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Appendix A

Examples of Events I

Risk Adjusted Change in Market Change in Idiosyncratic

Date Ticker FIRMCOUNT Return (y) Risk (B’) Risk (¢’ after — ¢” before)
2/20/1996 FDC 2 -0.006087476 0.02552937 6.32225E-05
5/7/1996 ISLI 2 0.0243426 -1.892630856 -0.002437866
5/7/1996 SUNW 2 -0.007177306 -1.025868233 -0.000912965
5/20/1996 NSCP 6 0.017395648 0.827543911 -0.000930735
5/20/1996 ORCL 6 0.00570959 -1.492743834 -0.000170551
5/20/1996 SUNW 6 0.010269372 -0.741954827 -0.000735972
5/20/1996 AAPL 6 -0.011087047 0.453908597 0.000461451
5/20/1996 IBM 6 0.008333754 -0.783104337 -0.000173145
7/23/1996 MSFT 1 -0.01014626 0.109996717 3.65691E-06
7/26/1996 MSFT 1 -0.000402748 0.030131026 -2.24841E-06
9/3/1996 ISLI 1 0.002197317 -0.187824693 -0.000458735
6/7/2005 APA 9 -0.002690234 0.238221825 0.000109512
6/7/2005 SAP 9 0.007471843 0.133098243 -4.35429E-05
6/7/2005 ORCL 9 0.003635138 -0.678397138 -8.57553E-05
6/7/2005 IBM 9 -0.000961421 -0.32067959 -6.28663E-05
6/29/2005 COL 3 -0.00357972 -0.371034951 -4.96182E-05
6/29/2005 RTN 3 -0.000414139 -0.108476688 -6.52509E-06
7/22/2005 VSNT 1 0.055943344 0.618384879 -0.000278402
9/22/2005 KEYW 3 -0.023036531 0.11372799 -1.67123E-05
10/3/2005 PHG 5 0.001534706 -0.169006842 -9.90286E-06
10/3/2005 SNE 5 0.011567974 -0.353971047 -2.09123E-05
10/3/2005 MC 5 0.010582315 1.003300833 0.00022589

Note: For a complete list of events, please contact the authors.
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Appendix B

Examples of Announcements I

Example Announcement #1: Business Wire, June 11, 1997

DISTRIBUTION: Business Editors

HEADLINE: Firefly, Netscape and Microsoft cooperate to build upon previously proposed OPS standard for personalization with privacy
DATELINE: Washington

BODY:

June 11, 1997—Companies Agree to Cooperate on Further Development of OPS within the World Wide Web Consortium’s Recently Launched
P3 Privacy Initiative

Firefly Network Inc., Netscape Communications Corp. and Microsoft Corp. today announced that they are cooperating to build upon the
previously proposed Open Profiling Standard (OPS), which provides a framework with built-in privacy safeguards for the trusted exchange
of profile information between individuals and Web sites. This announcement marks a unique moment when technology and business
differences have been put aside to coordinate support for a proposed standard that places particular emphasis on individuals' rights to privacy,
while creating a context for personalized network experiences and the building of community online.

Firefly, Netscape, Microsoft and VeriSign will work together on the OPS proposal during the remainder of the standards review process of the
World Wide Web Consortium (W3C). “We’re delighted that Microsoft, Netscape and Firefly have chosen to work together with our staff and
our other member organizations,” said Jim Miller, leader of the technology and society domain of the World Wide Web Consortium. “The
industry must address the legitimate privacy concerns of Internet users. The W3C P3 Project will ensure that all vendors can implement privacy
protection in a consistent way that also respects international requirements.” Further information about the OPS specification is located at the
following site: http://www.firefly.net/OPS/index.html.

OPS Supported as Global Standard

OPS is a proposed global standard that creates a framework for the trusted exchange of information between consenting parties, which will
facilitate the growth of personal privacy, as well as personalized electronic commerce and advertising.

Example Announcement #2: PR Newswire, October 2, 2000

DISTRIBUTION: TO AUTO, BUSINESS AND TECHNOLOGY EDITORS

HEADLINE: FlexRay Consortium Being Formed to Drive Initiative for Advanced Automotive Communication System

DATELINE: EINDHOVEN, Netherlands, Oct. 2

BODY:

Automotive manufacturers BMW and DaimlerChrysler, and semiconductor manufacturers Motorola and Philips Semiconductors, an affiliate
of Royal Philips Electronics (NYSE: PHG), today announce their intention to form an industry consortium to drive forward the development
and implementation of an advanced automotive communication system named FlexRay. Aimed to be a standard for innovative high-speed
control applications in the car, such as x-by-wire, FlexRay technology will be available for everybody in the worldwide market.

The FlexRay consortium is coming together in response to changing industry needs. Future automotive applications demand high-speed bus

systems that are both deterministic and fault-tolerant, capable of supporting distributed control systems. FlexRay technology is designed to
meet these requirements, complementing major in-vehicle networking standards CAN, LIN, and MOST.
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Appendix C

The BEGLS Estimator |

The OLS estimator of equation (3) assumes that the covariance matrix of the error term is an identity matrix times a constant, ¢°1, so that there
is no covariance between observations. However, we believe that the covariance matrix does have covariance between observations, both
within firms and within events. Thus, we believe the covariance matrix is ¢° %, where ¥ has some nonzero elements off the diagonal. To
understand the consequences of this, we rewrite equation (3) as y = Xf + e. Here, X is a matrix of all the independent variables and control
variables, y is a vector of the dependent variable, f is a vector of the coefficients to be estimated and e is a vector of error terms with the
covariance matrix ¢ 7. If this is true, then the generalized least squares estimator of the parameters, B, = (X" ¥'X)"' X ¥y, is more efficient
than the OLS estimator, f,,¢= (X' X)"' X'y (Judge et al. 1988).

