
High-quality Shading and Lighting

for Hardware-accelerated Rendering

Der Technischen Fakultät der
Universiẗat Erlangen-N̈urnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Wolfgang Heidrich

Erlangen – 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24065487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Realistische Oberfl̈achen- und

Beleuchtungseffekte f̈ur die

hardware-beschleunigte Bildsynthese

Der Technischen Fakultät der
Universiẗat Erlangen-N̈urnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Wolfgang Heidrich

Erlangen – 1999

iv

Als Dissertation genehmigt von
der Technischen Fakult¨at der

Universität Erlangen-N¨urnberg

Tag der Einreichung: 8.2.1999
Tag der Promotion: 7.4.1999
Dekan: Prof. Dr. G. Herold
Berichterstatter: Prof. Dr. H.-P. Seidel

Prof. Dr. W. Straßer

v

Revision 1.1
Copyright c©1998, 1999, by Wolfgang Heidrich

All Rights Reserved
Alle Rechte vorbehalten

vi

Abstract

With fast 3D graphics becoming more and more available even on low end platforms, the focus
in developing new graphics hardware is beginning to shift towards higher quality rendering and
additional functionality instead of simply higher performance implementations of the traditional
graphics pipeline. On this search for improved quality it is important to identify a powerful set
of orthogonal features to be implemented in hardware, which can then be flexibly combined to
form new algorithms.

This dissertation introduces a set of new algorithms for high quality shading and lighting us-
ing computer graphics hardware. It is mostly concerned with algorithms for generating various
local shading and lighting effects and for visualizing global illumination solutions. In particular,
we discuss algorithms for shadows, bump mapping, alternative material models, mirror reflec-
tions and glossy reflections off curved surfaces, as well as more realistic lens systems and a
complex model for light sources.

In the course of developing these algorithms, we identify building blocks that are important
for future generations of graphics hardware. Some of these are established features of graphics
hardware used in a new, unexpected way, some are experimental features not yet widely used,
and some are completely new features that we propose. When introducing new functionality, we
make sure that it is orthogonal to existing stages in the graphics pipeline.

Thus, the contribution of this dissertation is twofold: on the one hand, it introduces a set of
new algorithms for realistic image synthesis using computer graphics hardware. These methods
are capable of providing image qualities similar to those of simple ray-tracers, but provide in-
teractive frame rates on contemporary graphics systems. On the other hand, this thesis identifies
and introduces features and building blocks that are important for realistic shading and lighting,
and thus contributes to the development of better graphics hardware in the future.

viii

Acknowledgments

The work presented in this thesis would not have been possible without the encouragement and
help offered by many people. In particular, I would like to thank my advisor, Professor Hans-
Peter Seidel and the external reader Professor Wolfgang Straßer for their interest in the work and
for their valuable comments. It was Professor Seidel who first awakened my interest in the field
of computer graphics, and encouraged and supported my research in this area.

Furthermore, I owe thanks to all my colleagues of the graphics group in Erlangen. It was a
lot of fun to work in this interesting and truly inspiring environment. I would especially like to
thank the Erlangen rendering group consisting of Hartmut Schirmacher, Marc Stamminger, and
in particular Philipp Slusallek for the many fruitful discussions we had. Furthermore, R¨udiger
Westermann and Peter-Pike Sloan contributed ideas to the shadow map algorithm, and Michael
F. Cohen contributed to the light filed based refraction algorithm.

Early versions of this thesis where proof-read by Katja Daubert, Michael McCool, Hartmut
Schirmacher, and Philipp Slusallek. Finally, I owe thanks to several graduate and undergraduate
students that helped with the implementation of some of the concepts and supporting tools. In al-
phabetical order, these are Stefan Brabec, Alexander Gering, Jan Kautz, Hendrik K¨uck, Hendrik
Lensch, Martin Rubick, Detlev Schiron, and Christian Vogelgsang.

Parts of this work were funded by the German Research Council through the collaborative re-
search centers #603 (Model-based Analysis and Synthesis of Complex Scenes and Sensor Data)
and #182 (Multiprocessor- and Networkconfigurations).

x

Contents

Abstract vii

Acknowledgments ix

Contents xi

List of Figures xv

List of Equations xvii

1 Introduction 1

1.1 Graphics Architectures. 2

1.2 Programming Interfaces. 5

1.3 Chapter Overview. 6

2 Radiometry and Photometry 9

2.1 Radiometry . 9

2.2 Photometry . 11

2.3 Bidirectional Reflection Distribution Functions. 13

2.3.1 Reflectance and Transmittance. 14

2.3.2 Physical Reflection and Transmission Properties of Materials. 14

2.4 Rendering Equation. 17

3 Related Work 19

3.1 Reflection Models. 19

3.1.1 Ambient and Diffuse Lighting. 20

3.1.2 Models by Phong and Blinn-Phong. 21

xii CONTENTS

3.1.3 Generalized Cosine Lobe Model. 22

3.1.4 Torrance-Sparrow Model. 22

3.1.5 Anisotropic Model by Banks. 24

3.2 Hardware and Multi-Pass Techniques. 24

3.2.1 Visualization of Global Illumination Solutions. 26

3.3 Light Fields . 26

3.3.1 Lumigraphs: Light Fields with Additional Geometry. 28

4 Rendering Pipeline 29

4.1 Geometry Processing. 30

4.2 Rasterization . 31

4.2.1 Multiple Textures. 32

4.3 Per-Fragment Operations. 32

4.4 Framebuffer and Pixel Transfer Operations. 33

4.5 Summary . 34

5 Local Illumination with Alternative Reflection Models 35

5.1 Isotropic Models . 36

5.2 Anisotropy . 39

5.3 Hardware Extensions for Alternative Lighting Models. 40

5.3.1 New Modes for Texture Coordinate Generation. 41

5.3.2 A Flexible Per-Vertex Lighting Model. 43

5.4 Discussion. 44

6 Shadows 47

6.1 Projected Geometry. 47

6.2 Shadow Volumes. 49

6.3 Shadow Maps. 50

6.3.1 Shadow Maps Using the Alpha Test. 51

6.4 Discussion. 52

7 Complex Light Sources 55

7.1 Simulating and Measuring Light Sources. 56

7.2 Reconstruction of Illumination from Light Fields. 57

CONTENTS xiii

7.2.1 High-quality Reference Solutions. 57

7.2.2 Hardware Reconstruction. 59

7.2.3 Other Material Models and Shadows. 61

7.3 Discussion. 62

8 Environment Mapping Techniques for Reflections and Refractions 65

8.1 Parameterizations for Environment Maps. 66

8.2 A View-independent Parameterization. 68

8.2.1 Lookups from Arbitrary Viewing Positions. 70

8.2.2 Implementation Using Graphics Hardware. 72

8.2.3 Mip-map Level Generation. 75

8.3 Visualizing Global Illumination with Environment Maps. 75

8.3.1 Generalized Mirror Reflections using a Fresnel Term. 77

8.3.2 Glossy Prefiltering of Environment Maps. 78

8.3.3 Refraction and Transmission. 80

8.4 Discussion. 81

9 Bump- and Normal Mapping 83

9.1 Local Blinn-Phong Illumination . 84

9.1.1 Anti-aliasing . 85

9.2 Other Reflection Models. 86

9.3 Environment Mapping . 87

9.4 Discussion. 88

10 Light Field-based Reflections and Refractions 91

10.1 Precomputed Light Fields. 93

10.2 Decoupling Illumination from Surface Geometry. 95

10.3 Discussion. 96

11 Lens Systems 99

11.1 Camera Models in Computer Graphics. 100

11.1.1 The Pinhole Model. 100

11.1.2 The Thin Lens Model. 101

11.1.3 Rendering Thin Lenses. 102

xiv CONTENTS

11.1.4 The Thick Lens Model. 103

11.1.5 The Geometric Lens Model. 103

11.2 An Image-Based Camera Model. 103

11.2.1 Approximating Lens Systems. 104

11.2.2 Hierarchical Subdivision. 106

11.2.3 Computing the Center of Projection. 108

11.3 Discussion. 108

12 Conclusions and Future Work 111

12.1 Suggestions for Future Graphics Hardware. 113

12.2 Conclusion . 115

Bibliography 117

German Parts 129

Contents 131

Introduction 135

Graphics Architectures. 136

Programming Interfaces. 140

Chapter Overview. 141

Conclusion and Future Work 143

Suggestions for Future Graphics Hardware. 145

Conclusion . 147

List of Figures

2.1 Luminous efficiency curve of the human eye. 12

2.2 Reflection and refraction on a planar surface. 15

2.3 Fresnel reflectance for a surface between glass and air. 17

3.1 Geometric entities for reflection models. 20

3.2 Shading normal for Banks’ anisotropic reflection model. 25

3.3 Light field geometry . 27

4.1 Rendering pipeline. 29

4.2 Multiple textures . 32

4.3 Possible paths for transferring pixel data. 33

4.4 Per-fragment operations including imaging subset and pixel textures. 34

5.1 Geometric entities for reflection models used in Chapter 5. 36

5.2 Results of renderings with the Torrance-Sparrow model. 39

5.3 Results of rendering with Banks’ anisotropic model. 41

5.4 A sampling based lighting model with two light sources. 43

6.1 Shadows with projected geometry. 48

6.2 Shadow volumes. 49

6.3 Shadow maps. 50

6.4 An engine block with and without shadows. 53

7.1 Geometry of a single light slab within a light field. 56

7.2 Clipping a light field grid cell. 58

7.3 A ray-traced image with a canned light source. 60

7.4 Canned light source rendering with graphics hardware. 62

xvi LIST OF FIGURES

8.1 Spherical environment map from the center of a colored cube. 67

8.2 The lookup process in a spherical environment map. 67

8.3 Reflection rays of an orthographic camera off a paraboloid. 69

8.4 Change of solid angle for several environment map parameterizations. 70

8.5 A parabolic environment map. 71

8.6 Two environment maps generated by ray-tracing and from a photograph. 74

8.7 Reflective objects with environment maps applied. 76

8.8 Adding a Fresnel term for mirror reflections and glossy prefiltering. 79

8.9 Limitations of refractions based on environment maps. 80

8.10 Rendering frosted glass with prefiltered environment maps. 81

9.1 Phong lit, normal mapped surfaces. 86

9.2 Combination of environment mapping and normal mapping. 88

10.1 Multi-pass reflections in planar and curved objects. 92

10.2 Light field rendering with decoupled geometry and illumination. 96

11.1 A pinhole camera. 100

11.2 The geometry of a thin lens system. 101

11.3 Rendering using the thin lens approximation. 102

11.4 Finding an approximate center of projection. 105

11.5 A comparison of the image-based lens model with distribution ray-tracing. . . . 106

11.6 Renderings with hierarchically subdivided image plane. 106

List of Equations

2.1 The bidirectional reflection distribution function. 13

2.2 The reflectance. 14

2.3 The law of energy conservation. 15

2.4 Helmholtz reciprocity. 15

2.5 The law of reflection . 16

2.6 Snell’s law for refraction. 16

2.7 Fresnel formulae for reflection. 16

2.8 Fresnel formulae for transmission. 16

2.9 Reflectance and transmittance according to Fresnel. 16

2.10 The rendering equation. 18

2.11 Local illumination by point light sources. 18

3.1 The ambient reflection model. 20

3.2 The diffuse reflection model. 20

3.3 The Phong reflection model. 21

3.4 The BRDF of the Phong reflection model. 21

3.5 The BRDF of the Blinn-Phong reflection model. 21

3.6 The cosine lobe model. 22

3.7 The cosine lobe model in a local coordinate frame. 22

3.8 The Torrance-Sparrow model. 22

3.9 The Fresnel term in the Torrance-Sparrow model. 23

3.10 The micro-facet distribution function. 23

3.11 Geometric shadowing and masking (Torrance-Sparrow). 23

3.12 Geometric shadowing and masking (Smith). 23

5.1 Torrance-Sparrow model revisited. 36

xviii LIST OF EQUATIONS

5.2 Matrices for the Fresnel term and the micro facet distribution. 38

5.3 Matrices for the geometry term. 38

5.4 The anisotropic model by Banks. 40

6.1 The affine transformation for mirrored geometry. 48

7.1 Illumination from a micro light. 57

7.2 Quadri-linear interpolation of radiance from a micro light. 58

7.3 The final radiance caused by a micro light. 59

7.4 Illumination from canned light sources as used by the hardware algorithm. . . . 60

8.1 The reflective paraboloid. 68

8.2 The solid angle covered by a pixel. 69

8.3 The change of solid angle per pixel with the viewing direction. 69

8.4 The reflected viewing ray in eye space. 71

8.5 The reflection vector in object space. 71

8.6 Reflected viewing rays of an orthographic camera in a parabolid. 72

8.7 The surface normal of the paraboloid from Equation 8.1. 72

8.8 Disambiguation of texture coordinates. 72

8.9 Transformation matrices for the reflection vector to form texture coordinates. . . 73

8.10 The projective part of the texture matrix. 73

8.11 The subtraction part of the texture matrix. 73

8.12 A scaling to map the texture coordinates into the range [0. . . 1] 73

8.13 Radiance caused by a diffuse reflection of the environment. 77

8.14 The Phong BRDF. 78

8.15 Illumination caused by a Phong reflection of the environment. 78

9.1 Bump mapping. 83

9.2 The normal of a bump mapped surface. 83

9.3 Phong illumination of a normal mapped surface. 85

9.4 Color matrices for the Phong illumination. 85

Chapter 1

Introduction

Interactive graphics is a field whose time has come. Until recently it was
an esoteric specialty involving expensive display hardware, substantial com-
puter resources, and idiosyncratic software. In the last few years, however,
it has benefited from the steady and sometimes even spectacular reduction
in the hardware price/performance ratio (e.g., personal computers with their
standard graphics terminals), and from the development of high-level, device-
independent graphics packages that help make graphics programming ratio-
nal and straightforward.

James Foley and Andries van Dam, Foreword toFundamentals of Interactive
Computer Graphics, 1982.

When this statement was written in the early 1980s, it characterized a situation where raster
graphics displays were quickly replacing the previously used vector displays, and the first graph-
ics standards like Core [GSPC79] and GKS [Encarnac¸ão80] were evolving. Although neither the
IBM PC nor the Apple Macintosh had been introduced at that time, framebuffer hardware was
getting cheaper, 2D line graphics was becoming available on relatively low-end systems, and
graphical user interfaces started to appear. The time for interactive graphics had indeed come.

About 15 years later, in the mid-1990s, a similar situation arose for 3D graphics. Personal
computers were starting to be able to render shaded, lit, and textured triangles at rates sufficient
for practical applications. Starting with games, but soon extending to business and engineering
applications, 3D graphics entered the mass market. Today, in 1999, hardly any computer is sold
without substantial 3D graphics hardware.

This success was again triggered by an enormous reduction of the price/performance ratio
on the one hand, and ade-factostandardization of programming interfaces (APIs) for graphics
hardware on the other hand.

2 Introduction

The reduction of the price/performance ratio is mostly due to two facts. Firstly, modern CPUs
are fast enough to perform much of the geometry processing in software. As a consequence,
dedicated geometry units are no longer required for low-end to mid-range systems. Secondly,
memory costs have dropped significantly throughout the last couple of years. This makes it
feasible to have significant amounts of dedicated framebuffer and texture memory tightly coupled
to the rasterization subsystem.

On the software side, thede-factostandard OpenGL has widely replaced proprietary libraries
such as Starbase (Hewlett Packard), Iris GL (Silicon Graphics), and XGL (Sun Microsystems).
This allows programmers to develop graphics applications that run on a wide variety of platforms,
and has reduced the development cost of these applications significantly. The topic of standards
for 3D libraries is discussed in more detail in Section1.2below.

Until recently, the major concern in the development of new graphics hardware has been
to increase the performance of the traditional rendering pipeline. Today, graphics accelerators
with a performance of several million textured, lit triangles per second are within reach even
for the low end. As a consequence, we see that the emphasis is beginning to shift away from
higher performance towards higher quality and an increased feature set that allows for the use of
hardware in a completely new class of graphics algorithms.

This dissertation introduces a set of new algorithms for high quality shading and lighting
using computer graphics hardware. In the course of developing these algorithms, we identify
building blocks that we deem important for future hardware generations. Some of these are
established features of graphics systems that are used in new, innovative ways, some are exper-
imental features that are not yet widely used, and some are completely new features that we
propose.

Thus, the contribution of this dissertation is twofold: on the one hand, it introduces a set of
new algorithms for realistic image synthesis using existing computer graphics hardware. These
methods are capable of providing image qualities similar to those of simple ray-tracers, but
provide interactive frame rates on contemporary graphics systems. On the other hand, this thesis
also identifies and introduces features and building blocks that are important for realistic shading
and lighting, and thus contributes to the development of better graphics hardware in the future.

1.1 Graphics Architectures

In order to discuss algorithms using graphics hardware and future extensions for this hardware,
it is useful to have a model for abstracting from a specific implementation. The standardization
process mentioned above has brought forward such an abstract model, the so-calledrendering
pipeline. The vast majority of graphics systems available today are based on this model, which
will be described in more detail in Chapter4. It has also been shown that the rendering pipeline is

1.1 Graphics Architectures 3

flexible enough to for allow new functionality to be added without breaking existing applications.

In recent years there has also been a lot of research on alternative graphics architectures. The
most important of these are:

Frameless Rendering:One of the drawbacks of the traditional interactive rendering systems
is that changes become only visible after the whole scene has been rendered. This is
particularly disturbing if the scene is too large to be rendered at interactive frame rates.
The corresponding delay between user interaction and visual feedback results in a feeling
of sickness (motion sickness), especially when used with immersive output devices such
as head mounted displays.

Frameless rendering [Bishop94] tries to overcome this problem by displaying partial re-
sults of the user interaction. Randomly chosen pixels on the screen are updated using the
most recent object- and eye positions. As a result, the image looks noisy or blurry directly
after a strong motion, but converges to the true image when the motion stops. Since each
user interaction is immediately visible through the update of a subset of the pixels, mo-
tion sickness is dramatically reduced. Initial studies seem to indicate that noisiness and
blurriness of the intermediate images are not so disturbing to the human visual system.

The major disadvantage of frameless rendering is the loss of coherence. Where traditional
graphics systems can use efficient scanline techniques to scan convert triangles, ray-casting
is virtually the only way to update randomly chosen pixels. Thus, it is to be expected that
more powerful hardware is required to achieve the same pixel fill rate than with traditional
hardware. Also, frameless rendering seems inappropriate for tasks where fine detail has to
be identified or tracked by the user. This detail will only be detectable when no motion has
occurred for a certain amount of time.

To date, no hardware implementation of frameless rendering is known. A software simu-
lation was used to evaluate the idea in [Bishop94].

Talisman: The Talisman project [Torborg96, Barkans97] is an initiative by Microsoft that is
tailored towards the low-end market. It differs from the conventional rendering pipeline
in two major ways. First of all, instead of traversing the scene database only once and
rendering each polygon no matter where it is located on the screen, Talisman subdivides
the framebuffer intotiles1 of 32×32 pixels. Each tile has a list of the geometry visible in it.
This list is generated as a preprocessing step to each frame. Due to this approach, special
purpose framebuffer RAM is saved since the depth buffer and other non-visible channels
such as the alpha channel can be shared across tiles. Considering the dropping prices for
memory, it is questionable how significant this advantage is.

1We use the term “tiles” instead of the originalchunksused in [Torborg96] in order to be consistent with other
literature describing similar approaches.

4 Introduction

The other major difference from traditional systems is the idea of reusing previously ren-
dered image parts for new frames. To this end, the scene is subdivided into independent
layers that can be depth sorted back to front. The layers are rendered independently and
composed to form the final image. When the viewpoint changes or objects move in sub-
sequent frames, some portion of the rendered layers can be re-used by applying 2D affine
transformations to the image layers. The actual geometry only has to be rerendered if the
error introduced by this approach exceeds a certain limit.

One difficulty in using the Talisman architecture is finding a good grouping of objects
into layers, and to reliably predict the error introduced by warping the images instead of
rerendering the geometry. Of course it is also important to avoid popping effects when
switching between warped and rendered representations. Some progress has been made
on these issues since the Talisman project was first presented [Lengyel97, Snyder98], but
several problems remain open. One of them is the question, what a programming interface
for this architecture should look like. None of the existing APIs seems suitable for this tiled
rendering approach without significant changes that would break existing applications. At
the moment, no implementation of the Talisman architecture is commercially available,
although Microsoft and other companies seem to be working on one.

PixelFlow: Perhaps the most exciting alternative to the standard rendering pipeline architecture
is the PixelFlow project [Molnar92, Eyles97], which is based on image composition. The
scene database is evenly split among a set of rendering boards containing both a geometry
processor and a rasterizer. In contrast to the Talisman project, this splitting can be arbitrary
and is not bound to depth sorted layers. Each of these boards renders a full resolution image
of its part of the scene database. Similar to the Talisman project, the framebuffer is split
into tiles of size128× 128 pixels. For each pixel in such a tile there exists a separate pixel
processor. These scan convert triangles in parallel in a SIMD fashion.

Each of the tiles is then composed with the corresponding tile of the previous rendering
board and handed to the next board in the row. The advantage of this approach is that the
bandwidth required between the rendering boards is independent of scene complexity, and
that the whole system scales well by adding additional rendering boards.

The most distinctive features of PixelFlow aredeferred shadingandprocedural shading.
While the normal rendering pipeline only computes the lighting of polygons at their ver-
tices, and then interpolates the color values, deferred shading interpolates normal vectors
and other information, and then performs the shading and lighting on a per-pixel basis.
Combined with procedural shaders, this allows for sophisticated, highly realistic surface
renderings. Some of the effects described in this thesis, such as bump- or shadow mapping
are, at least in principle, straightforward to implement on PixelFlow [Olano98].

There are, however, also downsides of the PixelFlow architecture. The deferred shading

1.2 Programming Interfaces 5

approach increases the required bandwidth. Furthermore, due to the composition architec-
ture and the tiling approach, latency is relatively high, so that motion sickness is an issue.
Anti-aliasing and transparency are difficult with this architecture, since shading happens
after the composition of the tiles from the different rendering boards. This means that
information about pixels behind partly transparent objects is no longer available at the
time of shading. Although there are ways of doing transparency and anti-aliasing, these
methods increase latency and reduce performance.

The final disadvantage, which PixelFlow shares with the other two architectures described
above, is the need to explicitly store a scene database on the graphics board. Not only does
this increase the memory requirements on the rendering boards, but it also introduces a
performance hit and increases latency for immediate mode rendering. Scenes that do not
fit into the memory on the graphics subsystem cannot be rendered at all. Due to the tiled
rendering approach, PixelFlow of course has similar problems to Talisman when it comes
to programming interfaces.

Despite these issues, PixelFlow represents an exciting architecture which is likely to in-
fluence future graphics systems. At the time of this writing, several prototype implemen-
tations of the PixelFlow architecture have been built by the University of North Carolina
at Chapel Hill and Hewlett Packard, but Hewlett Packard stopped the development of a
commercial product based on this architecture.

This discussion shows that, while alternative architectures are being developed, systems
based on the traditional rendering pipeline will dominate the available systems for some time
to come. It is therefore reasonable to extend the rendering pipeline with new features to increase
both realism and performance. The past has shown that this is possible without making incom-
patible changes, simply by adding new features at the appropriate stage of the pipeline. This
flexibility of the rendering pipeline together with its wide availability is also the reason why we
choose it as a basis for our discussions.

1.2 Programming Interfaces

Programming interfaces have played an important role in advancing interactive 3D computer
graphics. Although we will try to be as independent of a specific API as possible in the remainder
of this thesis, it seems appropriate to briefly mention some of the issues at this point.

The available APIs can be classified into three different categories. At the lowest level, there
are the so-calledimmediate modeAPIs, which act as a hardware abstraction layer, and often
provide only a very thin layer on top of the hardware. The next higher level, the so-calledretained
modeor scene graphAPIs, store the scene in the form of a directed acyclic graph (DAG). Finally,

6 Introduction

on the highest level we findlarge modelAPIs that deal with freeform surfaces such as NURBS
and subdivision surfaces. They perform polygon reduction and other optimizations such as view
frustum culling and occlusion culling.

For the purposes of this dissertation, scene graph and large model APIs are not of importance
since many of the issues we discuss here are directly related to the underlying hardware. In
the area of immediate mode APIs, a considerable amount of standardization has taken place in
recent years. In the workstation market and for professional applications on personal computers,
proprietary APIs such as Starbase (Hewlett Packard), Iris GL (Silicon Graphics), and XGL (Sun
Microsystems) have graduately been replaced by thede-factostandard OpenGL. At the same
time, the Direct 3D immediate mode API has been introduced by Microsoft, primarily for game
development.

Since both APIs are based on the assumption that the underlying hardware follows the con-
cepts of the rendering pipeline (see Chapter4), it is not surprising that the feature sets of the
newest versions of these APIs are very similar. Differences in functionality are not so much a
consequence of conceptual differences but of the differences in the perceived application domain.

This allows us to keep the discussion in the remaining chapters largely independent of a spe-
cific programming interface. Although the abstract system we use for our algorithms (Chapter4),
mostly follows the definition of OpenGL [Segal98], most of what is said is also true for other
immediate mode APIs. OpenGL is only chosen due to its open structure and the fact that it is
well specified and documented.

1.3 Chapter Overview

The remainder of this thesis is organized as follows. In Chapter2 we briefly review the physical
underpinnings of image synthesis. Chapter3 then discusses relevant previous work for the topics
covered in this dissertation, and Chapter4 defines the features a graphics system should have in
order to be used for the algorithms introduced in the remainder of this thesis.

We then discuss a series of effects that add to the realism of rendered images, and how
to achieve them. We start in Chapter5 with a description of techniques for using complex,
physically-based reflection models for local illumination with graphics hardware. In particu-
lar, we discuss anisotropic reflections and shaders based on the Torrance-Sparrow illumination
model.

