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Glossary 
Mechanism: a machine or part of a machine that performs a particular task computation: 
the use of a computer for calculation. 
 
Computable: Capable of being worked out by calculation, especially using a computer. 
 
The term simulation will be both used to denote the modeling of a physical system by a 
computer, as well as the modeling of the operation of a computer by a mechanical 
system; the difference will be clear from the context. 
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I. Definition of the Subject and Its Importance 
 

Mechanical devices for computation appear to be largely displaced by the widespread use 
of microprocessor-based computers that are pervading almost all aspects of our lives. 
Nevertheless, mechanical devices for computation are of interest for at least three 
reasons: 
 
(a) Historical: The use of mechanical devices for computation is of central importance in 
the historical study of technologies, with a history dating to thousands of years and with 
surprising applications even in relatively recent times.  
 
(b) Technical & Practical: The use of mechanical devices for computation persists and 
has not yet been completely displaced by widespread use of microprocessor-based 
computers. Mechanical computers have found applications in various emerging 
technologies at the micro-scale that combine mechanical functions with computational 
and control functions not feasible by purely electronic processing. Mechanical computers 
also have been demonstrated at the molecular scale, and may also provide unique 
capabilities at that scale. The physical designs for these modern micro and molecular-
scale mechanical computers may be based on the prior designs of the large-scale 
mechanical computers constructed in the past. 
 
(c) Impact of Physical Assumptions on Complexity of Motion Planning, Design, and 
Simulation 
The study of computation done by mechanical devices is also of central importance in 
providing lower bounds on the computational resources such as time and/or space 
required to simulate a mechanical system observing given physical laws. In particular, the 
problem of simulating the mechanical system can be shown to be computationally hard if 
a hard computational problem can be simulated by the mechanical system. A similar 
approach can be used to provide lower bounds on the computational resources required to 
solve various motion planning tasks that arise in the field of robotics. Typically, a robotic 
motion planning task is specified by a geometric description of the robot (or collection of 
robots) to be moved, its initial and final positions, the obstacles it is to avoid, as well as a 
model for the type of feasible motion and physical laws for the movement. The problem 
of planning such as robotic motion planning task can be shown to be computationally 
hard if a hard computational problem can be simulated by the robotic motion-planning 
task.  
 
II. Introduction to Computational Complexity 
 
Abstract Computing Machine Models. 
To gauge the computational power of a family of mechanical computers, we will use a 
widely known abstract computational model known as the Turing Machine, defined in 
this section.  
 
The Turing Machine. The Turing machine model formulated by Alan Turing [1] was 
the first complete mathematical model of an abstract computing machine that possessed 



universal computing power. The machine model has (i) a finite state transition control for 
logical control of the machine processing, (ii) a tape with a sequence of storage cells 
containing symbolic values, and (iii) a tape scanner for reading and writing values to and 
from the tape cells, which could be made to move (left and right) along the tape cells.  
 
A machine model is abstract if the description of the machine transition mechanism or 
memory mechanism does not provide specification of the mechanical apparatus used to 
implement them in practice. Since Turing’s description did not include any specification 
of the mechanical mechanism for executing the finite state transitions, it can’t be viewed 
as a concrete mechanical computing machine, but instead is an abstract machine. Still it is 
valuable computational model, due to it simplicity and very widespread use in 
computational theory. 
 
A universal Turing machine simulates any other Turing machine; it takes its input a pair 
consisting of a string providing a symbolic description of a Turing machine M and the 
input string x, and simulates M on input x. Because of its simplicity and elegance, the 
Turing Machine has come to be the standard computing model used for most theoretical 
works in computer science. Informally, the Church-Turing hypothesis states that a Turing 
machine model can simulate a computation by any “reasonable” computational model 
(we will discuss some other reasonable computational models below). 
 
Computational Problems. A computational problem is: given an input string specified 
by a string over a finite alphabet, determine the Boolean answer: 1 is the answer is YES, 
and otherwise 0. For simplicity, we generally will restrict the input alphabet to be the 
binary alphabet {0,1}. The input size of a computational problem is the number of input 
symbols; which is the number of bits of the binary specification of the input. (Note: It is 
more common to make these definitions in terms of language acceptance. A language is a 
set of strings over a given finite alphabet of symbols. A computational problem can be 
identified with the language consisting of all strings over the input alphabet where the 
answer is 1. For simplicity, we defined each complexity class as the corresponding class 
of problems.)  
 
Recursively Computable Problems and Undecidable Problems. There is a large class 
of problems, known as recursively computable problems, that Turing machines compute 
in finite computations, that is, always halting in finite time with the answer. There are 
certain problems that are not recursively computable; these are called undecidable 
problems. The Halting Problem is: given a Turing Machine description and an input, 
output 1 if the Turing machine ever halts, and else output 0. Turing proved the halting 
problem is undecidable. His proof used a method known as a diagonalization method; it 
considered an enumeration of all Turing machines and inputs, and showed a contradiction 
occurs when a universal Turing machine attempts to solve the Halting problem for each 
Turing machine and each possible input.  
 
Computational Complexity Classes. Computational complexity (see [2]) is the amount 
of computational resources required to solve a given computational problem. A 
complexity class is a family of problems, generally defined in terms of limitations on the 



resources of the computational model. The complexity classes of interest here will be 
associated with restrictions on the time (number of steps until the machine halts) and/or 
space (the number of tape cells used in the computation) of Turing machines. There are a 
number of notable complexity classes: 
P is the complexity class associated with efficient computations, and is formally defined 
to be the set of problems solved by Turing machine computations running in time 
polynomial in the input size (typically, this is the number of bits of the binary 
specification of the input). 
NP is the complexity class associated with combinatorial optimization problems which if 
solved can be easily determined to have correct solutions, and is formally defined to be 
the set of problems solved by Turing machine computations using nondeterministic 
choice running in polynomial time. 
PSPACE is the complexity class is defined to be set of problems solved by Turing 
machines running in space polynomial in the input size. 
EXPTIME is the complexity class is defined to be set of problems solved by Turing 
machine computations running in time exponential in the input size. 
NP and PSPACE are widely considered to have instances that are not solvable in P, and 
it has been proved that EXPTIME has problems that are not in P.  
 
Polynomial Time Reductions. A polynomial time reduction from a problem Q’ to a 
problem Q is a polynomial time Turing machine computation that transforms any 
instance of the problem Q’ into an instance of the problem Q which has an answer YES if 
and only if the problem Q’ has an answer YES. Informally, this implies that problem Q 
can be used to efficiently solve the problem Q’. A problem Q is hard for a family F of 
problems if for every problem Q’ in F, there is a polynomial time reduction from Q’ to Q. 
Informally, this implies that problem Q can be used to efficiently solve any problem in F. 
A problem Q is complete for a family F of problems if Q is in C and also hard for F. 
 
