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Abstract—In this article we intend to present a method
of obtaining high complexity sinthetic scenes by using simple
volumes as the building blocks. The below described method can
be used to obtain both homogenous and heterogenous volumes.
This is done by combining volumes of different voxel densities.

Index Terms—volumetric data, voxel, constructive solid geom-
etry, volume modelling, constructive volume geometry.

I. INTRODUCTION

THE VOLUMETRIC data imaging technology has greatly

improved sice the 1990’s. Before this many fields had to

work with data images that used the depth or field effect known

from 2D screens.

Because of the improved graphical representation, the vol-

umetric data has found extensive use in medical applications

such as 3D ultrasound, CAT (Computed Axial Tomography)

or MRI (Magnetic Resonance Imaging). Other fields putting

the technology to use include geological surveying, security

scanning and, potentially, 3D gaming.

Given the importance of volumetric data, a lot of research

has been done lately in the field, ranging from volumetric

generation and rendering to volumetric segmentation, indexing

and compression. This research was mainly done using data

that resulted from real medical cases. Only recently did

researchers start to use data obtained by scanning physical

objects using lasers. Even so, volumetric data is stil scarce

and not readilly available.

Because volumetric data is in general obtained through

medical imaging devices it is usually hard to come by. Given

the ease with wich sinthetic scenes can be manufactured, the

sinthetic senes are somtimes prefered for volumetric analysis.

It must be said that the sinthetic scenes offer less diversity

than the real medical data but they can be custom made to

the precise needs of the desired field of analysis. Volume

segmentation and indexing can greatly take advantage of

sinthetic scence tailormade for its needs.

II. CONSTRUCTIVE VOLUME MODELING

The constructive volume generation technology is not a

new thing and many articles have been written on this topic.

For example the Constructive Volume Geometry (CVG) [1]

article presents an algebraic framework for modelling complex

spatial objects using combinational operations. In this article

we present another approach for volume generation. We will

use basic volumes like spheres, prisms, cylinders, cones, tori,

etc. as building blocks for more complexe volumes. These

volumes are combined using boolean operators like union

and intersection. The resulting volumes can be combined with

other volumes to form more complex objects.

The volumes that we are using are made up of voxels that

have a position in the volumetric spece they are defined in

and a density, with values in the interval [0,1]. The density

can later on be interpreted as a color in a given spectrum. For

the examples given in this article we chose a palette consisting

of shades of green ranging from light green for density 0 to

dark green for density 1.

A volume is stored in a 3D matrix of densities, where a

voxel is represented by its position in the matrix and the

density stored at that position.

Fig. 1. Sphere and cone union.

In order to combine their volumetric data, all volumes must

be defined in the same subspace.For example we consider
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a 256x256x256 cube made up of voxels. Each voxel in the

cube has a density between 0 and 1. Let us take two such

cubes, A and B, which contain the volumetric data for a

homogenous sphere of radius 100, centered in (100, 100, 100)

and a homogenous cone of radius 100 and height 50, centered

in (100, 200, 100) respectively. Both volumes have the density

equal to 1. The union of A and B will be another 256x256x256

cube of voxels as presented in Fig. 1.

When we make a union between two volumes, we actu-

ally add the densities of corresponding voxels in the cubes

containing these volumes, caping the densities at a maximum

of 1, thus obtaining a valid new cube, with all densities

between 0 and 1. The resulting cube can be used in subsequent

operations.

Fig. 2. Sphere and cylinder intersection.

For the intersection of two volumes we compute the product

of all corresponding densities in the cubes containing the

volumes. Given that the densities of voxels have values in

the interval [0, 1], after multiplication the resulting densities

also have values in the [0, 1] interval. An example of an

intersection between a sphere and a cylinder is given in

Fig. 2.

The difference of two volumes is obtained by subtracting

the corresponding densities of voxels in the cubes containing

the volumes. Because the resulting densities can fall below 0,
we need to limit these values at 0. An exemple of a difference

is given in Fig. 3.

The complement of a volume can be obtained by subtracting

from 1 the voxel densities of the cube containing the volume.

The resulting cube has all densities in the [0, 1] interval.

Fig. 3. Sphere and torus difference.

These operations have the potential of creating realy com-

plex volumes. In Fig. 4. there is a volume created from a

sphere and three cylinders.

The basic volumes used in these operations are created using

their parametrized equations. For example, a sphere is defined

by the equation (1).

x=x0 + r sin θ cosφ

y=y0 + r sin θ sinφ (0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π) (1)

z=z0 + r cos θ

By taking discrete values from the intervals [0, 2π] ,[0, π],
and [0, r] we are able to build our sphere voxel by voxel. The

Fig. 4. Union of three cylinders.

756 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



algorithm for constructing a homogenous sphere is given in

Algorithm 1.

Algorithm 1 Generating voxels for a homogenous sphere of

density 1.

Require: r > 0
r ← 1;

2: while r <= radius do

theta← 0;
4: while theta ≤ 2π do

phi← 0;
6: while phi ≤ π do

x← x0 + r ∗ sin(theta) ∗ cos(phi);
8: y ← y0 + r ∗ sin(theta) ∗ sin(phi);

z ← z0 + r ∗ cos(theta);
10: volumex,y,z ← 1;

phi← phi+ arcsin(1/r);
12: end while

theta← theta+ arcsin(1/r);
14: end while

r ← r + 1;
16: end while

In order to obtain a heterogenous volume we can combine

homogenous volumes using the operations defined previously.

For example a sphere with three layers of density d1, d2 and

d3 can be obtained by making a union between a homogenous

sphere with density d1, a homogenous sphere shell with

density d2 and another homogenous sphere shell with density

d3. A section through the resulting sphere can be seen in Fig. 5.

Fig. 5. Sphere and cylinders difference.

Fig. 6. Heterogenous sphere obtained by combining three basic homegenous
volumes through union. The section through the sphere was made by means
of a difference with a prism.

III. CONCLUSION

We have shown that more complexe volumetric objects

can be obtained by combining basic volumes using boolean

operators. This is very helpful in obtaining synthetic data

for other volume related fields of research like volumetric

segmentation and indexing, and volume compression.

The simple sinthetic data can be combined into more

complex forms thus giving a large colection of objects from

where to choose when performing volumetric analysis.

The method that we have used is a very simple but an

ingenious one as presented above. We will use this method

in our future work.
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