This chapter is followed by a discussion of algorithms to add shadows in Chapter6. These
include projected geometry, shadow volumes, and shadow maps. We introduce a new shadow
map algorithm based on the hardware features laid out in Chapter4. Following this, we present
a light field-based model for representing complex light sources in Chapter7.

Reflections and refractions based on environment maps are the topic of Chapter8. This in-

1.3 Chapter Overview 7

cludes the development of a new parameterization for this kind of map, as well as prefiltering
techniques for simulating glossy reflections. These algorithms allow for the interactive visual-
ization of precomputed global illumination solutions for non-diffuse, curved objects.

In Chapter9 we then discuss bump maps and normal maps. We show how normal maps can
be combined with the techniques from Chapters5 and8.

This discussion is followed by Chapter10 on light field techniques for even more realistic
reflections and refractions than the ones presented in Chapter8. Image-based techniques are then
also applied to render realistic lens systems in Chapter11.

Finally, in Chapter12we conclude by summarizing the proposed extensions to the rendering
pipeline and discussing their effect on future rendering systems.

8 Introduction

Chapter 2

Radiometry and Photometry

The field ofimage synthesis, also calledrenderingis a field of transformation:
it turns the rules of geometry and physics into pictures that mean something
to people. To accomplish this feat, the person who writes the programs needs
to understand and weave together a rich variety of knowledge from math,
physics, art, psychology, physiology, and computer science. Thrown together,
these disciplines seem hardly related. Arranged and orchestrated by the cre-
ator of image synthesis programs, they become part of a cohesive, dynamic
whole. Like cooperative members of any complex group, these fields interact
in our minds in rich and stimulating ways.

Andrew S. Glassner, Foreword toPrinciples of Digital Image Synthesis, 1995.

Much of the work in computer graphics is based on results from other fields of research.
Although listing all these contributions would exceed the scope of this thesis, we will in the fol-
lowing review some of the basic results from physics and psychophysics that are elementary for
the methods discussed in the remaining chapters. More detailed discussions of these foundations
can be found in [Born93] and [Pedrotti93], while the specific applications for image synthesis
are discussed in [Hanrahan93] and [Glassner95].

2.1 Radiometry

Light is a form of electromagnetic radiation. As such, it can be interpreted both as a wave
containing electrical and magnetic components at different frequencies (wave optics), and as a
flow of particles, calledphotons, carrying the energy in certain quanta (particle optics).

10 Radiometry and Photometry

In the case of wave optics, the energy is carried by oscillating electrical and magnetic fields.
The oscillation directions for the electrical and the magnetic field are perpendicular to each other
and to the propagation direction of the light. Light that only consists of waves whose electrical
fields (and thus all magnetic fields) are aligned, is calledlinearly polarized, or simplypolarized.

In particle optics, the energy is carried in the form of photons moving at the speed of light.
Each photon has a certain amount of energy, depending on its frequency.

Wave and particle optics are largely complementary in that one can explain physical phe-
nomena the other cannot explain easily. In computer graphics, it is possible to abstract from both
wave and particle optics, and describe phenomena purely based on geometrical considerations
(geometricalor ray optics) most of the time. In order to explain the laws of geometrical optics,
however, results from wave and particle optics are necessary. For a derivation of these laws and
a detailed discussion of optics in general, see [Born93] or [Pedrotti93].

Radiometryis the science that deals with measurements of light and other forms of electro-
magnetic radiation. The most important quantities in this field are also required for understanding
the principles of digital image synthesis. These are

Radiant Energy is the energy transported by light. It is denoted byQ, and measured injoules
[J = Ws = kg m2/s2]. Radiant energy is a function of the number of photons and their
frequencies.

Radiant Flux or Radiant Power, denoted asΦ, is the power (energy per unit time) of the radi-
ation. It is measured inwatts[W].

Irradiance andRadiant Exitance are two forms offlux density. The irradianceE = dΦ/dA

represents the radiant fluxdΦ arriving at a surface of areadA, while the radiant exitance
B, which is often also calledradiosity in computer graphics, describes the flux per unit
arealeavinga surface. Both quantities are measured in[W/m2].

In wave optics, flux density is defined as the product of the electrical and the magnetic
fields (see [Pedrotti93] for details), and is therefore proportional to the product of their
amplitudes. Since the two fields induce each other, their amplitudes are linearly dependent.
As a consequence, flux density is proportional to the square of either amplitude.

Radiance is the flux per projected unit area and solid angle arriving at or leaving a point on
a surface:L(x, ~ω) = d2Φ/(cos θ dω dA), whereθ is the angle between the directionω
and the surface normal. Thus, radiance is measured in[W/m2 sr], wheresr stands for
steradian, the unit for solid angles.

The relationship between irradiance and incoming radiance is

E(x) =

∫
Ω(~n)

Li(x, ~ωi) cos θi dωi,

2.2 Photometry 11

whereΩ(~n) represents the hemisphere of incoming directions around the surface normal
~n. Li, the incoming radiance, is the radiance arriving at the surface pointx. A similar
equation holds for the relationship between exitance (radiosity) and the radianceLo leaving
the surface (outgoing radiance).

Radiance is a particularly important quantity in computer graphics, since it is constant
along a ray in empty space. Thus it is the quantity implicitly used by almost all rendering
systems including ray-tracers and interactive graphics systems.

Intensity. Point light sources, which assume that all the radiant energy is emitted from a single
point in 3-space, are a common model for light sources in computer graphics. Unfortu-
nately, radiance is not an appropriate quantity to specify the brightness of such a light
source, since it has a singularity at the position of the point light.

The intensityI is a quantity that does not have this singularity, and can therefore be used
for characterizing point lights. Intensity is defined as flux per solid angle (I = dΦ/dω).
Since a full sphere of directions has a solid angle of4π · sr, an isotropic point light (a light
source that emits the same amount of light in each direction) has intensityI = Φ/4π · sr.

Radiant Exposure is the integral of irradiance over time, and is measured in[W s/m2]. An-
other way to understand exposure is to see it as radiant energy per unit area. The response
of a piece of film is a function of the exposure it was subject to.

All of the above quantities can, and, in general will, additionally vary with the wavelength of
light. For example, thespectral radiant energyQλ is given asdQ/dλ, and its units are conse-
quently[J/m], while spectral radianceLλ := dL/dλ is measured in[W/m3 sr].

Although wavelength dependent effects can be prominent, most rendering systems, and, in
particular, graphics accelerators, do not deal with spectral quantities due to the high computa-
tional and storage costs this would impose. For the same reason the discussion in this thesis will
also largely ignore spectral effects.

2.2 Photometry

In contrast to radiometry, which is a physical discipline, photometry is thepsychophysicalfield
of measuring the visual sensation caused by electromagnetic radiation. The sensitivity of the
human eye to light is a function of the wavelength. This function, which is called theluminous
efficiencyof the eye, is depicted in Figure2.1. It shows the relative perceived brightness of light
with the same power at different frequencies.

The curve shows that the human eye is most sensitive for light at a wavelength of approxi-
mately555 nm. The sensitivity for red light is only about40% of the sensitivity for green, while

12 Radiometry and Photometry

0

0.2

0.4

0.6

0.8

1

350 400 450 500 550 600 650 700 750

luminous
efficiency

[lm
W

]

wavelength [nm]

Luminous Efficiency of the Human Eye

blue

green

red

Figure 2.1: The luminous efficiency curve of the human eye. The visible spectrum lies between
approximately380 nm (violet) and770 nm (red). The maximum is at555 nm (green).

for blue it is even lower (approximately8%). The exact numbers, of course, depend on the fre-
quencies assumed for red, green, and blue, which in turn depend on the specific application. For
example for on-screen representations, the frequencies depend on the spectra of the phosphors
used in the CRT, and on the calibration of the display.

For each radiometric quantity, photometry also provides a quantity where the different light
frequencies are weighted by the luminous efficiency function. These quantities and their units
are listed below:

Luminous Flux is the flux weighted by the luminous efficiency function, and is measured in
lumens[lm].

Illuminance andLuminosity are luminous flux densities, and correspond to irradiance and ra-
diosity, respectively. They are measured inLux [lx := lm/m2].

Luminance is luminous flux density per solid angle, and therefore corresponds to the photomet-
ric quantity radiance. It is measured inCandela[cd := lm/m2 sr = lx/sr].

2.3 Bidirectional Reflection Distribution Functions 13

Luminous Intensity andLuminous Exposure are the photometric quantities corresponding to
the intensity and the radiant exposure, respectively.

For a more detailed discussion of radiometric and photometric terms, refer to [Ashdown96],
[Hanrahan93], and [Glassner95].

2.3 Bidirectional Reflection Distribution Functions

In order to compute the illumination in a scene, it is necessary to specify the optical properties
of a material. This is usually done in the form of abidirectional reflection distribution function
(BRDF). It is defined as follows:

fr(x, ~ωi → ~ωo) :=
dLo(x, ~ωo)

dE(x, ~ωi)
=

dLo(x, ~ωo)

Li(x, ~ωi) cos θi dωi
. (2.1)

The BRDF is the radianceLo leaving a pointx in direction~ωo divided by the irradiance
arriving from direction~ωi. Its unit is [1/sr]. The BRDF describes thereflectionof light at a
surface. Similarly, thebidirectional transmission distribution function(BTDF) can be defined for
refraction and transmission. The combination of BRDF and BTDF is usually calledbidirectional
scattering distribution function(BSDF).

Although BRDFs are used very often in computer graphics, it is important to note that they
cannot model all physical effects of light interacting with surfaces. The simplifying assumptions
of BRDFs (and BTDFs) are:

• the reflected light has the same frequency as the incoming light.Fluorescenceis not han-
dled.

• light is reflectedinstantaneously. The energy is not stored and re-emitted later (phospho-
rescence).

• there are no participating media. That is, light travels in empty space, and if it hits a
surface, it is reflected at the same point without being scattered within the object. This is
the most restrictive assumption, since it means that atmospheric effects as well as certain
materials such as skin cannot be treated adequately.

In general, the BRDF is a 6-dimensional function, because it depends on two surface param-
eters (x) and two directions with two degrees of freedom each (~ωi and~ωo). Often however, it
is assumed that a surface has notexture, that is, the BRDF is constant across an object. This

14 Radiometry and Photometry

reduces the dimensionality to four, and makes sampled BRDF representations smaller and easier
to handle.

The dimensionality can be further reduced by one through the assumption of anisotropic
material. These are materials whose BRDFs are invariant under a rotation around the normal
vector. Let~ωi = (θi, φi) and~ωo = (θo, φo), whereθ describes the angle between the normal and
the respective ray (the elevation), andφ describes the rotation around the normal (the azimuth).
Then the following equation holds for isotropic materials and arbitrary∆φ:

fr(x, (θi, φi + ∆φ) → (θo, φo + ∆φ)) = fr(x, (θi, φi) → (θo, φo)).

All other materials are calledanisotropic.

2.3.1 Reflectance and Transmittance

While the BRDF is an accurate and useful description of surface properties, it is sometimes
inconvenient to use because it may have singularities. For example, consider the BRDF of a
perfect mirror. According to Equation2.1, fr(x, ~ωi → ~ωo) goes to infinity if~ωo is exactly the
reflection of~ωi, and zero otherwise.

Another quantity to describe the reflection properties of materials is the reflectanceρ. It is
defined as the ratio of reflected flux to incoming flux:

ρ :=
dΦo

dΦi

. (2.2)

From this definition it is obvious thatρ is unitless and bounded between0 and1. Unfortu-
nately, the reflectance in general depends on the directional distribution of the incoming light, so
that a conversion between BRDF and reflectance is not easily possible. In the important special
case of a purely diffuse (Lambertian) reflection, however,fr is a constant, andρ = π · fr.

In analogy to the reflectance, thetransmittanceτ can be defined as the ratio of transmitted to
received flux. The fraction of flux that is neither reflected nor transmitted, but absorbed, is called
absorptanceα. The sum of reflectance, transmittance, and absorptance is always one:

ρ + τ + α = 1.

2.3.2 Physical Reflection and Transmission Properties of Materials

Independent of the actual dimensionality of the BRDF, it has to obey certain physical laws. The
first of all these laws is the conservation of energy: No more energy must be reflected than is
received. This is guaranteed if the following equation holds (see [Lewis93] for a derivation).

2.3 Bidirectional Reflection Distribution Functions 15

∫
Ω(~n)

fr(x, ~ωi → ~ωo) cos θo dωo ≤ 1 ∀~ωi ∈ Ω(~n). (2.3)

The second physical law that a BRDF should obey is known asHelmholtz reciprocity. It
states that, if a photon follows a certain path, another photon can follow the same path in the
opposite direction. In the case of reflections, this means that

fr(x, ~ωo → ~ωi) = fr(x, ~ωi → ~ωo). (2.4)

For refraction this relation does not hold, since the differential diameter of a refracted ray is
different from that of the original ray.

In addition to being physically valid, models for surface materials should also beplausiblein
the sense that they model the reflection characteristics of real surfaces. The basic principles un-
derlying plausible BRDFs are reflection at a planar surface, Snell’s law, and the Fresnel formulae.
These principles will be reviewed in the following.

Consider a ray of light arriving from direction~l at a perfectly smooth, planar surface between
two materials with optical densitiesn1 andn2. This situation is depicted in Figure2.2.

n➞

l
➞

r➞

t➞

θr

θt

θl

density n1

density n2

Figure 2.2: Reflection and refraction on a planar surface.

Since the surface is perfectly smooth, this ray will be split into exactly two new rays, one for
the reflected, and one for the refracted part. The reflected ray is given via the relation

16 Radiometry and Photometry

θr = θl, (2.5)

while the refracted ray direction is given by Snell’s law (see [Born93] for a derivation):

n1 sin θl = n2 sin θt. (2.6)

The question is, how is the energy of the incoming ray split between the reflected and the
refracted part, that is, what are the values for the reflectance and the transmittance. This depends
on the polarization of the light. Letr⊥ be the ratio of the reflected to the incoming amplitude
of the electrical field perpendicular to the plane formed by the surface normal and the incoming
light ray. Letr‖ be the same ratio for an electrical field parallel to this plane, and lett⊥ andt‖ be
the corresponding ratios for the transmitted amplitudes.

The Fresnel formulae specify these ratios in terms of the anglesθl andθt for non-magnetic
materials (permeability≈ 1) without absorption (α = 0):

r⊥ =
n1 cos θl − n2 cos θt

n1 cos θl + n2 cos θt
, r‖ =

n2 cos θl − n1 cos θt

n2 cos θl + n1 cos θt
(2.7)

t⊥ =
2n1 cos θl

n1 cos θl + n2 cos θt
, t‖ =

2n1 cos θl

n2 cos θl + n1 cos θt
. (2.8)

Sinceρ = dΦo/dΦi = dB/dE, and because the flux density is proportional to the square of
the amplitude of the electrical field (see Section2.1), we need to square these ratios in order to
get the reflectance and transmittance. For unpolarized light, which has random orientations of
the electrical field, the reflectance for the perpendicular and the parallel components need to be
averaged (see [Born93]):

ρ =
(r⊥)2 + (r‖)2

2
, and (2.9)

τ =
n2 cos θl

n1 cos θt
· (t⊥)2 + (t‖)2

2
.

Note thatρ + τ = 1 due to the assumption of a non-absorbing material. Note also, that even if
the incident light is unpolarized, the reflected light becomes polarized due to Equation2.7. This
fact is usually ignored in Computer Graphics. Figure2.3 shows the reflectance for unpolarized
light for the example of a surface between air (n1 ≈ 1) and glass (n2 ≈ 1.5).

As mentioned above, these formulae describe the reflection at a perfectly smooth, planar
surface. In reality, however, surfaces are rough, and thus light is reflected and refracted in all

2.4 Rendering Equation 17

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ρ

θ [rad]

Reflection at a Surface Between Glas and Air

Figure 2.3: Reflectanceρ according to Fresnel for the interaction of unpolarized light with a
surface between glass (n = 1.5) and air (n ≈ 1). The solid curve is for light rays arriving from
the air, while the dotted curve is for rays arriving from the glass side. Note the total reflection at
an anglesin θ = 1/1.5 in the latter case.

directions, not only~r and~t. In this case, the surface is assumed to consist of small planar regions,
or facets, for which the above formulae can be applied. The reflection on such a rough surface
then depends on the statistics of the orientations for these facets. This approach to describing the
reflection on rough surfaces is calledmicro facet theory. In Chapter3 we will review some of
the related reflection models that have gained importance in the context of computer graphics.

2.4 Rendering Equation

Now that we have a description of the material properties of a surface, we can describe the
illumination in a scene through an integral equation representing all the reflections in the scene.
This equation is calledRendering Equation, and was first presented in [Kajiya86].

18 Radiometry and Photometry

Lo(x, ~ωo) = Le(x, ~ωo) +

∫
Ω(~n)

fr(x, ~ωi → ~ωo) · Li(x, ~ωi) · cos(~n, ~ωi) dωi. (2.10)

The radianceLo leaving a certain surface pointx in directionωo is the radianceLe emitted
in this direction (if the surface is a light source), plus the reflected radiance. The latter is the
contribution from the incoming radianceLi at pointx integrated over the hemisphereΩ(~n). The
contribution for each incoming direction is specified using the BRDF.

Due to the use of the BRDF, the rendering equation shares the limitations already mentioned
in Section2.3: the inability to handle participating media, fluorescence, and phosphorescence.
In addition, the rendering equation assumes that the light is in a state ofequilibrium, that is,
changes in illumination happen relatively slowly (light sources and objects move much slower
than the speed of light).

The rendering equation describes the inter-reflection of light in a scene (global illumination),
and thus also accounts for indirect illumination in a scene. In contrast to this, graphics hardware
only accounts for light directly arriving from a finite number of point-, directional-, or spot lights
(local illumination). For this situation, Equation2.10simplifies to

Lo(x, ~ωo) = Le(x, ~ωo) +
n∑

j=1

fr(x, ~ωi → ~ωo) · g(x) · Ij(x, ~ωi) · cos(~n, ~ωi), (2.11)

whereIj is the intensity of thejth light source, andg · Ij is the incoming radiance atx due to that
light source. For point and spot lights, the geometry termg = 1sr/r2 represents the quadratic
falloff of intensity with the distancer of the light source from the surface point. For directional
light sources, such a quadratic falloff does not exist, andg = 1sr/m2. Note that this assumes that
each light source is visible from pointx. Shadows can be handled by incorporating a separate
visibility term intog, which is either0 (for shadowed points) or1 (for illuminated points).

One of the topics of this thesis is to overcome the restrictions of local illumination, and to
allow for the interactive visualization of global illumination solutions for non-diffuse scenes (see
Chapters8 and10). These solutions need to be generated in a preprocessing stage that solves
Equation2.10.

Chapter 3

Related Work

Before we present our own algorithms for realistic shading and lighting, we give an overview
of relevant previous work in this chapter. We start with a discussion of reflection models for
describing the local interaction of light with surfaces. We then review several multi-pass tech-
niques for achieving realism using graphics hardware, and finally give an overview of light field
techniques, which form the basis for some of our own methods.

3.1 Reflection Models

While it is in principle possible to use measured BRDF data for image synthesis, this is in
practice often not feasible due to the large amount of data required to faithfully represent these
high-dimensional functions.Reflection modelsor lighting modelsattempt to describe classes of
BRDFs in terms of simple formulae using only a few parameters to customize the model. These
parameters can either be adjusted manually by a user or programmer, or they can be chosen
automatically to best fit measured BRDF data.

In the following, we review a number of models that will be used throughout the thesis,
in particular in the chapter on local illumination (Chapter5), as well as for the prefiltering of
environment maps in Chapter8. The same models are also applied to normal-mapped surfaces
(Chapter9).

The choice of a specific reflection model is a trade-off between performance and physical
accuracy. Since the lighting model is evaluated quite often during the synthesis of an image, its
computational cost has a strong impact on the total rendering time. Nonetheless, for realistic
lighting effects, a model should follow basic physical principles, as laid out in Section2.3.2.

For the following discussion we use the geometric entities depicted in Figure3.1. Let ~n be
the surface normal,~v the viewing direction,~l the light direction,~h := (~v +~l)/|~v +~l| the halfway
vector between viewing and light direction, and~rl := 2 < ~l, ~n > ~n−~l the reflection of the light

20 Related Work

vector at the surface normal. The tangent direction for any microscopic features that may cause
anisotropy is denoted~t. All these vectors are assumed to be normalized.

n➞

h
➞

l
➞

v➞

rl
➞

t
➞

Figure 3.1: Geometric entities for the reflection models in this section.

3.1.1 Ambient and Diffuse Lighting

The most simplistic model is that ofambient illumination. It assumes that light is arriving uni-
formly from all directions. The ambient model is not physically valid by any means, but it can be
used to approximate the indirect illumination in a scene. Due to the uniform distribution of the
incoming light, the ambient light reflected off a surface is simply a constant times the ambient
illumination, which is described byLa, the radiance in the scene averaged over all points and
directions:

Lo(x, ~v) = ka · La. (3.1)

Many materials, especially in architectural scenes, appear roughly equally bright from all
viewing directions. This is known asdiffuseor Lambertianreflection. The BRDF of a Lamber-
tian surface is a constant

fr(x,~l → ~v) = kd. (3.2)

Note that, according to Equation2.3, the reflection coefficientkd should be less than1/π
for reasons of energy conservation! In many rendering systems, and especially hardware-based

3.1 Reflection Models 21

systems,kd is a value between0 and 1. This means that the intensity of the light source is
implicitly multiplied by a factor ofπ!

3.1.2 Models by Phong and Blinn-Phong

The Phong lighting model [Bui-Tuong75] was one of the first models in computer graphics to
account for specular reflections. For efficient computation, but without a physical justification,
the model uses powers of the cosine between reflected light vector and viewing vector for the
scattering of light on the surface:

Lo(x, ~v) = ks · cos(~rl, ~v)n · Li = ks· < ~rl, ~v >n ·Li. (3.3)

In this equation and in the following, all cosine values are implicitly clamped to the range[0 . . . 1].
This is not made explicit in order not to complicate the formulae. By comparison with Equa-
tion 2.11, it is clear that the corresponding BRDF is

fr(x,~l → ~v) = ks
cos(~rl, ~v)n

cos(~l, ~n)
= ks

< ~rl, ~v >n

< ~l, ~n >
. (3.4)

As pointed out in [Lewis93], this BRDF does not conserve energy due to the denominator
< ~l, ~n >, which may become arbitrarily small. The Helmholtz reciprocity is also violated,
since the equation is not symmetric in~l and~v. [Lewis93] therefore proposed to use the term
ks < ~rl, ~v >n directly as the BRDF, which fixes both problems if an additional scaling factor
of (n + 2)/2π is introduced for energy conservation (Equation2.3). This factor can either be
merged with the reflection coefficientks, or, more conveniently, be added as a separate term,
which then allows forks ∈ [0 . . . 1]. This modified Phong model has come to be known as the
Cosine Lobe Model.

A slightly modified version of the Phong model, known as the Blinn-Phong model was dis-
cussed in [Blinn76]. Instead of the powered cosine between reflected light and viewing direction,
it uses powers of the cosine between the halfway vector~h and the surface normal:

fr(x,~l → ~v) = ks
< ~h, ~n >n

< ~l, ~n >
. (3.5)

This models a surface consisting of many small, randomly distributed micro facets that are
perfect mirrors. The halfway vector is the normal of the facets contributing to the reflection
for given viewing-, and light directions. The cosine power is a simple distribution function,
describing how likely a certain micro facet orientation is.

22 Related Work

Like the Phong model, the Blinn-Phong model itself is not physically valid, but with the same
modifications described above, Helmholtz reciprocity and energy conservation can be guaran-
teed.

Both the Phong and the Blinn-Phong model are very popular in interactive computer graphics
due to their low computational cost and simplicity. They are usually combined with a diffuse
and an ambient term as described in Section3.1.1. In Chapter5 we present algorithms for
replacing these simple models in hardware-based renderings with one of the physically-based
models discussed below.

3.1.3 Generalized Cosine Lobe Model

As the name suggests, the generalized cosine lobe model [Lafortune97] is a generalization of
Lewis’ modifications to the Phong model. The termks < ~rl, ~v >n can be written in matrix
notation asks[~l

T · (2 · ~n · ~nT − I) · ~v]n. The generalized cosine lobe model now allows for an
arbitrary symmetrical matrixM to be used instead of the Householder Matrix2~n~nT − I:

fr(x,~l → ~v) = ks[~l
T ·M · ~v]n. (3.6)

Let QTDQ be the singular value decomposition ofM . Then,Q can be interpreted as a new
coordinate system, into which the vectors~l and~v are transformed. In this new coordinate system,
Equation3.5reduces to a weighted dot product:

fr(x,~l → ~v) = ks(Dx
~lx~vx + Dy

~ly~vy + Dz
~lz~vz)

n. (3.7)

The advantage of this model is that it is well suited to fit real BRDF data obtained through
measurements [Lafortune97]. In contrast to the original cosine lobe model, the generalized form
is also capable of describing anisotropic BRDFs by choosingDx 6= Dy.

3.1.4 Torrance-Sparrow Model

The illumination model by Torrance and Sparrow [Torrance66, Torrance67] is one of the most
important physically-based models for the interreflection of light at rough surfaces (the variation
by Cook and Torrance [Cook81] is also quite widespread for spectral renderings). It is given as

fr(x,~l → ~v) =
F ·G ·D

π· < ~n,~l > · < ~n,~v >
, (3.8)

3.1 Reflection Models 23

whereF , the Fresnel term, is the reflectanceρ from Equation2.9. It is usually given in the form

F =
(g − c)2

2(g + c)2

[
1 +

(c(g + c)− 1)2

(c(g − c) + 1)2

]
, (3.9)

with c =< ~h,~v > andg2 = n2 + c2 − 1. Equivalence to Equation2.9 can be shown using
trigonometric identities.

