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Abstract

A basic theorem from differential geometry asserts that, if the Riemann curvature
tensor associated with a field C of class C2 of positive-definite symmetric matrices
of order n vanishes in a connected and simply-connected open subset Ω of Rn, then
there exists an immersion Θ ∈ C3(Ω; Rn), uniquely determined up to isometries in
Rn, such that C is the metric tensor field of the manifold Θ(Ω), then isometrically
immersed in Rn. Let Θ̇ denote the equivalence class of Θ modulo isometries in Rn

and let F : C → Θ̇ denote the mapping determined in this fashion.

The first objective of this paper is to show that, if Ω satisfies a certain “geodesic
property” (in effect a mild regularity assumption on the boundary ∂Ω of Ω) and if
the field C and its partial derivatives of order ≤ 2 have continuous extensions to Ω,
the extension of the field C remaining positive-definite on Ω, then the immersion
Θ and its partial derivatives of order ≤ 3 also have continuous extensions to Ω.

The second objective is to show that, under a slightly stronger regularity assump-
tion on ∂Ω, the above extension result combined with a fundamental theorem of
Whitney leads to a stronger extension result: There exist a connected open subset Ω̃
of Rn containing Ω and a field C̃ of positive-definite symmetric matrices of class C2

on Ω̃ such that C̃ is an extension of C and the Riemann curvature tensor associated
with C̃ still vanishes in Ω̃.

The third objective is to show that, if Ω satisfies the geodesic property and is
bounded, the mapping F can be extended to a mapping that is locally Lipschitz-
continuous with respect to the topologies of the Banach spaces C2(Ω) for the con-
tinuous extensions of the symmetric matrix fields C, and C3(Ω) for the continuous
extensions of the immersions Θ.
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Résumé

Un théorème de base de la géométrie différentielle affirme que, si le tenseur de
courbure de Riemann associé à un champ C de classe C2 de matrices symétriques
définies positives d’ordre n s’annule sur un ouvert Ω de Rn connexe et simplement
connexe, alors il existe une immersion Θ ∈ C3(Ω; Rn), définie de façon unique aux
isométries de Rn près, telle que C soit le champ de tenseurs métriques de la variété
Θ(Ω), celle-ci étant plongée isométriquement dans Rn. Soit Θ̇ la classe d’équivalence
de Θ modulo les isométries de Rn et soit F : C → Θ̇ l’application ainsi définie.

Le premier objectif de cet article est d’établir que, si Ω satisfait une certaine
“propriété géodésique” (en fait une hypothèse peu restrictive sur la régularité de
la frontière ∂Ω de Ω) et si le champ C et ses dérivées partielles d’ordre ≤ 2 ont
des prolongements continus à Ω, le prolongement du champ C restant défini positif
sur Ω, alors l’immersion Θ et ses dérivées partielles d’ordre ≤ 3 ont également des
prolongements continus à Ω.

Le second objectif est d’établir que, moyennant une hypothèse de régularité
légèrement plus forte sur ∂Ω, le résultat de prolongement ci-dessus combiné avec
un théorème fondamental de Whitney conduit à un résultat plus fort de prolonge-
ment: Il existe un ouvert Ω̃ connexe de Rn contenant Ω et un champ C̃ de matrices
symétriques définies positives de classe C2 sur Ω̃ tels que C̃ soit un prolongement
de C et le tenseur de courbure de Riemann associé à C̃ reste nul sur Ω̃.

Le troisième objectif est d’établir que, si Ω satisfait la propriété géodésique et
est borné, l’application F peut être prolongée en une application qui est localement
Lipschitz-continue pour les topologies usuelles des espaces de Banach C2(Ω) pour
les prolongements continus des champs de matrices symétriques C, et C3(Ω) pour
les prolongements continus des immersions Θ.

Key words: Differential geometry, nonlinear elasticity

1 Introduction

All the notations used, but not defined, here are defined in the next sections.
Let Ω be a connected and simply-connected open subset of Rn, let Sn, resp.
Sn

>, denote the set of symmetric, resp. positive-definite symmetric, matrices of
order n, and let a Riemannian metric (gij) ∈ C2(Ω; Sn

>) be given that satisfies

Rp
·ijk := ∂jΓ

p
ik − ∂kΓ

p
ij + Γ`

ikΓ
p
j` − Γ`

ijΓ
p
k` = 0 in Ω,
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where

Γk
ij :=

1

2
gk`(∂igj` + ∂jg`i − ∂`gij) and (gk`) := (gij)

−1,

i.e., the Riemann curvature tensor associated with the metric (gij) vanishes
in Ω.

Then a basic theorem of differential geometry (recalled in Theorem 3.1 for
convenience) asserts that there exists an immersion Θ ∈ C3(Ω; Rn), uniquely
determined up to isometries in Rn, such that

∂iΘ(x) · ∂jΘ(x) = gij(x) for all x ∈ Ω,

i.e., such that the manifold Θ(Ω) is isometrically immersed in Rn.

Hence there exists a mapping F that associates with any matrix field (gij) ∈
C2(Ω; Sn

>) satisfying Rp
·ijk = 0 in Ω a well-defined element in the quotient set

C3(Ω; Rn)/R, where (Φ;Θ) ∈ R means that there exist a vector a ∈ Rn and
an orthogonal matrix Q of order n such that Φ(x) = a+QΘ(x) for all x ∈ Ω.

Our first objective is to extend this classical existence and uniqueness result
“up to the boundary” of the set Ω. More specifically, we assume that the set
Ω satisfies what we call the “geodesic property” (in effect, a mild smoothness
assumption on the boundary ∂Ω; cf. Definition 2.2) and that the functions gij

and their partial derivatives of order ≤ 2 can be extended by continuity to
the closure Ω, the symmetric matrix field extended in this fashion remaining
positive-definite over the set Ω. Then we show that the immersion Θ and its
partial derivatives of order ≤ 3 can be also extended by continuity to Ω (cf.
Theorem 3.3).

Let C2(Ω; Sn
>), resp. C3(Ω; Rn), denote the set formed by the positive-definite

symmetric matrix fields, resp. the space formed by the vector fields, that, to-
gether with their partial derivatives of order ≤ 2, resp. ≤ 3, admit such contin-
uous extensions, the extensions of the matrices remaining positive-definite on
Ω. Then the above result shows that there exists a mapping F that associates
with any matrix field (gij) ∈ C2(Ω; Sn

>) satisfying Rp
·ijk = 0 in Ω a well-defined

element in the quotient set C3(Ω; Rn)/R. The mapping F thus maps matrix
fields defined “up to the boundary” into equivalence classes of vector fields also
defined “up to the boundary”.

Our second objective is to show that, if in addition the geodesic distance
is equivalent to the Euclidean distance on Ω (a property stronger than the
“geodesic property”, but that is in particular satisfied if the boundary ∂Ω
is Lipschitz-continuous), then a Riemannian metric (gij) ∈ C2(Ω; Sn

>) with a
Riemann curvature tensor vanishing in Ω can be extended to a Riemannian
metric (g̃ij) ∈ C2(Ω̃; Sn

>) defined on a connected open set Ω̃ containing Ω and

whose Riemann curvature tensor still vanishes in Ω̃.
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As shown in Theorem 4.3, this result relies on the existence (established
in Theorem 3.3) of continuous extensions to Ω of the immersion Θ and its
partial derivatives of order ≤ 3 and on a deep extension theorem of Whitney
[27].

Our third objective is to study the continuity of the mapping F . In this di-
rection, we show that, if the set Ω is bounded and again satisfies the “geodesic
property”, the mapping F is locally Lipschitz-continuous when the vector
spaces C2(Ω; Sn) and C3(Ω; Rn) are equipped with their natural norms of Ba-
nach space (cf. Theorem 5.2 and Corollary 5.3).

Note that the issue of continuity of the mapping F described earlier, i.e.,
“when the boundary of the open set Ω is ignored”, was recently addressed by
Ciarlet & Laurent [9] who showed, albeit by means of a completely different
approach, that the mapping F is continuous when both spaces C2(Ω; Sn) and
C3(Ω; Rn) are equipped with their natural Fréchet topologies.

The main feature of the results of the present paper is thus that they
hold “up to, or beyond, the boundary”. This theoretical aspect does not seem
to have been previously considered in the existing literature on differential
geometry (at least to the best of our knowledge).

Another, more “applied”, motivation behind the present work stems from
nonlinear three-dimensional elasticity (an extensive account of which may be
found in Ciarlet [5]). As already noted by Antman [3], one possible approach
to this theory consists in considering the matrix field C as the “primary un-
known”, instead of the vector field Θ itself as is customary. In this context,
where n = 3, the matrix field C is called the Cauchy-Green tensor field and
the immersion Θ : Ω → R3, which is called a deformation, should be in addi-
tion injective in Ω so as to avoid interpenetrability of matter, an issue which
is not addressed here.

Indeed, the stored energy function of hyperelastic materials is naturally
expressed in terms of the Cauchy-Green tensor (the particular form of this
dependence played a decisive rôle in the landmark existence theory of Ball
[4]). However, the part of the energy that takes into account the applied forces
is naturally expressed in terms of the deformation; hence the need to study
the dependence of a deformation in terms of its Cauchy-Green tensor field.
In the same vein, the boundary conditions that are found in the traditional
boundary value problems of nonlinear elasticity are aptly expressed in terms
of boundary values of the deformation or of its gradient; hence the need to
study the same dependence, this time “up to the boundary”.

In this spirit, the local Lipschitz-continuity of the mapping F established
in Theorem 5.2 and Corollary 5.3 is to be compared with the earlier land-
mark estimates of John [17,18] and Kohn [19] and the recent and far-reaching

4



“theorem on geometric rigidity” of Friesecke, James and Müller [15]. Such es-
timates are more powerful than those found here, in the sense that they are
established for Sobolev norms. However, they only imply continuity at rigid
body deformations, i.e., corresponding to C = I, whereas our estimates hold
“at any Cauchy-Green tensor C”.