Hardness Proofs for Mechanical Problems. He will later consider various mechanical 
problems and characterize their computation power: 

• Undecidable mechanical problems; typically this was proved by a computable 
reduction from the halting problem for a universal Turing machine problems to an 
instance of the mechanical problem; this is equivalent to showing the mechanical 
problem can be viewed as a computational machine that can simulate a universal 
Turing machine computation.  

• Mechanical problems that are hard for NP, PSPACE, or EXPTIME; typically 
this was proved by a polynomial time reduction from the problems in the 
appropriate complexity class to an instance of the mechanical problem; again, this 
is equivalent to showing the mechanical problem can be viewed as a 
computational machine that can simulate a Turing machine computation in the 
appropriate complexity class. 

The simulation proofs in either case often provide insight into the intrinsic computational 
power of the mechanical problem or mechanical machine. 
 
Other Abstract Computing Machine Models 



There are a number of abstract computing models discussed in this Chapter, that are 
equivalent, or nearly equivalent to conventional deterministic Turing Machines. 
 

• Reversible Turing Machines. A computing device is (logically) reversible if 
each transition of its computation can be executed both in forward direction as 
well in reverse direction, without loss of information. Landauer [3] showed that 
irreversible computations must generate heat in the computing process, and that 
reversible computations have the property that if executed slowly enough, can (in 
the limit) consume no energy in an adiabatic computation. A reversible Turing 
machine model allows the scan head to observe 3 consecutive tape symbols and to 
execute transitions both in forward as well as in reverse direction. Bennett [4] 
showed that any computing machine (e.g., an abstract machine such as a Turing 
Machine) can be transformed to do only reversible computations, which implied 
that reversible computing devices are capable of universal computation. Bennett's 
reversibility construction required extra space to store information to insure 
reversibility, but this extra space can be reduced by increasing the time. Vitanyi 
[5] give trade-offs between time and space in the resulting reversible machine. 
Lewis and Papadimitriou [1] showed that reversible Turing machines are 
equivalent in computational power to conventional Turing machines when the 
computations are bounded by polynomial time, and Crescenzi and Papadimitriou 
[6] proved a similar result when the computations are bounded by polynomial 
space. This implies that the definitions of the complexity classes P and PSPACE 
do not depend on the Turing machines being reversible or not. Reversible Turing 
machines are used in many of the computational complexity proofs to be 
mentioned involving simulations by mechanical computing machines. 

 
• Cellular Automata. These are sets of finite state machines that are typically 

connected together by a grid network. There are known efficient simulations of 
Turing machine by cellular automata (e.g., see Wolfram [7] for some known 
universal simulations). A number of the particle-based mechanical machines to be 
described are known to simulate cellular automata. 

 
• Randomized Turing machines. The machine can make random choices in its 

computation. While the use of randomized choice can be very usefull in many 
efficient algorithms, there is evidence that randomization only provides limited 
additional computational power above conventional deterministic Turing 
machines (In particular, there are a variety of pseudo-random number generation 
methods proposed for producing long pseudo-random sequences from short truly 
random seeds, that are which are widely conjectured to be indistinguishable from 
truly random sequences by polynomial time Turning machines.) A number of the 
mechanical machines to be described using Brownian-motion have natural 
sources of random numbers. 

 
There are also a number of abstract computing machine models that appear to be more 
powerful than conventional deterministic Turing Machines. 
 



• Real-valued Turing machines. In these machines due to Blum et al [8], each 
storage cell or register can store any real value (that may be transcendental). 
Operations are extended to allow infinite precision arithmetic operations on real 
numbers. To our knowledge, none of the analog computers that we will describe 
in this chapter have this power. 

 
• Quantum Computers. A quantum superposition is a linear superposition of basis 

states; it is defined by a vector of complex amplitudes whose absolute magnitudes 
sum to 1. In a quantum computer, the quantum superposition of basis states is 
transformed in each step by a unitary transformation (this is a linear mapping that 
is reversible and always preserves the value of the sum of the absolute magnitudes 
of its inputs). The outputs of a quantum computation are read by observations that 
that project the quantum superposition to classical values; a given state is chosen 
with probability defined by the magnitude of the amplitude of that state in the 
quantum superposition. Feynman [9] and Benioff [10] were the first to suggest the 
use of quantum mechanical principles for doing computation, and Deutsch [11] 
was the first to formulate an abstract model for quantum computing and show it 
was universal. Since then, there is a large body of work in quantum computing 
(see Gruska [12] and Nielsen [13]) and quantum information theory (see Jaeger 
[14] and Reif [15]). Some of the particle-based methods for mechanical 
computing described below make use of quantum phenomena, but generally are 
not considered to have the full power of quantum computers.  

 
II. The Computational Complexity of Motion Planning and Simulation of 
Mechanical Devices 
 
Complexity of Motion Planning for Mechanical Devices with Articulated Joints  
The first known computational complexity result involving mechanical motion or robotic 
motion planning was in 1979 by Reif [16]. He consider a class of mechanical systems 
consisting of a finite set of connected polygons with articulated joints, which are required 
to be moved between two configurations in three dimensional space avoiding a finite set 
of fixed polygonal obstacles. To specify the movement problem (as well as the other 
movement problems described below unless otherwise stated), the object to be moved, as 
well as its initial and final positions, and the obstacles are all defined by linear 
inequalities with rational coefficients with a finite number of bits. He showed that this 
class of motion planning problems is hard for PSPACE. Since it is widely conjectured 
that PSPACE contains problems are not solvable in polynomial time, this result provided 
the first evidence that these robotic motion planning problems not solvable in time 
polynomial in n if number of degrees of freedom grow with n. His proof involved 
simulating a reversible Turing machine with n tape cells by a mechanical device with n 
articulated polygonal arms that had to be maneuvered through a set of fixed polygonal 
obstacles similar to the channels in Swiss-cheese. These obstacles where devised to force 
the mechanical device to simulate transitions of the reversible Turing machine to be 
simulated, where the positions of the arms encoded the tape cell contents, and tape 
read/write operations were simulated by channels of the obstacles which forced the arms 
to be reconfigured appropriately. This class of movement problems can be solved by 



reduction to the problem of finding a path in a O(n) dimensional space avoiding a fixed 
set of polynomial obstacle surfaces, which can be solved by a PSPACE algorithm due to 
Canny [17]. Hence this class of movement problems are PSPACE complete. (In the case 
the object to be moved consists of only one rigid polygon, the problem is known as the 
piano mover's problem and has a polynomial time solution by Schwartz and Sharir [18].) 
 
Other PSPACE completeness results for mechanical devices. 
There were many subsequent PSPACE completeness results for mechanical devices (two 
of which we mention below), which generally involved multiple degrees of freedom: 

• The Warehouseman's Problem. Schwartz and Sharir [19] showed in 1984 that 
moving a set of n disconnected polygons in two dimensions from an initial 
position to a final position among finite set of fixed polygonal obstacles PSPACE 
hard. 

