In the case
the object to be moved consists of only one rigid polygon, the problem is known as the
piano mover's problem and has a polynomial time solution by Schwartz and Sharir [18].)

Other PSPACE completeness results for mechanical devices.
There were many subsequent PSPACE completeness results for mechanical devices (two
of which we mention below), which generally involved multiple degrees of freedom:

* The Warehouseman's Problem. Schwartz and Sharir [19] showed in 1984 that
moving a set of n disconnected polygons in two dimensions from an initial
position to a final position among finite set of fixed polygonal obstacles PSPACE
hard.

There are two classes of mechanical dynamic systems, the Ballistic machines and the
Browning Machines described below, that can be shown to provide simulations of
polynomial space Turing machine computations.

Ballistic Collision-based Computing Machines and PSPACE
A ballistic computer (see Bennett [20,21]) is a conservative dynamical system that
follows a mechanical trajectory isomorphic to the desired computation. It has the
following properties:
* Trajectories of distinct ballistic computers can’t be merged,
* All operations of a computational must be reversible,
* Computations, when executed at constant velocity, require no consumption of
energy,
¢ Computations must be executed without error, and needs to be isolated from
external noise and heat sources.

Collision-based computing [22] is computation by a set of particles, where each particle
holds a finite state value, and state transformations are executed at the time of collisions
between particles. Since collisions between distinct pairs of particles can be
simultaneous, the model allows for parallel computation. In some cases the particles can
be configured to execute cellular automata computations [23]. Most proposed methods
for Collision-based computing are ballistic computers as defined above. Examples of
concrete physical systems for collision-based computing are:

* The Billiard Ball Computers. Fredkin and Toffoli [24] considered a mechanical
computing model, the billiard ball computer, consisting spherical billiard balls
with polygonal obstacles, where the billiard balls were assume to have perfect
elastic collisions with no friction. They showed in 1982 that a Billiard Ball
Computer, with an unbounded number of billiard balls, could simulate a
reversible computing machine model that used reversible Boolean logical gates
known as Toffoli gates. When restricted to finite set of n spherical billiard balls,
their construction provides a simulation of a polynomial space reversible Turing
machine.



* Particle-like waves in excitable medium. Certain classes of excitable medium
have discrete models that can exhibit particle-like waves that propagate through
the media [25], and using this phenomena, Adamatzky [26] gave a simulation of a
universal Turing Machine, and if restricted to n particle-waves, provided a
simulation of a polynomial space Turing Machine.

* Soliton Computers. A soliton is a wave packet that maintains a self-reinforcing
shape as it travels at constant speed through a nonlinear dispersive media. A
soliton computer [27,28] makes use of optical solitons to hold state, and state
transformations are made by colliding solitons.

Brownian machines and PSPACE

In a mechanical system exhibiting fully Brownian motion, the parts move freely and
independently, up to the constraints that either link the parts together or forces the parts
exert on each other. In a fully Brownian motion, the movement is entirely due to heat and
there is no other source of energy driving the movement of the system. An example of a
mechanical systems with fully Brownian motion is a set of particles exhibiting Browning
motion, as say with electrostatic interaction. The rate of movement of mechanical system
with fully Brownian motion is determined entirely by the drift rate in the random walk of
their configurations.

Other mechanical systems, known as driven Brownian motion systems, exhibit movement
is only partly due to heat; in addition there is a driving there is a source of energy driving
the movement of the system. Example a of driven Brownian motion systems are:

* Feynman’s Ratchet and Pawl [29], which is a mechanical ratchet system that has a
driving force but that can operate reversibly.

* Polymerase enzyme, which uses ATP as fuel to drive their average movement
forward, but also can operate reversibly.

There is no energy consumed by fully Brownian motion devices, whereas driven
Brownian motion devices require power that grows as a quadratic function of the drive
rate in which operations are executed (see Bennett [21]).

Bennett [20] provides two examples of Brownian computing machines:

* An engzymatic machine. This is a hypothetical biochemical device that simulates a
Turing machine, using polymers to store symbolic values in a manner to similar to
Turing machine tapes, and uses hypothetical enzymatic reactions to execute state
transitions and read/write operations into the polymer memory. Shapiro [30] also
describes a mechanical Turing machine whose transitions are executed by
hypothetical enzymatic reactions.

* A clockwork computer. This is a mechanism with linked articulated joints, with a
Swiss-cheese like set of obstacles, which force the device to simulate a Turing
machine. In the case where the mechanism of Bennett’s clockwork computer is
restricted to have a linear number of parts, it can be used to provide a simulation
of PSPACE similar that of [16].

Hardness results for mechanical devices with a constant number of degrees of
freedom



There were also additional computation complexity hardness results for mechanical
devices, which only involved a constant number of degrees of freedom. These results
exploited special properties of the mechanical systems to do the simulation.