In all fairness, the present study only constitutes a preliminary stage of the
above programme, the completion of which should also include the consider-
ation of Sobolev-type norms, more likely to arise in, e.g., an existence theory
undertaken from this perspective. In this direction, the recent contribution of
Reshetnyak [24] is particularly noteworthy.

Similar questions, this time motivated by nonlinear shell theory and ac-
cordingly relative to surfaces in R3, are considered in Ciarlet [7] and Ciarlet
& Mardare [13].

The results of this paper have been announced in [11] and [12].

2 Preliminaries

This section gathers the main conventions, notations, and definitions used
in this article, as well as various preliminary results that will be subsequently
needed.

An integer n ≥ 2 is chosen once and for all throughout this article. It is then
understood that Latin indices and exponents vary in the set {1, 2, . . . , n}, save
when they are used for indexing sequences. The summation convention with
respect to repeated indices and exponents is systematically used in conjunction
with this rule.

The Euclidean inner product of a,b ∈ Rn and the Euclidean norm of a ∈ Rn

are denoted by a · b and |a|. The notations Mn,Sn,Sn
>, and On, respectively

designate the sets of all square matrices, of all symmetric matrices, of all
positive-definite symmetric matrices, and of all orthogonal matrices, of order
n. The notation (aij) designates the matrix of Mn with aij as its elements, the
first index being the row index. The spectral norm of a matrix A ∈ Mn is

|A| := sup{|Av|; v ∈ Rn, |v| ≤ 1}.

In any metric space, the open ball with center x and radius δ > 0 is denoted
B(x; δ). The notation f |U designates the restriction to a set U of a function
f .

The coordinates of a point x ∈ Rn are denoted xi. Partial derivative op-

5



erators of order ` ≥ 1 are denoted ∂α, where α = (αi) ∈ Nn is a multi-
index satisfying |α| :=

∑
i αi = `. Partial derivative operators of the first,

second, and third order are also denoted ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj, and
∂ijk := ∂3/∂xi∂xj∂xk.

The space of all continuous functions from a normed space X into a normed
space Y is denoted C0(X;Y ), or simply C0(X) if Y = R.

Let Ω be an open subset of Rn. For any integer ` ≥ 1, the space of all
real-valued functions that are ` times continuously differentiable in Ω is de-
noted C`(Ω). Similar definitions hold for the spaces C`(Ω; Rn), C`(Ω; Mn), and
C`(Ω; Sn). If Θ ∈ C1(Ω; Rn) and x ∈ Ω, the notation ∇Θ(x) denotes the ma-
trix in Mn whose i-th column is the vector ∂iΘ(x) ∈ Rn. We recall that a
mapping Θ ∈ C1(Ω; Rn) is an immersion if the matrix ∇Θ(x) is invertible at
all points x ∈ Ω. We also define the set

C2(Ω; Sn
>) := {C ∈ C2(Ω; Sn); C(x) ∈ Sn

> for all x ∈ Ω}.

Central to this paper is the following notion of spaces of functions, vector
fields, or matrix fields, “of class C` up to the boundary of Ω”.

Definition 2.1 Let Ω be an open subset of Rn. For any integer ` ≥ 1, we
define the space C`(Ω) as the subspace of the space C`(Ω) that consists of all
functions f ∈ C`(Ω) that, together with all their partial derivatives ∂αf, 1 ≤
|α| ≤ `, possess continuous extensions to the closure Ω of Ω. Equivalently,
a function f : Ω → R belongs to C`(Ω) if f ∈ C`(Ω) and, at each point x0

of the boundary ∂Ω of Ω, limx∈Ω→x0 f(x) and limx∈Ω→x0 ∂
αf(x) for all 1 ≤

|α| ≤ ` exist. Analogous definitions hold for the spaces C`(Ω; Rn), C`(Ω; Mn),
and C`(Ω; Sn).

All the continuous extensions appearing in such spaces will be identified by
a bar. Thus for instance, we shall denote by f ∈ C0(Ω) and ∂αf ∈ C0(Ω), 1 ≤
|α| ≤ `, the continuous extensions to Ω of the functions f and ∂αf if f ∈
C`(Ω); similarly, we shall denote by ∂iΘ ∈ C0(Ω; Rn) and ∇Θ ∈ C0(Ω; Mn) the
continuous extensions to Ω of the fields ∂iΘ ∈ C0(Ω; Rn) and ∇Θ ∈ C0(Ω; Mn)
if Θ ∈ C1(Ω; Rn); etc.

Finally, we also define the set

C2(Ω; Sn
>) := {C ∈ C2(Ω; Sn); C(x) ∈ Sn

> for all x ∈ Ω}. 2

Remark. The above definition of the space C`(Ω) coincides with that given
in Adams [1, Definition 1.26] when the set Ω is bounded. 2
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Given a differentiable real-valued, vector-valued, or matrix-valued, function
of a single variable, its first-order derivative is indicated by a prime. Thus for
instance

γ′i(t) :=
dγi

dt
(t) and γ ′(t) :=

dγ

dt
(t), 0 ≤ t ≤ 1, if γ = (γi) ∈ C1([0, 1]; Rn),

Z′(t) :=
dZ

dt
(t), 0 ≤ t ≤ 1, if Z ∈ C1([0, 1]; Mn), etc.

Remark. Since the definition of C`-differentiability on a closed interval of R
is straightforward, the definition of vector-valued functions in a space such as
C1([0, 1]; Rn) does not require the consideration of continuous extensions from
]0, 1[ to [0, 1]. There is thus no inconsistency with the above definition of the
space C1(Ω) (see Definition 2.1), which is given for an open set Ω in Rn with
n ≥ 2. 2

Let Ω be a connected open subset of Rn. Given two points x, y ∈ Ω, a path
joining x to y in Ω is any mapping γ ∈ C1([0, 1]; Rn) that satisfies γ(t) ∈ Ω
for all t ∈ [0, 1] and γ(0) = x and γ(1) = y. Note that there always exist such
paths. Given a path γ joining x to y in Ω, its length is defined by

L(γ) :=
∫ 1

0
|γ ′(t)|dt.

Let Ω be a connected open subset of Rn. The geodesic distance in Ω between
two points x, y ∈ Ω is defined by

dΩ(x, y) = inf{L(γ);γ is a path joining x to y in Ω}.

Most results of this paper will be established under a specific, but mild,
regularity assumption on the boundary of an open subset of Rn, according to
the following definition:

Definition 2.2 An open subset Ω of Rn satisfies the geodesic property if it
is connected and, given any point x0 ∈ ∂Ω and any ε > 0, there exists δ =
δ(x0, ε) > 0 such that

dΩ(x, y) < ε for all x, y ∈ Ω ∩B(x0; δ). 2

Remarks. (1) Replacing “given any point x0 ∈ ∂Ω” by “given any point
x0 ∈ Ω” does not alter this definition.

(2) Any connected open subset of Rn with a Lipschitz-continuous boundary,
in the sense of Adams [1, Definition 4.5] or Nečas [23, pp. 14–15] satisfies the
geodesic property.
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(3) Let I = {(x1, x2) ∈ R2; 0 ≤ x1 ≤ 1, x2 = 0}. Then R2 − I is an
instance of a connected open subset of R2 that does not satisfy the geodesic
property. 2

Let Ω be a connected open subset of Rn. The geodesic diameter of Ω is
defined by

DΩ := sup
x,y∈Ω

dΩ(x, y).

Note that DΩ = +∞ is not excluded. The following lemma gives a useful
characterization of boundedness in terms of the geodesic diameter.

Lemma 2.3 An open subset Ω of Rn that satisfies the geodesic property is
bounded if and only if DΩ < +∞.

PROOF. Clearly, Ω is bounded if DΩ < +∞. Before proving in (ii) that
DΩ < +∞ if Ω is bounded and satisfies the geodesic property, we establish in
(i) a useful property of the geodesic distance, which holds for any connected
open subset of Rn.

(i) Let Ω be a connected open subset of Rn. Then

dΩ(x, z) ≤ dΩ(x, y) + dΩ(y, z) for all x, y, z ∈ Ω.

Let x, y, z ∈ Ω and ε > 0 be given. By definition of the geodesic distance,
there exist a path γ1 joining x to y in Ω and a path γ2 joining y to z in Ω
such that

L(γ1) ≤ dΩ(x, y) + ε and L(γ2) ≤ dΩ(y, z) + ε.

Define a mapping γ̃ ∈ [0, 1] → Rn by letting

γ̃(t) = γ1(2t) for 0 ≤ t ≤ 1

2
and γ̃(t) = γ2(2t− 1) for

1

2
< t ≤ 1.

Since y ∈ Ω and Ω is open, there exists an open ball with center y and

contained in Ω. By smoothing the mapping γ̃ around t =
1

2
, one can construct

a path γ joining x to z in Ω that satisfies

L(γ) ≤ L(γ1) + L(γ2) + ε ≤ dΩ(x, y) + dΩ(y, z) + 3ε.

Since dΩ(x, z) ≤ L(γ) and ε > 0 is arbitrary, the announced inequality holds.

(ii) Let Ω be a bounded open subset of Rn that satisfies the geodesic
property. Since the set Ω is compact, there exist finitely many open balls
Bj, 1 ≤ j ≤ J , with centers in the set Ω such that

dΩ(x, y) < 1 for all x, y ∈ Ω ∩Bj, 1 ≤ j ≤ J, and Ω ⊂
J⋃

j=1

Bj.
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For each j ∈ {1, . . . , J}, pick a point yj ∈ Ω ∩Bj.

Given any points x, y ∈ Ω, there exist p, q ∈ {1, . . . J} such that x ∈ Bp

and y ∈ Bq. The inequality established in (i) thus yields

dΩ(x, y) ≤ dΩ(x, yp) + dΩ(yp, yq) + dΩ(yq, y)

≤ 2 + max
p,q∈{1,...,J}

dΩ(yp, yq).

Hence DΩ = supx,y∈Ω dΩ(x, y) < +∞. 2

Remark. By (i), the function dΩ defines a distance on any connected open
subset Ω of Rn (the other properties of a distance clearly hold). 2

The next lemma records a well-known property of the mapping that asso-
ciates with any symmetric positive-definite matrix C its square root C1/2. Its
proof, recalled here for convenience, is found in, e.g., Gurtin [16, Sect. 3].