 
There are two classes of mechanical dynamic systems, the Ballistic machines and the 
Browning Machines described below, that can be shown to provide simulations of 
polynomial space Turing machine computations. 
 
Ballistic Collision-based Computing Machines and PSPACE 
A ballistic computer (see Bennett [20,21]) is a conservative dynamical system that 
follows a mechanical trajectory isomorphic to the desired computation. It has the 
following properties: 

• Trajectories of distinct ballistic computers can’t be merged, 
• All operations of a computational must be reversible, 
• Computations, when executed at constant velocity, require no consumption of 

energy, 
• Computations must be executed without error, and needs to be isolated from 

external noise and heat sources. 
 
Collision-based computing [22] is computation by a set of particles, where each particle 
holds a finite state value, and state transformations are executed at the time of collisions 
between particles. Since collisions between distinct pairs of particles can be 
simultaneous, the model allows for parallel computation. In some cases the particles can 
be configured to execute cellular automata computations [23]. Most proposed methods 
for Collision-based computing are ballistic computers as defined above. Examples of 
concrete physical systems for collision-based computing are: 
 

• The Billiard Ball Computers. Fredkin and Toffoli [24] considered a mechanical 
computing model, the billiard ball computer, consisting spherical billiard balls 
with polygonal obstacles, where the billiard balls were assume to have perfect 
elastic collisions with no friction. They showed in 1982 that a Billiard Ball 
Computer, with an unbounded number of billiard balls, could simulate a 
reversible computing machine model that used reversible Boolean logical gates 
known as Toffoli gates. When restricted to finite set of n spherical billiard balls, 
their construction provides a simulation of a polynomial space reversible Turing 
machine. 



• Particle-like waves in excitable medium. Certain classes of excitable medium 
have discrete models that can exhibit particle-like waves that propagate through 
the media [25], and using this phenomena, Adamatzky [26] gave a simulation of a 
universal Turing Machine, and if restricted to n particle-waves, provided a 
simulation of a polynomial space Turing Machine. 

• Soliton Computers. A soliton is a wave packet that maintains a self-reinforcing 
shape as it travels at constant speed through a nonlinear dispersive media. A 
soliton computer [27,28] makes use of optical solitons to hold state, and state 
transformations are made by colliding solitons.  

 
Brownian machines and PSPACE 
In a mechanical system exhibiting fully Brownian motion, the parts move freely and 
independently, up to the constraints that either link the parts together or forces the parts 
exert on each other. In a fully Brownian motion, the movement is entirely due to heat and 
there is no other source of energy driving the movement of the system. An example of a 
mechanical systems with fully Brownian motion is a set of particles exhibiting Browning 
motion, as say with electrostatic interaction. The rate of movement of mechanical system 
with fully Brownian motion is determined entirely by the drift rate in the random walk of 
their configurations.  
Other mechanical systems, known as driven Brownian motion systems, exhibit movement 
is only partly due to heat; in addition there is a driving there is a source of energy driving 
the movement of the system. Example a of driven Brownian motion systems are: 

• Feynman’s Ratchet and Pawl [29], which is a mechanical ratchet system that has a 
driving force but that can operate reversibly. 

• Polymerase enzyme, which uses ATP as fuel to drive their average movement 
forward, but also can operate reversibly.  

There is no energy consumed by fully Brownian motion devices, whereas driven 
Brownian motion devices require power that grows as a quadratic function of the drive 
rate in which operations are executed (see Bennett [21]).  
Bennett [20] provides two examples of Brownian computing machines: 

• An enzymatic machine. This is a hypothetical biochemical device that simulates a 
Turing machine, using polymers to store symbolic values in a manner to similar to 
Turing machine tapes, and uses hypothetical enzymatic reactions to execute state 
transitions and read/write operations into the polymer memory. Shapiro [30] also 
describes a mechanical Turing machine whose transitions are executed by 
hypothetical enzymatic reactions. 

• A clockwork computer. This is a mechanism with linked articulated joints, with a 
Swiss-cheese like set of obstacles, which force the device to simulate a Turing 
machine. In the case where the mechanism of Bennett’s clockwork computer is 
restricted to have a linear number of parts, it can be used to provide a simulation 
of PSPACE similar that of [16]. 

 
Hardness results for mechanical devices with a constant number of degrees of 
freedom  



There were also additional computation complexity hardness results for mechanical 
devices, which only involved a constant number of degrees of freedom. These results 
exploited special properties of the mechanical systems to do the simulation. 
 

• Motion planning with moving obstacles. Reif and Sharir [31] considered the 
problem of planning the motion of a rigid object (the robot) between two 
locations, avoiding a set of obstacles, some of which are rotating. They showed 
this problem is PSPACE hard. This result was perhaps surprising, since the 
number of degrees of freedom of movement of the object to be moved was 
constant. However, the simulation used the rotational movement of obstacles to 
force the robot to be moved only to position that encoded all the tape cells of M. 
The simulation of a Turing machine M was made by forcing the object between 
such locations (that encoded the entire n tape cell contents of M) at particular 
times, and further forced that object to move between these locations over time in 
a way that simulated state transitions of M.  

 
NP hardness results for path problems in two and three dimensions 
Shortest path problems in fixed dimensions involve only a constant number of degrees of 
freedom. Nevertheless, there are a number of NP hardness results for such problems. 
These results also led to proofs that certain physical simulations (in particular, simulation 
of multi-body molecular and celestial simulations) are NP hard, and therefore not likely 
efficiently computable with high precision. 
 

• Finding shortest paths in three dimensions. Consider the problem of finding a 
shortest path of a point in three dimensions (where distance is measured in the 
Euclidean metric) avoiding fixed polyhedral obstacles whose coordinates are 
described by rational numbers with a finite number of bits. This shortest path 
problem can be solved in PSPACE [17], but the precise complexity of the 
problem is an open problem. Canny and Reif [32] were the first to provide a 
hardness complexity result for this problem; they showed the problem is NP hard. 
Their proof used novel techniques called free path encoding that used 2n 
homotopy equivalence classes of shortest paths. Using these techniques, they 
constructed exponentially many shortest path classes (with distinct homotopy) in 
single-source multiple-destination problems involving O(n) polygonal obstacles. 
They used each of these path to encode a possible configuration of the 
nondeterministic Turing machine with n binary storage cells. They also provided 
a technique for simulating each step of the Turing machine by the use of 
polygonal obstacles whose edges forced a permutation of these paths that encoded 
the modified configuration of the Turing machine. These encoding allowed them 
to prove that the single-source single-destination problem in three dimensions is 
NP-hard. Similar free path encoding techniques were used for a number of other 
complexity hardness results for mechanical simulations described below.  