The termD in Equation3.8is the distribution function for the micro-facets. Multiple choices
have been proposed for this term by different authors, including [Beckmann63]. The function
given in [Torrance67] assumes a Gaussian distribution of the angle between normal and halfway
vector:

D = e(k·^(~n,~h))2 , (3.10)

wherek is the standard deviation of the surface angles, and is a surface property. Many other
researchers have since used a Gaussian distribution of thesurface heights, which also results in
a Gaussian distribution ofsurface slopes[Smith67, He91]. Let σ be the RMS deviation of the
surface height. Then the RMS deviation of surface slopes is proportional toσ/τ , whereτ , a
parameter of the model, is a measure for the distance of two surface peaks [He91].

Finally, the termG describes the geometrical attenuation caused by the self-shadowing and
masking of the micro-facets. Under the assumption of symmetric, v-shaped groves,G is given
as

G = min

{
1,

2 < ~n,~h >< ~n,~v >

< ~h,~v >
,
2 < ~n,~h >< ~n,~l >

< ~h,~v >

}
. (3.11)

This model for shadowing and masking was later improved by [Smith67] for the specific case
of a Gaussian height distribution functionD (erfc denotes the error function complement):

G = S(< ~n,~v >) · S(< ~n,~l >)

where S(x) =
1− 1

2
erfc(τ cot x

2σ
)

Λ(cotx) + 1
, (3.12)

and Λ(cotx) =
1

2

(
2√
π
· σ

τ cot x
− erfc(

τ cot x

2σ
)

)
.

Several variations of this model have been proposed, which will not be discussed in detail
here. In particular, [Schlick93] has proposed a model in which all terms are approximated by

24 Related Work

much simpler rational polynomial formulae to improve performance. Moreover, it is possible to
account for anisotropic reflections by changing the micro facet distribution functionD [Kajiya85,
Poulin90, Schlick93]. An overview of the variations to the Torrance-Sparrow model can be found
in [Hall89].

[He91] introduced an even more comprehensive model, which is also capable of simulating
polarization effects. This model is too complex for our purposes, and will not be considered in
this thesis. The Torrance-Sparrow model and its variants, however, can be used with computer
graphics hardware by applying the techniques from Chapter5.

3.1.5 Anisotropic Model by Banks

A very simple anisotropic model has been presented by Banks [Banks94]. The model assumes
that anisotropy is caused by long, thin features, such as scratches or fibers. Seen from rela-
tively far away, these features cannot be resolved individually, but their orientation changes the
directional distribution of the reflected light.

This suggests that anisotropic surfaces following this model can be illuminated using a model
for the illumination of lines in 3D. The fundamental difficulty in the illumination of 2D manifolds
in 3D is that every point on a curve has a unique tangent, but an infinite number of normal vectors.
Every vector that is perpendicular to the tangent vector of the curve is a potential candidate for
use in the illumination calculation.

For reasons described in [Banks94], and [Stalling97], the vector~n′ selected from this mul-
titude of potential normal vectors should be the projection of the light vector~l into the normal
plane, as depicted in Figure3.2.

Applied to anisotropic materials, this means that the projection of the light vector~l into the
normal plane of the tangent vector~t is used as the shading normal~n′. At this point, any of the
isotropic reflection models described above can be used, but usually the Phong model is chosen.

Like the Torrance-Sparrow Model, the anisotropic model by Banks can be used for hardware-
based renderings with the techniques from Chapter5.

3.2 Hardware and Multi-Pass Techniques

Many researchers have in the past developed methods for improving the realism of hardware
accelerated graphics. Most of these techniques fall into the category ofmulti-pass rendering,
which means that they require the hardware to render the geometry multiple times with different
rendering attributes (textures, colors, light sources and so forth). The resulting images or image
parts are then combined using alpha blending or the accumulation buffer. The ones that are most
directly related to our work are listed below:

3.2 Hardware and Multi-Pass Techniques 25

t❪❪❪❪❪❪➞

l➞
n’➞

Figure 3.2: In order to find the shading normal~n′, the light vector~l is projected into the normal
plane.

Reflections off planar mirrors can be rendered using simple affine transformations on the ge-
ometry [Diefenbach94, Diefenbach96]. The reflector is first rendered once into the stencil
buffer. Then the mirrored geometry is rendered at each pixel covered by the reflector. The
method can be iterated to achieve multiple reflections. In Chapter10 we describe light
field-based techniques for curved reflectors that are a generalization of this approach.

Mirror reflections off curved surfaces are usually approximated with the help ofenvironment
maps[Blinn76]. Current graphics hardware supportsspherical environment maps(see
Chapter8), which require re-generation of the map for every change of viewing direction
relative to the environment. In Chapter8 we propose a different parameterization for
environment maps, and introduce methods for applying them to other materials than perfect
mirrors.

Shadows can be rendered in many different ways. There are several algorithms that only
work in very special settings, such as shadows cast on a single large polygon. Gen-
eral solutions for rendering of shadows areshadow volumes[Crow77, Diefenbach96]
andshadow maps[Williams78, Segal92], which are directly supported by some hardware
[Akeley93, Montrym97]. Shadow algorithms will be discussed in detail in Chapter6, and
a new algorithm for implementing shadow maps in hardware will be introduced.

Bump Maps [Blinn78] describe variations of the surface normal across a polygonal object.
While some researchers have designed dedicated hardware for this task (see, for example
[Peercy97, Miller98a, Ernst98]), others, like [McReynolds98], have developed multi-pass
techniques to achieve bump mapping. Chapter9 deals with bump- and normal mapping.

26 Related Work

Realistic camera effects,especially depth-of-field and motion blur can be achieved using an
accumulation buffer [Haeberli90]. A new light field based approach that is capable of
simulating even more effects is described in Chapter11.

This is only a small portion of the available multi-pass techniques; for a general overview see
[McReynolds98]. Some of the techniques mentioned above will be discussed in more detail in
one of the remaining chapters.

3.2.1 Visualization of Global Illumination Solutions

Since the hardware itself is only capable of computing the local illumination of a point on a
surface, there has recently been a lot of interest in developing methods for using the graphics
hardware to visualize global illumination solutions, or to accelerate the computation of these
solutions with the help of graphics hardware. In our work in Chapters8 and10, we assume that
global illumination solutions have been acquired in a precomputation phase, so that the task is
reduced to visualizing this solution in real time.

A common technique is to use Gouraud shading and texture mapping to render radiosity
solutions of diffuse environments from any perspective [Cohen93, Myskowski94, Sillion94,
Bastos97]. Another approach for diffuse scenes isInstant Radiosity[Keller97], which computes
a radiosity solution with a combination of a Quasi Monte Carlo photon tracer and hardware
lighting with a large number (≈ 200) of light sources.

Algorithms for walkthroughs of scenes containing specular surfaces have also been devel-
oped. [Stürzlinger97] uses high-end graphics hardware to quickly display the solution of a pho-
ton map algorithm. In [Stamminger95] and [Walter97], OpenGL light sources are placed at
virtual positions to simulate the indirect illumination reflected by glossy surfaces.

3.3 Light Fields

Some of the techniques developed in this dissertation apply the concept oflight fieldsto hard-
ware-accelerated techniques. A light field [Levoy96] is a 5-dimensional function describing the
radiance at every point in space in each direction. It is closely related to theplenoptic function
introduced in [Adelson91], which in addition to location and orientation also describes the wave-
length dependency of light. Thus, the plenoptic function is aspectral light fieldin the notation
from Section2.1.

Since radiance does not change along a ray in empty space, the dimensionality of the light
field in empty space can be reduced by one, if an appropriate parameterization is found. The so-
called two-plane parameterization fulfills this requirement. It represents a ray via its intersection

3.3 Light Fields 27

points with two parallel planes. Since each of these points is characterized by two parameters in
the plane, this results in a 4-dimensional function that can be densely sampled through a regular
grid on each plane (see Figure3.3).

(u,v) plane

(s,t) plane

Figure 3.3: A light field is a 2-dimensional array of images taken from a regular grid of eye
points on the(s, t)-plane through a window on the(u, v)-plane. The two planes are parallel, and
the window is the same for all eye points.

One useful property of the two-plane parameterization is that all the rays passing through
a single point on the(s, t)-plane form a perspective image of the scene, with the(s, t) point
being the center of projection. Thus, a light field can be considered a 2-dimensional array of
perspective projections with eye points regularly spaced on the(s, t)-plane. Other properties of
this parameterization have been discussed in detail in [Gu97].

Since we assume that the sampling is dense, the radiance along an arbitrary ray passing
through the two planes can be interpolated from the known radiance values in nearby grid points.
Each such ray passes through one of the grid cells on the(s, t)-plane and one on the(u, v)-plane.
These are bounded by four grid points on the respective plane, and the radiance from any of the
(u, v)-points to any of the(s, t)-points is stored in the data structure. This makes for a total of 16
radiance values, from which the radiance along the ray can be interpolated quadri-linearly. As
shown in [Gortler96, Sloan97], this algorithm can be considerably sped up by the use of texture
mapping hardware.

Other parameterizations for the light field have been proposed [Camahort98, Tsang98] in
order to achieve a better sampling uniformity. These parameterizations will, however, not be
used here since they are not well suited for hardware acceleration.

28 Related Work

3.3.1 Lumigraphs: Light Fields with Additional Geometry

The quadri-linear interpolation in the light field data works well as long as the resolution of the
light field is high. For low resolutions, the interpolation only yields a sharp image for objects in
the(u, v)-plane. The further away points are from this plane, the more blurred they appear in the
interpolated image.

The Lumigraph [Gortler96] extends the concept of a light field by adding some geometric
information that helps compensating for this problem. A coarse polygon mesh is stored together
with the images. The mesh is used to first find the approximate depth of the object along the ray
to be reconstructed, and then this depth is used to correct the weights for the interpolation.

In [Heidrich99c] a similar, but purely sampling-based approach is taken. Instead of a polygon
mesh, the depth of each pixel in the light field is stored. This information is then used to refine
the light field with warped images until the rendering quality is satisfactory. This decouples the
more expensive depth correction from the efficient quadri-linear interpolation, and thus can be
used to achieve higher frame rates.

Chapter 4

Rendering Pipeline

In this chapter, we lay out the fundamental features of a graphics system on which we rely for the
algorithms in the following chapters. Since this abstract system is largely identical with version
1.2 of the OpenGL API including the imaging subset, we only give a coarse overview of the
structure, and refer to [Segal98] for the details. However, we also use some newer extensions
which have not yet found their way into any API standard. These features will be discussed in
more detail.

Most contemporary graphics hardware and APIs are variations of the traditional 3D rendering
pipeline [Foley90]. The key stages of this pipeline are depicted in Figure4.1.

Geometry
Database

Model/View
Transformation Lighting Perspective

Transformation Clipping

Scan
Conversion Texturing Depth

Test Blending Frame−
buffer

Geometry Processing

Rasterization Per−Fragment Operations

Figure 4.1: The traditional rendering pipeline.

These operations can be categorized into three groups:geometry processingoperations are re-
sponsible for geometrical transformations and lighting, duringrasterization, polygons and other
geometrical primitives are scan-converted and textured, and finally theper-fragment operations
perform depth, stencil and alpha tests, as well as blending operations.

30 Rendering Pipeline

Since the graphics hardware usually relies on fast, dedicated memory for textures and the
framebuffer, there also needs to be a group of operations for transferring images between main
memory, framebuffer and texture RAM. These are calledpixel transfer operations. In addition to
simply transferring the pixel data, this group also includes more complex operations such as color
matrix transformations, color lookup tables, and convolutions. These operations are applied to
the pixel data as it is transferred between the different kinds of memory.

Implementations of this basic pipeline structure can range from pure software implemen-
tations [Paul94], over hardware support for rasterization and per-fragment operations (see, for
example [Kilgard97]) to systems implemented completely in hardware, such as the ones de-
scribed in [Akeley93] and [Montrym97]. In the latter case, there is often one subsystem, called
the geometry engine, which performs both geometry processing and pixel transfer operations,
and another subsystem, called therasterizeror raster manager, which performs rasterization
and per-fragment operations. One advantage of this separation is that the geometry engine is
often programmable for increased flexibility, while the raster manager is hardwired for optimal
performance. Moreover, the geometry engine requires floating point operations, while the raster
manager can be implemented with fixed point arithmetic only. In the following we briefly sum-
marize the four groups of operations.

4.1 Geometry Processing

As stated above, the major task of the geometry processing operations are geometric transfor-
mations. Geometric primitives are specified in terms of a set of vertices, each of which has an
associated location, normal, and color, as well as texture coordinates. Points and vectors are
specified in homogeneous coordinates[x, y, z, w]T . The vertex locations are transformed from
the object coordinate system into the viewing coordinate system via an affine model/view trans-
formation, specified as a homogeneous4 × 4 matrix stack. The matrix stack is used instead of
a single matrix in order to support hierarchical modeling. This is also true for all other trans-
formations in the pipeline. The normal vectors, which are required for example for the lighting
calculations, are transformed by the inverse transpose of the same affine transformation.

The next step in the pipeline are the lighting calculations. The types of light sources supported
by the hardware are point lights, directional lights and spot lights. A falloff for point and spot
lights can be specified in terms of three coefficientsa, b, andc defining the attenuation factor
1/(a · r2 + b · r + c) for the intensity, wherer is the distance of the vertex from the light source.
According to Equation2.11, the characteristics of a point light are given bya = 1 and b =

c = 0, while the attenuation characteristics of small area light sources can be approximated with
b, c 6= 0. The positions and directions of these light sources are stored in viewing coordinates,
so that they can be directly used with the transformed vertex coordinates and normal vectors.

4.2 Rasterization 31

As a reflection model, current hardware uses either the Phong or the Blinn-Phong model1 (see
Section3.1). The user can choose whether the material is implicitly generated from the vertex
color, or explicitly specified in terms of ambient, diffuse and specular reflection coefficients. The
result of the lighting computation is stored as the new vertex color.

After lighting, a projective transformation (again specified as a4 × 4 matrix stack) and a
perspective division are applied in order to transform the viewing frustum into the unit cube.
The reason why the lighting has to be performed before this step is that perspective projection is
a non-affine transformation destroying the correspondence between normals and surface points.
After this transformation, all geometric primitives are clipped against the unit cube and larger
primitives are tessellated into triangles.

Like vertices and normals, texture coordinates are specified as 4D homogeneous vectors
[s, t, r, q]T . They can either be specified explicitly, or computed automatically. In the case of
automatic generation, each component of the texture coordinate vector can be computed as the
distance of the vertex from an arbitrary plane in object coordinates or viewing coordinates. Fur-
thermore, a mode is available for computings andt as the coordinates pointing into a spherical
environment map [Haeberli93], see Chapter8 for details. The specified or automatically gener-
ated texture coordinate vector can then be transformed using a third homogeneous matrix stack.

4.2 Rasterization

After geometry processing, each geometric primitive is defined in terms of vertices and asso-
ciated colors and texture coordinates. These primitives are then scan-converted and yieldfrag-
ments, that is, preliminary pixels with interpolated depth, color and texture coordinates. While
the interpolation of texture coordinates is perspectively correct, colors are usually only interpo-
lated linearly along scan lines (Gouraud shading).

The texture coordinates are then used to look up texture values in a 1D, 2D, 3D, or 4D tex-
ture.2 Except for the case of 4D textures, all texture coordinate are divided byq before the lookup
in order to allow for projective texturing. For the reconstruction of the texture values, the hard-
ware should support nearest neighbor and linear sampling, as well as mip-mapping [Williams83].
The color resulting from the texture lookup is then combined with the fragment color according
to one of several blending modes, including addition and multiplication of the two colors (see
[Segal98] for a complete list).

1The OpenGL specification [Segal98] mandates the use of the Blinn-Phong model.
2While 3D textures have become a standard feature on modern graphics hardware, 4D textures are only available

on a few systems. Moreover, high texture memory requirements often prohibit the use of 4D textures even where
they would theoretically be useful. For these reasons we will only use them in one of our algorithms (Chapter10).

32 Rendering Pipeline

4.2.1 Multiple Textures

Some of the algorithms presented here will have improved performance if the hardware supports
multiple textures in a single rendering pass [SGI97]. In this case, each vertex has multiple texture
coordinate vectors, one for each texture. Each of these can be specified explicitly, or it can be
generated automatically as described in Section4.1. Moreover, there is also a separate texture
matrix stack for each of the textures.

The results of the texture lookup are combined with the fragment color as described above.
The resulting color then acts as a fragment color for the next texture. Blending modes can be
specified for each texture separately. This situation is depicted in Figure4.2.

fragment
color

texture
color 1

texture
color 2

texture
color 3

texture
blend

texture
blend

texture
blend

new
fragment
color

Figure 4.2: With multiple textures, the results from the blending operation act as a fragment
color for the next texture.

4.3 Per-Fragment Operations

After texturing, the fragments have to pass a number of tests before being written to the frame-
buffer. These tests include analpha test, which allows a fragment to be accepted or rejected
based on a comparison of its alpha channel with a reference value, astencil test, which is based
of a comparison between a reference value and the value of the stencil buffer at the pixel location
corresponding to the fragment, and finally adepth testbetween the fragmentz value and the
depth buffer. These tests are described in [Neider93] and [Segal98], and will not be explained in
detail here.

Colors of fragments passing all these tests are then combined with the current contents of the
framebuffer and stored there as new pixel values. In the easiest case, the fragment color simply
replaces the previous contents of the framebuffer. However, several arithmetic and logic opera-
tions between the different buffers are also possible. Again, these are described in [Segal98].

4.4 Framebuffer and Pixel Transfer Operations 33

4.4 Framebuffer and Pixel Transfer Operations

Systems with 3D graphics accelerators have three different memory subsystems, which are, at
least logically, separated: the main memory of the CPU, framebuffer RAM for storing color,
depth, and stencil buffers, and finally the texture RAM. This separation makes it necessary to
transfer pixel data, that is, images, between the different memory subsystems. The possible
paths for this transfer are depicted in Figure4.3.

Main
memory

Frame−
buffer

Texture
memory

Host Graphics subsystem

Figure 4.3: Possible paths for transferring pixel data.

Note that it is not possible to transfer pixel data out of the texture RAM (except by actual tex-
ture mapping), while parts of the framebuffer can be copied to other regions of the framebuffer.
Moreover, the framebuffer can be scaled and added to theaccumulation buffer[Haeberli90], a
separate, deep buffer in the framebuffer memory. This allows one to compute weighted sums of
previously rendered images.

In addition to simply moving image data around, pixel transfer operations also include certain
transformations on the colors, such as histograms, convolutions, color lookup tables and color
matrices. In OpenGL, these operations have been introduced with the so-calledimaging subset
formally defined for version 1.2 of the API.

Of the many features of this subset, we only use color matrices and color lookup tables. A
color matrix is a4× 4 matrix that can be applied to any RGBα pixel group during pixel transfer.

During a pixel transfer, separate color lookup tables for each of the four components can
be specified, which are applied before and/or after the color matrix. These allow for non-linear
transformations of the color components. Scaling and biasing of the components is also possible
at each of these stages. For a detailed discussion of these features and the whole imaging subset,

34 Rendering Pipeline

refer to [Segal98].

An additional feature, known aspixel textures[SGI96, Hansen97] is available for transfers
between main memory and framebuffer, as well as within the framebuffer itself, but not for
transfers to the texture memory. This stage interprets the color components R, G, B, andα

of each individual pixel as texture coordinatess, t, r, andq, respectively. The result from the
texture lookup is then used as the new fragment color. A schematic overview of the pixel transfer
operations is given in Figure4.4.

conversion
to fragments

lookup
table

color
matrix

texture
blend

texture
mapping

lookup
table

Figure 4.4: Per-fragment operations including imaging subset and pixel textures. Only the oper-
ations required in this thesis are shown.

It is important to note that in current implementations of pixel textures, R, G, B, andα are
directly used as texture coordinatess, t, r, andq. A division byq does not take place. This means
that projective texturing is not possible with pixel textures. As we will show in Chapters6 and9,
this is a severe limitation that we propose to remove.

4.5 Summary

The combination of features from the pixel transfer operations and the elements of the rendering
pipeline (geometry processing, rasterization and per-fragment operations) lays out an abstract
system for which we will be designing our algorithms in the following.

This system mostly follows OpenGL and the imaging subset, but also contains some exten-
sions which are not part of the current OpenGL standard. These extensions are 4D textures, pixel
textures and the use of multiple textures in a single rendering pass.

Chapter 5

Local Illumination with Alternative
Reflection Models

To model staticJell-O R© we employ a new synthesis technique wherein at-
tributes are added one a time using abstract object-oriented classes we call
ingredients. Ingredientattributes are combined during a preprocessing pass
to accumulate the desired set of material properties (consistency, taste, tor-
sional strength, flame resistance, refractive index, etc.). We use the RLS or-
thogonal basis (raspberry, lime, strawberry), from which any type ofJell-O R©
can be synthesized.

Paul S. Heckbert,Ray TracingJell-O R© Brand Gelatin, Computer Graphics
(SIGGRAPH ’87 Proceedings), pp 73–74, 1987.

Except for graphics systems supporting procedural shading such as, for example, [Olano98],
current implementations of hardware lighting are restricted to the Phong or Blinn-Phong re-
flection models. It has been known for a long time that these violate the laws of Physics
[Blinn77, Lewis93]. Many other, physically more plausible models have been proposed, but
have so far only been used in software rendering systems. The most important of these models
have been reviewed in Section3.1.

This chapter introduces multi-pass techniques for using these models for local illumination
on contemporary graphics hardware. These methods can be combined with the algorithms for
shadows discussed in the next chapter, as well as the realistic light sources from Chapter7. After
presenting the techniques, we will then discuss several hardware extensions that could be used
to more directly support the proposed methods in future hardware.

36 Local Illumination with Alternative Reflection Models

Rather than replacing the standard Phong model by another single, fixed model, we seek a
method that allows us to utilize a wide variety of different models so that the most appropriate
model can be chosen for each application.

To achieve this flexibility without introducing procedural shading, a sample-based represen-
tation of the BRDF seems most promising. However, a faithful sampling of 3D isotropic or 4D
anisotropic BRDFs requires too much storage to be useful on contemporary graphics hardware.
Wavelets [Lalonde97a, Lalonde97b] or spherical harmonics [Sillion89, Sillion91] could be used
to store this data more compactly, but these representations do not easily lend themselves to
hardware implementations, since they do not permit efficient point evaluation.

5.1 Isotropic Models

We propose a different approach. It turns out that Torrance-Sparrow style models, as well as
many other models used in computer graphics, can be factored into independent components
that only depend on one or two angles. Consider the Torrance-Sparrow model as formulated in
Equation3.8

fr(x,~l → ~v) =
F ·G ·D

π· < ~n,~l > · < ~n,~v >
, (5.1)

The geometry is depicted in Figure5.1:

n➞

h
➞

l
➞

v➞

t
➞

h’➞

φ

θ θ

δβ
α

Figure 5.1: Geometric entities for the reflection models in this chapter.

5.1 Isotropic Models 37

For a fixed index of refraction, the Fresnel termF , which was given in Equation3.9, only
depends on the angleθ between the light direction~l and the micro facet normal~h, which is the
halfway vector between~l and~v. Thus, the Fresnel term can be seen as a univariate function
F (cos θ).

The micro facet distribution functionD, which defines the percentage of facets oriented in
direction~h, depends on the angleδ between~h and the surface normal~n, as well as a roughness
parameter. This is true for all widely used choices of distribution functions, including the Gaus-
sian angle distribution (Equation3.10), the Gaussian height distribution, and the distribution by
[Beckmann63]. Since the roughness is generally assumed to be constant for a given surface, this
is again a univariate functionD(cos δ).

Finally, when using the geometry termG proposed by [Smith67] (Equation3.12), which de-
scribes the shadowing and masking of light for surfaces with a Gaussian micro facet distribution,
this term is a bivariate functionG(cosα, cos β).

The contribution of a single point- or directional light source with intensityIi to the outgoing
radiance of the surface is given asLo = fr(x,~l → ~v) cos α · g · Ii (see Equation2.11). If the
material is assumed to be constant over a surface, the termfr(x,~l → ~v) cos α can be split into
two bivariate partsF (cos θ) ·D(cos δ) andG(cosα, cos β)/(π · cos β), which are then stored in
two independent 2-dimensional lookup tables.

2D texture mapping is used to implement the lookup process. If all vectors are normalized,
the texture coordinates are simple dot products between the surface normal, the viewing and light
directions, and the micro facet normal. These vectors and their dot products can be computed in
software and assigned as texture coordinates to each vertex of the object. At the same time, the
term g · Ii can be specified as a per-vertex color and multiplied with the results from texturing
using alpha blending.

For orthographic cameras and directional lights (that is, when light and viewing vectors are
assumed constant), the interpolation of these texture coordinates across a polygon corresponds
to a linear interpolation of the normal without renormalization. Since the reflection model itself
is highly nonlinear, this is much better than simple Gouraud shading, but not as good as eval-
uating the illumination in every pixel (Phong shading). This interpolation of normals without
renormalization is commonly known asfast Phong shading.

This method for looking up the illumination in two separate 2-dimensional textures requires
either a single rendering pass with two simultaneous textures, or two separate rendering passes
with one texture each in order to render specular reflections on an object. If two passes are used,
their results are multiplied using alpha blending. A third rendering pass with hardware lighting
(or a third simultaneous texture) can be applied for adding a diffuse term, if necessary.

If the light and viewing directions are assumed to be constant, that is, if a directional light
and an orthographic camera are assumed, the computation of the texture coordinates can even be

38 Local Illumination with Alternative Reflection Models

done in hardware. To this end, light and viewing direction as well as the halfway vector between
them are used as row vectors in the texture matrix for the two textures:

0 0 0 cos θ

hx hy hz 0

0 0 0 0

0 0 0 1

 ·

nx

ny

nz

1

 =

cos θ

cos δ

0

1

 (5.2)

lx ly lz 0

vx vy vz 0

0 0 0 0

0 0 0 1

 ·

nx

ny

nz

1

 =

cos α

cos β

0

1

 (5.3)

Figure5.2 shows a torus rendered with several different roughness settings using this tech-
nique. The assumption of an orthographic camera for lighting purposes is quite common in
hardware-accelerated rendering, since it saves the normalization of the viewing vector for each
vertex. APIs like OpenGL have a separate mode for applications where this simplification can-
not be used, and the viewing direction has to be computed for every vertex. This case is called a
local viewer.