Lemma 2.4 Given any matrix C ∈ Sn
>, there exists a unique matrix C1/2 ∈

Sn
> such that (C1/2)2 = C, and the mapping

Φ : C ∈ Sn
> → Φ(C) = C1/2 ∈ Sn

>

defined in this fashion is of class C∞.

PROOF. The existence and uniqueness of C1/2 for any C ∈ Sn
> is well-known;

see, e.g., Ciarlet [6, Theorem 3.2-1].

Let ψ : Sn
> → Sn

> denote the inverse mapping of Φ, thus defined by ψ(B) =
B2 for all B ∈ Sn

>. Then the Fréchet derivative ψ′(B) ∈ L(Sn) of the mapping
ψ at each B ∈ Sn

>, which is defined by

ψ′(B)H = BH + HB for any H ∈ Sn,

is an isomorphism. To see this, let H ∈ Sn be such that ψ′(B)H = 0, let
pi, 1 ≤ i ≤ n, be a basis of Rn consisting of eigenvectors of B and let λi > 0
be the eigenvalue of B corresponding to pi. Then, for i = 1, 2, . . . , n,

ψ′(B)Hpi = BHpi + λiHpi = 0,

so that Hpi = 0, for otherwise Hpi would be an eigenvector of B correspond-
ing to the eigenvalue −λi < 0. Hence H = 0, which shows that ψ′(B) ∈ L(Sn)
is an isomorphism (the space Sn is finite-dimensional).
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Since the mapping ψ : Sn
> → Sn

> is of class C∞, its inverse mapping Φ :
Sn

> → Sn
> is thus also of class C∞ by the inverse function theorem (see, e.g.,

Dieudonné [14, Theorem 10.2.5]). 2

We conclude this section by a useful estimate.

Lemma 2.5 Let there be given matrix fields A,B ∈ C0([0, 1],Mn) and Z ∈
C1([0, 1]; Mn) that satisfy

Z′(t) = Z(t)A(t) + B(t), 0 ≤ t ≤ 1.

Then

|Z(t)| ≤ |Z(0)| exp
( ∫ t

0
|A(τ)|dτ

)
+

∫ t

0
|B(s)| exp

( ∫ t

s
|A(τ)|dτ

)
ds, 0 ≤ t ≤ 1.

PROOF. Since

|Z′(t)| ≤ |Z(t)||A(t)|+ |B(t)|, 0 ≤ t ≤ 1,

it suffices to apply Gronwall’s lemma for vector fields (see, e.g., Schatzman
[25, Lemma 15.2.6]). 2

3 Recovery of a manifold with boundary from a prescribed metric
tensor

Let a Riemannian metric (gij) ∈ C2(Ω; Sn
>) be given over an open subset Ω

of Rn. The Christoffel symbols of the second kind associated with this metric
are then defined by

Γk
ij :=

1

2
gk`(∂igj` + ∂jg`i − ∂`gij), where (gk`) := (gij)

−1,

and the mixed components Rp
·ijk ∈ C0(Ω) of its Riemann curvature tensor are

defined by

Rp
·ijk := ∂jΓ

p
ik − ∂kΓ

p
ij + Γ`

ikΓ
p
j` − Γ`

ijΓ
p
k`.

If this tensor vanishes in Ω and Ω is simply-connected, a classical result in
differential geometry asserts that (gij) is the metric tensor field of a manifold
Θ(Ω) that is isometrically immersed in Rn and, if Ω is connected, such a
manifold is unique up to isometries in Rn. More precisely, we have (see, e.g.,
Malliavin [20], or Ciarlet & Larsonneur [8, Theorem 2] for an elementary and
self-contained proof):
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Theorem 3.1 Let Ω be a connected and simply-connected open subset of Rn.
Let a matrix field C = (gij) ∈ C2(Ω; Sn

>) be given that satisfies

Rp
·ijk = 0 in Ω.

Then there exists an immersion Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω.

If an immersion Φ ∈ C3(Ω; Rn) satisfies

∇Φ(x)T ∇Φ(x) = C(x) for all x ∈ Ω,

then there exist a vector a ∈ Rn and a matrix Q ∈ On such that

Φ(x) = a + QΘ(x) for all x ∈ Ω. 2

Remark. The existence of immersions Θ satisfying ∇Θ(x)T ∇Θ(x) = C(x)
for all x ∈ Ω holds under weaker regularity assumptions on the matrix field
C; see C. Mardare [21] and S. Mardare [22]. Likewise, their uniqueness up
to isometries in Rn still holds under weaker regularity assumptions on the
mappings Θ and Φ; see Ciarlet & Larsonneur [8, Theorem 3] and Ciarlet &
Mardare [10, Theorem 1]. 2

While the immersions Θ found in Theorem 3.1 are only defined up to
isometries in Rn, they become uniquely determined if they are required to
satisfy ad hoc additional conditions, according to the following corollary to
Theorem 3.1.

Corollary 3.2 Let the assumptions on the set Ω and on the matrix field C
be as in Theorem 3.1 and let a point x0 ∈ Ω be given. Then there exists one
and only one immersion Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω,

Θ(x0) = 0 and ∇Θ(x0) = C(x0)
1/2.

PROOF. Given any immersion Φ ∈ C3(Ω; R3) that satisfies ∇Φ(x)T ∇Φ(x) =
C(x) for all x ∈ Ω (such immersions exist by Theorem 3.1), let the mapping
Θ : Ω → Rn be defined by

Θ(x) := C(x0)
1/2∇Φ(x0)

−1(Φ(x)−Φ(x0)) for all x ∈ Ω.

Then it is immediately verified that this mapping Θ satisfies the announced
properties.
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Besides, it is uniquely determined. To see this, let Θ ∈ C3(Ω; Rn) and
Φ ∈ C3(Ω; Rn) be two immersions that satisfy

∇Θ(x)T ∇Θ(x) = ∇Φ(x)T ∇Φ(x) for all x ∈ Ω.

Hence there exist (again by Theorem 3.1) a ∈ Rn and Q ∈ On such that
Φ(x) = a + QΘ(x) for all x ∈ Ω; hence ∇Φ(x) = Q∇Θ(x) for all x ∈ Ω.
The relation ∇Θ(x0) = ∇Φ(x0) then implies that Q = I and the relation
Θ(x0) = Φ(x0) in turn implies that a = 0. 2

Remark. In fact, any additional conditions of the form Θ(x0) = a0 and
∇Θ(x0) = F0, where a0 is any vector in Rn and F0 is any matrix in Mn that
satisfies FT

0 F0 = C(x0), likewise imply the uniqueness of the mapping Θ. The
particular choice F0 = C(x0)

1/2 made here insures that the associated mapping
C(x0) ∈ Sn

> → F0 ∈ Mn is smooth (cf. Lemma 2.4), a property that will be
used later on. Another choice for the matrix F0 that fulfills the same criterion
is the upper triangular matrix that arises in the Cholesky factorization of the
matrix C(x0). 2

The first objective of this paper is to establish (cf. the next theorem) that a
manifold with boundary, i.e., a subset of Rn of the form Θ(Ω), can be likewise
recovered from a metric tensor field that, together with some partial deriva-
tives, can be continuously extended to the closure Ω. In other words, we now
extend the above existence and uniqueness results “up to the boundary”.

In what follows, sets such as C3(Ω; Rn) or C2(Ω; Sn
>) and extensions such as

∇Θ or C are meant according to Definition 2.1 and the “geodesic property”
is that of Definition 2.2.

Theorem 3.3 Let Ω be a simply-connected open subset of Rn that satisfies
the geodesic property. Let there be given a matrix field C = (gij) ∈ C2(Ω; Sn

>)
that satisfies

Rp
·ijk = 0 in Ω.

Then there exists a mapping Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω.

If Φ ∈ C3(Ω; Rn) satisfies

∇Φ(x)T ∇Φ(x) = C(x) for all x ∈ Ω,

then there exist a vector a ∈ Rn and a matrix Q ∈ On such that

Φ(x) = a + QΘ(x) for all x ∈ Ω.
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PROOF. The proof is broken into five steps, numbered (i) to (v).

(i) Preliminaries. Given any mapping Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω

(such mappings exist by Theorem 3.1), we must show that Θ ∈ C3(Ω; Rn),
i.e., that the vector fields Θ ∈ C0(Ω; Rn) and ∂αΘ ∈ C0(Ω; Rn), 1 ≤ |α| ≤ 3,
admit continuous extensions on Ω. To begin with, let

F(x) := ∇Θ(x) ∈ Mn and Γi(x) := (Γk
ij(x)) ∈ Mn for all x ∈ Ω,

with k as the row index and j as the column index. Then an immediate
computation shows that the matrix fields F ∈ C2(Ω; Mn) and Γi ∈ C1(Ω; Mn)
defined in this fashion satisfy

∂iF(x) = F(x)Γi(x) for all x ∈ Ω.

The assumption (gij) ∈ C2(Ω; Sn
>) implies that det(gij(x)) > 0 for all x ∈ Ω.

Hence the expressions of the functions gk` ∈ C0(Ω) and ∂αgk` ∈ C0(Ω), 1 ≤
|α| ≤ 2, as rational fractions of the functions gij and their derivatives, show
that (gk`) ∈ C2(Ω; Sn

>). Consequently, the definition of the Christoffel symbols
Γk

ij implies that they belong to the space C1(Ω) or equivalently, that the matrix

fields Γi belong to the space C1(Ω; Mn).

(ii) Let K be any compact subset of Rn. Then supx∈K∩Ω |F(x)| <∞.

For any x ∈ Ω,

|F(x)|2 = |F(x)TF(x)|1/2 = |C(x)|1/2.

Hence
sup

x∈K∩Ω
|F(x)|2 = sup

x∈K∩Ω

|C(x)| < +∞,

since the function gii belongs to the space C0(Ω) by assumption.

(iii) The matrix field F ∈ C2(Ω; Mn) belongs to the space C2(Ω; Mn).