 
• Kinodynamic planning. Kinodynamic planning is the task of motion planning 

while subject to simultaneous kinematic and dynamics constraints. The algorithms 
for various classed of kinodynamic planning problems were first developed in 



[33]. Canny and Reif [32] also used Free path encoding techniques to show two 
dimensional kinodynamic motion planning with bounded velocity is NP-hard. 

 
• Shortest Curvature-Constrained Path planning in Two Dimensions. We now 

consider curvature-constrained shortest path problems: which involve finding a 
shortest path by a point among polygonal obstacles, where the there is an upper 
bound on the path curvature. A class of curvature-constrained shortest path 
problems in two dimensions were shown to be NP hard by Reif and Wang [34], 
by devising a set of obstacles that forced the shortest curvature-constrained path 
to simulate a given nondeterministic Turing machine  

 
PSPACE Hard Physical Simulation Problems 
 

• Ray Tracing with a Rational Placement and Geometry. Ray tracing is given an 
optical system and the position and direction of an initial light ray, determine if 
the light ray reaches some given final position. This problem of determining the 
path of light ray through an optical system was first formulated by Newton in his 
book on Optics. Ray tracing has been used for designing and analyzing optical 
systems. It is also used extensively in computer graphics to render scenes with 
complex curved objects under global illumination. Reif, Tygar, and Yoshida [35] 
showed the problem of ray tracing in various three dimensional optical, where the 
optical devices either consist of reflective objects defined by quadratic equations, 
or refractive objects defined by linear equations, but in either case the coefficients 
are restricted to be rational. They showed this ray tracing problems are PSPACE 
hard. Their proof used free path encoding techniques for simulating a 
nondeterministic linear space Turing machine, where the position of the ray as it 
enters a reflective or refractive optical object (such as a mirror or prism face) 
encodes the entire memory of the Turing machine to be simulated, and further 
steps of the Turing machine are simulated by optically inducing appropriate 
modifications in the position of the ray as it enters other reflective or refractive 
optical objects. This result implies that the apparently simple task of highly 
precise ray tracing through complex optical systems is not likely to be efficiently 
executed by a polynomial time computer. It is another example of the use of a 
physical system to do powerful computations. 

 
• Molecular and gravitational mechanical systems. A quite surprising example 

of the use of physical systems to do computation is the work of Tate and Reif [36] 
on the complexity of n-body simulation, where they showed that the problem is 
PSPACE hard, and therefore not likely efficiently computable with high 
precision. In particular, they considered multi-body systems in three dimensions 
with n particles and inverse polynomial force laws between each pair of particles 
(e.g., molecular systems with Columbic force laws or celestial simulations with 
gravitational force laws). It is quite surprising that such systems can be configured 
to do computation. Their hardness proof made use of free path encoding 
techniques similar to the proof of PSPACE-hardness of ray tracing. A single 
particle, which we will call the memory-encoding particle, is distinguished. The 



position of a memory-encoding particle as it crosses a plane encodes the entire 
memory of the Turing machine to be simulated, and further steps of the Turing 
machine are simulated by inducing modifications in the trajectory of the memory-
encoding particle. The modifications in the trajectory of the memory-encoding 
particle are made by use of other particles that have trajectories that induce force 
fields that essentially act like force-mirrors, causing reflection-like changes in the 
trajectory of the memory-encoding particle. Hence highly precise n-body 
molecular simulation is not likely to be efficiently executed by a polynomial time 
computer.  

 
A Provably Intractable Mechanical Simulation Problem: Compliant motion 
planning with uncertainty in control. 
Next, we consider compliant motion planning with uncertainty in control. Specifically, 
we consider a point in 3 dimensions which is commanded to move in a straight line, but 
whose actual motion may differ from the commanded motion, possibly involving sliding 
against obstacles. Given that the point initially lies in some start region, the problem is to 
find a sequence of commanded velocities that is guaranteed to move the point to the goal. 
This problem was shown by Canny and Reif [32] to be non-deterministic EXPTIME 
hard, making it the first provably intractable problem in robotics. Their proof used free 
path encoding techniques that exploited the uncertainty of position to encode exponential 
number of memory bits in a Turing machine simulation. 
 
Undecidable Mechanical Simulation Problems:  

• Motion Planning with Friction. Consider a class of mechanical systems whose 
parts consist of a finite number of rigid objects defined by linear or quadratic 
surface patches connected by frictional contact linkages between the surfaces. 
(Note: this class of mechanisms is similar to the analytical engine developed by 
Babbage at described in the next sections, except that there are smooth frictional 
surfaces rather than toothed gears). Reif and Sun [37] proved that an arbitrary 
Turing machine could be simulated by a (universal) frictional mechanical system 
in this class consisting of a finite number of parts. The entire memory of a 
universal Turing machine was encoded in the rotational position of a rod. In each 
step, the mechanism used a construct similar to Babbage’s machine to execute a 
state transition. The key idea in their construction is to utilize frictional clamping 
to allow for setting arbitrary high gear transmission. This allowed the mechanism 
to execute state transitions for arbitrary number of steps. Simulation of a universal 
Turing machine implied that the movement problem is undecidable when there 
are frictional linkages. (A problem is undecidable if there is no Turing machine 
that solves the problem for all inputs in finite time.) It also implied that a 
mechanical computer could be constructed with only a constant number of parts 
that has the power of an unconstrained Turing machine. 

 
• Ray Tracing with Non-Rational Postitioning. Consider again the problem of 

ray tracing in a three dimensional optical systems, where the optical devices again 
may be either consist of reflective objects defined by quadratic equations, or 
refractive objects defined by linear equations. Reif, et al [35] also proved that in 



the case where the coefficients of the defining equations are not restricted to be 
rational, and include at least one irrational coefficient, then the resulting ray 
tracing problem could simulate a universal Turing machine, and so is 
undecidable. This ray tracing problem for reflective objects is equivalent to the 
problem of tracing the trajectory of a single particle bouncing between quadratic 
surfaces, which is also undecidable by this same result of [35]. In independent 
result of Moore [38] also showed that the undecidability of the problem of tracing 
the trajectory of a single particle bouncing between quadratic surfaces. 

 
• Dynamics and Nonlinear Mappings. Moore [39], Ditto [40]and Munakata et al 

[41] have also given universal Turing machine simulations of various dynamical 
systems with nonlinear mappings. 

 
IV. Concrete Mechanical Computing Devices  
Mechanical computers have a very extensive history; some surveys given in Knott [42], 
Hartree [43], Engineering Research Associates [44], Chase [45], Martin [46], Davis [47]. 
Norman [48] recently provided a unique overview of mechanical calculators and other 
historical computers, summarizing the contributions of notable manuscripts and 
publications on this topic. 
 
