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Abstract Consider a batch Markovian arrival process (BMAP) as the counting process of an underlying 
Markov process representing the state of environment. Such a process is useful for representing correlated 
inputs for example. They are used both as a modeling tool and as a theoretical device to represent and 
approximate superposition of input processes and complex large systems. Our objective is to consider 
the first and second moments of the counting process depending on time and state. Assuming that the 
probability generating functions of batch size are analytic, and that eigenvalues of the infinitesimal generator 
are simple, we derive an analytic diagonalization for the matrix generating function of the counting process. 
Our main result gives the time-dependent form of the first and second factorial moments of the counting 
process, which is represented by eigenvalues and eigenvectors of the matrix generating function of the batch 
size. 

1. Introduction 
Consider a versatile Markovian point process, introduced by Neuts [6] and [7]. It is assumed 
that the change of an environment is formulaked as a finit,e state Markov process and tha,t 
the batch input rate of the point process depends on the &ate or the transition of the state of 
the underlying Markov process. Such processes are useful for representing correlated inputs, 
for example, the phase-type (PH) renewal process, the Markov modulated Poisson process 
(MMPP) and the phase transition arrival process. They are used both as a rnodeling tool 
and as a theoretical device to represent and approximate superposition of input processes and 
complex large systems. Under similar assumptions, the asymptotic normality of the counting 
process was discussed in [2]. Ramaswami [g] analyzed the single server queue with this process 
as input. Later, Lucantoni [4] reformulated the same process and called it a bat,ch Markovian 
arrival process (BMAP). We follow in this paper his formulation and notation. 

Our main result @ves time-dependent forms of the first and second factorial moments of 
the B MA P represented by eigenvalues and eigenvectors of t,he matrix generating function 
of batch size, only using ordinary exponential functions. In [6] a,nd [7] the tirne-dependent 
mean arrivals and the equilibrium variance were derived. Narayana and Neuts in [5] studied 
the asymptotic and algorithmic properties of the first two moment matxices. In this paper, 
however, we show the time-dependent second factorial moment in non-equilibrium case. This 
expression can be used for the comparison of mean queue lengths bet,ween an M/G/1 queue 
and a BMAP/G/ 1 queue in [8]. 

In Section 2 we define the underlying Markov process and the BMAP matrix generat- 
ing function of the counting process. Our first assumption is t,he analyticity of the matrix 
generating function of batch size. In Section 3 we int,roduce our second assumption that the 
infinitesimal generator of the Markov process has simple eigenvalues. Under these assump- 
tions the eigenvalues of the matrix generating function are analytic. We prove that. each 



Batch Markovian Arrival Process 123 

eigenvalue has an associated analytic eigenvectm. In Section 4 we discuss properties of these 
analytic eigenvalues and eigenvectors. Then we obtain the algorit hrn to calculate the explicit 
form of coefficients of eigenvalues and eigenvect,ors up to the second order terms in a power 
series expansion. These coefficients are derived by a generalized form of the fundamental 
matrix in [S]. In Section 5 we obta,in the first t,wo factorial moments of the counting process 
depending on time. 

t,o B M A P  given 

(2.1) 

We see also that 

(2.2) 

2. Batch Markovian arrival process 
Let D be the m X m irreducible transition rate matrix of an underlying Markov process of 
the batch Ma,rkovian arrival process. We adopt basic notations and definitions wit h respect 

by [4]. Let the generating function of Dk be 

As we need, later in this paper, to use the power series expansion of D(z) at  z = 1, we put 
the following assumption. 

Assumption 1 D(z) is analytic in a neighbourhood of z = 1. 

This assumption is trivially satisfied if the batch sizes have a finite maximum. 
Let J ( t )  be the sta,te of the Markov process D at time t and N (t) be the total number of 

arrivals in (07 t]. We consider the probability 

Let P(v7  t) be the matrix form of Pij (v, t). It is then irnrnediat,e tha,t the matrix generating 
function 

satisfies the differential equation 

Thus it follows that 
(2.3) ~ ( z ,  t) = exp{D(z)t}. 

Now, by definition, the probabilit,~ distribution of W t ) ,  under the initial condition J(0) = 

i ,  is the sequence of the i-th element of { P ( k ,  t) e}k=.o.... and its generating function is the i-th 
element of P ( Z ,  t )e .  Therefore, in order to obtain a concrete representation of t,he moments of 
the counting process N(t ) ,  we need the power series expansion of exp{D(z)t} in a neighbour- 
hood of z = 1. This will be done in Section 3 and 4 by diagorializing the generating funct,ion 
D (z) . 