Fix a point x0 ∈ ∂Ω and let K0 = B(x0; 1). Then the properties established
in (i) and (ii) together imply that

c0 :=
(

sup
x∈K0∩Ω

|F(x)|
)(

sup
x∈K0∩Ω

( ∑
i

|Γi(x)|2
)1/2

)
< +∞.

Let ε > 0 be given. Because Ω satisfies the geodesic property, there exists
δ(ε) > 0 such that, given any two points x, y ∈ B(x0; δ(ε)) ∩Ω, there exists a

path γ = (γi) joining x to y in Ω whose length satisfies L(γ) ≤ ε

max{c0, 2}
.

13



To ensure that the set γ([0, 1]) is contained in the set K0, we assume, without

loss of generality, that ε ≤ 1 and δ(ε) ≤ 1

2
.

Since ∂iF(x) = F(x)Γi(x) for all x ∈ Ω by part (i), the matrix field Y :=
F ◦ γ ∈ C1([0, 1]; Mn) associated with any such path γ satisfies

Y′(t) = γ′i(t)Y(t)Γi(γ(t)) for all 0 ≤ t ≤ 1.

Expressing that Y(1) = Y(0) +
∫ 1
0 Y′(t) dt, we thus have, for any two points

x, y ∈ B(x0; δ(ε)) ∩ Ω,

|F(y)− F(x)| = |Y(1)−Y(0)| ≤
(

sup
0≤t≤1

|F(γ(t))|
) ∫ 1

0
|γ′i(t)||Γi(γ(t))|dt

≤
(

sup
x∈K0∩Ω

|F(x)|
)(

sup
x∈K0∩Ω

( ∑
i

|Γi(x)|2
)1/2

)
L(γ) ≤ ε.

Let (xm)m≥1 be any sequence of points xm ∈ Ω such that limm→∞ xm = x0.
Since, for any ε > 0, there exists m0(ε) such that xm ∈ B(x0; δ(ε)) for all m ≥
m0(ε), the last inequality shows that the sequence (F(xm))m≥1 is a Cauchy
sequence. Hence limm→∞ F(xm) exists and this limit is clearly independent
of the sequence (xm)m≥1. This shows that the field F ∈ C2(Ω; Mn) can be
extended to a field that is continuous on Ω.

Since ∂iF = FΓi in Ω and the fields Γi belong to the space C1(Ω; Mn)
by part (i), each field ∂iF ∈ C1(Ω; Mn) can be extended to a field that is
continuous on Ω; hence F ∈ C1(Ω; Mn). Differentiating the relations ∂iF = FΓi

in Ω further shows that F ∈ C2(Ω; Mn).

(iv) The vector field Θ ∈ C3(Ω; Rn) belongs to the space C3(Ω; Rn).

Given x0 ∈ ∂Ω, we proceed as in (iii), the number δ(ε) > 0 being now

chosen in such a way that L(γ) ≤ ε

max{c1, 2}
, where

c1 :=
1√
n

(
sup

x∈K0∩Ω
|F(x)|

)−1

<∞.

Again without loss of generality, we assume that ε ≤ 1 and δ(ε) ≤ 1

2
.

For each x ∈ Ω, let gi(x) denote the i-th column vector of the matrix F(x).
The relations ∂iΘ(x) = gi(x) for all x ∈ Ω then imply that the vector field
y := Θ ◦ γ ∈ C1([0, 1]; Rn) associated with each such path γ joining x to y in
Ω satisfies

y′(t) = γ′i(t)gi(γ(t)) for all 0 ≤ t ≤ 1,
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so that, for any two points x, y ∈ B(x0; δ(ε)) ∩ Ω,

|Θ(y)−Θ(x)| = |y(1)− y(0)| ≤
∫ 1

0
|γ′i(t)gi(γ(t))|dt

≤ L(γ) sup
x∈K0∩Ω

( ∑
i

|gi(x)|2
)1/2

≤
√
nL(γ) sup

x∈K0∩Ω
|F(x)| ≤ ε.

Arguing as in (iii), we thus conclude that the field Θ ∈ C0(Ω; Rn) can be
extended to a field that is continuous on Ω.

Noting that gi ∈ C2(Ω; Rn) by (iii) and differentiating the relations ∂iΘ =
gi in Ω, we finally conclude that the fields ∂αΘ ∈ C0(Ω), 1 ≤ |α| ≤ 3, can be
extended to fields that are continuous on Ω. Hence Θ ∈ C3(Ω; Rn).

(v) Uniqueness up to isometries in Rn. If Φ ∈ C3(Ω; Rn) satisfies

∇Φ(x)T ∇Φ(x) = C(x) for all x ∈ Ω,

then by Theorem 3.1, there exist a ∈ Rn and Q ∈ On such that

Φ(x) = a + QΘ(x) for all x ∈ Ω.

Consequently, the continuous extensions Φ and Θ satisfy

Φ(x) = a + QΘ(x) for all x ∈ Ω. 2

The existence and uniqueness result of Corollary 3.2 can be also extended
to the mappings Θ found in Theorem 3.3:

Corollary 3.4 Let the assumptions on the set Ω and on the matrix field C
be as in Theorem 3.3 and let a point x0 ∈ Ω be given. Then there exists one
and only one mapping Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω,

Θ(x0) = 0 and ∇Θ(x0) = C(x0)
1/2.

PROOF. The proof is a straightforward adaptation of that of Corollary 3.2
and, for this reason, is omitted. 2

As illustrated in the proof of Theorem 3.3 (and later in that of Theorem
5.2), the interest of the geodesic property introduced in Definition 2.2 is to
provide estimates on the solutions of ordinary differential equations along a
path joining two points in Ω that eventually depend only on the length of the
path, but not on the path itself.
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4 Extension of a Riemannian metric with vanishing curvature

The second objective of this paper is to provide sufficient conditions guaran-
teeing that a Riemannian metric (gij) ∈ C2(Ω; Sn

>) with a Riemann curvature
tensor vanishing in an open subset Ω of Rn can be extended to a Riemannian
metric (g̃ij) ∈ C2(Ω̃; Sn

>) on a connected open set Ω̃ containing Ω, in such a
way that the Riemann curvature tensor associated with this extension still
vanishes in Ω̃.

To this end, we begin by introducing another definition based on the geodesic
distance, which is stronger than that of Definition 2.2.

Definition 4.1 An open subset Ω of Rn satisfies the strong geodesic property
if it is connected and there exists a constant CΩ such that

dΩ(x, y) ≤ CΩ|x− y| for all x, y ∈ Ω,

where dΩ designates the geodesic distance in Ω (cf. Section 2). 2

Remarks. (1) Since |x− y| ≤ dΩ(x, y) for all x, y ∈ Ω, the geodesic distance
is thus equivalent to the Euclidean distance on an open set that satisfies the
strong geodesic property.

(2) The strong geodesic property clearly implies the geodesic property, but
not conversely; consider, e.g., a bounded open subset of R2 whose boundary
is a cardioid.

(3) Any connected open subset of Rn with a Lipschitz-continuous boundary
satisfies the strong geodesic property; for a proof, see, e.g., Proposition 5.1 in
Anicic, Le Dret & Raoult [2]. 2

The following theorem, which hinges in particular on a profound result of
Whitney [27] shows that, when an open set Ω satisfies the strong geodesic
property, the spaces C`(Ω) introduced in Definition 2.1 admit a remarkably
simple characterization.

Theorem 4.2 Let Ω be an open subset of Rn that satisfies the strong geodesic
property. Then for any integer ` ≥ 1, the space C`(Ω) of Definition 2.1 can be
also defined as

C`(Ω) = {f |Ω ∈ C`(Ω); f ∈ C`(Rn)}.

PROOF. For convenience, the proof is broken into four parts. Note that the
assumption that Ω satisfies the strong geodesic property is not needed until
part (iii).
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(i) To begin with, we list some notations used throughout this proof. Given
a multi-index α = (α1, α2, . . . , αn) ∈ Nn, we let

|α| :=
∑

i

αi and ∂α :=
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

if |α| ≥ 1,

as before; in addition, we also let

0 := (0, 0, . . . , 0) and ∂0f := f,

0! := 1 and α! := (α1!)(α2!) · · · (αn!).

If x = (xi) and y = (yi) are two points in Rn, we let

(y − x)0 := 1 and (y − x)α := (y1 − x1)
α1(y2 − x2)

α2 · · · (yn − xn)αn .

Concurrently with the multi-index notation ∂αf for partial derivatives and
depending on the context, we shall also use the notations

∂i1f :=
∂f

∂xi1

, ∂i1i2f :=
∂2f

∂xi1∂xi2

, . . . , ∂i1i2...imf :=
∂mf

∂xi1∂xi2 · · · ∂xim

,

with the understanding that, whenever a summation involves such indices
i1, i2, . . . , im, then they range in the set {1, 2, . . . , n} independently of each
other; thus for instance,

∂i1i2f(x)hi1hi2 =
n∑

i1=1

n∑
i2=1

∂2f

∂xi1∂xi2

(x)hi1hi2 .

(ii) Let Ω be a connected open subset of Rn, let x and y be two points in
Ω, let γ ∈ C1([0, 1]; Rn) be a path joining x to y in Ω, and let a function
f ∈ Cm(Ω), m ≥ 1, be given. Then

∣∣∣∣f(y)−
∑
|β|≤m

1

β!
∂βf(x)(y−x)β

∣∣∣ ≤ L(γ)m
{ ∑
|α|=m

1

α!
sup

z∈γ([0,1])

|∂αf(z)−∂αf(x)|2
}1/2

,

where L(γ) denotes the length of the path γ.

To give a flavor of the kind of computations involved, assume for instance
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that m = 2, in which case we may write

f(y)− f(x) = f(γ(1))− f(γ(0)) =
∫ 1

0
∂i1f(γ(t1))γ

′
i1
(t1)dt1

= ∂i1f(x)
∫ 1

0
γ′i1(t1)dt1 +

∫ 1

0
{∂i1f(γ(t1))− ∂i1f(x)}γ′i1(t1)dt1

= ∂i1f(x)
∫ 1

0
γ′i1(t1)dt1 +

∫ 1

0

(∫ t1

0
∂i1i2f(γ(t2))γ

′
i2
(t2)dt2

)
γ′i1(t1)dt1

= ∂i1f(x)
∫ 1

0
γ′i1(t1)dt1 + ∂i1i2f(x)

∫ 1

0

(∫ t1

0
γ′i2(t2)dt2

)
γ′i1(t1)dt1

+
∫ 1

0

(∫ t1

0
{∂i1i2f(γ(t2))− ∂i1i2f(x)}γ′i2(t2)dt2

)
γ′i1(t1)dt1.