Mechanical Devices for Storage and Sums of Numbers 
Mechanical methods, such as notches on stones and bones, knots and piles of pebbles, 
have been used since the Neolithic period for storing and summing integer values. One 
example of such a device, the abacus, which may have been developed invented in 
Babylonia approximately 5000 years ago, makes use of beads sliding on cylindrical rods 
to facilitate addition and subtraction calculations. 
 
Analog Mechanical Computing Devices 
Computing devices will considered here to be analog (as opposed to digital) if they don’t 
provide a method for restoring calculated values to discrete values, whereas digital 
devices provide restoration of calculated values to discrete values. (Note that both analog 
and digital computers uses some kind of physical quantity to represent values that are 
stored and computed, so the use of physical encoding of computational values is not 
necessarily the distinguishing characteristic of analog computing.) Descriptions of early 
analog computers are given by Horsburgh [49], Turck[50], Svoboda [51], Hartree [43], 
Engineering Research Associates [44] and Soroka [52]. There are a wide variety of 
mechanical devices used for analog computing: 

• Mechanical Devices for Astronomical and Celestial Calculation. While we 
have not sufficient space in this article to fully discuss this rich history, we note 
that various mechanisms for predicting lunar and solar eclipses using optical 
illumination of configurations of stones and monoliths (for example, Stonehenge) 
appear to date to the Neolithic period. Mechanical mechanisms for more precisely 
predicting lunar and solar eclipses may have been developed in the classical 
period of ancient history. The most impressive and sophisticated known example 
of an ancient gear-based mechanical device is the Antikythera Mechanism, which 
is thought to have been constructed by Greeks in approximately 2200 years ago. 



Recent research [53] provides evidence it may have been used to predict celestial 
events such as lunar and solar eclipses by the analog calculation of arithmetic-
progression cycles. Like many other intellectual heritages, some elements of the 
design of such sophisticated gear-based mechanical devices may have been 
preserved by the Arabs after that period, and then transmitted to the Europeans in 
the middle ages.  

• Planimeters. There is a considerable history of mechanical devices that integrate 
curves. A planimeter is a mechanical device that integrates the area of the region 
enclosed by a two dimensional closed curve, where the curve is presented as a 
function of the angle from some fixed interior point within the region. One of the 
first known planimeters was developed by J.A. Hermann in 1814 and improved 
(as the polar planimeter) by J.A. Hermann in 1856. This led to a wide variety of 
mechanical integrators known as wheel-and-disk integrators, whose input is the 
angular rotation of a rotating disk and whose output, provided by a tracking 
wheel, is the integral of a given function of that angle of rotation. More general 
mechanical integrators known as ball-and-disk integrators, who’s input provided 2 
degrees of freedom (the phase and amplitude of a complex function), were 
developed by James Thomson in 1886. There are also devices, such as the 
Integraph of Abdank Abakanoviez(1878) and C.V. Boys(1882), which integrate a 
one-variable real function of x presented as a curve y=f(x) on the Cartesian plane. 
Mechanical integrators were later widely used in WWI and WWII military analog 
computers for solution of ballistics equations, artillery calculations and target 
tracking. Various other integrators are described in Morin [54]. 

 
• Harmonic Analyzers. A Harmonic Analyzer is a mechanical device that calculates 

the coefficients of the Fourier Transform of a complex function of time such as a 
sound wave. Early harmonic analyzers were developed by Thomson [55] and 
Henrici [56] using multiple pulleys and spheres, known as ball-and-disk 
integrators. 

 
• Harmonic Synthesizers. A Harmonic Synthesizer is a mechanical device that 

interpolates a function given the Fourier coefficients. Thomson (then known as 
Lord Kelvin) in 1886 developed [57] the first known Harmonic Analyzer that 
used an array of James Thomson's (his brother) ball-and-disk integrators. Kelvin's 
Harmonic Synthesizer made use of these Fourier coefficients to reverse this 
process and interpolate function values, by using a wire wrapped over the wheels 
of the array to form a weighted sum of their angular rotations. Kelvin 
demonstrated the use of these analog devices predict the tide heights of a port: 
first his Harmonic Analyzer calculated the amplitude and phase of the Fourier 
harmonics of solar and lunar tidal movements, and then his Harmonic Synthesizer 
formed their weighted sum, to predict the tide heights over time. Many other 
Harmonic Analyzers were later developed, including one by Michelson and 
Stratton (1898) that performed Fourier analysis, using an array of springs. Miller 
[58] gives a survey of these early Harmonic Analyzers. Fisher [59] made 
improvements to the tide predictor and later Doodson and Légé increase the scale 
of this design to a 42-wheel version that was used up to the early 1960s. 



 
• Analog Equation Solvers. There are various mechanical devices for calculating 

the solution of sets of equations. Kelvin also developed one of the first known 
mechanical mechanisms for equation solving, involving the motion of pulleys and 
tilting plate that solved sets of simultaneous linear equations specified by the 
physical parameters of the ropes and plates. John Wilbur in the 1930s increased 
the scale of Kelvin’s design to solve nine simultaneous linear algebraic equations. 
Leonardo Torres Quevedo constructed various rotational mechanical devices, for 
determining real and complex roots of a polynomial. Svoboda [51] describes the 
state of art in the 1940s of mechanical analog computing devices using linkages. 

 
• Differential Analyzers. A Differential Analyzer is a mechanical analog device 

using linkages for solving ordinary differential equations. Vannevar Bush [60] 
developed in 1931 the first Differential Analyzer at MIT that used a torque 
amplifier to link multiple mechanical integrators. Although it was considered a 
general-purpose mechanical analog computer, this device required a physical 
reconfiguration of the mechanical connections to specify a given mechanical 
problem to be solved. In subsequent Differential Analyzers, the reconfiguration of 
the mechanical connections was made automatic by resetting electronic relay 
connections. In addition to the military applications already mentioned above, 
analog mechanical computers incorporating differential analyzers have been 
widely used for flight simulations and for industrial control systems.  

 
• Mechanical Simulations of Physical Processes: Crystallization and Packing. 