We would like to note that the use of textures for representing the lighting model introduces
an approximation error: while the termF · D is bounded by the interval[0, 1], the second term
G/(π · cos β) exhibits a singularity for grazing viewing directions (cos β → 0). Since graphics
hardware typically uses a fixed-point representation of textures, the texture values are clamped
to the range[0, 1]. When these clamped values are used for the illumination process, areas
around the grazing angles can be rendered too dark, especially if the surface is very shiny. This
artifact can be alleviated by dividing the values stored in the texture by a constant which is later
multiplied back onto the final result.

The same methods can be applied to all kinds of variations of the Torrance-Sparrow model,
using different distribution functions and geometry terms, or the approximations proposed in
[Schlick93]. With varying numbers of terms and rendering passes, it is also possible to find
similar factorizations for many other models. For example, the Phong, Blinn-Phong and Cosine
Lobe models (Section3.1.2) can all be rendered in a single pass with a single texture, which can
even already account for an ambient and a diffuse term in addition to the specular one.

Last but not least, the sampling-based approach also allows for the use of measured or sim-
ulated terms. For example, in [Brockelmann66], the shadowing and masking of surfaces with a
Gaussian height distribution was simulated. The results could be directly applied as a geometry
term with our approach.

5.2 Anisotropy 39

Figure 5.2: A torus rendered with the proposed hardware multi-pass method using the Torrance-
Sparrow reflection model (Gaussian height distribution and geometry term by [Smith67]) and
different settings for the surface roughness. For these images, the torus was tessellated into
200× 200 polygons.

5.2 Anisotropy

Although the treatment of anisotropic materials is somewhat harder, similar factorization tech-
niques can be applied here. For anisotropic models, both the micro facet distribution function
and the geometrical attenuation factor may also depend on the angleφ between the facet normal
and a reference direction in the tangent plane. This reference direction is given in the form of a
tangent vector~t (see Figure5.1).

For example, the elliptical Gaussian model [Ward92] introduces an anisotropic facet distribu-
tion function specified as the product of two independent Gaussian functions, one in the direction
of ~t, and one in the direction of the binormal~n × ~t. This makesD a bivariate function in the
anglesδ andφ. Consequently, the texture coordinates can be computed in software in much the
same way as described above for isotropic materials. This also holds for many other anisotropic
models in computer graphics literature.

Since anisotropic models depend on both a normal and a tangent that varies per vertex, the
texture coordinates cannot be generated with the help of a texture matrix, even if light and view-

40 Local Illumination with Alternative Reflection Models

ing directions are assumed to be constant. This is due to the fact that the anisotropic term can
usually not be factored into a term that only depends on the surface normal, and one that only
depends on the tangent.

One exception to this rule is the model by Banks [Banks94], which is mentioned here despite
the fact that it is anad-hocmodel which is not based on physical considerations. The algorithm
outlined in the following has been published in [Heidrich98b] and [Heidrich98c]. Banks defines
the reflection off an anisotropic surface as

Lo = cos α · (kd < ~n′,~l > +ks < ~n′,~h >1/r) · Li, (5.4)

where ~n′ is the projection of the light vector~l into the plane perpendicular to the tangent
vector~t (see Figure3.2). This vector is then used as a shading normal for a Blinn-Phong lighting
model with diffuse and specular coefficientskd andks, and surface roughnessr. In [Zöckler96]
and [Stalling97], it has been pointed out that this Phong term is really only a function of the
two angles between the tangent and the light direction, as well as the tangent and the viewing
direction. This fact has been used for the illumination of lines in [Stalling97].

Applied to anisotropic reflection models, this means that this Phong term can be looked up
from a 2-dimensional texture, if the tangent~t is specified as a texture coordinate, and the texture
matrix is set up as in Equation5.3. The additional termcos α in Equation5.4 is computed by
hardware lighting with a directional light source and a purely diffuse material, so that the Banks
model can be rendered with one texture and one pass per light source. Figure5.3 shows a disk
and a sphere rendered with this reflection model.

5.3 Hardware Extensions for Alternative Lighting Models

The techniques described in the previous two sections have the disadvantage that the texture
coordinates need to be computed in software if point lights or a local viewer are desired. The
consequence is, that, depending on the number of polygons and the number of rendering passes,
the CPU is typically the bottleneck of the method. For example, on a SGI O2 (195 MHz R10k),
the implementation for the Torrance-Sparrow model achieves frame rates of about 20 Hz with
a tessellation of72 × 72 for the torus in Figure5.2. This number is almost independent of the
resolution, but drops immediately to about 8 frames, if a tessellation of200 × 200 polygons is
used.

These numbers indicate that some additional hardware support for these methods would be
useful. In the following, we first propose a very moderate extension of the graphics pipeline,
which allows for the generation of the texture coordinates in hardware. Then, we discuss the

5.3 Hardware Extensions for Alternative Lighting Models 41

Figure 5.3: Disk and sphere illuminated with isotropic reflection (left), anisotropic reflection
with circular features (center), and radial features (right).

opportunities for more ambitious changes, replacing the traditional Phong illumination model by
a sampling-based system building on top of the previously discussed methods.

5.3.1 New Modes for Texture Coordinate Generation

The reason why the texture coordinate generation is so expensive when it is performed in soft-
ware is that all the required vectors (light and viewing direction, as well as surface and micro
facet normal) have to be transformed into a common coordinate system before the dot products
can be evaluated. To this end, it is either necessary to transform the eye point and the light posi-
tion (or direction, in the case of a parallel light) into object space, or the surface point and normal
into eye space. Both transformations require access to the current model/view matrix, and need
to be performed in software (since this is where the results are required). After the transforma-
tion, the light and viewing vectors as well as their halfway vector can be computed, and then the
dot products for the texture coordinates can be calculated.

However, all four vectors are also required for evaluating the regular Blinn-Phong illumi-
nation model in hardware. Since light positions and directions are stored in eye coordinates
(Section4.1), the hardware uses the model/view stack to transform the surface point and normal

42 Local Illumination with Alternative Reflection Models

into the same space. This means that, by computing the texture coordinates in software, as de-
scribed above, the application is forced to perform operations the hardware is already capable of
doing.

Moreover, the automatic texture generation mechanism of the hardware is locatedafter these
transformations in the rendering pipeline (see Section4.1 and [Segal98]). This leads us to the
following proposal: in order to directly support a wide variety of sampling-based reflection mod-
els, a series of new modes for automatic texture coordinate generation should be added. More
specifically, it should be possible to let the hardware compute any of the dot products between the
following four normalized vectors in eye space: light direction, viewing direction, the halfway
vector between the two, and finally the surface normal.

This proposal introduces a total of six new modes, five of which require an additional para-
meter, namely the index of the OpenGL light source for which the light direction and the halfway
vector are to be computed. All modes introduce only very little computational overhead in addi-
tion to what is already done for Phong lighting.

With these modifications, the techniques for isotropic models from Section5.1 can be im-
plemented very efficiently. Likely, other reflection models developed in the future will also only
depend on these six parameters. The only condition for applying the same techniques to another
model is that it should be possible to factorize the model into terms that only depend on one
or two of these angles. Otherwise, 3-dimensional, or even 4-dimensional textures need to be
applied, which in principle is possible, but might not be feasible due to the amount of texture
memory required.

As pointed out in Section5.1, anisotropic models also require an additional tangent vector to
be specified per vertex. To support them in hardware, another modification is therefore necessary:
instead of only being able to specify a normal per vertex, it should also be possible to have a per-
vertex tangent, which is transformed using the hardware model/view stack. This, combined with
another four texture generation modes for computing the dot product of the tangent with any of
the other vectors, would then allow for the use of a wide variety of anisotropic reflection models.
The cost of introducing such an additional tangent is moderate: the bandwidth from the CPU to
the graphics board is increased by four floating point values per vertex (in addition to the eight
required for point and normal, as well as the bandwidth for colors and texture coordinates), and
an additional vector-matrix multiplication is required (in addition to the two already needed for
transforming point and normal).

Some anisotropic models also require the binormal~b := ~n × ~t. Although it could prove
useful to also add that vector to the rendering pipeline, this is not strictly necessary, since the
angle between~b and any other vector can be expressed as a function of the angles between that
vector and~n and~t. Through reparameterization, this function can be rolled into the texture maps
representing the factors of the reflection model.

5.3 Hardware Extensions for Alternative Lighting Models 43

5.3.2 A Flexible Per-Vertex Lighting Model

The introduction of a tangent vector and the additional modes for texture coordinate genera-
tion allow for the efficient use of complex lighting models for a single light source (if multiple
simultaneous textures are supported by the hardware). With more than one light source, the con-
tribution from each light has to be rendered in a separate pass. However, since the material of an
object remains the same for all light sources, the textures for each pass are the same. Also, the
normal and viewing direction, as well as the tangent for anisotropic materials, remain the same
in each pass. Only the light direction~l and the halfway vector~h change for each light source.

To exploit this fact, and also to reduce the cost for geometry processing and rasterization,
we propose a new sampling-based lighting model for hardware rendering, which is designed
to replace the existing Phong or Blinn-Phong lighting. A schematic overview of this model is
depicted in Figure5.4.

2D lookup
table

2D lookup
table

do
t

pr
od

uc
ts

do
t

pr
od

uc
ts

lookup

lookup

lookup

lookup

blend

blend

add

n➞

v➞

l1
➞

h1
➞

l2
➞

h2
➞

s

s

s

s

t

t

t

t

I2

I1

Figure 5.4: A sampling based lighting model with two light sources.

As in the previous discussion, material properties of an object are specified in terms of a num-
ber of 2-dimensional lookup tables (two in Figure5.4). Moreover, as described in the previous
section, the indices for this lookup can be any of the dot products of the vectors~n, ~v, ~li and ~hi,
and, in the case of anisotropy,~t. The results from the table lookups for a single light source are
combined using a set of blending operations, most notably addition and multiplication. During

44 Local Illumination with Alternative Reflection Models

this blending operation, the result should also be multiplied with the intensity of the respective
light source divided by the square distance (this is also an operation that already has to be per-
formed in current hardware). Finally, the illumination contributions from all light sources are
summed up to yield the final vertex color.

As mentioned in Section5.1, the Blinn-Phong model can be implemented using a single 2-
dimensional lookup table. The required dot products for each light source are< ~n,~hi > for the
specular, and< ~n,~li > for the diffuse part. Thus, all vectors depicted in Figure5.4are required.
The computation of the cosine power in traditional hardware implementations is replaced by
a 2D lookup. The lookup is certainly not much slower than computing the power; in some
implementations it might even improve the performance. It is even possible that some hardware
already uses 1D tables for implementing the cosine power. Thus, with the proposed model,
Blinn-Phong lighting is possible at approximately the same computational cost as in traditional
implementations.

With other, more complicated reflection models that require more than one lookup table,
the cost increases only moderately. Each additional term requires the computation of two dot
products for the coordinatess andt, one table lookup, and a blending operation. These costs are
typically smaller than the cost for normalizing the vectors~v,~li and~hi (the normal and the tangent
do not need to be normalized if a rigid body transformation is used and the vectors are normalized
in object coordinates), so that the total illumination cost using two tables will be significantly less
than double the cost for a single table. The only disadvantage is that very frequent changes of
the material, which require loading different lookup tables, will cause an increased bandwidth.

5.4 Discussion

In this chapter we have introduced a new, sampling based approach for local illumination with
graphics hardware. Using contemporary graphics systems, this method achieves high frame rates
for a few moderately tessellated objects.

Since the implementation on contemporary hardware requires the software to compute per-
vertex texture coordinates for each frame, and possibly for multiple passes per frame, the perfor-
mance for a large number of highly tessellated objects is not sufficient for real-time applications.
To overcome this problem, we have proposed two levels of hardware extensions for direct support
of our sampling-based lighting model.

The first, easier to implement version defines a set of new texture coordinate generation
modes, as well as a per-vertex tangent vector to be transformed with the current model/view
matrix. This variant would already significantly lower the CPU load, since computations that are
performed in contemporary hardware anyway, can efficiently be reused to generate the texture
coordinates.

5.4 Discussion 45

The second version, which requires more fundamental changes to the pipeline, replaces the
traditional Phong model with a flexible sample-based model. We have argued that the computa-
tional cost for our model is not significantly higher than the cost of the Phong model (although
more gates will be required on the chip in order to implement the lookup tables). This second
version has the advantage of being able to compute the illumination from several light sources in
one pass.

46 Local Illumination with Alternative Reflection Models

Chapter 6

Shadows

After discussing models for local illumination in the previous chapter, we now turn to global
effects. In this chapter we deal with algorithms for generating shadows in hardware-based ren-
derings.

Shadows are probably the visually most important global effect. This fact has resulted in a lot
of research on how to generate them in hardware-based systems. Thus, interactive shadows are
in principle a solved problem. However, current graphics hardware rarely directly supports shad-
ows, and, as a consequence, fewer applications than one might expect actually use the developed
methods.

We first review the most important of the existing methods, and then describe an implemen-
tation of shadow maps based on the hardware features listed in Chapter4. This implementation
is efficient, and does not require any specific shadow mapping hardware beyond what is already
available on most graphics boards, even in the low end. Therefore, it integrates nicely with the
traditional rendering pipeline.

6.1 Projected Geometry

Besides precomputed shadow textures, projected geometry [Blinn88] is currently the most often
used implementation of shadows in interactive applications. This method assumes that a set of
small occluders casts shadows onto a few large, flat objects. Since this assumption does not hold
for most scenes, applications using this approach typically do not render all the shadows in a
scene, but only some of the visually most important. In particular, shadows of concave objects
onto themselves are typically not handled.

The method works as follows. Given a point or directional light source, the shadowed region
of a planar receiver can be computed by projecting the geometry of the occluder onto the receiver
(see Figure6.1). The projection is achieved by applying a specific model/view transformation to

48 Shadows

point
light source

occluder

projected
geometry

receiver

Figure 6.1: One way of implementing shadows cast onto large, planar objects is to project the
geometry onto the surface.

the original surface geometry. This transformation is given as follows:

S = V ·P ·M, (6.1)

whereV is the viewing transformation,M is the modeling transformation, andP is the
projection matrix that would be used for rendering the scene from the light source position with
the receiver as an image plane.

The occluder is then rendered twice, once with the regular model/view matrixV ·M and the
regular colors and textures, and once with the matrixS and the color of the shadow.

All kinds of variations on this basic algorithm are possible. For example, if parts of the pro-
jected geometry fall outside the receiver, a stencil buffer can be used to clamp it to the receiving
polygon. Also, instead of simply drawing the shadow in black or dark gray, alpha blending can
be used to modulate the brightness of the receiver in the shadow regions. Although this is not
actually physically accurate, it looks more realistic, since the texture of the underlying surface
remains visible.

As pointed out above, projected geometry is only appropriate for a small number of large,
planar receiving objects. As the number of receivers grows, the method quickly becomes infeasi-
ble due to the large number of required rendering passes. Thus, this method can hardly be called
a general solution to the shadowing problem; rather it simply adds shadows as a special effect in
areas where they have the most visual impact.

6.2 Shadow Volumes 49

6.2 Shadow Volumes

The second implementation of shadows are shadow volumes [Crow77], which relies on a poly-
hedral representation of the spatial region that a given object shadows (see Figure6.2).

point
light source

occluder

shadow
volume

receiver

Figure 6.2: The shadow volume approach uses a polyhedral representation of the spatial region
shadowed by an occluder.

This polyhedron is generated in a preprocessing step by projecting each silhouette edge of
the object away from the light source. With graphics hardware and az-buffer, the shadowing
algorithm then works as follows [Brotman84, Diefenbach94, Diefenbach96]: First, the geometry
is rendered without the contribution of the point light casting the shadow, and the stencil buffer
is cleared. Then, without clearing thez-buffer, the front-facing polygons of all shadow volumes
are rendered without actually drawing to the color buffers. Each time a pixel of a shadow volume
passes the depth test, the corresponding entry in the stencil buffer is incremented. Then, the
backfacing regions of the shadow volume are rendered in a similar fashion, but this time, the
stencil buffer entry is decremented. Afterwards, the stencil buffer is zero for lit regions, and
larger than zero for shadowed regions. A final conditional rendering pass adds the illumination
for the lit regions.

Many details have to be solved to make this algorithm work in practice. For example, if the
eye point lies inside a shadow volume, the meaning of the stencil bits is inverted. Even worse,
if the near plane of the perspective projection penetrates one of the shadow volume boundaries,
there are some areas on the screen where the meaning of the stencil bits is inverted, and some for
which it is not.

In [Diefenbach94] and [Diefenbach96], this algorithm was used for rendering the complete
set of shadows of a rather complex scene. However, the rendering times were far from interactive.

50 Shadows

Although today’s graphics hardware is faster than the one used by Diefenbach, shadow volumes
are typically still too costly to be applied to a complete scene. Another issue is the size of the
data structures required for the shadow volumes, which can exceed several hundred megabytes
[Diefenbach96]. The use of simplified geometry for generating the shadow volumes can help to
reduce these problems. Nonetheless, most interactive applications and games only apply shadow
volumes to a subset of the scene geometry, much in the same way projected geometry is used.
Even then, regeneration of the shadow volumes for moving light sources is a costly operation.

6.3 Shadow Maps

In contrast to the analytic shadow volume approach, shadow maps [Williams78] are a sampling-
based method. First, the scene is rendered from the position of the light source, using a virtual
image plane (see Figure6.3). The depth image stored in thez-buffer is then used to test whether
a point is in shadow or not.

point
light source

occluder

receiver

virtual
image plane
with
depth image

Figure 6.3: Shadow maps use thez-buffer of an image of the scene rendered from the light
source.

To this end, each fragment as seen from the camera needs to be projected onto the depth
image of the light source. If the distance of the fragment to the light source is equal to the depth
stored for the respective pixel, then the fragment is lit. If the fragment is further away, is is in
shadow.

A hardware multi-pass implementation of this principle has been proposed in [Segal92]. The
first step is the acquisition of the shadow map by rendering the scene from the light source posi-
tion. For walkthroughs, this is a preprocessing step, for dynamic scenes it needs to be performed
each frame. Then, for each frame, the scene is rendered without the illumination contribution

6.3 Shadow Maps 51

from the light source. In a second rendering pass, the shadow map is specified as a projective
texture, and a specific hardware extension is used to map each pixel into the local coordinate
space of the light source and perform the depth comparison. Pixels passing this depth test are
marked in the stencil buffer. Finally, as in Section6.1, the illumination contribution of the light
source is added to the lit regions by a third rendering pass.

The advantage of the shadow map algorithm is that it is a general method for computing all
shadows in the scene, and that it is very fast, since the representation of the shadows is indepen-
dent of the scene complexity. On the down side, there are artifacts due to the discrete sampling
and the quantization of the depth. One benefit of the shadow map algorithm is that the rendering
quality scales with the available hardware. The method could be implemented on fairly low end
systems, but for high end systems a higher resolution or deeperz-buffer could be chosen, so that
the quality increases with the available texture memory. Unfortunately, the necessary hardware
extensions to perform the depth comparison on a per-fragment basis are currently only available
on two high-end systems, the RealityEngine [Akeley93] and the InfiniteReality [Montrym97].

6.3.1 Shadow Maps Using the Alpha Test

Instead of relying on a dedicated shadow map extension, it is also possible to use projective
textures and the alpha test. Basically, this method is similar to the method described in [Segal92],
but it efficiently takes advantage of automatic texture coordinate generation and the alpha test to
generate shadow masks on a per-pixel basis. This method takes one rendering pass more than
required with the appropriate hardware extension.

In contrast to traditional shadow maps, which use the contents of az-buffer for the depth
comparison, we use a depth map with alinearmapping of thez values in light source coordinates.
This allows us to compute the depth values via automatic texture coordinate generation instead
of a per-pixel division. Moreover, this choice improves the quality of the depth comparison,
because the depth range is sampled uniformly, while az-buffer represents close points with
higher accuracy than far points.

As before, the entire scene is rendered from the light source position in a first pass. Automatic
texture coordinate generation is used to set the texture coordinate of each vertex to the depth as
seen from the light source, and a 1-dimensional texture is used to define a linear mapping of this
depth to alpha values. Since the alpha values are restricted to the range [0. . . 1], near and far
planes have to be selected, whose depths are then mapped to alpha values 0 and 1, respectively.
The result of this is an image in which the red, green, and blue channels have arbitrary values,
but the alpha channel stores the depth information of the scene as seen from the light source.
This image can later be used as a texture.

For all object points visible from the camera, the shadow map algorithm now requires a
comparison of the point’s depth with respect to the light source with the corresponding depth

52 Shadows

value from the shadow map. The first of these two values can be obtained by applying the same
1-dimensional texture that was used for generating the shadow map. The second value is obtained
simply by using the shadow map as a projective texture. In order to compare the two values, we
can subtract them from each other, and compare the result to zero.

With multi-texturing, this comparison can be implemented in a single rendering pass. Both
the 1-dimensional texture and the shadow map are specified as simultaneous textures, and the
texture blending function is used to implement the difference. The resultingα value is0 at each
fragment that is lit by the light source, and> 0 for fragments that are shadowed. Then, an alpha
test is employed to compare the results to zero. Pixels passing the alpha test are marked in the
stencil buffer, so that the lit regions can then be rendered in a final rendering pass.

Without support for multi-texturing, the same algorithm is much more expensive. First, two
separate passes are required for applying the texture maps, and alpha blending is used for the
difference. Now, the framebuffer contains anα value of0 at each pixel that is lit by the light
source, and> 0 for shadowed pixels. In the next step it is then necessary to setα to 1 for all
the shadowed pixels. This will allow us to render the lit geometry, and simply multiply each
fragment by1 − α of the corresponding pixel in the framebuffer (the value of1 − α would be
0 for shadowed and1 for lit regions). In order to do this, we have to copy the framebuffer onto
itself, thereby scalingα by 2n, wheren is the number of bits in theα channel. This ensures that
1/2n, the smallest value> 0, will be mapped to1. Due to the automatic clamping to the interval
[0 . . . 1], all larger values will also be mapped to1, while zero values remain zero. In addition
to requiring an expensive framebuffer copy, this algorithm also needs an alpha channel in the
framebuffer (“destination alpha”), which might not be available on some systems.

Figure 6.4 shows an engine block where the shadow regions have been determined using
this approach. Since the scene is rendered at least three times for every frame (four times if the
light source or any of the objects move), the rendering times for this method strongly depend on
the complexity of the visible geometry in every frame, but not at all on the complexity of the
geometry casting the shadows. Scenes of moderate complexity can be rendered at high frame
rates even on low end systems. The images in Figure6.4 are actually the results of texture-
based volume rendering using 3D texturing hardware (see [Westermann98] for the details of the
illumination process). The frame rates for this data set were roughly 15 Hz for an Octane MXE.

6.4 Discussion

In this chapter, we have reviewed algorithms for generating shadows of point and directional
light sources with graphics hardware, and presented an efficient way of implementing shadow
maps through a linear alpha coding of the depth values. All the methods described in this chapter
can be extended to soft shadows cast by area light sources. This involves a Monte Carlo sampling

6.4 Discussion 53
 �� ��

Figure 6.4: An engine block generated from a volume data set with and without shadows. The
shadows have been computed with our algorithm for alpha-coded shadow maps. The Phong
reflection model is used for the unshadowed parts.

of the light source surface by randomly placing a number of point lights on it. The contribution
from each of the point lights can then be rendered with any of the described methods, and the
resulting images are blended together using an accumulation buffer.

It is possible to combine any of the shadow algorithms with the local illumination models
from the previous chapter. Since the determination of the shadowed pixels and the actual illumi-
nation of the lit pixels happen in separate rendering passes, any reflection model can be applied.

An alternative algorithm for implementing shadow maps, based on pixel textures, has been
proposed in [Heidrich99e]. It also codes the depth information into the alpha channel, but uses
pixel textures to perform the depth comparison. Even without multiple texture support, this
approach only uses a total of 3 rendering passes for the geometry, but it requires copying the
framebuffer twice. Besides the fact that pixel textures are required, which are not available
on most platforms today, this method also has a few other drawbacks, which is why it is not
explained in full detail here: since pixel textures do not currently support projective textures,
the algorithm is restricted to orthographic cameras and parallel light sources. A variation of that
algorithm, recently proposed by Sloan [Sloan99], eliminates one of the framebuffer copies and

54 Shadows

works for projective images, but not for point lights. If projective pixel textures were available,
point lights would also work, both for the original algorithm published in [Heidrich99e], and for
the variation by Sloan. Another application of projective pixel textures is given in Chapter9.

The dynamic range of the alpha channel used for the depth comparison in our algorithm
is critical. With a 12 bit alpha channel, the quantization artifacts were reasonable, which is
also demonstrated by Figure6.4. Nonetheless, a deeper alpha buffer and deeper texture formats
would be useful to further improve the rendering quality. In future graphics hardware, it would be
appropriate to have special framebuffer configurations in which the alpha channel is particularly
deep. For example, instead of splitting 48 bits per pixel into 12 bits per channel, it would, for our
algorithm, be better to have only 8 bits each for red, green, and blue, but 24 bits for alpha.

For the future, we believe that the sampling-based shadow map algorithm has advantages
over the analytic methods for hardware implementations. This is because the analytic methods
suffer from the dependency on the scene complexity, while a sampling-based representation
is independent of scene complexity in terms of storage requirements and computational cost.
Moreover, shadow maps allow for improving the quality, simply by adding more texture memory.
This shift towards sampling-based methods has a precedent in the area of visibility algorithms.
For interactive applications, today thez-buffer is used almost exclusively for hidden surface
removal. Analytic methods are mostly applied when a device- and resolution independent output
is seeked, for example for printing.