Denoting by xi and yi the coordinates of the points x and y, we also have

∂i1f(x)
∫ t1

0
γ′i1(t1)dt1 =

1

1!
∂i1f(x)(yi1 − xi1),

∂i1i2f(x)
∫ 1

0

(∫ t1

0
γ′i2(t2)dt2

)
γ′i1(t1)dt1

= ∂i1i2f(x)
∫ 1

0
(γi2(t1)− γi2(0))[γi1(t1)− γi1(0)

′dt1

=
1

2
∂i1i2f(x)

∫ 1

0

[
(γi1(t1)− γi1(0))(γi2(t1)− γi2(0))

]′
dt1

=
1

2!
∂i1i2f(x)(yi1 − xi1)(yi2 − xi2),

so that the above relations together imply that, when m = 2,

f(y)−
{
f(x) +

1

1!
∂i1f(x)(yi1 − xi1) +

1

2!
∂i1i2f(x)(yi1 − xi1)(yi2 − xi2)

}

=
∫ 1

0

(∫ t1

0

{
∂i1i2f(γ(t2))− ∂i1i2f(x)

}
γ′i2(t2)dt2

)
γ′i1(t1)dt1.

When m ≥ 2, similar computations likewise lead to the identity:

f(y)−
{
f(x) +

1

1!
∂i1f(x)(yi1 − xi1) + · · ·

+
1

m!
∂i1...imf(x)(yi1 − xi1) · · · (yim − xim)

}

=
∫ 1

0

(
· · ·

( ∫ tm−2

0

( ∫ tm−1

0

{
∂i1···imf(γ(tm))− ∂i1···imf(γ(0))

}
× γ′im(tm)dtm

)
γ′im−1

(tm−1)dtm−1

)
· · ·

)
γ′i1(t1)dt1,
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which implies that∣∣∣∣f(y)−
∑
|β|≤m

1

β!
∂βf(x)(y − x)β

∣∣∣∣ ≤
≤

∫ 1

0
· · ·

(∫ tm−2

0

(∫ tm−1

0
Ci1...im|γ′im(tm)|dtm

)
|γ′im−1

(tm−1)|dtm−1

)
· · · dt1,

where

Ci1...im := sup
z∈γ([0,1])

|∂i1...imf(z)− ∂i1...imf(x)|.

We then observe that∫ tm−1

0
Ci1...im|γ′im(tm)|dtm ≤

∫ tm−1

0
Ci1...im−1|γ ′(tm)|dtm,

where

Ci1...im−1 :=
{ ∑

im

(Ci1...im)2
}1/2

and |γ ′(t)| =
{ ∑

im

|γ′im(tm)|2
}1/2

.

Continuing to similarly apply Cauchy-Schwarz inequalities, we eventually
find that

|f(y)−
∑
|β|≤m

1

β!
∂βf(x)(y − x)β|

≤ C
∫ 1

0
· · ·

(∫ tm−2

0

(∫ tm−1

0
|γ ′(tm)|dtm

)
|γ ′(tm−1)|dtm−1

)
· · · dt1,

where

C :=
{ ∑

i1

(Ci1)
2
}1/2

, Ci1 :=
{ ∑

i2

(Ci1i2)
2
}1/2

, . . . ,

Ci1···im−2 :=
{ ∑

im−1

(Ci1···im−1)
2
}1/2

.

On the one hand, we have

C =
{ ∑

i1···im
(Ci1···im)2

}1/2

=
{ ∑

i1···im
sup

z∈γ([0,1])

|∂i1···imf(z)− ∂i1···imf(x)|2
}1/2

= m!
∑

|α|=m

1

α!

{
sup

z∈γ([0,1])
|∂αf(z)− ∂αf(x)|2

}1/2

.

On the other hand, let

λ(t) :=
∫ t

0
|γ ′(τ)|dτ, 0 ≤ t ≤ 1,
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so that we may write∫ tm−1

0
|γ ′(tm)|dtm =

∫ tm−1

0
λ′(tm)dtm = λ(tm−1),∫ tm−2

0

(∫ tm−1

0
|γ ′(tm)|dtm

)
|γ ′(tm−1)|dtm−1

=
∫ tm−2

0
λ(tm−1)λ

′(tm−1)dtm−1 =
1

2!
(λ(tm−2))

2,

and so on, until we finally obtain∫ 1

0

(∫ t1

0
· · ·

(∫ tm−2

0

(∫ tm−1

0
|γ ′(tm)|dtm

)
|γ ′(tm−1)|dtm−1

)
· · ·

)
|γ ′(t1)|dt1

=
1

(m− 1)!

∫ 1

0
(λ(t1))

m−1λ′(t1)dt1 =
1

m!
λ(1)m =

1

m!
L(γ)m.

Hence the estimate announced in part (ii) is established. The next step consists
in getting rid of the dependence on the path γ in this estimate, thanks to the
strong geodesic property:

(iii) Let Ω be an open subset of Rn that satisfies the strong geodesic property
and let a function f ∈ Cm(Ω), m ≥ 1, be given, the space Cm(Ω) being that
of Definition 2.1. Then, given any point x0 ∈ Ω and any number ε > 0, there
exists δ = δ(x0, ε) such that

|f(y)−
∑
|β|≤m

1

β!
∂βf(x)(y − x)β| ≤ ε|y − x|m for all x, y ∈ Ω ∩B(x0; δ),

where f ∈ C0(Ω) and ∂βf ∈ C0(Ω), 1 ≤ |β| ≤ m, denote the continuous
extensions of the functions f ∈ C0(Ω) and ∂βf ∈ C0(Ω).

Given any point x0 ∈ Ω and any number ε > 0, there exists δ = δ(x0, ε)
such that{ ∑
|α|=m

1

α!
|∂αf(z)−∂αf(x)|2

}1/2

≤ ε

(2CΩ)m
for all x, z ∈ Ω∩B(x0; (1+4CΩ)δ)

since the extensions ∂αf, |α| = m, are locally uniformly continuous on Ω (the
constant CΩ is that appearing in Definition 4.1).

Given any points x, y ∈ Ω ∩ B(x0; δ), there exists a path γ joining x to y
in Ω whose length satisfies

L(γ) < 2dΩ(x, y) ≤ 2CΩ|x− y| ≤ 4CΩδ,

since Ω satisfies the strong geodesic property. Consequently, γ(z) ∈ B(x0; (1+
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4CΩ)δ) for all z ∈ γ([0, 1]), since

|z − x0| ≤ |z − x|+ |x− x0| ≤ L(γ) + δ < (1 + 4CΩ)δ.

The estimate established in part (ii) thus implies that

|f(y)−
∑
|β|≤m

1

β!
∂βf(x)(y − x)β| ≤ ε|y − x|m for all x, y ∈ Ω ∩B(x0; δ).

Given any points x, y ∈ Ω∩B(x0; δ), there exist points xk, yk ∈ Ω∩B(x0; δ)
such that xk → x and yk → x as k → ∞. From the continuity on Ω of the
extensions f and ∂αf, 1 ≤ |α| ≤ m, we thus infer that

∣∣∣f(y)−
∑
|β|≤m

∂βf(x)(y − x)β
∣∣∣ = lim

k→∞

∣∣∣f(yk)−
∑
|β|≤m

∂βf(xk)(yk − xk)β
∣∣∣

≤ ε lim
k→∞

|yk − xk|m = ε|y − x|m for all x, y ∈ Ω ∩B(x0; δ).

(iv) Let there be given a function f in the space C`(Ω), ` ≥ 1, according
to Definition 2.1. According to a deep result of Whitney [27], f is also the
restriction to Ω of a function in the space C`(Rn) if, for each multi-index α
satisfying 0 ≤ |α| ≤ `, there exist functions fα ∈ C0(Ω) with the following
property: For any points x, y ∈ Ω and any multi-index α satisfying 0 ≤ |α| ≤
`, let

Rα(y;x) := fα(y)−
∑

|β|≤`−|α|

1

β!
fα+β(x)(y − x)β.

Then, given any point x0 ∈ Ω and any number ε > 0, there exists δ = δ(x0, ε)
such that

|Rα(y;x)| ≤ ε|y − x|`−|α| for all x, y ∈ Ω ∩B(x0; δ) and 0 ≤ |α| ≤ `.

To verify that this is indeed the case, let x0 ∈ Ω and ε > 0 be given. Then
the estimate of part (iii) applied to each function ∂αf, 0 ≤ |α| ≤ `, shows
that there exists δα = δα(x0, ε) such that

∣∣∣∂αf(y)−
∑

|β|≤`−|α|

1

β!
∂β(∂αf)(x)(y − x)β

∣∣∣ ≤
≤ ε|y − x|`−|α| for all x, y ∈ Ω ∩B(x0; δα).

Since ∂β(∂αf)(x) = ∂β+αf(x) for all x ∈ Ω, it likewise follows that ∂β(∂αf)(x) =
∂β+αf(x) for all x ∈ Ω. Therefore Whitney’s theorem can be applied, with
fα := ∂αf and δ := min{δα; 0 ≤ |α| ≤ `}. 2
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Remarks. (1) The identity

f(y) = f(x) + · · ·+ 1

(m− 1)!
∂i1...im−1f(x)(yi1 − xi1) · · · (yim−1 − xim−1)

+
∫ 1

0
· · ·

( ∫ tm−2

0

( ∫ tm−1

0
∂i1...imf(γ(tm))γ′im(tm)dtm

)
γ′im−1

(tm−1)dtm−1

)
· · · dt1

established for any function f ∈ Cm(Ω) in the course of the proof of part (ii)
may be viewed as a Taylor formula along a path and, in the same vein, the
estimate likewise established in part (ii) may be viewed as a generalized mean-
value theorem along a path (it is easily verified that both formulas reduce to
standard ones when γ(t) = (1− t)x+ ty, 0 ≤ t ≤ 1).