3. Eigenvector 
We adopt in this paper the following notation: for any column vector X = (xl j  - - - . x ~ , , ) ~  we 
denote by A(%) the diagonal matrix whose diagonal elements are (xl - , - , xIn). The notation 
A o B stands for the entrywise product of matrices A and B. Moreover we write: 

and the identity matrix is denoted by I .  
In view of the diagonalization of D ( 4  we put t,he following assumption on the transition 

rate matrix D of the underlying Markov process. 

Assumption 2 All eigenvalues of D are simple. 

There are m distinct eigenvalues and we define its first eigenvalue as AI  = 0 and other in - 1 
eigenvalues as A,; (z = 2, . . - , m) with Re (\i) < 0. We put A = (A l  , - - - , AI^)' as a column vect,or 
and A = A(A) as a diagonal matrix. Then D is diagonalized as follows. Let a; (i = I ,  - - - m) 
be a row eigenvector associated with Ai such that aiD = h i .  Especially we choose al to be 
the stationary probability vector TT of D sat,isfying TT > o, TTD = o and Tre = 1. Then 

is a nonsingular m X m matrix. If we put A-' = H = ( h l , - .  - ,  hm}-, hi  (i = l , - - .  ,m) is a 
column eigenvector associated with \i such that Dhi = &h.; satisfying 

Espe~ia~lly h1 = e and 

(3.2) 

The diagonalization of D is given by 

From Assumption 1, the characteristic equation 1 D(z} - A I  l =  0 is polynomial in \ 
of degree m and all its coefficients are analytic in a neighbourhood of z = 1. From the 
Assumption 2, this equation has m simple roots A = AI,. - - , Am at z = 1. It follows from the 
theorem on implicit functions ([l] for example) that we have, for each i( i  = 1. - - . , m) and in a 
neighborhood of z = 1, a. unique eigenvalue W.;(Z) of D(z )  which is analytic in a neighborhood 
of z = 1 such that wi ( l )  = A .̂ We may therefore write it in the following form: 

For each eigenvalue wi (2 )0 f  D(z), there exists a row eigenvector U&), analytic at z = 1 
and satisfying ui(l) = ai, so that it may be written in the form 

where o,,((z - I)2) is an rn dimensional row vector of o ( ( z  - I)2). The existence of such a,n 
eigenvector results directly from the following lemma, the proof of which will be given in t,he 
Appendix. 
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Lemma 1 Let M ( z )  be a n  m X in n ~ a t r i z  whose e ~ ~ t r i e s  are analytic at z = 0. If a n  analytic 
function A(z) is  a n  eigenvalue of M(z) in a neighborhood of z = 0  and i f  A(0) is  a simple 
eigenvalue of M ( 0 )  and X Q  its column eigenvector, then the followings hold: 

(2) There exists a n  eigenvector x ( z )  of 1Vl(z), associated with the eigenvalue \{z}, analytic 
at z  = 0  and satisfying x ( 0 )  = X Q .  

(ii) A vector y ( z ) ,  analytic at z  = 0  and satisfying y(0)  = X Q ,  is  a n  eigenvector of M(z)  
associated with A(z) i f  and only i f  y ( z )  -=-- c ( z ) x ( z )  with an analytic function c ( z )  at 
z  = 0 satisfying c(0) = 1.  

This lemma shows not only the existence of an analytic eigenvector u,; (z )  of D ( z )  as- 
sociated with wi(z) ,  but also the general form of analytic eigenvectors satisfying t,he same 
condition as U,; ( 2 )  , i.e. u d l )  = a; .  In fact, the condition ui (l) = a, does not determine u.dz)  
uniquely. When a particular choice of u,(z) ,  denoted by uÂ¡, (z )  is given; then the general form 
of u i ( z )  is given by 
(3.6) = / i ( z )uÂ¡(z )  

where f i (z)  is an arbitrary analytic function at z  = 1 satisfying . f i ( l )  = 1 

4. Coefficients of expansion 
In this section we will derive an algorithm to calculate coefficients at least up to second order 
terms in (3.4) and (3.5). As A was defined in (3. l ) ,  let. U ( z )  B and C be rnat,rices of u.Az}, b.; 
and c;, respectively. A matrix form of (3.5) is 