Motion planning with moving obstacles. Reif and Sharir [31] considered the
problem of planning the motion of a rigid object (the robot) between two
locations, avoiding a set of obstacles, some of which are rotating. They showed
this problem is PSPACE hard. This result was perhaps surprising, since the
number of degrees of freedom of movement of the object to be moved was
constant. However, the simulation used the rotational movement of obstacles to
force the robot to be moved only to position that encoded all the tape cells of M.
The simulation of a Turing machine M was made by forcing the object between
such locations (that encoded the entire n tape cell contents of M) at particular
times, and further forced that object to move between these locations over time in
a way that simulated state transitions of M.

NP hardness results for path problems in two and three dimensions

Shortest path problems in fixed dimensions involve only a constant number of degrees of
freedom. Nevertheless, there are a number of NP hardness results for such problems.
These results also led to proofs that certain physical simulations (in particular, simulation
of multi-body molecular and celestial simulations) are NP hard, and therefore not likely
efficiently computable with high precision.

Finding shortest paths in three dimensions. Consider the problem of finding a
shortest path of a point in three dimensions (where distance is measured in the
Euclidean metric) avoiding fixed polyhedral obstacles whose coordinates are
described by rational numbers with a finite number of bits. This shortest path
problem can be solved in PSPACE [17], but the precise complexity of the
problem is an open problem. Canny and Reif [32] were the first to provide a
hardness complexity result for this problem; they showed the problem is NP hard.
Their proof used novel techniques called free path encoding that used 2"
homotopy equivalence classes of shortest paths. Using these techniques, they
constructed exponentially many shortest path classes (with distinct homotopy) in
single-source multiple-destination problems involving O(n) polygonal obstacles.
They used each of these path to encode a possible configuration of the
nondeterministic Turing machine with n binary storage cells. They also provided
a technique for simulating each step of the Turing machine by the use of
polygonal obstacles whose edges forced a permutation of these paths that encoded
the modified configuration of the Turing machine. These encoding allowed them
to prove that the single-source single-destination problem in three dimensions is
NP-hard. Similar free path encoding techniques were used for a number of other
complexity hardness results for mechanical simulations described below.

Kinodynamic planning. Kinodynamic planning is the task of motion planning
while subject to simultaneous kinematic and dynamics constraints. The algorithms
for various classed of kinodynamic planning problems were first developed in



[33]. Canny and Reif [32] also used Free path encoding techniques to show two
dimensional kinodynamic motion planning with bounded velocity is NP-hard.

Shortest Curvature-Constrained Path planning in Two Dimensions. We now
consider curvature-constrained shortest path problems: which involve finding a
shortest path by a point among polygonal obstacles, where the there is an upper
bound on the path curvature. A class of curvature-constrained shortest path
problems in two dimensions were shown to be NP hard by Reif and Wang [34],
by devising a set of obstacles that forced the shortest curvature-constrained path
to simulate a given nondeterministic Turing machine

PSPACE Hard Physical Simulation Problems

Ray Tracing with a Rational Placement and Geometry. Ray tracing is given an
optical system and the position and direction of an initial light ray, determine if
the light ray reaches some given final position. This problem of determining the
path of light ray through an optical system was first formulated by Newton in his
book on Optics. Ray tracing has been used for designing and analyzing optical
systems. It is also used extensively in computer graphics to render scenes with
complex curved objects under global illumination. Reif, Tygar, and Yoshida [35]
showed the problem of ray tracing in various three dimensional optical, where the
optical devices either consist of reflective objects defined by quadratic equations,
or refractive objects defined by linear equations, but in either case the coefficients
are restricted to be rational. They showed this ray tracing problems are PSPACE
hard. Their proof used free path encoding techniques for simulating a
nondeterministic linear space Turing machine, where the position of the ray as it
enters a reflective or refractive optical object (such as a mirror or prism face)
encodes the entire memory of the Turing machine to be simulated, and further
steps of the Turing machine are simulated by optically inducing appropriate
modifications in the position of the ray as it enters other reflective or refractive
optical objects. This result implies that the apparently simple task of highly
precise ray tracing through complex optical systems is not likely to be efficiently
executed by a polynomial time computer. It is another example of the use of a
physical system to do powerful computations.

Molecular and gravitational mechanical systems. A quite surprising example
of the use of physical systems to do computation is the work of Tate and Reif [36]
on the complexity of n-body simulation, where they showed that the problem is
PSPACE hard, and therefore not likely efficiently computable with high
precision. In particular, they considered multi-body systems in three dimensions
with n particles and inverse polynomial force laws between each pair of particles
(e.g., molecular systems with Columbic force laws or celestial simulations with
gravitational force laws). It is quite surprising that such systems can be configured
to do computation. Their hardness proof made use of free path encoding
techniques similar to the proof of PSPACE-hardness of ray tracing. A single
particle, which we will call the memory-encoding particle, is distinguished. The



position of a memory-encoding particle as it crosses a plane encodes the entire
memory of the Turing machine to be simulated, and further steps of the Turing
machine are simulated by inducing modifications in the trajectory of the memory-
encoding particle. The modifications in the trajectory of the memory-encoding
particle are made by use of other particles that have trajectories that induce force
fields that essentially act like force-mirrors, causing reflection-like changes in the
trajectory of the memory-encoding particle. Hence highly precise n-body
molecular simulation is not likely to be efficiently executed by a polynomial time
computer.