Pes and f, ¢ are both unbiased so that the expected value of the estimate equals the true value of the parameter being estimated. But the
variance of fi; ¢ is less than the variance of §,,;. This means that if many samples are taken and f is estimated many times, overall the GLS
estimates will be closer than the OLS estimates. However, this requires that we use the true value of ¥, which in practice we do not know, thus
we must estimate it.

We postulate that there is covariance within standard setting events and that there is covariance within firms. To make this concrete, take a
sample of size six, where the first standard (1) involves Sun Micro (s), Microsoft (m), and IBM (i). The second standard (2) involves Dell (d)
and IBM (i), and the third standard (3) involves only IBM (i). Then the covariance matrix of the error term will look like this:

1 ¢m,s,1 ¢i,5,1 O O O
¢m,3,1 1 ¢i,m,l O O O
¢i K} ¢1 m. 1 0 ¢l i ¢l i
O'zlP _ 0_2 ,8,1 ,m.1 ,,2,1 ,i,3,1
0 0 0 1 @ 0

0 0 Diiri Posn 1 D3
0 0 D31 0 D32 1

There are two different types of terms here. The first is those like ¢, , ;, which is the covariance between Microsoft (m) and Sun (s) for the first
standard (1). The second is those like ¢, , ;, which is the covariance between IBM (i) in standard two (3) and IBM (i) in standard one (1). Note
that the covariances are symmetrical across the diagonal. There is no a priori reason to believe that the covariances within an announcement
are the same. It is easy to imagine, for example, that the fortunes of Sun and Microsoft might have negative covariance while the fortune of
IBM and Microsoft have positive covariance for a particular standard, like a Java standard. Similarly, there is no particular reason to believe
that the covariance between a particular firm in two different standards is the same as the covariance between that firm in some other pair of
standards. For example, the covariance between IBM in two software standards might be different than the covariance between IBM in a
hardware and a software standard.

In general, ¥ is unknown and must be estimated. Using an estimated value of ¥ leads to the estimated generalized least squares (EGLS)
estimator. For our specification, we have more elements of ¥ than we have data points. In the example above, we have seven ¢’s and only
six events from which to estimate them. This rules out maximum likelihood methods. However, we do have another option. Because the OLS
estimates are unbiased, they provide an unbiased estimate of the error vector, e. Thus, ee’ provides an unbiased estimated ¢*¥. More to the
point, e,e, provides an unbiased estimate of ¢, ., where r and ¢ denote the row and column respectively. Thus, in the example above an unbiased
estimate of ¢, , | is e,e; because ¢, | is the element in the second row, and first column.

Therefore, to construct the estimate of o ¥, we first use OLS to estimate equation (3), then construct a matrix which has the value e,e, in every

place where the row and column have the same standard setting event or the same firm (and along the diagonal). Thus, the estimate, V, from
our example would be
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There are a few points to notice. Obviously, e,e, = e.e,. The o> has been removed because the GLS estimator is invariant to multiplication by
a constant and e,e, is actually an estimate of the (7,c) element of > ¥ not of ¥. Finally, rather than assuming a constant variance, we allow for
the possibility of heteroskedasticity. In fact, the diagonal is the well known White’s heterskedastictic consistent covariance matrix (White
1980).

The consequence of using an estimate of ¢® ¥ rather than the true ¢* ¥ is that the finite sample properties are unknown. That is to say, that as
the number of firms in each standard setting event increases to infinity and the number of times a firm appears increases to infinity, the EGLS
estimates converge to the GLS estimates. On the other hand, in this sample we have some very small standard setting events (i.e. few firms
or one firm) and many firms appear only a few (or one) times. There is nothing to be done, but we want to make clear that the finite sample
properties of this estimator are unknown.

Now we run into the tricky part. To follow the rules of probability, o> ¥ must be positive definite. If it is not then it implies that more than
100% of the variance in one observation is explained. However, there is nothing to guarantee that an estimate of o* ¥ will be positive definite
(Swamy 1970). In fact, it is fairly common for estimates of a covariance matrix to be nonpositive definite. More to the point, in our sample
we find that our estimate of &?¥ is not positive definite.

To overcome this, we use a procedure called bending (Hayes and Hill 1981). Bending uses an iterative procedure to insure that the covariance
matrix is positive definite. The steps are as follows (Jorjani et al. 2003):

1. Obtain the estimated covariance matrix V.

2. Create a matrix of eigenvectors U and a diagonal matrix of eigenvalues D. Note that V, = U,D,U,". The subscript » represents the
iteration number.

3. Replace all the negative eigenvalues in D, with a positive number ¢ to form A,
Calculate a new estimate of the covariance matrix V,,, = U,A,U,".

5. Repeat until V,,, is positive definite.

This results in an estimate of the covariance matrix that is positive definite. We then use this estimate to perform generalized least squares.
Thus, we term the estimator the BEGLS, which means bended estimated generalized least squares estimator. This estimator addresses three
problems that might face the OLS estimate. First, if the model suffers from correlation within standard setting events and within firms, this
procedure addresses the problem. By “suffer” we mean that there is meaningfully large correlation. Ifthe correlation is small then the deviation
from the OLS model will be small. Second, it can be estimated with the data available to us. Specifically, we do not know the true correlations,
so we need to estimate them from the data we have. Third, it is calculable in the sense that positive definiteness is required to apply the GLS
procedure.
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