There are a variety of macroscopic devices used for simulations of physical 
processes, which can be viewed as analog devices. For example, a number of 
approaches have been used for mechanical simulations of crystallization and 
packing: 

 
o Simulation using solid macroscopic ellipsoids bodies. Simulations of 

kinetic crystallization processes have been made by collections of 
macroscopic solid ellipsoidal objects – typically of diameter of a few 
millimeters - which model the molecules comprising the crystal. In these 
physical simulations, thermal energy is modeled by introducing vibrations; 
low level of vibration is used to model freezing and increasing the level of 
vibrations models melting. In simple cases, the molecule of interest is a 
sphere, and ball bearings or similar objects are used for the molecular 
simulation. For example, to simulate the dense random packing of hard 
spheres within a crystalline solid, Bernal [61] and Finney [62] used up to 
4000 ball bearings on a vibrating table. In addition, to model more general 
ellipsoidal molecules, orzo pasta grains as well as M&M candies (Jerry 
Gollub at Princeton University) have been used. Also, Cheerios have been 
used to simulate the liquid state packing of benzene molecules. To model 
more complex systems mixtures of balls of different sizes and/or 
composition have been used; for example a model ionic crystal formation 
has been made by use a mixture of balls composed of different materials 



that acquired opposing electrostatic charges.  
o Simulations using bubble rafts [63,64]. These are the structures that 

assemble among equal sized bubbles floating on water. They typically 
they form two dimensional hexagonal arrays, and can be used for 
modeling the formation of close packed crystals. Defects and dislocations 
can also be modeled [65]; for example by deliberately introducing defects 
in the bubble rats, they have been used to simulate crystal dislocations, 
vacancies, and grain boundaries. Also, impurities in crystals (both 
interstitial and substitutional) have been simulated by introducing bubbles 
of other sizes. 

 
• Reaction-Diffusion Chemical Computers. Adamatzky [66,67] described a class 

of analog computers that where there is a chemical medium which has multiple 
chemical species, where the concentrations of these chemical species vary 
spatially and which diffuse and react in parallel. The memory values (as well as 
inputs and outputs) of the computer are encoded by the concentrations of these 
chemical species at a number of distinct locations (also known as micro-volumes). 
The computational operations are executed by chemical reactions whose reagents 
are these chemical species. Example computations  [66,67] include: (i) Voronoi 
diagram; this is to determine the boundaries of the regions closest to a set of 
points on the plane, (ii) Skeleton of planar shape, and (iii) a wide variety of two 
dimensional patterns periodic and aperiodic in time and space.  

 
Digital Mechanical Devices for Arithmetic Operations 
Recall that we have distinguished digital mechanical devices from the analog mechanical 
devices described above by their use of mechanical mechanisms for insuring the values 
stored and computed are discrete. Such discretization mechanisms include geometry and 
structure (e.g., the notches of Napier’s bones described below), or cogs and spokes of 
wheeled calculators. Surveys of the history of some these digital mechanical calculators 
are given by Knott [42], Turck [50], Hartree [43], Engineering Research Associates [44], 
Chase [45], Martin [46], Davis [47], and Norman [48]. 
 

• Leonardo da Vinci's Mechanical Device and Mechanical Counting Devices. 
This intriguing device, which involved a sequence of interacting wheels 
positioned on a rod, which appear to provide a mechanism for digital carry 
operations, was illustrated in 1493 in Leonardo da Vinci's Codex Madrid [68]. A 
working model of its possible mechanics was constructed in 1968 by Joseph 
Mirabella. Its function and purpose is not decisively known, but it may have been 
intended for counting rotations (e.g., for measuring the distance traversed by a 
cart). There are a variety of apparently similar mechanical devices used to 
measuring distances traversed by vehicles. 

• Napier’s Bones. John Napier [69] developed in 1614 a mechanical device known 
as Napier’s Bones allowed multiplication and division (as well as square and cube 
roots) to be done by addition and multiplication operations. It consisting of 
rectilinear rods, which provided a mechanical transformation to and from 
logarithmic values. Wilhelm Shickard developed in 1623 a six digit mechanical 



calculator that combined the use of Napier’s Bones using columns of sliding rods, 
with the use of wheels used to sum up the partial products for multiplication. 

• Slide Rules. Edmund Gunter devised in 1620 a method for calculation that used a 
single log scale with dividers along a linear scale; this anticipated key elements of 
the first slide rule described by William Oughtred [70] in 1632. A very large 
variety of slide machines were later constructed. 

 
• Pascaline: Pascal’s Wheeled Calculator. Blaise Pascal [71] developed in 1642 a 

calculator known as the Pascaline that could calculate all four arithmetic 
operations (addition, subtraction, multiplication, and division) on up to eight 
digits. A wide variety of mechanical devices were then developed that used 
revolving drums or wheels (cogwheels or pinwheels) to do various arithmetical 
calculations. 

 
• Stepped Drum Calculators. Gottfried Wilhelm von Leibniz developed in 1671 

an improved calculator known as the Stepped Reckoner, which used a cylinder 
known as a stepped drum with nine teeth of different lengths that increase in equal 
amounts around the drum. The stepped drum mechanism allowed use of moving 
slide for specifying a number to be input to the machine, and made use of the 
revolving drums to do the arithmetic calculations. Charles Xavier Thomas de 
Colbrar developed in 1820 a widely used arithmetic mechanical calculator based 
on the stepped drum known as the Arithmometer. Other stepped drum calculating 
devices included Otto Shweiger’s Millionaire calculator (1893) and Curt 
Herzstark's Curta (early 1940s). 

 
• Pinwheel Calculators. Another class of calculators, independently invented by 

Frank S. Baldwin and W. T. Odhner in the 1870s, is known as pinwheel 
calculators; they used a pinwheel for specifying a number input to the machine 
and use revolving wheels to do the arithmetic calculations. Pinwheel calculators 
were widely used up to the 1950s, for example in William S. Burroughs’s 
calculator/printer and the German Brunsviga. 

 
Digital Mechanical Devices for Mathematical Tables and Functions 
 

• Babbage’s Difference Engine. Charles Babbage [72,73] in 1820 invented a 
mechanical device known as the Difference Engine for calculation of tables of an 
analytical function (such as the logarithm) that summed the change in values of 
the function when a small difference is made in the argument. That difference 
calculation required for each table entry involved a small number of simple 
arithmetic computations. The device made use of columns of cogwheels to store 
digits of numerical values. Babbage planned to store 1000 variables, each with 50 
digits, where each digit was stored by a unique cogwheel. It used cogwheels in 
registers for the required arithmetical calculations, and also made use of a rod-
based control mechanism specialized for control of these arithmetic calculations. 
The design and operation of the mechanisms of the device were described by a 
symbolic scheme developed by Babbage [74]. He also conceived of a printing 



mechanism for the device. In 1801, Joseph-Marie Jacquard invented an automatic 
loom that made use of punched cards for the specification of fabric patterns 
woven by his loom, and Charles Babbage proposed the use of similar punched 
cards for providing inputs to his machines. He demonstrated over a number of 
years certain key portions of the mechanics of the device but never completed a 
complete function device. 

 
• Other Difference Engines. In 1832 Ludgate [75] independently designed, but did 

not construct, a mechanical computing machine similar but smaller in scale to 
Babbage’s Analytical Engine. In 1853 Pehr and Edvard Scheutz [76] constructed 
in Sweden a cog wheel mechanical calculating device (similar to the Difference 
Engine originally conceived by Babbage) known as the Tabulating Machine, for 
computing and printing out tables of mathematical functions. This (and a later 
construction of Babbage’s Difference Engine by Doron Swade [77] of the London 
Science Museum) demonstrated the feasibility of Babbage’s Difference Engine. 