A Provably Intractable Mechanical Simulation Problem: Compliant motion
planning with uncertainty in control.

Next, we consider compliant motion planning with uncertainty in control. Specifically,
we consider a point in 3 dimensions which is commanded to move in a straight line, but
whose actual motion may differ from the commanded motion, possibly involving sliding
against obstacles. Given that the point initially lies in some start region, the problem is to
find a sequence of commanded velocities that is guaranteed to move the point to the goal.
This problem was shown by Canny and Reif [32] to be non-deterministic EXPTIME
hard, making it the first provably intractable problem in robotics. Their proof used free
path encoding techniques that exploited the uncertainty of position to encode exponential
number of memory bits in a Turing machine simulation.

Undecidable Mechanical Simulation Problems:

*  Motion Planning with Friction. Consider a class of mechanical systems whose
parts consist of a finite number of rigid objects defined by linear or quadratic
surface patches connected by frictional contact linkages between the surfaces.
(Note: this class of mechanisms is similar to the analytical engine developed by
Babbage at described in the next sections, except that there are smooth frictional
surfaces rather than toothed gears). Reif and Sun [37] proved that an arbitrary
Turing machine could be simulated by a (universal) frictional mechanical system
in this class consisting of a finite number of parts. The entire memory of a
universal Turing machine was encoded in the rotational position of a rod. In each
step, the mechanism used a construct similar to Babbage’s machine to execute a
state transition. The key idea in their construction is to utilize frictional clamping
to allow for setting arbitrary high gear transmission. This allowed the mechanism
to execute state transitions for arbitrary number of steps. Simulation of a universal
Turing machine implied that the movement problem is undecidable when there
are frictional linkages. (A problem is undecidable if there is no Turing machine
that solves the problem for all inputs in finite time.) It also implied that a
mechanical computer could be constructed with only a constant number of parts
that has the power of an unconstrained Turing machine.

* Ray Tracing with Non-Rational Postitioning. Consider again the problem of
ray tracing in a three dimensional optical systems, where the optical devices again
may be either consist of reflective objects defined by quadratic equations, or
refractive objects defined by linear equations. Reif, et al [35] also proved that in



the case where the coefficients of the defining equations are not restricted to be
rational, and include at least one irrational coefficient, then the resulting ray
tracing problem could simulate a universal Turing machine, and so is
undecidable. This ray tracing problem for reflective objects is equivalent to the
problem of tracing the trajectory of a single particle bouncing between quadratic
surfaces, which is also undecidable by this same result of [35]. In independent
result of Moore [38] also showed that the undecidability of the problem of tracing
the trajectory of a single particle bouncing between quadratic surfaces.

* Dynamics and Nonlinear Mappings. Moore [39], Ditto [40]and Munakata et al
[41] have also given universal Turing machine simulations of various dynamical
systems with nonlinear mappings.

IV. Concrete Mechanical Computing Devices

Mechanical computers have a very extensive history; some surveys given in Knott [42],
Hartree [43], Engineering Research Associates [44], Chase [45], Martin [46], Davis [47].
Norman [48] recently provided a unique overview of mechanical calculators and other
historical computers, summarizing the contributions of notable manuscripts and
publications on this topic.

Mechanical Devices for Storage and Sums of Numbers

Mechanical methods, such as notches on stones and bones, knots and piles of pebbles,
have been used since the Neolithic period for storing and summing integer values. One
example of such a device, the abacus, which may have been developed invented in
Babylonia approximately 5000 years ago, makes use of beads sliding on cylindrical rods
to facilitate addition and subtraction calculations.

Analog Mechanical Computing Devices

Computing devices will considered here to be analog (as opposed to digital) if they don’t
provide a method for restoring calculated values to discrete values, whereas digital
devices provide restoration of calculated values to discrete values. (Note that both analog
and digital computers uses some kind of physical quantity to represent values that are
stored and computed, so the use of physical encoding of computational values is not
necessarily the distinguishing characteristic of analog computing.) Descriptions of early
analog computers are given by Horsburgh [49], Turck[50], Svoboda [51], Hartree [43],
Engineering Research Associates [44] and Soroka [52]. There are a wide variety of
mechanical devices used for analog computing:

* Mechanical Devices for Astronomical and Celestial Calculation. While we
have not sufficient space in this article to fully discuss this rich history, we note
that various mechanisms for predicting lunar and solar eclipses using optical
illumination of configurations of stones and monoliths (for example, Stonehenge)
appear to date to the Neolithic period. Mechanical mechanisms for more precisely
predicting lunar and solar eclipses may have been developed in the classical
period of ancient history. The most impressive and sophisticated known example
of an ancient gear-based mechanical device is the Antikythera Mechanism, which
is thought to have been constructed by Greeks in approximately 2200 years ago.