(2) The following example, kindly communicated to us by Sorin Mardare,
shows that Theorem 4.2 no longer holds if Ω is only assumed to satisfy the
weaker geodesic property of Definition 2.2: Let Ω = {(x1, x2) ∈ R2;x2 <√
|x1|} and let the function f : Ω → R be defined for (x1, x2) ∈ Ω by

f(x1, x2) := (x2)
2 if x1 > 0 and x2 > 0, and by f(x1, x2) := 0 otherwise. Then

it is easily verified that the open and connected set Ω satisfies the geodesic
property but does not satisfy the strong geodesic property and that the func-
tion f belongs to the space C1(Ω) of Definition 2.1. A simple argument by
contradiction shows, however, that there is no function in the space C1(R2)
whose restriction to Ω would be the function f . 2

We are now in a position to prove the announced extension result. The
notations are the same as in Theorem 3.3.

Theorem 4.3 Let Ω be a simply-connected open subset of Rn that satisfies the
strong geodesic property and let there be given a matrix field (gij) ∈ C2(Ω; Sn

>)
that satisfies

Rp
·ijk = 0 in Ω.

Then there exist a connected open subset Ω̃ of Rn containing Ω and a matrix
field (g̃ij) ∈ C2(Ω̃; Sn

>) such that

g̃ij(x) = gij(x) for all x ∈ Ω and R̃p
·ijk = 0 in Ω̃,

where the functions R̃p
·ijk ∈ C0(Ω̃) denote the mixed components of the Rie-

mann curvature tensor associated with the field (g̃ij).

PROOF. Since Ω a fortiori satisfies the geodesic property and Ω is simply-
connected, there exists by Theorem 3.3 a mapping Θ ∈ C3(Ω; Rn) that satisfies

∂iΘ(x) · ∂jΘ(x) = gij(x) for all x ∈ Ω.

22



Since Ω satisfies the strong geodesic property, there in turn exists by Theorem
4.2 a mapping Θ̃ ∈ C3(Rn; Rn) that satisfies

Θ̃(x) = Θ(x) for all x ∈ Ω.

Let then
g̃ij(x) := ∂iΘ̃(x) · ∂jΘ̃(x) for all x ∈ Rn,

and define the set
U := {x ∈ Rn; (g̃ij(x)) ∈ Sn

>},
which is open in Rn and contains Ω (since g̃ij(x) = gij(x) for all x ∈ Ω).
Finally, define the set Ω̃ as the connected component of U that contains Ω;
hence the set Ω̃ is open and connected.

Furthermore, the mixed components R̃p
·ijk of the Riemann curvature tensor

associated with the field (g̃ij) are well defined in the set Ω̃ since the matrices
(g̃ij(x)) are by construction invertible for all x ∈ Ω̃ ⊂ U .

Because g̃ij(x) = ∂iΘ̃(x) · ∂jΘ̃(x) for all x ∈ Ω̃ and the restriction Θ̃|
Ω̃
∈

C3(Ω̃; Rn) is an immersion, the relations R̃p
·ijk = 0 in Ω̃ are simply the well-

known necessary conditions that a Riemannian metric induced by an immer-
sion satisfies. 2

5 Continuity of a manifold with boundary as a function of its met-
ric tensor

Let Ω be a connected and simply-connected open subset of Rn. Define the
set

C2
0(Ω; Sn

>) := {C = (gij) ∈ C2(Ω; Sn
>);Rp

·ijk = 0 in Ω},
and let a point x0 ∈ Ω be chosen once and for all. Then by Corollary 3.2,
there exists a well-defined mapping

F0 : C2
0(Ω; Sn

>) → C3(Ω; Rn)

that associates with any matrix field C = (gij) ∈ C2
0(Ω; Sn

>) the unique im-
mersion Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω,

Θ(x0) = 0 and ∇Θ(x0) = C(x0)
1/2.

A natural question then arises: Do there exist topologies on C2(Ω; Sn) and
C3(Ω; Rn) such that the mapping F0 is continuous? (it being understood that
the set C2

0(Ω; Sn
>) is equipped with the induced topology). In order to address
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this question in a proper manner, we first need to introduce further notions
and notations.

The relation K b Ω indicates that K is a compact subset of Ω. If Θ ∈
C`(Ω; Rn), ` ≥ 0, and K b Ω, let

‖Θ‖`,K := sup{
x∈K
|α|≤`

|∂αΘ(x)|.

For any integer ` ≥ 0, the space C`(Ω; Rn) becomes a locally convex topolog-
ical space when its topology is defined by the family of semi-norms ‖·‖`,K , K b
Ω, and a sequence (Θm)m≥0 converges to Θ with respect to this topology if
and only if limm→∞ ‖Θm−Θ‖`,K = 0 for all K b Ω. Furthermore, this topol-
ogy is metrizable: Let (Ki)i≥0 be any sequence of compact subsets of Ω such
that Ω =

⋃∞
i=0Ki and Ki ⊂ intKi+1 for all i ≥ 0. Then

lim
m→∞

‖Θm −Θ‖`,K = 0 for all K b Ω ⇔ lim
m→∞

d`(Θ
m,Θ) = 0,

where

d`(Φ,Θ) :=
∞∑
i=0

1

2i

‖Φ−Θ‖`,Ki

1 + ‖Φ−Θ‖`,Ki

.

For details, see, e.g., Yosida [28, Chapter 1].

The space C`(Ω; Sn) is equipped with the same distance d` once it has been

identified with the space C`(Ω; R
n(n+1)

2 ).

We now show that the continuity of the mapping F0 when the spaces
C2(Ω; Sn) and C3(Ω; Rn) are equipped with the above Fréchet topologies is a
simple consequence of a continuity result recently established by Ciarlet &
Laurent [9]. If d is a metric on a set X, the associated metric space is denoted
{X; d}.

Theorem 5.1 Let Ω be a connected and simply-connected open subset of Rn.
Then the mapping

F0 : {C2
0(Ω; Sn

>); d2} → {C3(Ω; Rn); d3}

is continuous.

PROOF. Since {C2
0(Ω; Sn

>); d2} and {C3(Ω; Rn); d3} are both metric spaces,
it suffices to show that convergent sequences are mapped through F0 into
convergent sequences. Let there be given matrix fields C ∈ C2

0(Ω; Sn
>) and

Cm ∈ C2
0(Ω; Sn

>), m ≥ 0, that satisfy limm→∞ d2(C
m,C) = 0, or equivalently,

such that
lim

m→∞
‖Cm −C‖2,K = 0 for all K b Ω.
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Let Θ := F0(C) so that, in particular, ∇ΘT ∇Θ = C in Ω. Then, by Theo-

rem 3 from Ciarlet & Laurent [9], there exist immersions Θ̃
m
∈ C3(Ω; Rn), m ≥

0, satisfying (∇Θ̃
m

)T ∇Θ̃
m

= Cm in Ω and

lim
m→∞

‖Θ̃
m
−Θ‖3,K = 0 for all K b Ω.

For each m ≥ 0, define the mapping Θm : Ω → Rn by

Θm(x) := Qm
0 (Θ̃

m
(x)− Θ̃

m
(x0)) for all x ∈ Ω,

where
Qm

0 := Cm(x0)
1/2∇Θ̃

m
(x0)

−1 ∈ On.

Then it is immediately verified that Θm = F0(C
m) for each m ≥ 1. Further-

more,
lim

m→∞
Θ̃

m
(x0) = 0 and lim

m→∞
Qm

0 = I,

since

Θ(x0) = 0, lim
m→∞

Cm(x0)
1/2 = C(x0)

1/2, lim
m→∞

∇Θ̃
m

(x0)
−1 = ∇Θ(x0)

−1.

Consequently, the relation

Θm(x)−Θ(x) =Qm
0 (Θ̃

m
(x)−Θ(x))

+ (Qm
0 − I)Θ(x)−Qm

0 Θ̃
m

(x0) for all x ∈ Ω

implies that

lim
m→∞

(
sup
x∈K

|Θm(x)−Θ(x)|
)

= 0 for all K b Ω,

and the relations

∂α(Θm −Θ)(x) =Qm
0 ∂

α(Θ̃
m

(x)−Θ(x))

+ (Qm
0 − I)∂αΘ(x) for all x ∈ Ω, 1 ≤ |α| ≤ 3,

combined with the invariance of the Euclidean norm under the action of the
orthogonal group, imply that

lim
m→∞

sup
x∈K

|∂α(Θm −Θ)(x)| = 0, 1 ≤ |α| ≤ 3, for all K b Ω.

Hence limm→∞ ‖Θm − Θ‖3,K = 0 for all K b Ω, and the proof is com-
plete. 2

Let now Ω be a simply-connected open subset of Rn that satisfies the
geodesic property (cf. Definition 2.2). Define the set

C2
0(Ω; Sn

>) := {C = (gij) ∈ C2(Ω; Sn
>);Rp

·ijk = 0 in Ω},
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and let again a point x0 ∈ Ω be chosen once and for all. Then by Corollary
3.4, there exists a well-defined mapping

F0 : C2
0(Ω; Sn

>) → C3(Ω; Rn)

that associates with any matrix field C ∈ C2
0(Ω; Sn

>) the unique mapping
Θ ∈ C3(Ω; Rn) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω,

Θ(x0) = 0 and ∇Θ(x0) = C(x0)
1/2.

If in addition the set Ω is bounded, the spaces C2(Ω; Sn) and C3(Ω; Rn),
endowed with their natural norms, become Banach spaces and thus in this
case the set C2

0(Ω; Sn
>) becomes a metric space when it is equipped with the

induced topology. So another natural question arises: Is the mapping F0 con-
tinuous when the set C2

0(Ω; Sn
>) and the space C3(Ω; Rn) are equipped with these

topologies?

The third objective of this paper is to provide the following affirmative
answer to this question. Note that, for this purpose, only the weaker notion
of “geodesic property” introduced in Definition 2.2 is needed.