 
• Babbage’s Analytical Engine. Babbage further conceived (but did not attempt to 

construct) a mechanical computer known as the Analytical Engine to solve more 
general mathematical problems. Lovelace’s extended description of Babbage’s 
Analytical Engine [78] (translation of "Sketch of the Analytical Engine" by L. F. 
Menabrea) describes, in addition to arithmetic operations, also mechanisms for 
looping and memory addressing. However, the existing descriptions of Babbage’s 
Analytical Engine appear to lack the ability to execute a full repertory of logical 
and/or finite state transition operations required for general computation. 
Babbage’s background was very strong in analytic mathematics, but he (and the 
architects of similar cog-wheel based mechanical computing devices at that date) 
seemed to have lacked knowledge of sequential logic and its Boolean logical 
basis, required for controlling the sequence of complex computations. This (and 
his propensity for changing designs prior to the completion of the machine 
construction) might have been the real reason for the lack of complete 
development of a universal mechanical digital computing device in the early 
1800’s.  

 
• Subsequent Electromechanical Digital Computing Devices with Cog-wheels. 

Other electromechanical digital computing devices (see [44]) developed in the 
late 1940s and 1950s, that contain cog-wheels, included Howard Aiken's Mark 1 
[79] constructed at Harvard University and Konrad Zuse's Z series computer 
constructed in Germany. 

 
Mechanical Devices for Timing, Sequencing and Logical Control 
We will use the term mechanical automata here to denote mechanical devices that exhibit 
autonomous control of their movements. These can require sophisticated mechanical 
mechanisms for timing, sequencing and logical control. 

• Mechanisms used for Timing Control. Mechanical clocks, and other 
mechanical device for measuring time have a very long history, and include a 
very wide variety of designs, including the flow of liquids (e.g., water clocks), or 



sands (e.g., sand clocks), and more conventional pendulum-and-gear based clock 
mechanisms. A wide variety of mechanical automata and other control devices 
make use of mechanical timing mechanisms to control the order and duration of 
events automatically executed (for example, mechanical slot machines dating up 
to the 1970s made use of such mechanical clock mechanisms to control the 
sequence of operations used for payout of winnings). As a consequence, there is 
an interwoven history in the development of mechanical devices for measuring 
time and the development of devices for the control of mechanical automata.  

 
• Logical Control of Computations. A critical step in the history of computing 

machines was the development in the middle 1800’s of Boolean logic by George 
Boole [80,81]. Boole innovation was to assign values to logical propositions: 1 for 
true propositions and 0 for false propositions. He introduced the use of Boolean 
variables which are assigned these values, as well the use of Boolean connectives 
(and and or) for expressing symbolic Booelan logic formulas. Boole's symbolic 
logic is the basis for the logical control used in modern computers. Shannon [82] 
was the first to make use of Boole's symbolic logic to analyze relay circuits (these 
relays were used to control an analog computer, namely MIts Differential 
Equalizer).  

 
• The Jevons’ Logic Piano: A Mechanical Logical Inference Machine. In 1870 

William Stanley Jevons (who also significantly contributed to the development of 
symbolic logic) constructed a mechanical device [83,84] for the inference of 
logical proposition that used a piano keyboard for inputs. This mechanical 
inference machine is less widely known than it should be, since it may have had 
impact in the subsequent development of logical control mechanisms for 
machines. 

 
• Mechanical Logical Devices used to Play Games. Mechanical computing devices 

have also been constructed for executing the logical operations for playing games. 
For example, in 1975, a group of MIT undergraduates including Danny Hillis and 
Brian Silverman constructed a computing machine made of Tinkertoys that plays 
a perfect game of tic-tac-toe.  

 
Mechanical Devices used in Cryptography 
 

• Mechanical Cipher Devices Using Cogwheels. Mechanical computing devices 
that used cogwheels were also developed for a wide variety of other purposes 
beyond merely arithmetic. A wide variety of mechanical computing devices were 
developed for the encryption and decryption of secret messages. Some of these 
(most notably the family of German electromechanical cipher devices known as 
Enigma Machines [85] developed in the early 1920s for commercial use and 
refined in the late 1920s and 1930s for military use) made use of sets of 
cogwheels to permute the symbols of text message streams. Similar (but 
somewhat more advanced) electromechanical cipher devices were used by the 
USSR up to the 1970s. 



 
• Electromechanical Computing Devices used in Breaking Cyphers. In 1934 

Marian Rejewski and a team including Alan Turing constructed an 
electrical/mechanical computing device known as the Bomb, which had an 
architecture similar to the abstract Turing machine described below, and which 
was used to decrypt ciphers made by the German Enigma cipher device 
mentioned above. 

 
 
Mechanical and Electro-Optical Devices for Integer Factorization 

• Lehmer’s number sieve computer. In 1926 Derrick Lehmer [86] constructed a 
mechanical device called the number sieve computer for various mathematical 
problems in number theory including factorization of small integers and solution 
of Diophantine equations. The device made use of multiple bicycle chains that 
rotated at distinct periods to discover solutions (such as integer factors) to these 
number theoretic problems. 

 
• Shamir’s TWINKLE. Adi Shamir [87,88,89] proposed a design for a 

optical/electric device known as TWINKLE for factoring integers, with the goal 
of breaking the RSA public key cryptosystem. This was unique among 
mechanical computing devices in that it used time durations between optical 
pulses to encode possible solution values. In particular, LEDs were made to flash 
at certain intervals of time (where each LED is assigned a distinct period and 
delay) at a very high clock rate so as to execute a sieve-based integer factoring 
algorithm.  

 
Mechanical Computation at the Micro Scale: MEMS Computing Devices. 
Mechanical computers can have advantages over electronic computation at certain scales; 
they are already having widespread use at the microscale. MEMS (Micro-Electro-
Mechanical Systems) are manufactured by lithographic etching methods similar in nature 
to the processes microelectronics are manufactured, and have a similar microscale. A 
wide variety of MEMS devices [90] have been constructed for sensors and actuators, 
including accelerometers used in automobile safety devices and disk readers, and many 
of these MEMS devices execute mechanical computation do their task. Perhaps the 
MEMS device most similar in architecture to the mechanical calculators described above 
is the Recodable Locking Device [91] constructed in 1998 at Sandia Labs, which made 
use of microscopic gears that acted as a mechanical lock, and which was intended for 
mechanically locking strategic weapons.  
 
VI. Future Directions  
 
Mechanical Self-Assembly Processes.  
Most of the mechanical devices discussed in this chapter have been assumed to be 
constructed top-down; that is they are designed and then assembled by other mechanisms 
generally of large scale. However a future direction to consider are bottom-up processes 



for assembly and control of devices. Self-assembly is a basic bottom-up process found in 
many natural processes and in particular in all living systems.  