Recent research [53] provides evidence it may have been used to predict celestial
events such as lunar and solar eclipses by the analog calculation of arithmetic-
progression cycles. Like many other intellectual heritages, some elements of the
design of such sophisticated gear-based mechanical devices may have been
preserved by the Arabs after that period, and then transmitted to the Europeans in
the middle ages.

* Planimeters. There is a considerable history of mechanical devices that integrate
curves. A planimeter is a mechanical device that integrates the area of the region
enclosed by a two dimensional closed curve, where the curve is presented as a
function of the angle from some fixed interior point within the region. One of the
first known planimeters was developed by J.A. Hermann in 1814 and improved
(as the polar planimeter) by J.A. Hermann in 1856. This led to a wide variety of
mechanical integrators known as wheel-and-disk integrators, whose input is the
angular rotation of a rotating disk and whose output, provided by a tracking
wheel, is the integral of a given function of that angle of rotation. More general
mechanical integrators known as ball-and-disk integrators, who’s input provided 2
degrees of freedom (the phase and amplitude of a complex function), were
developed by James Thomson in 1886. There are also devices, such as the
Integraph of Abdank Abakanoviez(1878) and C.V. Boys(1882), which integrate a
one-variable real function of x presented as a curve y=f(x) on the Cartesian plane.
Mechanical integrators were later widely used in WWI and WWII military analog
computers for solution of ballistics equations, artillery calculations and target
tracking. Various other integrators are described in Morin [54].

* Harmonic Analyzers. A Harmonic Analyzer is a mechanical device that calculates
the coefficients of the Fourier Transform of a complex function of time such as a
sound wave. Early harmonic analyzers were developed by Thomson [55] and
Henrici [56] using multiple pulleys and spheres, known as ball-and-disk
integrators.

* Harmonic Synthesizers. A Harmonic Synthesizer is a mechanical device that
interpolates a function given the Fourier coefficients. Thomson (then known as
Lord Kelvin) in 1886 developed [57] the first known Harmonic Analyzer that
used an array of James Thomson's (his brother) ball-and-disk integrators. Kelvin's
Harmonic Synthesizer made use of these Fourier coefficients to reverse this
process and interpolate function values, by using a wire wrapped over the wheels
of the array to form a weighted sum of their angular rotations. Kelvin
demonstrated the use of these analog devices predict the tide heights of a port:
first his Harmonic Analyzer calculated the amplitude and phase of the Fourier
harmonics of solar and lunar tidal movements, and then his Harmonic Synthesizer
formed their weighted sum, to predict the tide heights over time. Many other
Harmonic Analyzers were later developed, including one by Michelson and
Stratton (1898) that performed Fourier analysis, using an array of springs. Miller
[58] gives a survey of these early Harmonic Analyzers. Fisher [59] made
improvements to the tide predictor and later Doodson and Légé increase the scale
of this design to a 42-wheel version that was used up to the early 1960s.



* Analog Equation Solvers. There are various mechanical devices for calculating
the solution of sets of equations. Kelvin also developed one of the first known
mechanical mechanisms for equation solving, involving the motion of pulleys and
tilting plate that solved sets of simultaneous linear equations specified by the
physical parameters of the ropes and plates. John Wilbur in the 1930s increased
the scale of Kelvin’s design to solve nine simultaneous linear algebraic equations.
Leonardo Torres Quevedo constructed various rotational mechanical devices, for
determining real and complex roots of a polynomial. Svoboda [51] describes the
state of art in the 1940s of mechanical analog computing devices using linkages.

* Differential Analyzers. A Differential Analyzer is a mechanical analog device
using linkages for solving ordinary differential equations. Vannevar Bush [60]
developed in 1931 the first Differential Analyzer at MIT that used a torque
amplifier to link multiple mechanical integrators. Although it was considered a
general-purpose mechanical analog computer, this device required a physical
reconfiguration of the mechanical connections to specify a given mechanical
problem to be solved. In subsequent Differential Analyzers, the reconfiguration of
the mechanical connections was made automatic by resetting electronic relay
connections. In addition to the military applications already mentioned above,
analog mechanical computers incorporating differential analyzers have been
widely used for flight simulations and for industrial control systems.