Since u i ( z )  is the eigenvector associated with wi(z) ,  we get 

where Q ( z )  is the diagonal matrix with wi(z} as diagonal elements. 
From (2. l ) ,  (3.4) and (3.5) it follows that comparing coefficients of ( 2  - l)*' ( k  = 0 , l  a,nd 

2) we have 

(4.3) a i ( D  - \.I) = ot, 

(4.4) bi(D - & I )  = - a i ( D f ( l )  - ̂ I ) ,  

(4.5) c i ( D  - \.I) = - a i ( D H ( l )  - pJ) - 2bi (Df ( l )  

Eq~a~t ion (4.3) implies tha,t ai is a,n eigenvector of D a,ssocia,ted 
(D - Ad) is a singular matrix of rank m - 1. In order to solve the 
the following matrices. 
Lemma 2 There exists 2. ei ( D  - AiI - hia.;)-l. 

- p d .  

with \i. In (4.4) and (4.5) 
linear equations we prepare 

Proof. Let x.i be an unknown vector of a homogeneous linear equation 

Multiplying the equation by hi and using the fact that A,;hi = Dhi and a,;h; = 1, we 
get xihi = 0. We conclude &xi = x i D ,  which implies that xi is an eigenvector of D 
associated with A,. Then the general solution of X.; is given by X,; = ca.^ where c  is a 
constant. Substituting it into (4.6) 

It follows from c  = 0  that x . ~  = 0. We conclude that ( D  - &I - h . ; ~ . ~ )  is nonsingular. CI 
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Lemma 3 W e  have 
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Proof. For the first equation if i # j, then 

-&?h, = (D-  \,I- hia.)h, 
= (A, - A.) h,. 

If i = j ,  then Z& = -hi. Similarly, we get the second equation. D 

Since TT = a1 and e = h i ,  we define a matrix II = e r  = h i a l .  It follows from (11- D ) l  = 

-Zl that 

Lemma 4 Let f, be a n  m-dimensional row vector. The linear equation xi{D - \il) = f,, 
has a solution, if and only if f ihi  = 0. And i f  the linear equation has a solution, its general 
solution is  given b y  

xi = fiZi + s.iah 

where si = xihi is  a n  arbitrary constant. 

Proof. Multiplying the equation by hi ,  it is necessary that fihi = 0. Since the rank of 
(D - AJ) is m - l, the first assertion of this lemma is obvious. From the definition of Zi, we 
have 

D - \,I = (I - h i a i ) ~ , p ,  

which implies immediately that 

0 
In the previous section the existence of analytic eigenvalues and eigenvectors are proved, 

so we will need an algorithm to calculate them explicitly, at least up to the second order terms 
in (3.4) and (3.5). For the leading terms \i and ai it is already done in Section 3. Thus our 
next objective is to obtain an algebraic procedure to determine pi and pi in (3.4) on the one 
hand, bi and ci in (3.5) on the other. 

Lemma 5 Let ui (2) = a, + (2 - l) bi + i (z - 1J2ci + o,,((z - I)2) be a n  eigenvector of D(z)  , 
analytic at z = 1 and associated with the eigenvalue 

Then  11.1 and p., are determined by 
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and bi and C, satisfy 

where S? and S? are certain constants. 
Conversely, for any choice of constants S? and S?),  bi and c, obtained by (4.10) and (4.11) 

are coefficients of the first and second order terms respectively of a n  analytic eigenvector U . ~ ( Z )  

at z = 1, associated with ( z )  such that (3.5) holds. 

Proof. Putting (3.4) and (3.5) into the equation ~ . ~ ( z )  D ( z )  =- ~ ~ . A z ) u . ~ ( z )  and comparing 
the coefficients of the first and the second order terms on both sides, we get readily 

Applying Lemma 4 to (4.12),  we get a, (D' (l) - p, /)h, = 0, which leads to (4.8) and (4.10). 
Using the same discussion for (4.13) we see: 

which implies (4.9),  independently on the constant S,:". We may t,hen apply Lemma 4 once 
more to (4.13) and obtain (4.11). 