Chapter 7

Complex Light Sources

After introducing shadows as the first global lighting effect, we now turn to an extended model
for light sources based on light fields. Complex light sources can greatly contribute to the realism
of computer generated images, and are thus interesting for a variety of applications. However,
in order to correctly simulate the indirect light bouncing off internal parts of a lamp, it has been
necessary to apply expensive global illumination algorithms.

As a consequence, it has so far not been possible to use realistic light sources in interactive
applications. For offline techniques such as ray-tracing, complex light source geometry unnec-
essarily slows down the rendering, since reflections and refractions between internal parts of the
light source have to be recomputed for every instance of a light source geometry in every frame.

In this chapter we propose a method for applying realistic light sources in interactive image
synthesis. For a given lamp geometry and luminary, the outgoing light field is precomputed
using standard global illumination methods, and stored away in a light field data structure. Later
the light field can be used to illuminate a given scene while abstracting from the original lamp
geometry. We call a light source stored and used in this fashion a “canned light source”.

Instead of simulating the light field with global illumination methods, canned light sources
could also be measured [Ashdown93], or even provided by lamp manufacturers in much the same
way farfield information is provided today. Thus, a database of luminaries and lamps stored as
canned light sources becomes possible.

Our method also speeds up the rendering process by factoring out the computation of the
internal reflections and refractions of the light source into a separate preprocessing step. As
a consequence, realistic light sources can be efficiently used for interactive rendering, and for
other applications where a complete global illumination solution would be too expensive. In
this chapter, we will focus on the application of canned light sources in hardware accelerated
rendering. A discussion of techniques for ray-tracing has been previously published by the author
in [Heidrich98a].

56 Complex Light Sources

7.1 Simulating and Measuring Light Sources

As mentioned above, we store the canned light source in a light field data structure. From this
data structure radiance values can be extracted efficiently. Light Fields can be generated easily
using existing rendering systems or real world images. Since they are merely a two dimensional
array of projective images, they lend themselves to efficient implementations using computer
graphics hardware (see Section7.2.2).

The left side of Figure7.1shows the geometry of a single light slab. Every grid point corre-
sponds to a sample location. As in [Gortler96] the (u, v) plane is the plane close to the object, in
our case a lamp, whereas the(s, t) plane is further away, potentially at infinity.

Placing the(s, t) plane at infinity offers the advantage of a clear separation between spatial
sampling on the(u, v) plane, and directional sampling on the(s, t) plane. In this situation, all
rays through a single sample on the(u, v) plane, that is, the projective image through that point,
represent the farfield of the light source. The higher the resolution of the(u, v) plane, the more
nearfield information is added to the light field.

Lightsource

(u,v) plane

(s,t) plane

v➞

O

nu||u➞||

nv||v
➞||

u

v
P

u➞

Figure 7.1: Geometry of a single light slab within a light field.

The resolutions used for spatial and directional information of course depend on the applica-
tion domain of the specific light source. For example, for car headlights the nearfield information
is usually negligible, yet it becomes quite important for lamps used in interior design. However,
for almost all applications the distance from the light will be relatively large compared to the
dimensions of the lamp. Therefore, the spatial resolution will usually be much smaller than the
directional resolution, and thus the resolution of the(u, v) plane will be significantly lower than
on the(s, t) plane.

If the (s, t) plane isnot placed at infinity, it is not possible to clearly distinguish between
spatial and directional resolution. Nonetheless, we can still view the light slab as an array of
projective images with centers of projection on the(u, v) plane.

7.2 Reconstruction of Illumination from Light Fields 57

Since a light slab representing a canned light source is merely a 2D array of projective images,
we can create it by first generating a global illumination solution for the lamp geometry, and then
rendering it from multiple points of view. For the global illumination step, we can use any kind
of algorithm, such as Radiosity, Monte-Carlo ray-tracing, Photon Maps, or composite methods
[Slusallek98]. Alternatively, canned light sources could be generated by resampling measured
data [Ashdown93] much in the same way as described in [Gortler96]. Finally, it is also possible
to generate non-physical light sources for special effects.

7.2 Reconstruction of Illumination from Light Fields

Given one or more canned light sources, we can use them to illuminate a scene by reconstructing
the radiance emitted by the light source at every point and in every direction. As in [Gortler96]
and [Levoy96], we use bilinear or quadrilinear interpolation between the samples stored in the
light slabs. For a ray-tracer, we could simply obtain a large number of radiance samples from the
light field. However, the challenge is to obtain a good reconstruction with the smallest number
of samples possible. On the other hand, it is important not to miss any narrow radiance peaks,
because this would lead to artifacts in the reconstructed illumination.

7.2.1 High-quality Reference Solutions

In order to describe the illumination in a scene caused by a canned light source, we view a light
slab as a collection ofNu ×Nv ×Ns ×Nt independent little area light sources (“micro lights”),
each corresponding to one of the light slab’s 4D grid cells. Here,Nu, Nv, Ns, andNt are the
resolutions of the slab in each parametric direction. Each of the micro lights causes a radiance of

Lnu,nv,ns,nt
o (x, ωo) =

∫
Ω(~n)

fr(x, ωi → ωo)L
nu,nv,ns,nt

i (x, ωi) cos θ dωi (7.1)

to be reflected off any given surface pointx. The total reflected radiance caused by the
canned light source is then the sum of the contributions of every micro light.fr(x, ωi → ωo)

is the BRDF of the surface,θ is the angle between the surface normal and the directionωi, and
Lnu,nv,ns,nt

i (x, ωi) is the radiance emitted from the micro light towardsx along directionωi.

SinceLnu,nv,ns,nt

i (x, ωi) is obtained by quadrilinear interpolation of 16 radiance values, Equa-
tion 7.1can be rewritten in a more suitable form. Consider the geometry of a light slab as shown
on the right side of Figure7.1. Every pointP on the(u, v) plane can be written as

P = O + (nu + u)~u + (nv + v)~v,

58 Complex Light Sources

where the vectors~u and~v determine the dimensions of a 2D grid cell, andu, v ∈ [0, 1] describe
the coordinates ofP within the cell. In analogy we can describe a pointP′ on the(s, t) plane,
where we assume that the vectors~s and~t are parallel to~u and~v, respectively.

For each pointx and each micro light(nu, nv, ns, nt), we can now determine the region on
the (u, v) plane that isvisible from pointx. This is achieved by projecting the 2D cell(ns, nt)

onto the(u, v) plane, usingx as the center of projection (see Figure7.2). The resulting rectangle
is clipped against the 2D cell(nu, nv).

x

u0,v0 u1,v1

s0,t0 s1,t1

n➞’

n➞

Figure 7.2: Clipping a light field grid cell.u{0,1}, v{0,1}, s{0,1}, andt{0,1} describe the portion
of the cell that is visible from pointx. In this area, every rayr(u, v, s, t) passing throughx
is characterized byu = (1 − x)u0 + xu1, v = (1 − y)v0 + yv1, s = (1 − x)s0 + xs1, and
t = (1 − y)t0 + yt1 for somex, y ∈ [0, 1]. The dashed lines indicate points and directions for
which the radiance values are stored in the light field.

This yields boundariesu{0,1}, v{0,1}, s{0,1}, andt{0,1} relative to the 4D cell boundaries of
the micro light. In this area, every rayr(u, v, s, t) passing throughx is characterized byu =

(1 − x)u0 + xu1, v = (1− y)v0 + yv1, s = (1− x)s0 + xs1, andt = (1− y)t0 + yt1 for some
x, y ∈ [0, 1]. The valuesx andy can be used for the quadrilinear interpolation of the radiance
emitted towards pointx by inserting the formulas foru, v, s, andt into the following equation:

Lnu,nv,ns,nt

i (x, y) =(1− u) · (1− v) · (1− s) · (1− t) · L0000 +

(1− u) · (1− v) · (1− s) · t · L0001 + (7.2)

· · ·+
u · v · s · t · L1111.

L0000, L0001, . . . , L1111 are the 16 radiance values at the corners of the 4D grid cell. These are
contained in the light field. With this result, we can now rewrite Equation7.1as follows:

7.2 Reconstruction of Illumination from Light Fields 59

Lnu,nv,ns,nt
o (x, ωo) =

∫
A

fr(x, (P− x) → ωo)L
nu,nv,ns,nt

i (x,P → x)
cos θ cos θ′

r2
dP (7.3)

=A ·
∫ 1

0

∫ 1

0

fr(x, (P− x) → ωo)L
nu,nv,ns,nt

i (x, y)
cos θ cos θ′

r2
dxdy,

whereA = (u1 − u0)||~u|| · (v1 − v0)||~v|| is the size of the visible region on the(u, v) plane, and
r = ||P − x|| is the distance of the two pointsP andx. Note that the vectors~s and~t do not
occur in this equation. That is, the exact position and parameterization of the(s, t) plane is only
required for clipping. The use of an(s, t) plane at infinity is transparent in Equation7.3.

While an analytic solution of this integral exists, it is too complicated for practical use. How-
ever, the integrand in Equation7.3 is quite smooth, so that Monte Carlo integration performs
well, and only a few samples are required to obtain good results.

In order to compute the complete illumination inx, we have to sum up the contribution of
all micro lights. Although there areNu × Nv × Ns × Nt micro lights, onlyO(max(Nu, Ns) ·
max(Nv, Nt)) have a non-zero visible area from any pointx. These visible areas are easily
determined since 2D grids on the two light field planes are aligned. Thus,u{0,1} ands{0,1} only
depend on the gridcolumn(nu, ns), while v{0,1} andt{0,1} only depend on the gridrow (nv, nt).

The result of this method is that we know how many samples are at least required for faith-
fully computing the illumination in a given pointx: at least one sample is necessary for each
visible micro light. Figure7.3 shows an image generated via ray casting, using a canned light
source resembling a slide projector. The focal plane of this slide projector, which is defined
through the(s, t)-plane of the canned light source, is approximately located at the projection
screen. There, the image is very sharp, while it is somewhat blurred on the wall behind the
screen. The chair in front of the screen is so far away from the focal plane that no fine detail is
visible at all – all that can be seen is that the chair is bright. This image was generated with the
Vision rendering system [Slusallek95, Slusallek98], using some speed-ups of the above method,
which are described elsewhere [Heidrich98a]. The image, at a resolution of600 × 600, took
about 30 minutes to render on a 195 MHz R10k. This is a very good result given that any other
global illumination method would have serious problems rendering this effect at all.

7.2.2 Hardware Reconstruction

In addition to ray-tracing, it is also possible to use computer graphics hardware for reconstructing
the illumination from a canned light source. Our method can be combined with one of the
algorithms for generating shadows, as discussed in Chapter6.

For hardware-based rendering, we assume that the BRDFfr(x, (P−x) → ωo) used in Equa-
tion 7.3corresponds to the Phong model, which is the hardware lighting model. We numerically

60 Complex Light Sources

Figure 7.3: A ray-traced image with a canned light source resembling a slide projector.

integrate Equation7.3by evaluating the integrand at the grid points on the(u, v) plane. For these
points, the quadrilinear interpolation reduces to a bilinear interpolation on the(s, t) plane, which
can be done in hardware.

[Segal92] describes how projective textures can be used to simulate light sources such as
high-quality spotlights and slide projectors. Our method is an extension of this approach, which
also accounts for the quadratic falloff and the cosine terms in Equation7.3. To see how this
works, we rewrite the integrand from this equation in the following form:

fr(x, (P− x) → ωo) cos θ · Acos θ′

r2
· Lnu,nv,ns,nt

i (x, y) (7.4)

The first factor of this formula is given by the Phong material and the surface normal~n (see
Figure7.2). The second factor is the illumination from a spot light with intensityA, located
at P and pointing towards~n′ with a cutoff angle of90◦, a spot exponent of1, and quadratic
falloff. Finally, the third factor is the texture value looked up from the slice of the light slab
corresponding to pointP on the(u, v) plane.

In other words, the integrand of Equation7.4can be evaluated by combining projective tex-
tures as in [Segal92] with the illumination from a spotlight using the standard hardware lighting
model. The results from texturing and lighting are then multiplied together using texture blend-
ing.

The integral from Equation7.3 is approximated by the sum of the contributions from all

7.2 Reconstruction of Illumination from Light Fields 61

Nu×Nv grid points on the(u, v) plane. The illumination from each grid point has to be rendered
in a separate pass. We compute the sum by adding multiple images, each rendered with a different
spotlight position and projective texture. To this end we use either alpha blending or, if alpha is
already used for other purposes, an accumulation buffer [Haeberli90].

It should be noted that it is also possible to use spotlight positions other than the(u, v) grid
points, if the corresponding projective texture is previously generated by bilinearly interpolating
the images of the adjacent grid points. Although hardware can again be used for this task, it is
questionable whether the additional cost is worth while.

The top row of Figure7.4shows two images rendered with the proposed method and a canned
light source of resolution8×8×64×64. The canned light source represents the simulated light
field of a point source located in the focal point of a parabolic reflector. A grid of3× 3 polygons
is located in front of the reflector, as depicted in the center of Figure7.4. The scene, which
in this case consists of 3 large polygons subdivided into smaller rectangles, had to be rendered
8 × 8 = 64 times, once for eachu and v grid point. For a400 × 400 image, the program
runs at about 8 fps. on an SGI O2, 18 fps. on an Octane MXE and> 20 fps. on an Onyx2
BaseReality. In this example, pixel fill rate is the limiting factor on both platforms. In general,
the total rendering time strongly depends on the complexity of the scene and the number of pixels
rendered in each pass. An implementation for more complex geometries should therefore employ
some sort of view frustum culling that restricts the rendered geometry for each pass to the actual
frustum covered by the projective texture. For comparison, the bottom left image in Figure7.4
shows the Utah teapot rendered directly as cubic B´ezier surfaces (OpenGL evaluators). The
Onyx2 BaseReality achieved a frame rate of 1 Hz for these two images, although the resolution
of the canned light source was the same as for the other scene. The bottom right image shows a
scene similar to the ray-traced image from Figure7.3, which can be rendered at10 − 12 frames
per second on an SGI Octane.

7.2.3 Other Material Models and Shadows

With this technique, a canned light source is represented as a 2-dimensional array of projective
textures. Each individual texture defines a spot light as described in [Segal92], and is modulated
with the result from local illumination using hardware lighting. This is what is often called a
light mapin the PC graphics world. The above derivations show that canned light sources can be
implemented as an array of these light maps.

Instead of using the Phong illumination model performed by the hardware, it is also possible
to apply one of the reflection models from Chapter5. Then, however, more passes are required
for each projective texture. For example, for the Torrance-Sparrow model, we first require three
rendering passes that compute the specular and diffuse reflection components for a isotropic
point light, as described in Section5.1. The result is then multiplied in a fourth pass by the

62 Complex Light Sources

 ��

Figure 7.4: Images rendered with a canned light source and hardware texture mapping. Top
row, center: light source geometry from which the canned light source for three of the images
was generated through simulation. Bottom row, right: OpenGL rendering of a scene similar to
Figure7.3.

result of the projective texturing. The contributions of all projective textures are accumulated
using an accumulation buffer. Thus, canned light sources with a Torrance-Sparrow reflection
model require a total ofNu×Nv×4 passes. With multi-texturing, or the hardware modifications
proposed in Section5.3.2, this can again be done inNu ×Nv passes, as above.

The combination with shadow mapping techniques as discussed in Chapter6 is also possible,
again through the use of additional rendering passes. As in Chapter6, the shadowed pixels have
to be masked in a separate first pass, and the illumination must only be applied to the lit pixels.

7.3 Discussion

In this chapter we have introduced the notion of a canned light source, which is a precomputed,
discretely sampled version of the light field emitted by a complex light source or lamp. This
information is stored away in a light field data structure. Later, the precomputed information

7.3 Discussion 63

can be used to illuminate a scene while abstracting from the lamp geometry. Thus, canned light
sources act as blackboxes representing complex light sources.

Canned light sources can be used to create databases of light sources based on simulation or
measurement. Ideally, this information could be directly distributed by the lamp manufacturers
in much the same way farfield information is provided today.

The precomputed or measured information can be used as a realistic light source for hard-
ware-accelerated rendering. In order to achieve interactive frame rates on contemporary hard-
ware, the(u, v) resolution of the light field has, however, to be relatively small, since a total of
nu × nv rendering passes are required. Nonetheless, canned light sources offer an efficient, in
many cases interactive, way of visualizing the illumination from complex luminaries. For use
in highly interactive applications, such as games, the method is currently too slow. In applica-
tions involving interior design, or the development of new light sources, this method could be an
interesting way to provide a fast previewing mechanism.

64 Complex Light Sources

Chapter 8

Environment Mapping Techniques for
Reflections and Refractions

With the results from the previous three chapters, it is now possible to render objects with a wide
variety of different materials, using arbitrary light sources and shadowing effects. Although
the light sources can, to some degree, already be the result of a global illumination solution as
mentioned in Chapter7, this is only part of the complete global illumination problem, which
involves the interreflection of light in the complete scene. In this chapter, we now examine
environment mapping techniques for interactively visualizing such global illumination solutions.
We donot use the hardware to compute these solutions directly, but we employ it to generate
interactive walkthroughs of static scenes with non-diffuse, curved objects using precomputed
global illumination solutions in the form of environment maps.

The basic idea of environment maps is striking [Blinn76]: if a reflecting object is small
compared to its distance from the environment, the incoming illumination on the surface really
only depends on the direction of the reflected ray. Its origin, that is the actual position on the
surface, can be neglected. Therefore, the incoming illumination at the object can be precomputed
and stored in a 2-dimensional texture map.

If the parameterization for this texture map is cleverly chosen, the illumination for reflections
off the surface can be looked up very efficiently. Of course, the assumption of a small object
compared to the environment often does not hold, but environment maps are a good compromise
between rendering quality and the need to store the full 4-dimensional radiance field on the
surface (see Chapter10).

Both offline [Hanrahan90, Pixar89] and interactive, hardware-based renderers [Segal98] have
used this approach to simulate mirror reflections, often with amazing results.

In this chapter, we first discuss the issue of parameterizations for environment mapping. It
turns out that the parameterizations used today are either not appropriate for use from arbitrary

66 Environment Mapping Techniques for Reflections and Refractions

viewing directions, or pose difficulties for hardware implementations. We then develop a new
parameterization that is both view independent and easy to implement on current and future
hardware. Parts of these ideas have been published in [Heidrich98d]. Following this discussion,
we present techniques for using environment maps for global illumination visualization. This
includes a more flexible reflection model for use with view independent environment maps as
well as prefiltering for glossy reflection [Heidrich99d].

8.1 Parameterizations for Environment Maps

Given the above description of environment maps, one would think that it should be possible
to use a single map for all viewing positions and directions. After all, the environment map
is supposed to contain information about illumination fromall directions. Thus, it should be
possible to modify the lookup process in order to extract the correct information for all possible
points of view.

In reality, however, this is not quite true. The parameterization used in most of today’s
graphics hardware exhibits a singularity as well as areas of extremely poor sampling. As a
consequence, this form of environment map cannot be used for any viewing direction except the
one for which it was originally generated.

The parameterization used most commonly in computer graphics hardware today is thespher-
ical environment map[Haeberli93]. It is based on the analogy of a small, perfectly mirroring
metal ball centered around the object. The reason why this ball should be made out of metal
instead of, for example, glass, can be found in the Fresnel formulae (Equation2.7). Whereas the
reflectivity of materials with relatively small indices of refraction, such as glass, varies strongly
with the direction of the incoming light, it is almost constant for materials with a high index of
refraction, which is typical for metals. The image that an orthographic camera sees when looking
at such a ball from a certain viewing direction is the environment map. An example environment
map from the center of a colored cube is shown in Figure8.1.

The sampling rate of spherical maps reaches its maximum for directions opposing the view-
ing direction (that is, objects behind the viewer), and goes towards zero for directions close to
the viewing direction. Moreover, there is a singularity in the viewing direction, since all points
where the viewing vector is tangential to the sphere show the same point of the environment.

With these properties, it is clear that this parameterization is not suitable for viewing direc-
tions other than the original one. Maps using this parameterization have to be regenerated for
each change of the view point, even if the environment is otherwise static.

The major reason why spherical maps are used anyway is that the lookup can be computed
efficiently with simple operations in hardware (see Figure8.2for the geometry): for each vertex
compute the reflection vector~r of the per-vertex viewing direction~v. A spherical environment

8.1 Parameterizations for Environment Maps 67

Figure 8.1: A spherical environment map from the center of a colored cube. Note the bad
sampling of the cube face directly in front of the observer (black).

map which has been generated for an orthographic camera pointing into direction~vo, stores the
corresponding radiance information for this direction at the point where the reflective sphere has
the normal~h := (~vo + ~r)/||~vo + ~r||. If ~vo is the negativez-axis in viewing coordinates, then
the 2D texture coordinates are simply thex andy components of the normalized halfway vector
~h. For environment mapping on a per-vertex basis, these texture coordinates are automatically
computed by the automatic texture coordinate generation mechanism. For orthographic cameras,
the halfway vector simplifies to the surface normal.

r➞
n➞

vo
➞

v➞

h➞

Figure 8.2: The lookup process in a spherical environment map.

Another parameterization is thelatitude-longitude map[Pixar89]. Here, thes, andt para-
meters of the texture map are interpreted as the latitude and longitude with respect to a certain
viewing direction. Apart from the fact that these maps are severely oversampled around the
poles, the lookup process involves the computation of inverse trigonometric functions, which is
inappropriate for hardware implementations.

Finally, cubical environment maps[Greene86, Voorhies94] consist of six independent per-

68 Environment Mapping Techniques for Reflections and Refractions

spective images from the center of a cube through each of its faces. The sampling of these maps
is fairly good, as the sampling rates for all directions differ by a factor of3

√
3 ≈ 5.2. However,

although hardware implementations of this parameterization have been proposed [Voorhies94],
these are not available at the moment.

The reason for this is probably that the handling of six independent textures poses problems,
and that anti-aliasing across the image borders is difficult. The lookup process within each of the
six images in a cubical map is inexpensive. However, the difficulty is to decide which of the six
images to use for the lookup. This requires several conditional jumps, and interpolation of texture
coordinates is difficult for polygons containing vertices in more than one image. Because of
these problems, cubical environment maps are difficult and expensive to implement in hardware,
although they are quite widespread in software renderers (e.g. [Pixar89]).

Many interactive systems initially obtain the illumination as a cubical environment map, and
then resample this information into a spherical environment map. There are two ways this can be
done. The first is to rerender the cubical map for every frame, so that the cube is always aligned
with the current viewing direction. Of course this is slow if the environment contains complex
geometry. The other method is to generate the cubical map only once, and then recompute
the mapping from the cubical to the spherical map for each frame. This, however, makes the
resampling step more expensive, and can lead to numerical problems around the singularity.

In both cases, the resampling can be performed as a multi-pass algorithm in hardware, using
morphing and texture mapping. However, the bandwidth imposed onto the graphics system by
this method is quite large: the six textures from the cubical representation have to be loaded into
texture memory, and the resulting image has to be transferred from the framebuffer into texture
RAM, which is a slow operation on most hardware.

8.2 A View-independent Parameterization

The parameterization we use is based on an analogy similar to the one used to describe spherical
environment maps. Assume that the reflecting object lies at the origin, and that the viewing
direction is along the negativez axis. The image seen by an orthographic camera when looking
at a metallic, reflecting paraboloid

f(x, y) =
1

2
− 1

2
(x2 + y2), x2 + y2 ≤ 1, (8.1)

contains the information about the hemisphere facing towards the viewer. The complete environ-
ment is stored in two separate textures, each containing the information of one hemisphere. The
geometry is depicted in Figure8.3.

This parameterization has recently been introduced in [Nayar97] and [Nayar98] in a different
context. Nayar actually built a lens and camera system that is capable of capturing this sort of

8.2 A View-independent Parameterization 69

Figure 8.3: The rays of an orthographic camera reflected off a paraboloid sample a complete
hemisphere of directions.

image from the real world. Besides ray-tracing and resampling of cubical environment maps,
this is actually one way of acquiring maps in the proposed format. Since two of these cameras
can be attached back to back [Nayar98], it is possible to create full360◦ images of real world
scenes.

The geometry described above has some interesting properties. Firstly, the reflected rays in
each point of the paraboloid all originate from a single point, the focal point of the paraboloid,
which is also the origin of the coordinate system (see dashed lines in Figure8.3). This means
that the resulting image can indeed be used as an environment map for an object in the origin.
Spherical environment maps do not have this property; the metal spheres used there have to be
assumed small.

Secondly, the sampling rate of a parabolic map varies by a factor of 4 over the complete
image. This can be shown easily through the following considerations. Firstly, a point on the
paraboloid is given as~f = (x, y, 1

2
− 1

2
(x2 + y2))T . This is also the vector from the origin to the

point on the paraboloid, and the reflection vector~r for a ray arriving in this point from the viewing
direction (see Figure8.3). If the viewing ray has a differential areadA (which corresponds to the
pixel area), then the reflected ray also has this area. The solid angle covered by the pixel is thus
the projection ofdA onto the unit sphere:

ω(x, y) =
dA

||~f(x, y)||2 · sr. (8.2)

Since all pixels have the same areadA, and ~f(0, 0) = 1/2, the sampling rate forx = 0 and
y = 0, that is, for reflection rays~r = (0, 0, 1)T pointing back into the direction of the viewer, is
ωr = 4sr/m2 · dA. Thus, the change in sampling rate over the hemisphere can be expressed as

ω(x, y)

ωr

=
1

4||~f(x, y)||2
=

1

4(x2 + y2 + (1
2
− 1

2
(x2 + y2))2)

(8.3)

Pixels in the outer regions of the map cover only1/4 of the solid angle covered by center
pixels. This means that directions perpendicular to the viewing direction are sampled at a higher

70 Environment Mapping Techniques for Reflections and Refractions

rate than directions parallel to the viewing direction. Depending on how we select mip-map
levels, the factor of 4 in the sampling rate corresponds to one or two levels difference, which is
quite acceptable. In particular this is somewhat better than the sampling of cubical environment
maps. The sampling rates for different parameterizations are compared in Figure8.4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

ω/ωr

θ [rad]

Sampling Rates of different Environment Map Parameterizations

Parabolic Map
Sphere Map
Cube Map

Figure 8.4: The change of solid angleω/ωr covered by a single pixel versus the angleθ between
the negativez-axis and the reflected ray.ωr is the solid angle covered by pixels showing objects
directly behind the viewer. The parabolic parameterization proposed here gives the most uniform
sampling.