* Mechanical Simulations of Physical Processes: Crystallization and Packing.
There are a variety of macroscopic devices used for simulations of physical
processes, which can be viewed as analog devices. For example, a number of
approaches have been used for mechanical simulations of crystallization and
packing:

o Simulation using solid macroscopic ellipsoids bodies. Simulations of
kinetic crystallization processes have been made by collections of
macroscopic solid ellipsoidal objects — typically of diameter of a few
millimeters - which model the molecules comprising the crystal. In these
physical simulations, thermal energy is modeled by introducing vibrations;
low level of vibration is used to model freezing and increasing the level of
vibrations models melting. In simple cases, the molecule of interest is a
sphere, and ball bearings or similar objects are used for the molecular
simulation. For example, to simulate the dense random packing of hard
spheres within a crystalline solid, Bernal [61] and Finney [62] used up to
4000 ball bearings on a vibrating table. In addition, to model more general
ellipsoidal molecules, orzo pasta grains as well as M&M candies (Jerry
Gollub at Princeton University) have been used. Also, Cheerios have been
used to simulate the liquid state packing of benzene molecules. To model
more complex systems mixtures of balls of different sizes and/or
composition have been used; for example a model ionic crystal formation
has been made by use a mixture of balls composed of different materials



that acquired opposing electrostatic charges.

o Simulations using bubble rafts [63,64]. These are the structures that
assemble among equal sized bubbles floating on water. They typically
they form two dimensional hexagonal arrays, and can be used for
modeling the formation of close packed crystals. Defects and dislocations
can also be modeled [65]; for example by deliberately introducing defects
in the bubble rats, they have been used to simulate crystal dislocations,
vacancies, and grain boundaries. Also, impurities in crystals (both
interstitial and substitutional) have been simulated by introducing bubbles
of other sizes.

* Reaction-Diffusion Chemical Computers. Adamatzky [66,67] described a class

of analog computers that where there is a chemical medium which has multiple
chemical species, where the concentrations of these chemical species vary
spatially and which diffuse and react in parallel. The memory values (as well as
inputs and outputs) of the computer are encoded by the concentrations of these
chemical species at a number of distinct locations (also known as micro-volumes).
The computational operations are executed by chemical reactions whose reagents
are these chemical species. Example computations [66,67] include: (i) Voronoi
diagram; this is to determine the boundaries of the regions closest to a set of
points on the plane, (ii) Skeleton of planar shape, and (iii) a wide variety of two
dimensional patterns periodic and aperiodic in time and space.

Digital Mechanical Devices for Arithmetic Operations

Recall that we have distinguished digital mechanical devices from the analog mechanical
devices described above by their use of mechanical mechanisms for insuring the values
stored and computed are discrete. Such discretization mechanisms include geometry and
structure (e.g., the notches of Napier’s bones described below), or cogs and spokes of
wheeled calculators. Surveys of the history of some these digital mechanical calculators
are given by Knott [42], Turck [50], Hartree [43], Engineering Research Associates [44],
Chase [45], Martin [46], Davis [47], and Norman [48].

Leonardo da Vinci's Mechanical Device and Mechanical Counting Devices.
This intriguing device, which involved a sequence of interacting wheels
positioned on a rod, which appear to provide a mechanism for digital carry
operations, was illustrated in 1493 in Leonardo da Vinci's Codex Madrid [68]. A
working model of its possible mechanics was constructed in 1968 by Joseph
Mirabella. Its function and purpose is not decisively known, but it may have been
intended for counting rotations (e.g., for measuring the distance traversed by a
cart). There are a variety of apparently similar mechanical devices used to
measuring distances traversed by vehicles.

Napier’s Bones. John Napier [69] developed in 1614 a mechanical device known
as Napier’s Bones allowed multiplication and division (as well as square and cube
roots) to be done by addition and multiplication operations. It consisting of
rectilinear rods, which provided a mechanical transformation to and from
logarithmic values. Wilhelm Shickard developed in 1623 a six digit mechanical



calculator that combined the use of Napier’s Bones using columns of sliding rods,
with the use of wheels used to sum up the partial products for multiplication.
Slide Rules. Edmund Gunter devised in 1620 a method for calculation that used a
single log scale with dividers along a linear scale; this anticipated key elements of
the first slide rule described by William Oughtred [70] in 1632. A very large
variety of slide machines were later constructed.

Pascaline: Pascal’s Wheeled Calculator. Blaise Pascal [71] developed in 1642 a
calculator known as the Pascaline that could calculate all four arithmetic
operations (addition, subtraction, multiplication, and division) on up to eight
digits. A wide variety of mechanical devices were then developed that used
revolving drums or wheels (cogwheels or pinwheels) to do various arithmetical
calculations.

Stepped Drum Calculators. Gottfried Wilhelm von Leibniz developed in 1671
an improved calculator known as the Stepped Reckoner, which used a cylinder
known as a stepped drum with nine teeth of different lengths that increase in equal
amounts around the drum. The stepped drum mechanism allowed use of moving
slide for specifying a number to be input to the machine, and made use of the
revolving drums to do the arithmetic calculations. Charles Xavier Thomas de
Colbrar developed in 1820 a widely used arithmetic mechanical calculator based
on the stepped drum known as the Arithmometer. Other stepped drum calculating
devices included Otto Shweiger’s Millionaire calculator (1893) and Curt
Herzstark's Curta (early 1940s).