Theorem 5.2 Let Ω be a simply-connected and bounded open subset of Rn

that satisfies the geodesic property, let the spaces C`(Ω; Mn) and C`(Ω; Rn), ` ≥
1, be equipped with their usual norms, defined by

‖F‖`,Ω = sup{
x∈Ω
|α|≤`

|∂αF(x)| for all F ∈ C`(Ω; Mn),

‖Θ‖`,Ω = sup{
x∈Ω
|α|≤`

|∂αΘ(x)| for all Θ ∈ C`(Ω; Rn),

and let the set C2
0(Ω; Sn

>) be equipped with the metric induced by the norm
‖·‖2,Ω. Then the mapping

F0 : C2
0(Ω; Sn

>) → C3(Ω; Rn)

is continuous. It is even locally Lipschitz-continuous over the set C2
0(Ω; Sn

>),

in the sense that, given any matrix field Ĉ ∈ C2
0(Ω; Sn

>), there exist constants

c(Ĉ) > 0 and δ(Ĉ) > 0 such that

‖Θ− Θ̃‖3,Ω ≤ c(Ĉ)‖C− C̃‖2,Ω for all C, C̃ ∈ C2
0(Ω; Sn

>) ∩B(Ĉ; δ(Ĉ)),

where Θ := F0(C), Θ̃ := F0(C̃), and B(Ĉ; δ(Ĉ)) denotes the open ball of
center Ĉ and radius δ(Ĉ) in the space C2(Ω; Sn).
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PROOF. The proof is broken into four steps, numbered (i) to (iv).

(i) Preliminaries. We recall that the image Θ = F0(C) ∈ C3(Ω; Rn) of
an arbitrary element C = (gij) ∈ C2

0(Ω; Sn
>) is constructed in the following

manner (see the proof of Theorem 3.3 and Corollary 3.4):

First, the matrix fields Γi = (Γk
ij) ∈ C1(Ω; Mn) are defined in Ω by letting

Γk
ij =

1

2
gk`(∂igj` + ∂jg`i − ∂`gij), where (gk`) = (gij)

−1,

and the matrix C(x0)
1/2 ∈ Sn

> is defined as the unique square root of the
matrix C(x0).

Second, the matrix field F ∈ C2(Ω; Mn) is defined as the unique one that
satisfies

∂iF(x) = F(x)Γi(x), x ∈ Ω, and F(x0) = C(x0)
1/2.

Third, the vector field Θ ∈ C3(Ω; Rn) is defined as the unique one that
satisfies

∇Θ(x) = F(x), x ∈ Ω, and Θ(x0) = 0.

Accordingly, our strategy will consist in establishing the local Lipschitz-
continuity of each one of the above factor mapping separately (a composite
mapping is locally Lipschitz-continuous if all its component mappings share
this property).

(ii) Given any matrix field Ĉ ∈ C2
0(Ω; Sn

>), there exist constants c1(Ĉ) > 0

and δ(Ĉ) > 0 such that

|C(x0)
1/2 − C̃(x0)

1/2|+ max
i
‖Γi − Γ̃i‖1,Ω ≤ c1(Ĉ)‖C− C̃‖2,Ω

for all matrix fields C, C̃ ∈ C2
0(Ω; Sn

>) ∩ B(Ĉ; δ(Ĉ)), where the matrix fields

Γ̃i = (Γ̃k
ij) ∈ C1(Ω; Mn) are defined in Ω by

Γ̃k
ij :=

1

2
g̃k`(∂ig̃j` + ∂j g̃`i − ∂`g̃ij), where (g̃ij) := C̃ and (g̃k`) := (g̃ij)

−1.

The following observations are used in the ensuing argument. Let X and
Y be normed vector spaces and let A be a subset of X. As exemplified in
the statement of the theorem, a mapping χ : A → Y is said to be locally
Lipschitz-continuous over A if, given any û ∈ A, there exist constants c(û) > 0
and δ(û) > 0 such that

‖χ(u)− χ(ũ)‖Y ≤ c(û)‖u− ũ‖X for all u, ũ ∈ A ∩B(û; δ(û)).

27



Let now U be an open subset of X. Then the mean-value theorem (for
a proof, see, e.g., Schwartz [26, Theorem 3.5.2]) asserts that any mapping
χ ∈ C1(U ;Y ) satisfies

‖χ(u)− χ(ũ)‖Y ≤ sup
v∈]u,ũ[

‖Dχ(v)‖L(X;Y )‖u− ũ‖X

for any u, ũ ∈ U such that the open segment ]u, ũ[ is contained in U , where
Dχ(v) ∈ L(X;Y ) denotes the Fréchet derivative of χ at v.

Consequently, a mapping χ ∈ C1(U ;Y ) is locally Lipschitz-continuous over
the open set U (hence a fortiori over any subset of U) if at least one of the
following additional hypotheses is satisfied: The mapping χ is the restriction
to U of a continuous linear mapping from X into Y ; or the space X is finite-
dimensional; or, given any û ∈ U , there exists δ(û) > 0 such that

sup
v∈B(û;δ(û))

‖Dχ(v)‖L(X;Y ) < +∞.

We now apply these observations to the present situation. To begin with,
notice that it makes sense to study the differentiability of mappings defined
over the set C2(Ω; Sn

>), because this set is open in the Banach space C2(Ω; Sn).

Since the mapping C ∈ C2(Ω; Sn) → C(x0) ∈ Sn is linear and continuous,
hence of class C∞, and since the mapping C ∈ Sn

> → C1/2 ∈ Sn
> is of class C∞

(cf. Lemma 2.4), the mapping

C ∈ C2(Ω; Sn
>) → C(x0)

1/2 ∈ Sn
>

is also of class C∞. Hence it is locally Lipschitz-continuous since the space Sn

is finite-dimensional.

Consider next any one of the mappings C ∈ C2(Ω; Sn
>) → Γk

ij ∈ C1(Ω).
First, each linear mapping

C = (gij) ∈ C2(Ω; Sn
>) → (∂igj` + ∂jg`i − ∂`gij) ∈ C1(Ω)

is clearly continuous, hence of class C∞. Second, each function gk` is a quotient
by det(gij) of a homogeneous polynomial hk`((gij)) of degree (n− 1) in terms
of the functions gij, and each mapping

(gij) ∈ C2(Ω; Sn
>) →

( (
hk`((gij))

)
, det(gij)

)
∈ (C2(Ω))n2+1

is of class C∞ since each one of its components is a sum of continuous multi-
linear mappings. Since

det(gij) ∈ U := {f ∈ C2(Ω); f(x) > 0 for all x ∈ Ω},
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it suffices to establish that the mapping

ϕ : f : U ⊂ C2(Ω) → 1

f
∈ C2(Ω)

is of class C∞ (again, this question makes sense since the set U is open in
C2(Ω)).

To this end, we remark that the mapping ψ : U × U ⊂ C2(Ω) × C2(Ω) →
C2(Ω) defined by ψ(f, g) = fg for all (f, g) ∈ U × U is of class C∞ since it
is bilinear and continuous and that, at any point (f, g) ∈ U × U , its Fréchet

partial derivative A :=
∂ψ

∂g
(f, g) ∈ L(C2(Ω); C2(Ω)), which is given by Ah = fh

for all h ∈ C2(Ω), is an isomorphism (this property readily follows from the
fact that f ∈ U).

Observing that the above mapping ϕ is simply the implicit function that
satisfies the equation ψ(f, ϕ(f)) = 1 for all f ∈ U , we conclude from the im-
plicit function theorem (see, e.g., Dieudonné [14, Theorems 10.2.1 and 10.2.3]
or Schwartz [26, Theorems 3.8.5 and 3.8.15]) that ϕ is indeed of class C∞.

Each mapping

χ : C ∈ C2(Ω; Sn
>) → χ(C) = Γk

ij ∈ C1(Ω)

being thus Fréchet differentiable (for brevity, the dependence with respect
to the indices i, j, k is dropped in the notation used for such a mapping), it
is an easy matter to compute the Gâteaux derivative Dχ(C)∆C ∈ C1(Ω)
corresponding to a variation ∆C = (∆gpq) ∈ C2(Ω; Sn) at C = (gij), viz., as
the linear part with respect to ∆C in the difference χ(C+∆C)−χ(C). It is
found in this fashion that Dχ(C)∆C is a sum of polynomials of degree (n−1)
in terms of the functions gij and of degree one in terms of the functions ∂kg`m,
times some component ∆gpq, and divided by deg(gij) or (det(gij))

2. Hence
given any two constants M > 0 and d > 0, there exists a constant c(M,d) > 0
such that

‖Dχ(C)‖L(C2(Ω;Sn);C1(Ω)) ≤ c(M,d)

for any matrix field C ∈ C2(Ω; Sn
>) that satisfies

‖C‖2,Ω ≤M and detC(x) ≥ d for all x ∈ Ω.

We thus conclude that the mapping χ is locally Lipschitz-continuous. Hence
each mapping

C ∈ C2(Ω; Sn
>) → Γi = (Γk

ij) ∈ C1(Ω; Mn)

is also locally Lipschitz-continuous.
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Note that we have thus established at no extra cost that the mapping

C ∈ C2(Ω; Sn
>) → ((Γi),C(x0)

1/2) ∈ ((C1(Ω; Mn))n × Sn
>)

is of class C∞, even though we only needed the C1-differentiability in the above
argument.

(iii) The matrix fields Γi, Γ̃i ∈ C1(Ω; Mn) being defined in terms of the
matrix fields C, C̃ ∈ C2

0(Ω; Sn
>) as in (i), let the matrix fields F, F̃ ∈ C2(Ω; Mn)

satisfy

∂iF(x) = F(x)Γi(x) for all x ∈ Ω and F(x0) = C(x0)
1/2,

∂iF̃(x) = F̃(x)Γ̃i(x) for all x ∈ Ω and F̃(x0) = C̃(x0)
1/2,

F̃(x)T F̃(x) = C̃(x) for all x ∈ Ω.