To prove the converse part of this lemma, let 

0 1  
U' --a,+ ( z -  l ) b ,  + - ( 2 -  i ) 2 c ; + o ,  ( ( 2 -  

2 

be an analytic eigenvector of D ( z )  associated with wi(z ) .  By whajt we have just proved, we 
can write 

where sff and S{? are appropriate constants. Let b ,  and c ,  be defined by (4.10) and (4.11) 
with an arbitrary choice of constants S:') and S:) respectively. Then we have 

Let. u . i ( z )  be defined by u.i{z) = f .i(z}ui(z), where 

is analytic at z = 1 satisfying / ( ( I )  = 1. Then by what is remarked right after Lemma 1; we 
see readily that u i ( z ) ,  too, is an analytic eigenvector of D ( z )  at z = 1 associated with W&). 

Direct calculus using (4.14) and (4.15) reveals that ~ ~ ( 2 )  satisfies (3.5) with bi and c; given 
above as  coefficient,^ of the first and the second order terms respectively. D 

- in (4.10) and (4.11). Without loss of generality, we may and will suppose S?' = S? - 0 
We summarize as 
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Lemma 6 The following satisfy (4.4) and (4.5): 

In the next section it will be discussed that under the stationary condition, the average 
arrival rate per unit time is p* = h = 7r D1(l) e. And we have 

If we put 0,i = hie and % = cie, from Lemma, 3, we have 

We will denote them by /3 = (,Bl,. . . , f3mY and 7 = (71,. . . 
Lemma 7 W e  have 

Proof. Since D = A-lA(A)A, we easily have 

Using (4.7), the Ith element of A[II - D]-'D1(1)e yields 

Thus A[ll - D]-'D'(1)e is equal to -0 except the first element. On the other hand from 
A AI = 0,I - A(e t, is a diagonal matrix whose (1 , l )  element is 0, thus proving the lemma. D 

5 .  First and second factorial moments 
In this section we derive the first and the second factorial moments of BMAP. It follows 
from (3.4) that 

We define as p = (pl , . . . , fin) *, p  ̂ = (A, - - - , p;,J * a,nd p = (pl. - - , pin) '. Since n(z )  is a 
diagonal matrix, the matrix form of ( 5.1) is 
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Since U(z) is expanded as (4.1) and [[(I) = A is nonsir~gular, W )  is also analytic and can 
be expanded as 

Since exp{D(z)t} is an analytic function of z, each element of ~ ( z ,  t )e  is also analytic in z .  
The i th  element of ~ ( z ,  t) e is the generating function of the counting process N (t) when the 
initial state is i. 

From (2.3), we have 

(5.4) P{.z, t )e  = ~ ( 2 ) ~ '  exp{ft(z)t}U(z)e. 

Using (4. l), (5.2) and (5.3) , we can expand (5.4) into 

The coefficients xo(t\ xl (t) and x2(t) are the Oth ,  the first and the second factorial moment 
vectors of the counting process N(t) during (0, t ) ,  respectively. For xo{t) it follows from (3.2) 
and \i = 0 that we have 

For xi (t) , we have the following result,. 
Theorem 1 T h e  t ime-dependent  f o rm  of the  m e a n  vector i s  

xi (t) = tp'e - hia iD1(l )e( l  - ~ ^ z ' ) / A . ~ .  
2=2 

Proof. Comparing the coefficient of (z - 1) in (5.4) we have 

Just as in (5.7), it follows from Lemma 7 that 

A xi ( t )  = t p ' e - A - \ I - A ( ~  ' ) ) ~ e  
in 

= tp'e - hia , i~ l ( l )e ( l  - e?/A,. 
,i=2 

The proof is completed. D 

From Lemma 7, another expression of xl( t)  is 



which was given by Neuts [6]. If we define the equilibrium mean as xi ( t )  = vx l  ( t ) ,  it follows 
from = 0 ( z  > 2 )  that for all t 2 0 

xl(t) = tp*. 

Since eAfi in the right hand side of (5.7) tends to zero as t Ã‘ co, the linear asymptote of xl ( t )  
is given by 

lim (x l ( t )  - tp*e) = - y" hiaiD1(l)e/Ai. 
t400 

z=2 

Next we will obtain the time-dependent form of the second factorial moment. 