Pinwheel Calculators. Another class of calculators, independently invented by
Frank S. Baldwin and W. T. Odhner in the 1870s, is known as pinwheel
calculators; they used a pinwheel for specifying a number input to the machine
and use revolving wheels to do the arithmetic calculations. Pinwheel calculators
were widely used up to the 1950s, for example in William S. Burroughs’s
calculator/printer and the German Brunsviga.

Digital Mechanical Devices for Mathematical Tables and Functions

Babbage’s Difference Engine. Charles Babbage [72,73] in 1820 invented a
mechanical device known as the Difference Engine for calculation of tables of an
analytical function (such as the logarithm) that summed the change in values of
the function when a small difference is made in the argument. That difference
calculation required for each table entry involved a small number of simple
arithmetic computations. The device made use of columns of cogwheels to store
digits of numerical values. Babbage planned to store 1000 variables, each with 50
digits, where each digit was stored by a unique cogwheel. It used cogwheels in
registers for the required arithmetical calculations, and also made use of a rod-
based control mechanism specialized for control of these arithmetic calculations.
The design and operation of the mechanisms of the device were described by a
symbolic scheme developed by Babbage [74]. He also conceived of a printing



mechanism for the device. In 1801, Joseph-Marie Jacquard invented an automatic
loom that made use of punched cards for the specification of fabric patterns
woven by his loom, and Charles Babbage proposed the use of similar punched
cards for providing inputs to his machines. He demonstrated over a number of
years certain key portions of the mechanics of the device but never completed a
complete function device.

Other Difference Engines. In 1832 Ludgate [75] independently designed, but did
not construct, a mechanical computing machine similar but smaller in scale to
Babbage’s Analytical Engine. In 1853 Pehr and Edvard Scheutz [76] constructed
in Sweden a cog wheel mechanical calculating device (similar to the Difference
Engine originally conceived by Babbage) known as the Tabulating Machine, for
computing and printing out tables of mathematical functions. This (and a later
construction of Babbage’s Difference Engine by Doron Swade [77] of the London
Science Museum) demonstrated the feasibility of Babbage’s Difference Engine.

Babbage’s Analytical Engine. Babbage further conceived (but did not attempt to
construct) a mechanical computer known as the Analytical Engine to solve more
general mathematical problems. Lovelace’s extended description of Babbage’s
Analytical Engine [78] (translation of "Sketch of the Analytical Engine" by L. F.
Menabrea) describes, in addition to arithmetic operations, also mechanisms for
looping and memory addressing. However, the existing descriptions of Babbage’s
Analytical Engine appear to lack the ability to execute a full repertory of logical
and/or finite state transition operations required for general computation.
Babbage’s background was very strong in analytic mathematics, but he (and the
architects of similar cog-wheel based mechanical computing devices at that date)
seemed to have lacked knowledge of sequential logic and its Boolean logical
basis, required for controlling the sequence of complex computations. This (and
his propensity for changing designs prior to the completion of the machine
construction) might have been the real reason for the lack of complete
development of a universal mechanical digital computing device in the early
1800’s.

Subsequent Electromechanical Digital Computing Devices with Cog-wheels.
Other electromechanical digital computing devices (see [44]) developed in the
late 1940s and 1950s, that contain cog-wheels, included Howard Aiken's Mark 1
[79] constructed at Harvard University and Konrad Zuse's Z series computer
constructed in Germany.

Mechanical Devices for Timing, Sequencing and Logical Control

We will use the term mechanical automata here to denote mechanical devices that exhibit
autonomous control of their movements. These can require sophisticated mechanical
mechanisms for timing, sequencing and logical control.

Mechanisms used for Timing Control. Mechanical clocks, and other
mechanical device for measuring time have a very long history, and include a
very wide variety of designs, including the flow of liquids (e.g., water clocks), or



sands (e.g., sand clocks), and more conventional pendulum-and-gear based clock
mechanisms. A wide variety of mechanical automata and other control devices
make use of mechanical timing mechanisms to control the order and duration of
events automatically executed (for example, mechanical slot machines dating up
to the 1970s made use of such mechanical clock mechanisms to control the
sequence of operations used for payout of winnings). As a consequence, there is
an interwoven history in the development of mechanical devices for measuring
time and the development of devices for the control of mechanical automata.

* Logical Control of Computations. A critical step in the history of computing

machines was the development in the middle 1800’s of Boolean logic by George
Boole [80,81]. Boole innovation was to assign values to logical propositions: 1 for
true propositions and O for false propositions. He introduced the use of Boolean
variables which are assigned these values, as well the use of Boolean connectives
(and and or) for expressing symbolic Booelan logic formulas. Boole's symbolic
logic is the basis for the logical control used in modern computers. Shannon [82]
was the first to make use of Boole's symbolic logic to analyze relay circuits (these
relays were used to control an analog computer, namely Mlts Differential
Equalizer).

The Jevons’ Logic Piano: A Mechanical Logical Inference Machine. In 1870
William Stanley Jevons (who also significantly contributed to the development of
symbolic logic) constructed a mechanical device [83,84] for the inference of
logical proposition that used a piano keyboard for inputs. This mechanical
inference machine 1is less widely known than it should be, since it may have had
impact in the subsequent development of logical control mechanisms for
machines.