• Domino Tiling Problems. The theoretical basis for self-assembly has its roots in 
Domino Tiling Problems (also known as Wang tilings) as defined by Wang [92] 
(Also see the comprehensive text of Grunbaum, et al, [93]). The input is a finite 
set of unit size square tiles, each of whose sides are labeled with symbols over a 
finite alphabet. Additional restrictions may include the initial placement of a 
subset of these tiles, and the dimensions of the region where tiles must be placed. 
Assuming an arbitrarily large supply of each tile, the problem is to place the tiles, 
without rotation (a criterion that cannot apply to physical tiles), to completely fill 
the given region so that each pair of abutting tiles have identical symbols on their 
contacting sides.  

• Turing-universal and NP Complete Self-assemblies. Domino tiling problems 
over an infinite domain with only a constant number of tiles were first proved by 
[94] to be undecidable. Lewis and Papadimitriou [95] showed the problem of 
tiling a given finite region is NP complete.  

• Theoretical Models of Tiling Self-assembly Processes. Domino tiling problems 
do not presume or require a specific process for tiling. Winfree [96] proposed 
kinetic models for self-assembly processes. The sides of the tiles are assumed to 
have some methodology for selective affinity, which we call pads. Pads function 
as programmable binding domains, which hold together the tiles. Each pair of 
pads have specified binding strengths (a real number on the range [0,1] where 0 
denotes no binding  and 1 denotes perfect binding). The self-assembly process is 
initiated by a singleton tile (the seed tile) and proceeds by tiles binding together at 
their pads to form aggregates known as tiling assemblies. The preferential 
matching of tile pads facilitates the further assembly into tiling assemblies.  

• Pad binding mechanisms. These provide a mechanism for the preferential 
matching of tile sides can be provided by various methods:  

o magnetic attraction, e.g., pads with magnetic orientations (these can be 
constructed by curing ferrite materials (e.g., PDMS polymer/ferrite 
composites) in the presence of strong magnet fields)the and also pads with 
patterned strips of magnetic orientations,  

o capillary force, using hydrophobic/hydrophilic (capillary) effects at 
surface boundaries that generate lateral forces,  

o shape matching (also known as shape complementarity or conformational 
affinity), using the shape of the tile sides to hold them together.  

o (Also see the sections below discussion of the used of molecular affinity 
for pad binding.) 

• Materials for Tiles. There are a variety of distinct materials for tiles, at a variety 
of scales: Whitesides (see [97] and http://www-
chem.harvard.edu/GeorgeWhitesides.html) has developed and tested multiple 
technologies for meso-scale self-assembly, using capillary forces, shape 
complementarity, and magnetic forces). Rothemund [98] gave some of the most 
complex known meso-scale tiling assemblies using polymer tiles on fluid 
boundaries with pads that use hydrophobic/hydrophilic forces. A materials 



science group at the U. of Wisconsin (http://mrsec.wisc.edu/edetc/selfassembly) 
has also tested meso-scale self-assembly using magnetic tiles 

• Meso-Scale Tile Assemblies. Meso-Scale Tiling Assemblies have tiles of size a 
few millimeters up to a few centimeters. They have been experimentally 
demonstrated by a number of methods, such as placement of tiles on a liquid 
surface interface (e.g., at the interface between two liquids of distinct density or 
on the surface of an air/liquid interface), and using mechanical agitation with 
shakers to provide a heat source for the assembly kinetics (that is, a temperature 
setting is made by fixing the rate and intensity of shaker agitation).  

• Applications of Meso-scale Assemblies. The are a number of applications, 
including: 

o Simulation of the thermodynamics and kinetics of molecular-scale self-
assemblies. 

o For placement of a variety of microelectronics and MEMS parts. 
 
Mechanical Computation at the Molecular Scale: DNA Computing Devices. Due to 
the difficulty of constructing electrical circuits at the molecular scale, alternative methods 
for computation, and in particular mechanical methods, may provide unique opportunities 
for computing at the molecular scale. In particular the bottom-up self-assembly processes 
described above have unique applications at the molecular scale.  

• Self-assembled DNA nanostructures. Molecular-scale structures known as 
DNA nanostructures (see surveys by Seeman [99] and Reif [100]) can be made 
to self-assemble from individual synthetic strands of DNA. When added to a test 
tube with the appropriate buffer solution, and the test tube is cooled, the strands 
self-assemble into DNA nanostructures. This self-assembly of DNA 
nanostrucures can be viewed as a mechanical process, and in fact can be used to 
do computation. The first known example of a computation by using DNA was 
by Adleman [101,102] in 1994; he used the self-assembly of DNA strands to 
solve a small instance of a combinatorial optimization problem known as the 
Hamiltonian path problem. 

• DNA tiling assemblies. The Wang tiling [92] paradigm for self-assembly was 
the basis for scalable and programmable approach proposed by Winfree et al 
[103] for doing molecular computation using DNA. First a number of distinct 
DNA nanostructures known as DNA tiles are self-assembled. End portions of the 
tiles, known as pads, are designed to allow the tiles to bind together a 
programmable manner similar to Wang tiling, but in this case uses the molecular 
affinity for pad binding due to hydrogen bonding of complementary DNA bases. 
This programmable control of the binding together of DNA tiles provides a 
capability for doing computation at the molecular scale. When the temperature of 
the test tube containing these tiles is further lowered, the DNA tiles bind together 
to form complex patterned tiling lattices that correspond to computations.  

• Assembling Patterned DNA tiling assemblies. Programmed patterning at the 
molecular scale can be produced by the use of strands of DNA that encode the 
patterns; this was first done by Yan, et al [104] in the form of bar-cord striped 
patterns, and more recently Rothemund [105] who self-assembled complex 2D 



molecular patterns and shapes. Another method for molecular patterning of DNA 
tiles is via computation done during the assembly.  

• Computational DNA tiling assemblies. The first experimental demonstration of 
computation via the self-assembly of DNA tiles was in 2000 by Mao et al [106], 
and Yan  et al [107], which provided a 1 dimensional computation of a binary-
carry computation (known as prefix-sum) associated with binary adders. 
Rothemund et al [108] in 2004 demonstrated a 2 dimensional computational 
assemblies of tiles displaying a pattern known as the Sierpinski triangle, which is 
the modulo 2 version of Pascal’s triangle.  
Other autonomous DNA devices. DNA nanostructures can also be made to 
make sequences of movement, and a demonstration of an autonomous moving 
DNA robotic device, that moved without outside mediation across a DNA 
nanostructures was given by Yin et al [109]. The design of an autonomous DNA 
device that moves under programmed control is described in [110]. Surveys of 
DNA autonomous devices are given in [111] and [112]. 
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