Theorem 2 

Proof. The coefficient vector of ],(z - 1)' is given by 

In a similar manner to Theorem 1, we have 

z2 (t)  = 2 ~ - '  BA-' ( I  - A(&) Be - A-' ( ( I  - ) ) G'e 

+ 2 t ~ - l ~ ( e ' ~ ) ~ ( ^ ) ~ e  - 2tp*Ap1~e  + (pit + p*V)e 
= t2p*2e + tple - 2tp*AP1Be 

2=2 

D 
If we define the equilibrium second factorial moment as x2(t) = 7rx2(t), using the property 

Â¥rrh = 0 ( z  > 2 )  again, we have for all t > 0 

Using the fact that vA^B = v{D1(l) - p I )  [II - D]-I we have that from (4.16) and Lemma 
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This equation was given in [7] page 285-286. Lastly we will discuss the limiting property of 
x2(t). From (5.8) we have as t --+ m, 

lim ( X&) - t2pe2e - ((pie - 2p* hiaiDf(l)e/\i)) 
t+m .(=2 

6. Conclusion 

In this paper we constantly supposed that the transition rate matrix has only simple eigenval- 
ues. Although this assumption is not a severe restricton in applications, we could not remove 
it as our arguments essentially depend on it. However, compared to the results formerly 
obtained in [5] and [6], our formulae given in Theorem 1 and Theorem 2 have two merits. (i) 
Matrix exponential functions are replaced by ordinary exponentials. (ii) With respect to the 
second fuctorial moment, time-dependent exact formula is obtained. 

Since our formulae contain many coefficients and parameters, we summerize here the 
computational algorithm. 

Step 1 To calculate eigenvalues A, and eigenvectors a^ hi. 
Step 2 To calculate k ,  bi, pi and ci by using Lemma 6. 
Step 3 To calculate yi by using (4.17). 
Step 4 To calcula,te xl ( t )  and x2(t) by using Theorem 1 and Theorem 2. 

Appendix 
Proof of the Lemma 1. 

We have only to solve the linear equation (M(z) - \ ( z ) I )x  = o in X, applying to the 
coefficient matrix M(z) - +)I, step by step, the classical sweeping out method in such a 
way that, when we put z = 0, it is precisely what we usually do to compute an eigenvector of 
M(0) associated with A(0). Most of the main operations, i.e. swapping of rows or columns, 
addition of one row to another and multiplication of one row by an analytic function at z = 0, 
obviously maintain the analyticity of the entries of the matrix. The only operation which 
might require our particular attention is division of a row by one of the non-zero entries. At 
this point, we have to notice that such a division by the (2,j) element ~ ( z )  occurs only 
when mij(0) # 0 and that this means precisely the analyticity of mq(z)-' at  z = 0. Thus t,he 
sweeping out procedure continues, keeping all the elements of the matrix analytic, until the 
matrix takes the form 

as the simplicity of the eigenvalue A(0) of M(0) implies that. M ( 0 )  - A(0)I is of rank m - 1. 
But in a neighborhood of z = 0, the rank of M{z) - A(z)I must. be less than or equal to 
m - 1, because A (2) is an eigenvalue of M(z). Therefore the rank of M(z) - A (z) I (and also 
that of the matrix (7.1)) is constantly equal to m - 1 and um(z) = 0 in a neighborhood of 
z = G. We suppose, without any loss of generality, that the matrix (7.1) is attained without 
swapping columns. Then a solution to the equation (M ( z )  - \(z) I) X = o is given by 



which is obviously analytic in a neighborhood of z = 0. As its value at z = 0 is an eigenvector 
of M(0) associated with A(0) which is a simple eigenvalue, there must be a constant c # 0 
such that 

X0 = c(v1 (0) , . . . , vm-1 (01, - l)'. 

It follows that x(z} == c(v\(zY . . . , ~ ~ ~ - 1 ( z } - ,  -l)* satisfies every requirement of statement (i) . 
To prove (ii) , we begin by supposing y(z} to be analytic at z = 0 satisfying y(0) = x0 and 

M(z)y(z) = \(z)y(z) in a neighborhood of z = 0. As we have just shown above, the rank of 
M(z) - \(z) I is m - 1. It implies that y(z) must be proportional to x(z) at each z, so thast 
we have a function c(z) such that 

As y(z) is analytic at z = 0 and c # 0, c(z) is easily seen to be analytic at z = 0. From 
y(0) = x(0) = XQ # o, we obtain immediately that c(0) = 1. The converse part of the 
assertion being obvious, this completes the proof of this lemma. D 
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