* Mechanical Logical Devices used to Play Games. Mechanical computing devices

have also been constructed for executing the logical operations for playing games.
For example, in 1975, a group of MIT undergraduates including Danny Hillis and
Brian Silverman constructed a computing machine made of Tinkertoys that plays
a perfect game of tic-tac-toe.

Mechanical Devices used in Cryptography

Mechanical Cipher Devices Using Cogwheels. Mechanical computing devices
that used cogwheels were also developed for a wide variety of other purposes
beyond merely arithmetic. A wide variety of mechanical computing devices were
developed for the encryption and decryption of secret messages. Some of these
(most notably the family of German electromechanical cipher devices known as
Enigma Machines [85] developed in the early 1920s for commercial use and
refined in the late 1920s and 1930s for military use) made use of sets of
cogwheels to permute the symbols of text message streams. Similar (but

somewhat more advanced) electromechanical cipher devices were used by the
USSR up to the 1970s.



* Electromechanical Computing Devices used in Breaking Cyphers. In 1934
Marian Rejewski and a team including Alan Turing constructed an
electrical/mechanical computing device known as the Bomb, which had an
architecture similar to the abstract Turing machine described below, and which
was used to decrypt ciphers made by the German Enigma cipher device
mentioned above.

Mechanical and Electro-Optical Devices for Integer Factorization
* Lehmer’s number sieve computer. In 1926 Derrick Lehmer [86] constructed a
mechanical device called the number sieve computer for various mathematical
problems in number theory including factorization of small integers and solution
of Diophantine equations. The device made use of multiple bicycle chains that
rotated at distinct periods to discover solutions (such as integer factors) to these
number theoretic problems.

* Shamir’s TWINKLE. Adi Shamir [87,88,89] proposed a design for a
optical/electric device known as TWINKLE for factoring integers, with the goal
of breaking the RSA public key cryptosystem. This was unique among
mechanical computing devices in that it used time durations between optical
pulses to encode possible solution values. In particular, LEDs were made to flash
at certain intervals of time (where each LED is assigned a distinct period and
delay) at a very high clock rate so as to execute a sieve-based integer factoring
algorithm.

Mechanical Computation at the Micro Scale: MEMS Computing Devices.
Mechanical computers can have advantages over electronic computation at certain scales;
they are already having widespread use at the microscale. MEMS (Micro-Electro-
Mechanical Systems) are manufactured by lithographic etching methods similar in nature
to the processes microelectronics are manufactured, and have a similar microscale. A
wide variety of MEMS devices [90] have been constructed for sensors and actuators,
including accelerometers used in automobile safety devices and disk readers, and many
of these MEMS devices execute mechanical computation do their task. Perhaps the
MEMS device most similar in architecture to the mechanical calculators described above
is the Recodable Locking Device [91] constructed in 1998 at Sandia Labs, which made
use of microscopic gears that acted as a mechanical lock, and which was intended for
mechanically locking strategic weapons.

VI. Future Directions

Mechanical Self-Assembly Processes.

Most of the mechanical devices discussed in this chapter have been assumed to be
constructed top-down; that is they are designed and then assembled by other mechanisms
generally of large scale. However a future direction to consider are bottom-up processes



for assembly and control of devices. Self-assembly is a basic bottom-up process found in
many natural processes and in particular in all living systems.

Domino Tiling Problems. The theoretical basis for self-assembly has its roots in
Domino Tiling Problems (also known as Wang tilings) as defined by Wang [92]
(Also see the comprehensive text of Grunbaum, et al, [93]). The input is a finite
set of unit size square tiles, each of whose sides are labeled with symbols over a
finite alphabet. Additional restrictions may include the initial placement of a
subset of these tiles, and the dimensions of the region where tiles must be placed.
Assuming an arbitrarily large supply of each tile, the problem is to place the tiles,
without rotation (a criterion that cannot apply to physical tiles), to completely fill
the given region so that each pair of abutting tiles have identical symbols on their
contacting sides.

Turing-universal and NP Complete Self-assemblies. Domino tiling problems
over an infinite domain with only a constant number of tiles were first proved by
[94] to be undecidable. Lewis and Papadimitriou [95] showed the problem of
tiling a given finite region is NP complete.

Theoretical Models of Tiling Self-assembly Processes. Domino tiling problems
do not presume or require a specific process for tiling. Winfree [96] proposed
kinetic models for self-assembly processes. The sides of the tiles are assumed to
have some methodology for selective affinity, which we call pads. Pads function
as programmable binding domains, which hold together the tiles. Each pair of
pads have specified binding strengths (a real number on the range [0,1] where O
denotes no binding and 1 denotes perfect binding). The self-assembly process is
initiated by a singleton tile (the seed tile) and proceeds by tiles binding together at
their pads to form aggregates known as tiling assemblies. The preferential
matching of tile pads facilitates the further assembly into tiling assemblies.