Figure8.5 shows the two images comprising a parabolic environment map for the simple
scene used in Figure8.1. The left image represents the hemisphere facing towards the camera,
while the right image represents the hemisphere facing away from it.

8.2.1 Lookups from Arbitrary Viewing Positions

In the following, we describe the math behind the lookup process of a reflection value for an ar-
bitrary viewing position and -direction. We assume that environment maps are specified relative
to a coordinate system in which the reflecting object lies at the origin, and the map is generated

8.2 A View-independent Parameterization 71

Figure 8.5: The two textures comprising an environment map for an object in the center of a
colored cube.

for a viewing direction (i.e. vector from the object point to the eye point) of~do = (0, 0, 1)T . It
is not necessary that this coordinate system represents the object space of the reflecting object,
although this would be an obvious choice. However, it is important that the transformation be-
tween this space and eye space is a rigid body transformation, as this means that vectors do not
have to be normalized after transformation. To simplify the notation, we will in the following
use the term “object space” for this space.

In the following,~ve denotes the normalized vector from the point on the surface to the eye
point in eye space, while the vector~ne = (ne,x, ne,y, ne,z)

T is the normal of the surface point
in eye space. Furthermore, the (affine) model/view matrix is given asM. This means, that the
normal in eye space~ne is really the transformationM−T · ~no of some normal vector in object
space. IfM is a rigid body transformation, and~no is normalized, then so is~ne. The reflection
vector in eye space is then given as

~re =2 < ~ne, ~ve > ~ne − ~ve. (8.4)

Transforming this vector with the inverse ofM yields the reflection vector in object space:

~ro = M−1 · ~re. (8.5)

The illumination for this vector in object space is stored somewhere in one of the two images.
More specifically, if thez component of this vector is positive, the vector is facing towards the
viewer, and thus the value is in the first texture image, otherwise it can be found in the second.
Let us, for the moment, consider the first case.

~ro is the reflection of the constant vector~do = (0, 0, 1)T at some point(x, y, z) on the
paraboloid:

72 Environment Mapping Techniques for Reflections and Refractions

~ro = 2 < ~n, ~do > ~n− ~do, (8.6)

where~n is the normal at that point of the paraboloid. Due to the formula of the paraboloid
from Equation8.1, this normal happens to be

~n =
1√

x2 + y2 + 1

 x

y

1

 =
1

z

 x

y

1

 . (8.7)

The simplicity of this formula is the major reason that the parabolic parameterization can be
easily implemented in hardware. It means that an unambiguous representative for the normal di-
rection can be computed by dividing a (not necessarily normalized) normal vector by itsz com-
ponent, which can be implemented as a perspective division. Another way to disambiguate the
normal direction would be to normalize the vector, which involves the more expensive computa-
tion of an inverse square root. This is the approach taken by spherical maps. The combination of
Equations8.6and8.7yields

~do + ~ro = 2 < ~n,~v > ~n =

 k · x
k · y
k

 . (8.8)

for some valuek.

In summary, this means thatx andy, which can be directly mapped to texture coordinates,
can be computed by calculating the reflection vector in eye space (Equation8.4), transforming
it back into object space (Equation8.5), adding it to the (constant) vector~do (Equation8.8), and
finally dividing by thez component of the resulting vector.

The second case, where thez component of the reflection vector in object space is negative,
can be handled similarly, except that−~d has to be used in Equation8.8, and that the resulting
values are−x and−y.

8.2.2 Implementation Using Graphics Hardware

An interesting observation in the above equations is that almost all the required operations are
linear. There are two exceptions. The first is the calculation of the reflection vector in eye
space (Equation8.4), which is quadratic in the components of the normal vector~ne. The second
exception is the division at the end, which can, however, be implemented as a perspective divide.

8.2 A View-independent Parameterization 73

Given the reflection vector~re in eye coordinates, the transformations for the frontfacing part
of the environment can be written in homogeneous coordinates as follows:

x

y

1

1

 = P · S · (Ml)
−1 ·

re,x

re,y

re,z

1

 , (8.9)

where

P =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

 (8.10)

is a projective transformation that divides by thez component,

S =

−1 0 0 do,x

0 −1 0 do,y

0 0 −1 do,z

0 0 0 1

 (8.11)

computes~do − ~ro, andMl is the linear part of the affine transformationM. Another matrix is
required for mappingx andy into the interval[0, 1] for the use as texture coordinates:

s

t

1

1

 =

1
2

0 0 1
2

0 1
2

0 1
2

0 0 1 0

0 0 0 1

 ·

x

y

1

1

 (8.12)

Similar transformations can be derived for the backfacing parts of the environment. These
matrices can be used as texture matrices, if~re is specified as the initial texture coordinate for the
vertex. Note that~re changes from vertex to vertex, while the matrices remain constant.

Due to non-linearity, the reflection vector~re has to be computed in software. This step
corresponds to the automatic generation of texture coordinates for spherical environment maps on
standard graphics hardware (see Section4.1). Actually, this process could be further simplified
by assuming that the vector~v from the eye to the object point is constant. This is true if the object
is far away from the camera, compared to its size, or if the camera is orthographic. Otherwise, the
assumption breaks down, which is particularly noticeable on flat objects (planar objects would
receive a constant color!).

74 Environment Mapping Techniques for Reflections and Refractions

What remains to be done is to combine frontfacing and backfacing regions of the environment
into a single image. Using multiple textures, this can be achieved in a single rendering pass. To
this end, the backfacing part of the environment map is specified as an RGB texture with the
appropriate matrix for the backfacing hemisphere. Then, the frontfacing part is specified as a
second texture in RGBα format. The alpha is used to mark pixels inside the circlex2 + y2 ≤ 1

with an alpha value of1, pixels outside the circle with an alpha value of0. The blending between
the two maps is set up in such a way that the colors of the two textures are blended together using
the alpha channel of the frontfacing map.

The important point here is that backfacing vectors~ro will result in texture coordinatesx2 +

y2 > 1 while the matrix for the frontfacing part is active. These regions fall outside the circular
region marked in the frontfacing map, and are thus covered by the backfacing environment map.

Alpha values between0 and1 can be used to blend between the two maps if seams are visible
due to inconsistent data for the two hemispheres (e.g. if the two hemispheres are recovered
from photographs). This would require the pixels outside the circlex2 + y2 ≤ 1 to be valid
as in Figure8.6. These maps have been generated by extending the domain of the paraboloid
(Equation8.1) to [−1, 1]2.

 ��� ��� ������������������������������������

Figure 8.6: Left/Center: two textures comprising the environment map for an object in the center
of an office scene. Right: A resampled image from [Haeberli93]. The original image was taken
with a 180◦ fisheye lens showing one hemisphere. Then a cubical map was generated by repli-
cating the image for the second hemisphere. From this cubical map, we resampled the map for
our parameterization. The map for the second hemisphere would be identical to this one.

If the hardware does not support multiple simultaneous textures, the parameterization can still
be applied using a multi-pass method and alpha testing. As above, the pixels of the frontfacing
map are marked in the alpha channel. In pseudo-code, the algorithm then works as follows:

8.3 Visualizing Global Illumination with Environment Maps 75

renderingOfParabolicEnvironmentMaps()

{
set up the alpha test so that only fragments

with a source alpha of 1 are rendered

load the frontfacing part of the environment as a texture

load the matrix for the frontfacing part on the texture stack

draw object with ~ro as texture coordinate

load the backfacing part of the environment as a texture

load the matrix for the backfacing part on the texture stack

draw object with ~ro as texture coordinate

}

8.2.3 Mip-map Level Generation

Anti-aliasing of parabolic environment maps can be performed using any of the known prefilter-
ing algorithms, such as mip-mapping [Williams83] or summed area tables [Crow84]. For correct
prefiltering, the front- and backfacing maps need to contain valid information for the whole do-
main[−1, 1]2, as in Figure8.6.

The next level in the mip-map hierarchy is then generated by computing a weighted sum for
each2 × 2 block of texels. The weight for each texel is proportional to the solid angle it covers
(Equation8.2). The sum of these solid angles is the solid angle covered by the texel in the new
mip-map level, and is used as a weight for the next iteration step. The generation of summed
area tables is similar; the solid angles of the pixels are again used as weights.

Mip-mapping is, of course, based on isotropic filtering, and therefore produces errors for
grazing viewing angles. Summed area tables are better, but also produce artifacts when the
direction of anisotropy does not align with one of the coordinate axes of the texture. These prob-
lems, are, however typical for these methods, and in no way specific to environment maps. With
the above method, the texture is correctly anti-aliased within the limits of the chosen method,
since each texel in the map is correctly anti-aliased, and each pixel on the object is textured by
exactly one hemispherical map.

8.3 Visualizing Global Illumination with Environment Maps

Once an environment map is given in the parabolic parameterization, it can be used to add a
mirror reflection term to an object. Figure8.7 shows a reflective sphere and torus viewed from

76 Environment Mapping Techniques for Reflections and Refractions

different angles with the environment maps from Figure8.6. �� ����������������������������������

 �� ����������������������������������

 ��� ��� �������������������������������������

Figure 8.7: Top and center rows: the environment maps from Figure8.6applied to a sphere and a
torus, and seen from different viewpoints. Bottom left: diffusely prefiltered environment map of
the cafe scene. Bottom center: diffusely illuminated torus. Bottom right: same torus illuminated
with both a diffuse and a mirror term.

8.3 Visualizing Global Illumination with Environment Maps 77

Using multi-pass rendering and alpha blending, this mirror reflection term can be added to lo-
cal illumination terms that are generated using hardware lighting or the methods from Chapter5.
It is also possible to add a diffuse global illumination term through the use of a precomputed
texture. For the generation of such a texture, there exist two methods. In the first approach, a
global illumination algorithm such as Radiosity [Sillion94] is used to compute the diffuse global
illumination of every surface point.

The second approach is purely image-based, and was proposed by [Greene86]. The environ-
ment map used for the mirror term contains information about the incoming radianceLi(x,~l),
wherex is the point for which the environment map is valid, and~l the direction of the incoming
light. According to Equation2.10the outgoing radiance for a diffuse BRDF is then:

Lo(x, ~n) = kd ·
∫

Ω(~n)

Li(x,~l) · cos(~n,~l)dω(~l). (8.13)

Due to the constant BRDF of diffuse surfaces,Lo is only a function of the surface normal
~n and the illuminationLi stored in the environment map, but not of the outgoing direction~v.
Thus, it is possible to precompute a map which contains the diffuse illumination for all possible
surface normals. For this map, like for the mirror map, the parameterization from Section8.2
can be used. The only difference is that diffusely prefiltered maps are always referenced via the
normal of a vertex in environment map space, instead of via the reflection vector. Thus, diffuse
texturing is performed by using the diffuse environment map, a texture matrix that corresponds
to P in Equation8.10, and initial texture coordinates that correspond to the normal. Figure8.7
shows such a prefiltered map, a torus with diffuse illumination only as well as a torus with diffuse
and mirror illumination.

8.3.1 Generalized Mirror Reflections using a Fresnel Term

A regular environment map without prefiltering describes the incoming illumination at a point in
space. If this information is directly used as the outgoing illumination, as is described above, and
as it is state of the art for interactive applications, only metallic surfaces can be modeled. This is
because for metallic surfaces (surfaces with a high index of refraction) the Fresnel term (Equa-
tion 2.7) is almost one, independent of the angle between light direction and surface normal.
Thus, for a perfectly smooth (i.e. mirroring) surface, incoming light is reflected in the mirror
direction with a constant reflectance.

For non-metallic materials (materials with a small index of refraction), however, the re-
flectance strongly depends on the angle of the incoming light. Mirror reflections on these mate-
rials should be weighted by the Fresnel term for the angle between the normal and the reflected
viewing direction~rv, which is, of course, the same as the angle between normal and viewing
direction~v.

78 Environment Mapping Techniques for Reflections and Refractions

Similar to the techniques for local illumination presented in Section5, the Fresnel term
F (cos θ) for the mirror direction~rv can be stored in a 1-dimensional texture map, and rendered to
the framebuffer’s alpha channel in a separate rendering pass. The mirror part is then multiplied
with this Fresnel term in a second pass, and a third pass is used to add the diffuse part. This
yields an outgoing radiance ofLo = F · Lm + Ld, whereLm is the contribution of the mirror
term, whileLd is the contribution due to diffuse reflections.

In addition to simply adding the diffuse part to the Fresnel-weighted mirror reflection, we can
also use the Fresnel term for blending between diffuse and specular:Lo = F · Lm + (1− F)Ld.
This allows us to simulate diffuse surfaces with a transparent coating: the mirror term describes
the reflection off the coating. Only light not reflected by the coating hits the underlying surface
and is there reflected diffusely.

Figure8.8shows images generated using these two approaches. In the top row, the Fresnel-
weighted mirror term is shown for indices of refraction of 1.5, 5, and 200. In the center row,
a diffuse term is added, and in the bottom row, mirror and diffuse terms are blended using the
Fresnel term. Note that for low indices of refraction, the object is only specular for grazing
viewing angles, while for a high indices of refraction we get the metal-like reflection known
Figure8.7.

8.3.2 Glossy Prefiltering of Environment Maps

So far, we are able to use environment maps for generating a mirror term as well as diffuse illu-
mination, the latter through prefiltering of a given environment map [Greene86]. We would now
like to extend the concept of environment maps to glossy reflections, also based on a prefiltering
technique. Voorhies et al. [Voorhies94] used a similar approach to implement Phong shading for
directional light sources.

These two ideas can be combined to precompute an environment map containing the glossy
reflection of an object with a Phong material. With this concept, effects similar to the ones
presented by Debevec [Debevec98] are possible in real time. As shown in [Lewis93], the Phong
BRDF is given by

fr(x,~l → ~v) = ks · < ~rl, ~v >1/r

cos α
= ks · < ~rv,~l >1/r

cos α
, (8.14)

where~rl, and~rv are the reflected light- and viewing directions, respectively, andcos α =< ~n,~l >

as in Chapter5. Thus, the specular global illumination using the Phong model is

Lo(x, ~rv) = ks ·
∫

Ω(~n)

< ~rv,~l >1/r Li(x,~l) dω(~l), (8.15)

for some roughness valuer. This is only a function of the reflection vector~rv and the environ-
ment map containing the incoming radianceLi(x,~l). As for diffuse illumination, it is therefore

8.3 Visualizing Global Illumination with Environment Maps 79
 ��� ��� ��

 ��� ��� ��

 ��� ��� ��

 ��� ��� ���

Figure 8.8: Top row: Fresnel weighted mirror term. Second row: Fresnel weighted mirror term
plus diffuse illumination. Third row: Fresnel blending between mirror and diffuse term. The
indices of refraction are (from left to right) 1.5, 5, and 200. Bottom row: a prefiltered version of
the map with a roughness of 0.01, and application of this map to a reflective sphere and torus.

80 Environment Mapping Techniques for Reflections and Refractions

possible to take a map containingLi(x,~l), and generate a filtered map containing the outgoing
radianceLo(x, ~rv) for a glossy Phong material.

Figure8.8shows such a map generated from the original cafe environment in Figure8.6, as
well as a glossy sphere and torus textured with this map.

The use of a Phong model for the prefiltering is somewhat unsatisfactory, since this is not
a physically valid model, as pointed out in Section3.1.2. However, it is the only model that
only depends on the angle between reflected light direction and viewing direction, and thus
the only one that can be prefiltered in this way. Prefiltering of other models would cause the
dimensionality of the map to increase. Even a Fresnel weighting along the lines of Section8.3.1
is only possible with approximations. The exact Fresnel term for the glossy reflection cannot be
used, since this term would have to appear inside the integral of Equation8.15. However, for
glossy surfaces with a low roughness, the Fresnel term can be assumed constant over the whole
specular peak (which is very narrow in this case). Then the Fresnel term can be moved out of the
integral, and the same technique as for mirror reflections applies.

If the original environment map is given in a high-dynamic range format such as [Larson97,
Debevec97], then this prefiltering technique allows for effects similar to the ones described in
[Debevec98]. Despite the use of the Phong model, and although reflections of an object onto
itself cannot be modeled by environment maps, the renderings are quite convincing, considering
that these images can be rendered at interactive frame rates on contemporary low end worksta-
tions such as an SGI O2.

8.3.3 Refraction and Transmission

All the techniques described above are also applicable for transmission and refraction on thin
surfaces. A thin surface is one for which the thin lens approximation holds (see Chapter11 and
[Born93]). This means the surface is assumed infinitely thin, so that the entry and exit points of
each ray coincide. This approximation does not hold for solid objects like glass balls, but it can
be used for windows or spectacle lenses (see Figure8.9).

v➞
rv
➞ v➞

rv
➞

Figure 8.9: Refractions in infinitely thin surfaces can be modeled with environment maps (left),
but not refractions in thick objects (right).

8.4 Discussion 81
 �� ���

Figure 8.10: Rendering frosted glass with prefiltered environment maps.

The only difference that has to be considered for applying environment maps to such a re-
fractive or transmissive object is that the refracted or transmitted viewing ray is used to index the
environment maps, instead of the reflected viewing direction. This vector can also be computed
in software. Figure8.10shows two images with a transmissive polygon that has been texture
mapped with a prefiltered Phong environment map to simulate a frosted glass effect.

The restriction to thin surfaces is necessary for this algorithm, because for surfaces with
a finite thickness, each ray is refracted twice, once when it enters the object, and once when
it leaves. The final ray direction after these two refractions depends on the exact point where
the ray leaves the object, which, in turn, depends both on the normal at the point of entrance,
and the viewing direction. Thus, a 2-dimensional lookup table is insufficient to characterize the
refraction of light in thick objects. A technique based on higher-dimensional lookup tables is
discussed in Chapter10.

8.4 Discussion

In this chapter, we have introduced a novel parameterization for environment maps, which makes
it possible to use a single map consisting of two textures for all viewing points and -directions.
This allows us to generate walkthroughs of static scenes with reflecting objects without the need
to recompute environment maps for each frame. Furthermore, we have shown how environment
maps can be used to render global illumination effects based on a mirror, a diffuse, and a glossy
term, and how to appropriately weight the mirror and glossy terms in order to simulate non-
metallic objects.

All the techniques proposed here work in real time on contemporary graphics hardware (15-
20 fps. on SGI O2, 20-25 fps. on SGI Octane MXE and Onyx2 BaseReality for image resolutions
of 1280× 1024). All textures were mip-mapped for these measurements. Since multiple simul-
taneous textures are not supported by these platforms, the timings include a total of 5 rendering

82 Environment Mapping Techniques for Reflections and Refractions

passes for images like the ones in Figure8.8.

Although the methods work well on current hardware, there are some simple modifications
to the graphics hardware, which would both further improve the performance and simplify the
implementation of our environment map parameterization. Firstly, since the texture coordinates
have to be generated in software, it is not possible to use display lists. Secondly, all vectors
required to compute the reflected vector~re are already available further down the pipeline (that
is, when automatic texture coordinate generation takes place), but are not easily available in
software. This situation is a lot like the one in Chapter5.

For example, the normal vector in a vertex is typically only known in object space, but is
required in eye space for the computation of the reflection vector. In order to determine~ne, the
normal has to be transformed by software, although for lighting calculations the hardware later
performs this operation anyway.

The solution we propose is again to add a new texture generation mode, which computes the
reflection vector~re in eye space based on the available information (~ve and~ne), and assigns its
components to thes, t, andr texture coordinates.1

Interestingly, the texture coordinates generated for spherical environment maps are thex and
y components of the halfway vector between the reflection vector~re and the negative viewing di-
rection(0, 0, 1)T [Segal98]. Thus, current hardware implementations essentially already require
the computation of~re for environment mapping. Our texture generation mode is even cheaper,
since the reflection vector is automatically normalized (if normal and viewing direction are),
while the halfway vector for spherical maps requires an additional normalization step.

1Shortly before preparing the final version of this thesis, Mark Kilgard [Kilgard99] implemented this extension
for both the Mesa software library and the nVIDIA Riva TNT/TNT2 drivers based on our suggestion [Heidrich98d].

Chapter 9

Bump- and Normal Mapping

Bump maps have become a popular approach for adding visual complexity to a scene, without
increasing the geometric complexity. They have been used in software rendering systems for
quite a while [Blinn78], but hardware implementations have only occurred very recently, and so
far, no general agreement has been reached on how exactly bump mapping should be integrated
into the rendering pipeline. Some of the proposed techniques are described in [Schilling96],
[Peercy97], [Miller98a], and [Ernst98].

Bump mapping, as originally formulated in [Blinn78], perturbs the normal of the surface
according to a given height fieldB(s, t) which describes a slight movement of the surface point
for each location(s, t) in the parameter domain. The height field defines the spatial position for
the moved pointP′ as an offset along the surface normal~n (for simplicity, we assume unit length
normals in the following, the general formulae can be found, for example in [Blinn78]):

P′ = P + B(s, t) · ~n. (9.1)

The perturbed normal of the displaced surface is given as the cross product of the two tangent
vectors inP′:

~n′ =
dP′

ds
× dP′

dt
≈ ~n +

(
~n× dP

ds

)
· dB(s, t)

dt
+

(
dP

dt
× ~n

)
· dB(s, t)

ds︸ ︷︷ ︸
~d

(9.2)

This formula includes an approximation which assumes that the bump height is small compared
to the dimensions of the surface. The details of this approximation, and the derivation of the
formula, can be found in [Blinn78].

The difficulty for implementing bump maps in hardware is the computation of the tangent
vectors~ts := ~n× (dP/ds) and~tt := (dP/dt)× ~n, which normally has to be performed for each

84 Bump- and Normal Mapping

pixel. Alternatively, these vectors could be interpolated across polygons, but even this is quite
expensive, since it requires a normalization step per pixel. The partial derivatives of the bump
map itself, on the other hand, can be precomputed and stored in a texture.

Several ways have been proposed to simplify the computation of~ts and~tt by making addi-
tional assumptions, or to use a completely different, simpler coordinate system. For example,
[Schilling96] proposes to build the local coordinate frame in each point using a global reference
direction ~m, while [Peercy97], among other approaches, suggests to precompute the normal in
object space for each pixel, and storeit in a texture map. This is what we call anormal mapin
the following.

Normal maps have the advantage that the expensive operations (computing the local surface
normal by transforming the bump into the local coordinate frame) have already been performed
in a preprocessing stage. All that remains to be done is to use the precomputed normals for
lighting each pixel. As we will show in the following, this allows us to use normal maps with a
fairly standard rendering pipeline that does not have explicit support for bump mapping. Another
advantage of normal maps is that recently methods have shown up for measuring them directly
[Rushmeier97], or for generating them as a by-product of mesh simplification [Cohen98].

The major disadvantage of normal maps is that the precomputation introduces a surface de-
pendency, since the geometry of the underlying surface is required to compute the object space
normals. This means that a different texture is required for each object, while bump maps can be
shared across different objects.

In the following, we first describe how normal maps can be lit according to the Blinn-Phong
illumination model using a set of hardware imaging operations (see Section4.4). Afterwards,
we discuss how the techniques for other local illumination models from Chapter5, as well as the
environment mapping techniques from Chapter8 can be used together with normal maps. This
part relies on the presence of the pixel texture extension in addition to the imaging operations.

The methods described here also assume a non-local viewer and directional light sources.
The artifacts introduced by these assumptions are usually barely noticeable for surfaces with
bump maps, because the additional detail hides much of the approximation error.

9.1 Local Blinn-Phong Illumination

For implementing ambient, diffuse, and Phong lighting for normal maps, a small subset of the
hardware imaging operations (see Section4.4) is required. These are a4×4 color matrix followed
by a color lookup table during the transfer of textures to the texture memory.

With these two mechanisms, the illumination for a given color coded normal map can be
computed in two rendering passes. For the first pass, a color matrix is specified, which maps the
per-pixel normal from object space into eye space and then computes the ambient and diffuse

9.1 Local Blinn-Phong Illumination 85

components of the illumination:

L ·D ·M · ~n = (R, G, B)T , (9.3)

where

L =

kd,R · IR 0 0 ka,R · Ia,R

kd,G · IG 0 0 ka,R · Ia,G

kd,B · IB 0 0 ka,R · Ia,B

0 0 0 1

 , D =

lx ly lz 0

0 0 0 0

0 0 0 0

0 0 0 1

 , (9.4)

M is the model/view matrix,I is the intensity of the directional light,Ia that of the ambient
light, andka andkd are the ambient and diffuse reflection coefficients of the material. The matrix
D computes the dot product between the normal~n and the light direction~l. When the normal
image is now loaded into texture RAM, the lighting computations are performed. Afterwards,
the loaded, lit texture is applied to the object using texture mapping. A similar second rendering
pass draws the specular part. This time, however, the matrixD computes the dot product between
normal and the halfway vector~h, and the matrixL is replaced by a lookup table containing the
functionpi(x) = ks,i · Ii · x1/r for each color componenti ∈ {R, G, B}.

The top of Figure9.1shows two images in which one polygon is rendered with this technique.
On the left side, a simple exponential wave function is used as a normal map. The normal map for
the image on the right side was measured from a piece of wallpaper with the approach presented
in [Rushmeier97]. The bottom of the figure shows a sphere and a torus with a normal map
generated from a Perlin noise function [Perlin89, Ebert94].

9.1.1 Anti-aliasing

An interesting note is that the graphics hardware as defined in Chapter4 does not allow for
proper mip-mapping of these lit normal maps. The only way to specify a mip-map hierarchy is
to provide a hierarchy of normal maps at different resolutions, which are then transformed (lit)
separately through the use of pixel transfer operations.