Then, given any matrix field Ĉ ∈ C2
0(Ω; Sn

>), there exists a constant c2(Ĉ) > 0
such that

‖F− F̃‖2,Ω ≤ c2(Ĉ)
(
|C(x0)

1/2 − C̃(x0)
1/2|+ max

i
‖Γi − Γ̃i‖1,Ω

)
for all matrix fields C, C̃ ∈ C2

0(Ω; Sn
>) ∩ B(Ĉ; δ(Ĉ)), where δ(Ĉ) > 0 is the

constant found in (ii).

Since the open set Ω satisfies the geodesic property and is bounded, its
geodesic diameter DΩ is finite (cf. Lemma 2.3). By definition of DΩ, there
thus exists a constant Λ such that, given any x ∈ Ω, there exists a path γ
joining x0 to x whose length satisfies L(γ) ≤ Λ. Fix x ∈ Ω and consider such a
path γ = (γi). Then the matrix field Z := (F− F̃)◦γ ∈ C1([0, 1]; Mn) satisfies

Z′(t) = γ′i(t)Z(t)Γi(γ(t)) + γ′i(t)F̃(γ(t))(Γi(γ(t))− Γ̃i(γ(t))), 0 ≤ t ≤ 1,

so that, by Lemma 2.5,

|Z(1)| ≤ |Z(0)| exp
(∫ 1

0
|γ′i(τ)Γi(γ(τ))|dτ

)
+

∫ 1

0
|γ′i(s)F̃(γ(s))(Γi(γ(s))− Γ̃i(γ(s)))| exp

(∫ 1

s
|γ′i(τ)Γi(γ(τ))|dτ

)
ds.

We know from part (ii) that, for any C ∈ C2
0(Ω; Sn

>) ∩ B(Ĉ; δ(Ĉ)), the
associated matrix fields Γi ∈ C1(Ω; Mn) satisfy

max
i
‖Γi‖1,Ω ≤ c1(Ĉ)δ(Ĉ) + max

i
‖Γ̂i‖1,Ω =: a1(Ĉ).

Consequently,∫ 1

s
|γ′i(τ)Γi(γ(τ))|dt ≤

∫ 1

0

( ∑
i

|γ′i(τ)|2
)1/2( ∑

i

|Γi(γ(τ))|2
)1/2

dτ ≤
√
nΛa1(Ĉ)
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for any 0 ≤ s ≤ 1, and likewise,

∫ 1

0
|γ′i(s)F̃(γ(s))(Γi(γ(s))− Γ̃i(γ(s)))|ds

≤
√
nΛ

(
sup
x∈Ω

|F̃(x)|
)

max
i

sup
x∈Ω

|Γi(x)− Γ̃i(x)|.

The relation F̃T (x)F̃(x) = C̃(x) for all x ∈ Ω next implies that, for any
C̃ ∈ C2

0(Ω; Sn
>) ∩B(Ĉ; δ(Ĉ)),

sup
x∈Ω

|F̃(x)| ≤
(

sup
x∈Ω

|C̃(x)|
)1/2

≤
(
‖C̃‖2,Ω

)1/2

≤
(
δ(Ĉ) + ‖Ĉ‖

2,Ω̂

)1/2
=: a2(Ĉ).

Noting that Z(1) = (F − F̃)(x) and that Z(0) = C(x0)
1/2 − C̃(x0)

1/2, we
have thus shown that

sup
x∈Ω

|(F− F̃)(x)|

≤ exp(
√
nΛa1(Ĉ))

(
|C(x0)

1/2 − C̃(x0)
1/2|+

√
nΛa2(Ĉ) max

i
‖Γi − Γ̃i‖1,Ω

)
.

Finally, the relations

∂i(F− F̃) = (F− F̃)Γi + F̃(Γi − Γ̃i) in Ω

imply that

sup
x∈Ω

|∂i(F− F̃)(x)| ≤ a1(Ĉ) sup
x∈Ω

|(F− F̃)(x)|+ a2(Ĉ)‖Γi − Γ̃i‖1,Ω

and the relations

∂ij(F− F̃) = ∂j(F− F̃)Γi + (F− F̃)∂jΓi + F̃Γ̃i(Γi − Γ̃i) + F̃∂j(Γi − Γ̃i)

similarly imply that

sup
x∈Ω

|∂ij(F− F̃)(x)| ≤ a1(Ĉ)
(

sup
x∈Ω

|∂j(F− F̃)(x)|+ sup
x∈Ω

|(F− F̃)(x)|
)

+ a2(Ĉ)(1 + a1(Ĉ))‖Γi − Γ̃i‖1,Ω.

The last three inequalities combined thus produce the announced upper
bound for the norm ‖F− F̃‖2,Ω.

(iv) Let there be given matrix fields F, F̃ ∈ C2(Ω; Mn) and vector fields
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Θ, Θ̃ ∈ C3(Ω; Rn) that satisfy

∇Θ(x) = F(x) for all x ∈ Ω and Θ(x0) = 0,

∇Θ̃(x) = F̃(x) for all x ∈ Ω and Θ̃(x0) = 0.

Then there exists a constant c3 > 0 independent of these fields such that

‖Θ− Θ̃‖3,Ω ≤ c3‖F− F̃‖2,Ω.

Let gi(x) and g̃i(x) denote the i-th column vectors of the matrices F(x) and
F̃(x). Given any x ∈ Ω, there exists a path γ joining x0 to x with L(γ) ≤ Λ
(cf. (iii)). Fix x ∈ Ω and consider such a path γ = (γi). Then the vector field
z := (Θ− Θ̃) ◦ γ ∈ C1([0, 1]; Rn) satisfies

z′(t) = γ′i(t)
(
gi(γ(t))− g̃i(γ(t))

)
, 0 ≤ t ≤ 1.

Since

Θ(x)− Θ̃(x) = z(1) = z(1)− z(0) =
∫ 1

0
z′(t)dt,

we conclude that

|Θ(x)− Θ̃(x)| ≤
∫ 1

0
|γ′i(t)

(
gi(γ(t))− g̃i(γ(t))

)
|dt

≤ L(γ) sup
x∈Ω

( ∑
i

|(gi − g̃i)(x)|2
)1/2

≤
√
nΛ sup

x∈Ω
|(F− F̃)(x)| ≤

√
nΛ‖F− F̃‖2,Ω.

Since, in addition,

‖∂i(Θ− Θ̃)‖2,Ω = ‖gi − g̃i‖2,Ω ≤ ‖F− F̃‖2,Ω,

the announced upper bound on the norm ‖Θ − Θ̃‖3,Ω follows from the last
two inequalities. 2

Remarks. (1) Contrary to the proof of Theorem 3.3, which relied on the
existence theory on the open set Ω recalled in Theorem 3.1, that of Theorem
5.2 does not rely on the continuity, established in Theorem 5.1, of the mapping
F0 corresponding to matrix and vector fields defined on the open set Ω.

(2) Since C2
0(Ω; Sn

>) is not an open subset of the vector space C2
0(Ω; Sn),

the Fréchet differentiability of the mapping F0 cannot be defined in the usual
manner. Otherwise this would have been a convenient way of establishing that
F0 is pointwise Lipschitz-continuous. 2
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The mapping F0 whose continuity is established in Theorem 5.2 corre-
sponds to the situation covered by Corollary 3.4, i.e., where the vector fields
Θ = F0(C) ∈ C3(Ω; Rn) are required to satisfy the relations Θ(x0) = 0 and
∇Θ(x0) = C(x0)

1/2 at some fixed point x0 ∈ Ω. We conclude our study
of continuity by examining the case where the vector fields Θ are no longer
subjected to such requirements.

Let Ċ3(Ω; Rn) := C3(Ω; Rn)/R denote the quotient set of the space C3(Ω; Rn)
by the equivalence relation R, where (Φ,Θ) ∈ R means that there exist a vec-
tor a ∈ Rn and a matrix Q ∈ On such that Φ(x) = a + QΘ(x) for all x ∈ Ω.

If the open set Ω is simply-connected and satisfies the geodesic property,
Theorem 3.3 establishes the existence of a well-defined mapping

F : C2
0(Ω; Sn

>) → Ċ3(Ω; Rn)

that associates with any matrix field C ∈ C2
0(Ω; Sn

>) the equivalence class

Θ̇ ∈ Ċ3(Ω; Rn) of all vector fields Θ ∈ C3(Ω; Rn) that satisfy

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω.

When both sets C2
0(Ω; Sn

>) and Ċ3(Ω; Rn) are equipped with their natural
topologies, the continuity of the mapping F can be deduced from that of the
mapping F0, according to the following result.

Corollary 5.3 Let Ω be a simply-connected and bounded open subset of Rn

that satisfies the geodesic property, let the set C2
0(Ω; Rn

>) be equipped with the
metric induced by the norm ‖·‖2,Ω, and let the set Ċ3(Ω; Rn) be equipped with

the distance ḋ3 defined by

ḋ3(ψ̇, Θ̇) := inf{
κ∈ψ̇
χ∈Θ̇

‖κ− χ‖3,Ω for all ψ̇, Θ̇ ∈ Ċ3(Ω; Rn).

Then the mapping

F : C2
0(Ω; Sn

>) → Ċ3(Ω; Rn)

is locally Lipschitz-continuous.

PROOF. First, it is easily verified that the function ḋ3, which can be equiv-
alently defined by

ḋ3(ψ̇, Θ̇) = inf{
a∈Rn

Q∈On

‖ψ − (a + QΘ)‖3,Ω,
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is a bona fide distance on the set Ċ3(Ω; Rn). Next, given any matrix field
Ĉ ∈ C2

0(Ω; Sn
>), Theorem 5.2 shows that there exist constants c(Ĉ) > 0 and

δ(Ĉ) > 0 such that

‖F0(C)−F0(C̃)‖3,Ω ≤ c(Ĉ)‖C− C̃‖2,Ω

for all C, C̃ ∈ C2
0(Ω; Sn

>) ∩ B(Ĉ; δ(Ĉ)). Hence the conclusion follows from the
inequality

ḋ3(F(C),F(C̃)) ≤ ‖F0(C)−F0(C̃)‖3,Ω,

itself a consequence of the definition of the distance ḋ3. 2
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