Pad binding mechanisms. These provide a mechanism for the preferential
matching of tile sides can be provided by various methods:

o magnetic attraction, e.g., pads with magnetic orientations (these can be
constructed by curing ferrite materials (e.g., PDMS polymer/ferrite
composites) in the presence of strong magnet fields)the and also pads with
patterned strips of magnetic orientations,

o capillary force, using hydrophobic/hydrophilic (capillary) effects at
surface boundaries that generate lateral forces,

o shape matching (also known as shape complementarity or conformational
affinity), using the shape of the tile sides to hold them together.

o (Also see the sections below discussion of the used of molecular affinity

for pad binding.)
Materials for Tiles. There are a variety of distinct materials for tiles, at a variety
of scales: Whitesides (see [97] and http://www-

chem.harvard.edu/GeorgeWhitesides.html) has developed and tested multiple
technologies for meso-scale self-assembly, using capillary forces, shape
complementarity, and magnetic forces). Rothemund [98] gave some of the most
complex known meso-scale tiling assemblies using polymer tiles on fluid
boundaries with pads that use hydrophobic/hydrophilic forces. A materials



science group at the U. of Wisconsin (http://mrsec.wisc.edu/edetc/selfassembly)
has also tested meso-scale self-assembly using magnetic tiles

Meso-Scale Tile Assemblies. Meso-Scale Tiling Assemblies have tiles of size a
few millimeters up to a few centimeters. They have been experimentally
demonstrated by a number of methods, such as placement of tiles on a liquid
surface interface (e.g., at the interface between two liquids of distinct density or
on the surface of an air/liquid interface), and using mechanical agitation with
shakers to provide a heat source for the assembly kinetics (that is, a temperature
setting is made by fixing the rate and intensity of shaker agitation).

Applications of Meso-scale Assemblies. The are a number of applications,

including:
o Simulation of the thermodynamics and kinetics of molecular-scale self-
assemblies.

o For placement of a variety of microelectronics and MEMS parts.

Mechanical Computation at the Molecular Scale: DNA Computing Devices. Due to
the difficulty of constructing electrical circuits at the molecular scale, alternative methods
for computation, and in particular mechanical methods, may provide unique opportunities
for computing at the molecular scale. In particular the bottom-up self-assembly processes
described above have unique applications at the molecular scale.

Self-assembled DNA nanostructures. Molecular-scale structures known as
DNA nanostructures (see surveys by Seeman [99] and Reif [100]) can be made
to self-assemble from individual synthetic strands of DNA. When added to a test
tube with the appropriate buffer solution, and the test tube is cooled, the strands
self-assemble into DNA nanostructures. This self-assembly of DNA
nanostrucures can be viewed as a mechanical process, and in fact can be used to
do computation. The first known example of a computation by using DNA was
by Adleman [101,102] in 1994; he used the self-assembly of DNA strands to
solve a small instance of a combinatorial optimization problem known as the
Hamiltonian path problem.

DNA tiling assemblies. The Wang tiling [92] paradigm for self-assembly was
the basis for scalable and programmable approach proposed by Winfree et al
[103] for doing molecular computation using DNA. First a number of distinct
DNA nanostructures known as DNA tiles are self-assembled. End portions of the
tiles, known as pads, are designed to allow the tiles to bind together a
programmable manner similar to Wang tiling, but in this case uses the molecular
affinity for pad binding due to hydrogen bonding of complementary DNA bases.
This programmable control of the binding together of DNA tiles provides a
capability for doing computation at the molecular scale. When the temperature of
the test tube containing these tiles is further lowered, the DNA tiles bind together
to form complex patterned tiling lattices that correspond to computations.
Assembling Patterned DNA tiling assemblies. Programmed patterning at the
molecular scale can be produced by the use of strands of DNA that encode the
patterns; this was first done by Yan, et al [104] in the form of bar-cord striped
patterns, and more recently Rothemund [105] who self-assembled complex 2D



molecular patterns and shapes. Another method for molecular patterning of DNA
tiles is via computation done during the assembly.

¢  Computational DNA tiling assemblies. The first experimental demonstration of
computation via the self-assembly of DNA tiles was in 2000 by Mao et al [106],
and Yan et al [107], which provided a 1 dimensional computation of a binary-
carry computation (known as prefix-sum) associated with binary adders.
Rothemund et al [108] in 2004 demonstrated a 2 dimensional computational
assemblies of tiles displaying a pattern known as the Sierpinski triangle, which is
the modulo 2 version of Pascal’s triangle.
Other autonomous DNA devices. DNA nanostructures can also be made to
make sequences of movement, and a demonstration of an autonomous moving
DNA robotic device, that moved without outside mediation across a DNA
nanostructures was given by Yin et al [109]. The design of an autonomous DNA
device that moves under programmed control is described in [110]. Surveys of
DNA autonomous devices are given in [111] and [112].
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