However, this does not provide a correct hierarchy of mip-map levels. The filtering for the
downsampled versions of the texture should occurafter the lighting, that is, after the non-linear
operations implemented by the color lookup table. This is true not only for the above algorithm,
but for any non-linear pixel transfer operation (which is what lookup tables are for). These
applications mandate that the hardware should be able to downsample a given texture itself in
order to generate a valid mip-map hierarchy.

86 Bump- and Normal Mapping
 ��� ���

 �� ��

Figure 9.1: Top: two Phong-lit normal maps. The right one has been measured from a piece
of wallpaper using the approach presented in [Rushmeier97]. Bottom: sphere and torus with
normal maps generated from a Perlin noise function.

For our specific application, such a down-sampling would compute a dynamic transition from
bump maps to 2-dimensional slices of a 4-dimensional BRDF, much in the spirit of [Cabral87].

The problem that filtering should occurafter the illumination process instead of beforehand,
has also been noted by Schilling [Schilling97]. He proposes an additional roughness pyramid that
is used in a modified Blinn-Phong reflection model. His approach has the advantage that it also
works for environment mapping, which ours does not. On the other hand, our proposal would
yield the correct mip-map hierarchy, while Schilling’s method is still only an approximation.

9.2 Other Reflection Models

In order to apply the reflection models from Chapter5 to normal mapped surfaces, the indices
into the lookup tables storing the materials have to be computed on a per-pixel basis. This can
be achieved using pixel textures. First, the object is rendered with the normal map as a texture.
The resulting image is then read into main memory, yielding an image containing the normal for

9.3 Environment Mapping 87

each pixel. Then, the color matrix is set up to compute the texture coordinates for the reflection
models, in exactly the same way the texture matrix was used in Section5.1. Since we assume
a non-local viewer and directional light sources, it is not necessary to compute any part of the
texture coordinates in software.

This leads to the following algorithm for applying alternative lighting models:

normalMappingWithAlternativeReflectionModels()

{
set up stenciling to mark each rendered pixel

load the normal map as a texture

render the object

copy the framebuffer to main memory

set up stenciling so that only pixels marked

in the stencil buffer are affected

for each texture used by the reflection model

{
load the texture

set up the texture matrix to compute the dot products

used as texture coordinates

set up blending as required by the reflection model

copy the normal image from main memory into the framebuffer

}
}

9.3 Environment Mapping

Similarly, environment maps can be applied to normal-mapped surfaces with the help of pixel
textures. As pointed out in Chapter8, both the spherical and the parabolic parameterizations use
the halfway vector between the reflected viewing direction and a reference direction as an index
into the environment map. For orthographic cameras this vector simplifies to the surface normal.

Thus, if the normal map contains unit length normals, these can be directly used as texture
coordinates for a spherical map, while normal maps in which thez component is normalized to
1 can be used for parabolic maps. As in the previous section, the object is first rendered with the
normal map, the resulting image is read back to main memory, and then it is written back to the
framebuffer with activated pixel textures.

88 Bump- and Normal Mapping

Unfortunately, since pixel textures currently do not support projective textures, the division
by z, which in Chapter8 was used to compute the texture coordinates for arbitrary viewing di-
rections, cannot be performed with pixel textures. This means that even if parabolic environment
maps are used, they can only be applied for one viewing direction, which, of course, defeats the
point of introducing parabolic environment maps in the first place. This shows again how useful
support for projective texturing with pixel textures would be.

The images in Figure9.2have been generated using the pixel texture extension and a single,
view-dependent environment map.

 �� ���

Figure 9.2: Combination of environment mapping and normal mapping. Left: environment map
only. Right: local Phong illumination plus environment map.

9.4 Discussion

While the techniques discussed in this chapter can help to achieve realistic renderings on con-
temporary hardware, the future clearly belongs to dedicated bump mapping hardware, since it
allows the re-use of bump maps for more than one object. Moreover, since bump mapping does
not rely on pixel transfer functions to compute the illumination, the bandwidth between CPU and
graphics subsystem would be reduced. However, there are some lessons to be learned from the
algorithms in this chapter:

It is clear that applying environment maps to normal- or bump mapped surfaces requires two
successive texturing stages. Bump mapping hardware which wants to support environment maps
will have to take this fact into account. The similarity between the algorithms in Sections9.2
and9.3 shows that the same mechanisms used for environment mapping can also be applied to
support physically based material models, if the hardware is designed carefully. In particular, this
means that the second texturing stage should have the flexibility described in Section5.3.2with
respect to texture coordinate generation. If the hardware performs per-fragment lighting, which
bump mapping hardware has to do anyway, then all the required vectors need to be interpolated

9.4 Discussion 89

across polygons, and are therefore available for each fragment. All that remains to be done is to
introduce a per-pixel texture coordinate generation mechanism, which computes the required dot
products.

90 Bump- and Normal Mapping

Chapter 10

Light Field-based Reflections and
Refractions

In Chapter8 we discussed how environment maps can be used to render reflections and refrac-
tions on non-diffuse, curved objects. Like all techniques based on environment maps, these
methods break down for large objects reflecting other nearby geometry. In this chapter we ex-
plore a number of light field-based techniques that could help to overcome these restrictions. In
particular, we share some thoughts on the method by [Miller98b], and argue that, for increased
efficiency, the light field representation should be decoupled from the surface geometry. The
discussion leads to issues for future research.

A commonly used technique for rendering mirror reflections on planar objects is given in
[Diefenbach94] and [Diefenbach96]: with a simple affine model/view matrix, the scene is mir-
rored at the planar reflector. This mirrored scene is rendered at every pixel where the reflector is
visible in the current view. This is typically achieved in two rendering passes. First, the original
scene is rendered, and all pixels of the planar reflector are marked in the stencil buffer. Then,
the model/view matrix is modified to accommodate for the reflection. The scene is now rendered
again, but only pixels marked in the stencil buffer are set. If the stencil buffer has more than one
bit, it is also possible to realize multiple reflections [Diefenbach96].

A similar effect can be achieved using texture mapping. Instead of mirroring the scene,
the eye pointP is mirrored, yielding a reflected eye pointP′, as depicted on the left side of
Figure10.1. Rendering the scene from this eye point with the reflector as an image plane yields
the texture image to be applied to the reflector as seen from the eye. Note that this approach has
two major disadvantages relative to the one from Diefenbach. Firstly, the rendered image from
the first pass needs to be transferred from the framebuffer into texture memory, which requires
additional bandwidth, and secondly, the texturing represents a resampling step that results in
reduced image quality.

92 Light Field-based Reflections and Refractions

P

P’

Planar reflector

P

P’
n➞

x

Tangent plane in x

Figure 10.1: Multi-pass mirror reflections in planar and curved objects. While a single reflected
eye pointP′ exists for planar reflectors, curved reflectors do not have such a uniquely defined
point. If a curved object is approximated by a triangle mesh with per-vertex normals, one re-
flected point can be defined for each vertex in the mesh using the tangent plane in that vertex.

For these reasons, the modified algorithm is an inferior choice for implementing reflections
on planar surfaces, but it can be generalized to a naive (and inefficient) method for generating
reflections on curved surfaces represented as triangle meshes: for curved surfaces the problem is
that the reflected eye point is not constant, but varies across the surface. However, if the surface
is reasonably smooth, then it suffices to compute the reflected eye point only at some discrete
points on the surface, say the vertices of the triangle mesh, and to interpolate the radiance for
each point inside a triangle from the textures obtained for each of the three vertices. Note that
each of the textures corresponds to a dynamically generated, 2-dimensional slice of a light field
describing the incoming illumination around the reflector, and the interpolation step is nothing
but the reconstruction of a novel view from this light field information.

The complete algorithm would then work as follows (see right side of Figure10.1): For each
vertex in the triangle mesh the tangent plane is determined, the eye point is reflected in that
plane, and the reflection texture for that tangent plane is rendered. Then, for each vertex, the
triangle fan surrounding it is rendered with the reflection applied as a projective texture. During
this rendering, the alpha value for the center vertex of the fan is set to1, the alpha values for all
other vertices are set to0, and the result from texturing is multiplied by the alpha channel. This
way, the alpha channel contains the basis functions for the Barycentric coordinates in each pixel.
The final image results from adding up all the contributions from the different triangle fans in the
frame buffer. This is exactly the interpolation scheme used for the hardware implementation of
light fields and Lumigraphs in [Gortler96] and [Sloan97].

10.1 Precomputed Light Fields 93

Clearly, this approach is not feasible for real time or interactive applications, since the number
of vertices (and thus the number of rendering passes) on typical reflectors are often in the order
of tens of thousands. On the other hand, for a static scene the incoming light field at the object
does not change. Therefore, it is not necessary to rerender the geometry multiple times for each
frame in order to generate the 2D slices used as textures. Instead, a practical light field-based
method could rely on some amount of precomputation to achieve interactive frame rates.

A geometry-based method for reflections on curved surfaces has recently been introduced in
[Ofek98]. For each frame, all vertices of the reflected geometry are individually transformed in
software. This approach only works at interactive performance for relatively smooth objects that
are either concave or convex. More complicated reflectors with both convex and concave regions
need to be subdivided, and a separate copy of the reflected geometry is computed for each of the
subdivided parts. Like the texturing method described above, this approach also quickly becomes
infeasible.

10.1 Precomputed Light Fields

One approach for implementing reflections in static scenes as precomputed light fields was pre-
sented in [Miller98b]. There, the parameterization of the light field is chosen such thatu andv

are surface parameters of the reflector, ands andt parameterize the hemisphere of directions over
the surface point(u, v). The authors call this asurface light fieldbecause the(u, v) parameters
are directly attached to the surface of the reflector.

With this scheme, every sample in the light field is associated with a specific location on
the surface, and therefore the local coordinate frame on the surface is implicitly known for each
sample. Thus, it is possible to store global illumination solutions for arbitrary reflection models
in this light field. For the environment mapping techniques from Chapter8 this was not pos-
sible, because environment maps are decoupled from the surface geometry. Without the local
coordinate frame, the glossy prefiltering from Section8.3.2was restricted to the Phong model,
since this is the only specular reflection model that only depends on the direction of the reflection
vector.

In order to render an object with a surface light field as described above, the viewing direc-
tion at each vertex has to be transformed into the local coordinate system, and then thes andt

parameters have to be computed. With these, a(u, v) slice can be extracted from the light field
and used as a texture map. The extraction process involves a bilinear interpolation of the(s, t)

parameters, and another bilinear interpolation during the texturing process. Since [Miller98b]
uses a block-based compression scheme, it is also necessary to decompress the required parts of
the light field during the extraction phase.

The problem with this approach is that the light field is attached to the surface of the re-

94 Light Field-based Reflections and Refractions

flecting object, which makes a costly transformation of the viewing vector into the local co-
ordinate frame at each vertex necessary. If the two-plane parameterization (see Chapter3 and
[Gortler96, Levoy96]) were used for representing the light field, the reconstruction could be im-
plemented with the efficient hardware technique from [Gortler96]. In our own implementation
of this method we achieve frame rates of> 20 fps for full screen reconstructions on an SGI O2,
independent of the light field resolution. Moreover, on machines with 4D texture mapping, the
whole light field can be specified as a single texture from which the images can be extracted in
one rendering step, simply by applying the corrects, t, u, andv coordinates as 4D texture coordi-
nates in each vertex. This assumes that the texture memory is large enough to hold the complete
light field. This issue can be resolved through the use of vector-quantized light fields, which can
be directly rendered in hardware [Heidrich99b, Heidrich99a], using an OpenGL extension called
”pixel textures” available from Silicon Graphics.

The major disadvantage of the two-plane parameterization is that the purely image-based re-
construction from [Levoy96] results in a blurring of objects further away from the(u, v) plane.
The parameterization by [Miller98b] has the advantage that the reflector itself is sharp and fo-
cussed. The same effect, however, can also be achieved with two-plane parameterized light
fields using the depth correction proposed in [Gortler96]. This depth corrected version can be
implemented with hardware support almost as efficiently as without depth correction.

Both light field representations reach their limits when it comes to mirror reflections and
narrow specular highlights from light sources. In both approaches these will still result in some
amount of unwanted blurring, due to the limited(s, t) resolution of the light field.

One strategy to overcome this problem, at least as far as specular highlights are concerned, is
to separate the direct and the indirect illumination. If only the indirect illumination is stored in
the light field, and the direct illumination from light sources is computed on the fly using either
standard hardware lighting or the techniques from Chapter5, crisp highlights can be achieved.
Such a separation also has the advantage that some extra blurring for the indirect illumination will
in most cases be tolerable since direct illumination is visually much more important than indirect
illumination for almost all scenes. This means that one can get away with a lower resolution light
field, which saves memory and reduces the acquisition cost for the light field.

To summarize, we argue that it is efficient to represent the precomputed reflections off a non-
diffuse, curved object with a two-plane parameterized light field for interactive viewing with
graphics hardware. We propose to split the illumination into a direct and an indirect part, and to
generate the former on the fly using hardware lighting or one of the techniques from Chapter5,
while the latter is added in a separate rendering pass by exploiting hardware light field rendering
as proposed in [Gortler96]. This second pass is extremely efficient and independent of scene
complexity.

10.2 Decoupling Illumination from Surface Geometry 95

10.2 Decoupling Illumination from Surface Geometry

However, it is even possible to go one step further. The two-plane parameterization decouples
representation of indirect light from the surface complexity. We would like to completely de-
couple the illumination from the geometry, as in the case of environment maps. The techniques
discussed in this section are based on a discussion with Michael Cohen [Cohen97], and were later
published in [Heidrich99b]. Decoupling of illumination and geometry is interesting because it
simplifies the modeling of a scene. The geometry of the illuminated object, and the environ-
ment causing the illumination, can be replaced independently without the need to recompute a
complete global illumination solution every time. On the other hand, the disadvantage of this
approach is also be clear: as in the case of environment maps, the choice of reflection models is
limited, although glossy prefiltering of the illumination with the Phong model is still possible.

The core of the proposed method is the idea to create a “light field” containing geometric
information about the object in the form of a color coded direction which can then be used to
look up the illumination. The illumination can either be provided in the form of an environment
map or in the form of another light field. Thus, to render a complete image, first the geometry
light field is rendered, yielding an image of color coded directions. These are then used to look
up the illumination from an environment map or a second light field describing the surrounding
scene. Both alternatives will be described in the following, although only the variant using
environment maps has been implemented so far.

The first case, using environment maps, only makes sense for refractions, since for reflections
the result would be the same as if environment mapping were directly applied to the surface
geometry.

For this first algorithm using environment maps, the geometry light field should contain the
color coded halfway vector between the viewing direction and the refracted viewing ray, since
this vector directly represents the texture coordinates for the environment map, as described in
Chapter8. The image resulting from a rendering of this light field contains the indices into an
environment map, just as the normal maps in the previous chapter did. Thus, in order to look up
the illumination on a per-pixel basis, we can apply pixel textures, just as in Chapter9.3.

Figure10.2shows two images that were generated using this approach. The top left image
represents the color coded halfway vectors reconstructed from the light field. The light field itself
was generated using theVision rendering system and a special RenderMan shader. The other
images represent the final results after the application of the environment map. This method
is very fast, and achieves between 15 and 20 fps on an Octane MXE. The frame rate depends
mostly on the resolution of the final image, which determines the amount of work the pixel
texture extension has to do.

If the illumination in the scene is also stored in a light field, the geometry light field has to
contain the correctu, v, s, andt coordinates to reference it. This means that the relative position

96 Light Field-based Reflections and Refractions

Figure 10.2: Light field rendering with decoupled geometry and illumination, the latter being
provided through an environment map. Top left: color coded texture coordinates for the environ-
ment map, as extracted from the geometry light field. Top right and bottom: final renderings.

of the two light fields is fixed.1 To look up the illumination for each pixel, the pixel texture
extension is again employed, this time with the second light field as a 4D texture. Combined
with the results from [Heidrich99a], this second light field can again be vector-quantized.

10.3 Discussion

In this chapter we have explored two practical techniques for applying light fields to the ren-
dering of non-diffuse reflections in curved objects. Firstly, the use of two-plane parameterized
light fields as introduced in [Gortler96] and [Levoy96] for rendering the contribution of the indi-
rect illumination, and secondly the concept of separating the geometry and the illumination into
distinct light fields. In both cases, graphics hardware can be efficiently used for the rendering.

The latter approach bears the disadvantage that the number of reflection models is limited.
Besides a mirror reflection term and diffuse illumination, only a Phong model can be used
through a prefiltering of the incoming illumination information. However, the advantage of this
approach is an increased flexibility for modeling. Image-based representations of objects can be
positioned in a scene and lit by image-based representations of the illumination in that scene.

1An appropriate color matrix can be used for minor adjustments. However, the full range of affine transforma-
tions is not available, since the four texture coordinates cannot be interpreted as a homogeneous vector in 3-space.

10.3 Discussion 97

This idea of storing geometric information instead of simply color values in a light field
can be extended even further. For example, if normal vectors are stored in the light field data
structure, the local illumination for the object can be computed using the very same techniques
applied to normal maps in Chapter9. Furthermore, using the reflection models from Chapter5,
arbitrarily complex materials can also be simulated. This allows for image-based rendering with
changing illumination, an area that has recently been of increased interest in the research com-
munity.

98 Light Field-based Reflections and Refractions

Chapter 11

Lens Systems

A very specialized application domain for light field-based refractions is the simulation of real-
istic lens systems. Since camera lenses are typically relatively smooth, but close to the eye, it is
reasonable to treat them differently from other refractive objects, which are typically relatively
far from the eye, but might have an arbitrary geometric complexity. In this chapter, we describe
a light field-based algorithm that is tailored towards the accurate simulation of realistic lens
systems.

The accurate simulation of properties of complex lens systems, including depth of field and
geometric aberrations, in particular distortions, are of high importance to many applications of
computer graphics. In the past, most approaches for simulating these properties have been based
on off-line rendering methods such as distribution ray-tracing [Cook84, Kolb95].

Efforts for improved lens and camera models for interactive computer graphics have mainly
been restricted to the simulation of depth of field [Haeberli90, Shinya94]. On the other hand,
a model that allows for a more accurate simulation of real lens systems would be particularly
useful for interactive graphics, because it could not only be used for photorealistic rendering,
but also for combining real and synthetic scenes, for example in augmented reality and virtual
studios. For these environments, it is necessary to simulate real lens systems, so that real-world
and synthetic objects can be merged into a single image.

In this chapter, we outline an image-based camera model for interactive graphics, which is
capable of simulating a variety of properties of real lens systems at high frame rates. The full
details of this model have been published in [Heidrich97a]. Similarly to [Kolb95], the model
uses the real geometry of lenses and computes an accurate approximation of the exposure on
the film plane. However, instead of using ray-tracing, our model approximates the light field
[Levoy96, Gortler96] between the lens and the film plane. By making use of coherence in ray-
space, common computer graphics hardware can be used for sampling the light field and render-
ing the final image. Before we introduce our own model, we briefly review other camera models
used in the past.

100 Lens Systems

11.1 Camera Models in Computer Graphics

The most commonly used camera models in computer graphics include the pinhole model, thin
and thick lens approximations, and finally full geometric descriptions of lens systems. These
will be explained in the following.

11.1.1 The Pinhole Model

The pinhole model for cameras is by far the most frequently used camera model in computer
graphics. Conceptually, it consists of a box with a small hole of negligible size in one of its
sides. Light falls through this hole and projects an upside-down image onto the film on the
opposite side of the box. The situation is depicted in Figure11.1.

Figure 11.1: A pinhole camera.

The advantage of this model is its simplicity. Because the size of the hole is negligible, the
light falling through it can be assumed to be projected through a single point. This projection
can be described as a perspective transformation, whose parameters are the dimensions of the
film and the distance of the film plane from the hole, along with additional near and far clipping
planes (see, for example [Foley90]).

Usually, when dealing with perspective transformations, we do not think of it in terms of a
pinhole camera, but as of a perspective projection with a center of projection (COP) and some
virtual image plane in front of it. Throughout this chapter, we use the term ”image plane” for a
virtual plane in front of the COP of a perspective projection, while the term ”film plane” refers
to the plane containing the film in a camera model.

Although it is actually possible to construct a physically working pinhole camera, this is not
practical for several reasons. Most importantly, only very little light falls on the film since the
hole is so small, and thus the exposure time has to be very long.

11.1 Camera Models in Computer Graphics 101

11.1.2 The Thin Lens Model

Real lenses have a larger opening, calledaperture, whose size cannot be neglected. The simplest
model of lenses with circular symmetry and finite aperture is thethin lens approximation. This
model is used in optics and lens design to describe some of the properties of simple lens systems
[Born93].

The fundamental assumption of the thin lens model is that the lens is of negligible thickness.
As a consequence, light passing through the lens is refracted only in a single plane, theprincipal
plane, and moves along a straight line otherwise.

Light coming from a single pointQ in object space is focused in a single point in image
space and vice versa. Incident light from object space parallel to the optical axis is focused in the
focal pointF′ in image space, while parallel light from image space focuses in the focal point
F in object space. BothF andF′ lie on the optical axis of the lens. The situation is depicted in
Figure11.2.

Q

Q’

F’

F

f f’

s s’

optical
axis

principal
plane

Figure 11.2: The geometry of a thin lens system.

If both object space and image space are in the same medium, the distancesf andf ′ of the
focal points from the principal plane are equal, and this distance is calledfocal length. From this
property it follows that rays passing through the center of the lens are not bent, but pass straight
through the lens system.

With this information it is possible to construct the image of a scene on a film plane at distance
s′ from the principal plane, given the aperture and the focal lengthf . For rendering it is often
convenient to specify the distances of the focal plane (the plane that contains all points that are
focussed on the film plane) instead of the focal length. This distance can be easily derived from
the following well-known relationship

1

s
+

1

s′
=

1

f
.

102 Lens Systems

s s’

camera
light field

scene
light field

focal plane

film

P1

P2

P3

Figure 11.3: Rendering using the thin lens approximation. The rays from all points on the film
through a single sample on the aperture form a perspective transformation, which can be used to
render a slice of the light field. Rays with the same line style originate from different points on
the film, but pass through the same sample point on the lens. All rays with the same line style
form a slice of the respective light field.

11.1.3 Rendering Thin Lenses

Typically, rendering of thin lenses is done using distribution ray-tracing [Cook84]. For each
sample point on the film, rays are cast through random sample points on the principal plane, and
the resulting color values are averaged. Casting of the rays is done by computing the point on the
focal plane that corresponds to the point on the film by shooting a ray through the center of the
lens. The intersection point is then connected to the chosen sample point on the principal plane.

An alternative approach is to select a fixed set of sample points on the principal plane
[Haeberli90]. All rays passing through a single sample pointPi on the principal plane repre-
sent a perspective projection withPi as the COP (see Figure11.3).

Each of the images generated by these perspective projections represent a 2-dimensional
slice of the 4-dimensional light field in front of the lens system. In the following, we call this the
scene light field. Due to the properties of the thin lens model, this slice is identical to a slice of
thecamera light field, defined by the refracted rays between the lens system and the film plane.
For both light fields, we can use the two-plane parameterization (see Section3.3).

Because each slice of the light field can be computed using a standard perspective projection,
computer graphics hardware can be used to render the slices. Averaging of slices from different

11.2 An Image-Based Camera Model 103

sample pointsPi to form the final image can be done using an accumulation buffer [Haeberli90].

It should be noted that the simple averaging of the slices of the light field does not yield the
correct exposure on the film, as pointed out by [Kolb95]. Our full lens model as described in
[Heidrich97a] contains techniques for computing the correct exposure for each point on the film.
These techniques can also be applied to thin lenses.

11.1.4 The Thick Lens Model

An improved model for circularly symmetric lenses, where the thickness cannot be neglected, is
thethick lens model. It is frequently used in optics for complex lens systems composed of several
lenses, and allows for a higher accuracy in the approximation.

In contrast to the thin lens, a thick lens has two principal planes. The (signed) distance
between the two planes is called the thickness of the lens. Rays from object space hit the object-
sided principal plane, then move in parallel to the optical axis, until they hit the image-sided
principal plane, where they leave the lens.

From a rendering point of view, a thick lens can be treated very much like a thin lens, except
for the shift parallel to the optical axis. Both the thin and the thick lens model yield perfectly
undistorted images. Real lenses, however, always show aberrations. Although lens designers
usually try to minimize these, they are often not negligible. Visualization and simulation of these
effects requires a more sophisticated lens model.

11.1.5 The Geometric Lens Model

The geometric lens model is based on a full geometric description of the lenses together with
their index of refraction. The model is evaluated by tracing rays through the true lens geometry,
bending it at lens surfaces according to the change in the index of refraction.

The full geometric model correctly simulates all kinds of geometric aberrations, and is the
only model that is capable of handling lenses without rotational symmetry, for example bifocal
lenses or the progressive addition lenses (PALs) used for eye glasses [Loos98].

This model has been used in [Kolb95] to generate accurate simulations of complex lens
systems using distribution ray-tracing. Unfortunately, the model is too expensive in terms of
rendering time to be used for interactive graphics.

11.2 An Image-Based Camera Model

In following, we describe an image-based model for camera lens systems, which is capable of
simulating aberrations based on the geometric description of the lens. Despite this flexibility, it

104 Lens Systems

is possible to use computer graphics hardware to render images based on this model. It is well
suited to interactive applications requiring high frame rates.

Instead of directly using the full geometry of the lens, our model describes a lens as a trans-
formation of the scene light field in front of the lens into the camera light field between the lens
and the film. Every property of a lens system is completely defined by such a transformation.

Computer graphics hardware can efficiently generate slices of light fields. Therefore, our
model describes a lens system as a mapping from slices of the scene light field into corresponding
slices of the camera light field. The mapping consists of two parts: selection of an appropriate
slice of the scene light field for a given slice of the camera light field, and a morphing operation
correcting for distortions due to the aberrations of the lens system.

We represent a slice of the scene light field as a perspective projection of the scene onto a
suitable image plane. Thus, a lens is represented as a set of perspective projections and corre-
sponding image morphing operators.

Similar to rendering with thin lenses, the final image is a composite of a number of slices of
the camera light field. These slices are defined by a number of sample pointsPi on the image-
sided surface of the lens system (see Figure11.4).

11.2.1 Approximating Lens Systems

The approximation of real lens systems within the new model consists of two steps. For each
slice of the camera light field, a corresponding slice in the scene light field has to be selected. In
general, the 2-manifold in the scene light field corresponding to a given slice of the camera light
field is unfortunately not planar, and therefore cannot be exactly represented as a perspective
projection.

This fact can easily be observed by tracing rays from multiple points on the film through
a single point on the lens surface. The rays leaving the system need not intersect in a single
common point (which could be used as the COP of a perspective projection, see Figure11.4).
However, in many cases a perspective projection can be found that is a good approximation to
the refracted rays.

In order to find the approximating perspective projection, rays are shot from a regular grid on
the film through the pointPi on the image-sided surface of the lens system. Rays are refracted
as they pass through the lens, yielding a set of rays leaving the lens system on the object side, as
shown in Figure11.4.

This set of rays is then approximated with a projective transformation, which requires us to
select a virtual image plane, and to find an appropriate center of projection. This is described in
Section11.2.3. An alternative way of interpreting this approximation is that the corresponding
2-manifold in ray space is linearly approximated by a plane.

11.2 An Image-Based Camera Model 105

film

Pi

Figure 11.4: Tracing rays from a grid on the film through a single pointPi on the lens surface
yields a set of refracted rays in object space. In general, these do not intersect in a single point,
and thus an approximate virtual center of projection has to be found.

The remaining parameters of the perspective transformation, in particular the upper, lower,
left and right boundaries on the image plane can then be found by computing the bounding box
of ray intersections with the chosen virtual image plane.

Rendering the scene with the computed perspective transformations yields an image contain-
ing a slice of the scene light field. At the same time, it approximately corresponds to a distorted
slice of the camera light field, and the distortions are directly caused by the aberrations of the
lens. We compensate for these distortions using morphing with bilinear interpolation. This is
achieved by texture-mapping the slice onto the grid on the film, from which the rays had been
shot before. The intersections of the rays with the image plane are used as texture coordinates.

It is important to note that the ray-tracing step, as well as the computation of the COP and
the texture coordinates only has to be performed once as long as the geometry of the lens does
not change. Only if the lens system is refocused, or the aperture of a lens element changes, for
example when adjusting an aperture stop, do these calculations have to be repeated.

This algorithm has been used to render the left image in Figure11.5. The lens system is an
achromatic doublet used in real cameras in the 1920s. Its geometrical description has been taken
from [Flügge55]. The right image shows the same scene rendered with distribution ray-tracing.
In both images the barrel distortions of the lens are obvious. Moreover, in both images the outer
regions of the film are blurred due to lens aberrations.

Our method is the first one to allow for the simulation of these effects at interactive rates: the
image-based method achieves a performance of approximately 5 fps. on an SGI O2, and 16 fps.
on an Onyx2 BaseReality for 10 sample points on the lens. For the ray-traced image, we used
distribution ray-tracing with 10 samples per pixel, which took roughly 2 minutes for a256× 256

resolution on an Onyx2 with a 195 MHz R10k processor (the image was generated using the
Vision rendering system [Slusallek95, Slusallek98]). Note that the ray-traced image does not

106 Lens Systems

contain indirect illumination or shadows to allow for performance comparisons between the two
algorithms. ��� �������������������������������������

Figure 11.5: A comparison of the image-based lens model (left) with distribution ray-tracing
(right) for an achromatic doublet. ��� �������������������������������������

Figure 11.6: A comparison of the image-based lens model (left) with distribution ray-tracing
(right) for a biconvex lens with hierarchical subdivision on the image plane.

11.2.2 Hierarchical Subdivision

Lens systems with relatively small aberrations are usually well approximated by a single projec-
tive transformation, as described above. For example, this is true for lens systems that have a
reasonable thick lens approximation.

11.2 An Image-Based Camera Model 107

However, for lens systems with strong aberrations, an approximation with a single perspec-
tive projection introduces a large error. In these cases, the grid on the film can be recursively
subdivided and refined using a quad-tree structure. The algorithm is then applied recursively.
This corresponds to finding a hierarchical, piecewise linear approximation of the 2-manifold in
ray-space.

All quad-tree cells corresponding to a single sample point on the lens form a partition of the
film. Combined, they contain the slice of the camera light field required for rendering.

Of course, the hierarchical subdivision introduces an additional rendering cost, since the
scene has to be rendered once for every subdivision. Thus, the level of subdivision is a tradeoff
between rendering time and image quality. The pseudo-code for determining the perspective
transformations is given below.

determinePerspectiveTransformation()

{
/ ∗ Perspective Projection ∗/
generate rays from film plane

compute virtual COP from the refracted rays

if COP is good enough

{
determine lower left and upper right of the image by

intersecting the rays with the image plane

} else {
subdivide the grid

for each subgrid

recurse

}
}

Figure11.6 shows the scene from Figure11.5 using a simple, uncorrected biconvex lens.
The image demonstrates the barrel distortion of the lens as well as significant depth of field
effects. The scene was again rendered with 10 sample points, but this time the film plane was
subdivided. As a criterion for the subdivision, we enforced a maximum angle of 0.05 degrees
between an original ray and the corresponding approximated ray as described in Section11.2.3.
This resulted in a total of 40 perspective projections to be rendered for one frame. As a result,
the frame rate decreased by approximately a factor of 4 to 1 frame per second on the O2 and
roughly 4 frames per second on the Onyx2 BaseReality.

108 Lens Systems

11.2.3 Computing the Center of Projection

The sets of rays exiting the lens on the object side represent samples of a possibly complicated
transformation that characterizes the lens system. The central task in approximating this trans-
formation with a perspective projection is to find a good virtual COP.

This problem is also known in computer vision, where the aberrations of camera lenses have
to be removed based on the measured distortions on a calibration grid [Gremban88]. The ap-
proach proposed in [Gremban88] is to choose the COP so that its distance from all rays is mini-
mal in the least-squares sense.

For our purposes, this approach works well as long as there is no hierarchical subdivision.
As soon as subdivision is performed, however, intolerable discontinuities occur between adjacent
quad-tree cells. An analysis of the problem shows that the angle between the original rays and
the corresponding rays in the perspective projection can be relatively large.

As a solution, we found that minimizing the angle between the original rays and those gener-
ated by the perspective transformation yields much better results. This way, the maximum angle
of the approximation could be reduced by a factor of up to10. This maximum angle is also a
good error criterion for terminating the hierarchical subdivision.

The minimization process, which is described in detail in [Heidrich97a], is implemented by
a Newton iteration requiring the solution of a3× 3 linear equation system in each iteration step.
We have found that this iteration converges quickly, so that usually two or three iterations are
sufficient. It is important to note again that the computation of such an COP only has to be
performed once as a preprocessing step, or whenever the lens configuration changes.

11.3 Discussion

In this chapter, we have presented an image-based model for lens systems. The model allows
for the use of graphics hardware for rendering, and is therefore well-suited for high-quality,
interactive rendering. As mentioned above, the model can be further extended to account for
variations of the exposure over the film [Heidrich97a].

The algorithm we use for approximating the mapping between the scene light field and the
camera light field relies on the fact that lens systems designed for cameras have very smooth sur-
faces without any high frequency detail. Thus, the mapping between the two light fields is also a
smooth function which can be represented with a small number of subdivisions (Section11.2.2).
While the same hierarchical subdivision scheme could in principle be used for any refractive
object, surfaces with a lot of geometric detail would require a large number of subdivisions, and
therefore a lot of rendering passes, thereby making the approach infeasible. For these kinds of
surfaces, it is better to use a different light field-based approach, such as the one described in

11.3 Discussion 109

Chapter10.

The advantage of the approach from this chapter over the one from Chapter10 is that the
latter is restricted to representing the scene as an environment map, which is not the case here.
As a consequence, the methods from Chapter10 are not capable of simulating depth of field
effects. Since these effects are negligible if the refractive object is not located directly in front of
the eye or camera, this is not a big restriction. In summary, it can be said that the two algorithms,
although both present light field techniques for rendering refractive objects, are tailored towards
specific application domains. The techniques from Chapter10 are good for relatively distant
objects with a complex surface geometry, while the model in this chapter is best for simulating
lens systems of cameras with very little geometric detail.

Although our camera model is capable of simulating a larger variety of lens properties than
previous models, there are some aspects of real lenses that cannot be handled. Most importantly,
chromatic aberrations and frequency dependent refraction coefficients are not simulated, since
contemporary computer graphics hardware only supports RGB rendering. This restriction could
be removed with an increased number of rendering passes.

Another limitation of our model is the assumption of instantaneous shutter opening and a
constant irradiance during the whole exposure time. More complex shutter functions and motion
blur could be implemented by averaging multiple images over time. This, however would be too
costly for achieving interactive frame rates on contemporary hardware.

In summary, our model adds a significant amount of realism to the simulation of lens systems
in interactive graphics. Although it is not capable of simulating every property of real lenses, it
constitutes a good compromise between quality of simulation and rendering performance.

110 Lens Systems

Chapter 12

Conclusions and Future Work

In conclusion, there is a need to shift the focus of algorithm development for
hardware implementation of 3D graphics. The requirements are changing
from “more polygons” and “more pixel fill rate” to more complex dynamic
geometry and richer pixels. More complex dynamic geometry does not neces-
sarily mean more triangles or more efficient updates of triangle geometry, but
rather better shapes and motion with less data, integrating authoring tools,
APIs, and hardware accelerated rendering. Richer pixels does not necessar-
ily mean more pixels rendered but rather that each pixel rendered is the result
of far more effort spent lighting, shading, and texturing. The end result will
be a higher degree of realism in the interactive experience.

David B. Kirk, Unsolved Problems and Opportunities for High-quality, High-
performance 3D Graphics on a PC Platform, Invited Paper, 1998 Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pp. 11–13, August 1998.

The topic of this dissertation are algorithms for high-quality, realistic shading and lighting
with the help of computer graphics hardware. Based on physical models for the interaction of
light with various kinds of surfaces, and an abstract model for graphics hardware that is based
on existing graphics systems, we have developed a number of algorithms to solve a variety of
different problems in image synthesis.

An interesting observation is that all techniques discussed here have one thing in common:
they employ a sampling-based approach to achieve certain illumination or shading effects. In
Chapter5, the lighting models are split into several factors which are then stored in 1- or 2-
dimensional textures. Shadow maps, as used in Chapter6, require a discrete sampling of the
scene geometry. Bump maps and normal maps (Chapter9) can be interpreted as discretely

112 Conclusions and Future Work

sampled geometric detail, and finally environment maps (Chapter8) and light fields (Chapters7,
10, and11) represent a discrete sampling of the radiance field at a certain point or set of points
in space.

In particular the latter two examples, environment maps and light fields, are techniques from
image-based rendering, which have here been applied to the shading and lighting of geometric
objects. We believe that this sort of algorithm will play an important role in high-quality interac-
tive rendering. At the moment, light field-based approaches push the current graphics hardware
to its limits, as they either require a large amount of (texture) memory, as in Chapter10, or
many rendering passes (Chapters7 and11). However, the former problem will disappear as the
memory prices fall, and as graphics hardware starts to use compressed textures, while the lat-
ter problem will be alleviated by increasing performance and direct multi-pass support such as
multiple simultaneous textures.

There are several reasons why image-based and, more generally speaking, sample-based ap-
proaches are so dominant in this thesis, and are in general becoming popular for interactive
applications. Firstly, these representations are the natural result of measurements. All the data
required for any of the algorithms used in this thesis can be generated through measurements.
This is true for BRDFs (see, for example, [Ward92]), normal maps [Rushmeier97], environment
maps [Haeberli93, Debevec98], and light fields [Gortler96, Levoy96].

Secondly, regular samplings are well suited for use with hardware, since they are simply ar-
rays of values. This means that no complicated data structures are involved, which would be
inappropriate for hardware implementations. Moreover, often the access patterns to these arrays
are also very regular, so that caching schemes can be employed. Finally, sampling based ap-
proaches allow for a wide variety of tradeoffs between quality and cost. If future generations
of graphics hardware offer larger amounts of dedicated graphics memory, the sampling rate or
number of quantization levels can easily be increased, which will immediately results in an im-
provement in the rendering quality.

An alternative to sampling-based approaches would, for example, be procedural descriptions
[Hanrahan90, Pixar89, Olano98]. The two major benefits of this approach are resolution in-
dependence and a compact representation. On the other hand, these architectures require very
flexible, programmable rasterization hardware, which, at the moment, is still expensive to build.
For real time applications, general procedural shaders also pose problems since it is not known
in advance how long a procedural shader will take for execution. In particular, the execution
time may vary strongly from pixel to pixel and from frame to frame, so that load balancing be-
tween parallel rasterization units is hard. Acquisition of the data is also not easily possible, and
quality/performance tradeoffs are difficult.

Despite these problems, a trend towards allowing for simple procedural shaders in graphics
hardware is clearly noticeable. The problems mentioned above can likely be avoided by develop-
ing a new shading language that is specifically designed to be used with graphics hardware. Such

12.1 Suggestions for Future Graphics Hardware 113

a language could sit on on top of the graphics pipeline, and compile to different hardware plat-
forms, thereby making use of the specific procedural capabilities and other extensions provided
by the hardware.

12.1 Suggestions for Future Graphics Hardware

Most of the algorithms proposed in this thesis work efficiently on contemporary hardware, some
however, only with certain features that are currently not available on a large number of plat-
forms. These features are

Multiple textures. Some methods, such as the use of alternative lighting models (Chapter5) or
the parabolic parameterization for environment maps (Chapter8), can use multiple simul-
taneous textures [SGI97] to reduce the number of rendering passes, and thus improve the
performance. For all of the algorithms presented here, multiple textures are not strictly
necessary, but for some they are useful.

Imaging operations. Other algorithms, especially the methods for rendering normal maps from
Chapter9, require color matrices and color lookup tables. These are part of the so-called
imaging operations, which have been formally introduced as a subset in OpenGL version
1.2 [Segal98]. Although support for this subset is not required for OpenGL compliance,
it is to be expected that many vendors will supply it in future versions of their hardware.
Currently, these operations are available as extensions on some platforms including work-
stations from SGI on which the algorithms in this thesis have been implemented.

An interesting point is that in this thesis the imaging operations are not used for typi-
cal “imaging” algorithms, but for shading and lighting computations. A number of other
algorithms also benefit from these features without being imaging applications (see, for ex-
ample [Westermann98] and [Heidrich99e]). The term “imaging subset” used in [Segal98]
is thus somewhat misleading and bears the danger of underestimating the power of these
operations.

Pixel textures are used for several algorithms, including normal mapping (Chapter9) and light
field based refractions (Chapter10). Pixel textures are currently classified as an “experi-
mental extension” from Silicon Graphics, that is only supported on one platform (Octane
graphics with texture mapping support). Even this implementation is not fully compliant
with the specification [SGI96].

We think that all three of these features are so useful that they should become a standard
feature of future graphics platforms. As mentioned above, this is also very likely to happen, at
least for the multi texture extension and the imaging subset.

114 Conclusions and Future Work

The future of the pixel texture extension is much more unclear. The experimental nature of
this extension is a severe limitation. Nonetheless, its usefulness, which has also been demon-
strated elsewhere [Heidrich99e], makes it interesting to develop algorithms for it. The extension
would be even more useful if projective textures were to be incorporated in the specification,
as proposed in Chapters6 and9. But even without this change, pixel textures have many ap-
plications. The discussed algorithms only show a small part of them, but they demonstrate the
potential of the extension for achieving high quality, high performance renderings.

In addition to applying and evaluating features of existing graphics hardware, we have also
proposed a number of new extensions throughout this thesis. In short, these are

• A number of new texture generation modes in order to directly support both more advanced
lighting models (Chapter5) and parabolic environment maps (Chapter8). The same tech-
niques could also be applied to the illumination of bump mapped surfaces (Chapter9). The
proposal for an extension computing the reflection vector has recently been picked up by
Kilgard [Kilgard99], who implemented it for the Mesa library and the nVIDIA drivers.

• An additional per-vertex tangent vector to be transformed by the model/view matrix stack.
This is necessary in order to implement physically-based anisotropic reflection models.

• In Chapter5, we have also sketched a completely new sampling-based per-vertex lighting
model to replace the traditional Phong lighting. The illumination of a vertex with this
approach involves several dot products and one or more table lookups, and is thus not
much more expensive than per-vertex Phong lighting.

Besides these concrete proposals, future graphics hardware will have to address a number of
other issues. Firstly, methods for reducing the consumption of dedicated texture and framebuffer
memory are required. This includes support for compressed textures and textures that are only
partially loaded into the dedicated texture memory. The former issue is partially being addressed
on some new PC hardware [nVIDIA98], while a solution for the latter issue has been proposed
in [Tanner98]. Anisotropic texture filtering is also important for improved rendering quality, and
is beginning to appear on newer hardware.

Furthermore, hardware with direct support for bump mapping and per pixel lighting is be-
ginning to appear [nVIDIA98]. These approaches could be combined with our techniques for
physically correct lighting models and environment mapping from Chapter9.

For further improved rendering quality, future graphics hardware should also provide high
dynamic range formats for storing textures and intermediate rendering results. Examples for
such formats are floating point color channels, or the LogLuv encoding [Larson97]. This is a
somewhat problematic issue, since these formats require floating point arithmetic in the raster-
ization unit, which is not required for implementations of the rendering pipeline as laid out in

12.2 Conclusion 115

Chapter4. However, hardware that supports bump mapping or floating point depth buffers, such
as [nVIDIA98] also requires floating point arithmetic during the rasterization phase, so that the
additional cost of implementing high dynamic range color formats should not be too large.

Finally, it is high time for some direct hardware support for shadows. For the reasons dis-
cussed in detail in Chapter6, we favor shadow maps for such an implementation. Support for
shadow maps can either come in form of a dedicated extension, as described in [Segal92], or they
can be implemented via the alpha test with the algorithms from Chapter6 and [Heidrich99e]. In
the latter case, the hardware should support framebuffer configurations with deep alpha channels
of at least 24 bit.

Also, hardware support for new geometric primitives, such as subdivision surfaces, as well
a algorithms for reducing the geometric complexity through view frustum- or occlusion culling
are important areas of future research. This topic, however, is outside the scope of this thesis.

12.2 Conclusion

This dissertation introduces a set of new algorithms for high quality shading and lighting using
computer graphics hardware. In particular, methods for generating various local shading and
lighting effects and for visualizing global illumination solutions have been presented. This in-
cludes algorithms for shadows, normal mapping, alternative material models, mirror- and glossy
reflections off curved surfaces, as well as techniques for realistic lens systems and complex light
source models. All these techniques are orthogonal to each other, in the sense that they can
be arbitrarily combined, which, however, usually results in an increased number of rendering
passes.

In the course of developing these algorithms, we have identified building blocks that are
important for future generations of graphics hardware. Some of these are established features of
graphics hardware that are used in a new, unexpected way, some are experimental features that
are not yet widely used, and some are completely new features that we propose here for the first
time.

All presented algorithms employ sampling-based approaches. Future work could extend on
these ideas by further studying the use of light fields to describe the illumination on surfaces. We
are confident that many more interactive techniques can be developed based on this idea.

Other areas of future research include techniques for volumetric effects and participating me-
dia. While it is true that volume rendering based on 3D texture mapping has been explored for
visualization applications in medicine and engineering, the requirements for realistic image syn-
thesis are different. Instead of communicating important properties of a data set, this application
domain requires realistic effects, such as lighting and shadows cast by volumes. The area of
rendering these effects efficiently with graphics hardware has not been covered sufficiently by

116 Conclusions and Future Work

researchers so far.

Finally, acquisition of real-world data and models is an important topic. This is true for all
areas of computer graphics, but particularly attractive for interactive rendering, since here the
measured data can often directly be used with the graphics hardware, for example by applying
the techniques described in this dissertation.

Bibliography

[Adelson91] E. H. Adelson and J. R. Bergen.Computational Models of Visual Processing,
Chapter 1 (The Plenoptic Function and the Elements of Early Vision). MIT
Press, Cambridge, MA, 1991.

[Akeley93] Kurt Akeley. RealityEngine graphics. InComputer Graphics (SIGGRAPH ’93
Proceedings), pages 109–116, August 1993.

[Ashdown93] Ian Ashdown. Near-Field Photometry: A New Approach.Journal of the Illumi-
nating Engineering Society, 22(1):163–180, Winter 1993.

[Ashdown96] Ian Ashdown. Photometry and radiometry – a tour guide for computer graphics
enthusiasts. Technical report, Ledalite Architectural Products, Inc., 1996.

[Banks94] David C. Banks. Illumination in diverse codimensions. InComputer Graphics
(Proceedings of SIGGRAPH ’94), pages 327–334, July 1994.

[Barkans97] Anthony C. Barkans. High-quality rendering using the talisman architecture.
In 1997 SIGGRAPH / Eurographics Workshop on Graphics Hardware, pages
79–88, August 1997.

[Bastos97] Rui Bastos. Efficient radiosity rendering using textures and bicubic reconstruc-
tion. In Symposium on Interactive 3D Graphics, 1997.

[Beckmann63] Petr Beckmann and Andre Spizzichino.The Scattering of Electromagnetic
Waves from Rough Surfaces. McMillan, 1963.

[Bishop94] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher Zagier.
Frameless rendering: Double buffering considered harmful. InComputer
Graphics (SIGGRAPH ’94 Proceedings), pages 175–176, July 1994.

[Blinn76] James F. Blinn and Martin E. Newell. Texture and reflection in computer gener-
ated images.Communications of the ACM, 19:542–546, 1976.

118 BIBLIOGRAPHY

[Blinn77] James F. Blinn. Models of light reflection for computer synthesized pictures. In
Computer Graphics (SIGGRAPH ’77 Proceedings), pages 192–198, July 1977.

[Blinn78] James F. Blinn. Simulation of wrinkled surfaces. InComputer Graphics (SIG-
GRAPH ’78 Proceedings), pages 286–292, August 1978.

[Blinn88] James F. Blinn. Jim blinn’s corner: Me and my (fake) shadow.IEEE Computer
Graphics and Applications, 8(1):82–86, January 1988.

[Born93] Max Born and Emil Wolf. Principles of Optics. Pergamon Press, Oxford, 6
edition, 1993.

[Brockelmann66] R. A. Brockelmann and T. Hagfors. Note on the effect of shadowing on the
backscattering of waves from a random rough surface.IEEE Transactions on
Antennas and Propagation, 14:621–626, September 1966.

[Brotman84] L. S. Brotman and N. I. Badler. Generating soft shadows with a depth buffer
algorithm. IEEE Computer Graphics and Applications, 4(10):71–81, October
1984.

[Bui-Tuong75] Phong Bui-Tuong. Illumination for computer generated pictures.Communica-
tions of the ACM, 18(6):311–317, June 1975.

[Cabral87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional reflection
functions from surface bump maps. InComputer Graphics (SIGGRAPH ’87
Proceedings), pages 273–281, July 1987.

[Camahort98] Emilio Camahort, Apostolos Lerios, and Donald Fussell. Uniformly sampled
light fields. InRendering Techniques ’98 (Proceedings of Eurographics Render-
ing Workshop), pages 117–130, March 1998.

[Cohen93] Michael F. Cohen and John R. Wallace.Radiosity and Realistic Image Synthesis.
Academic Press, 1993.

[Cohen97] Michael F. Cohen. Private communication, November 1997.

[Cohen98] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving
simplification. InComputer Graphics (SIGGRAPH ’98 Proceedings), pages
115–122, July 1998.

[Cook81] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer
graphics. InComputer Graphics (SIGGRAPH ’81 Proceedings), pages 307–
316, August 1981.

BIBLIOGRAPHY 119

[Cook84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In
Computer Graphics (SIGGRAPH ’84 Proceedings), pages 134–145, July 1984.

[Crow77] Franklin C. Crow. Shadow algorithms for computer graphics. InComputer
Graphics (SIGGRAPH ’77 Proceedings), pages 242–248, July 1977.

[Crow84] Franklin C. Crow. Summed-area tables for texture mapping. InComputer
Graphics (SIGGRAPH ’84 Proceedings), pages 207–212, July 1984.

[Debevec97] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance
maps from photographs. InComputer Graphics (SIGGRAPH ’97 Proceedings),
pages 369–378, August 1997.

[Debevec98] Paul E. Debevec. Rendering synthetic objects into real scenes: Bridging tra-
ditional and image-based graphics with global illumination and high dynamic
range photography. InComputer Graphics (SIGGRAPH ’98 Proceedings),
pages 189–198, July 1998.

[Diefenbach94] Paul J. Diefenbach and Norman Badler. Pipeline Rendering: Interactive refrac-
tions, reflections and shadows.Displays: Special Issue on Interactive Computer
Graphics, 15(3):173–180, 1994.

[Diefenbach96] Paul J. Diefenbach.Pipeline Rendering: Interaction and Realism Through
Hardware-based Multi-Pass Rendering. PhD thesis, University of Pennsylva-
nia, 3401 Walnut Street, Suite 400A, Philadelphia, PA 19104-6228, June 1996.

[Ebert94] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Steve Worley.
Texturing and Modeling: A Procedural Approach. Academic Press, October
1994.

[Encarnac¸ão80] J. Encarnac¸ão, G. Enderle, K. Kansy, G. Nees, E. G. Schlechtendahl, J. Weiss,
and P. Wisskirchen. The workstation concept of GKS and the resulting concep-
tual differences to the GSPC CORE system. InComputer Graphics (SIGGRAPH
’80 Proceedings), pages 226–230, July 1980.

[Ernst98] I. Ernst, H. R¨usseler, H. Schulz, and O. Wittig. Gouraud bump mapping. InEu-
rographics/SIGGRAPH Workshop on Graphics Hardware, pages 47–54, 1998.

[Eyles97] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo Lastra, Nick
England, and Lee Westover. PixelFlow: The realization. In1997 SIGGRAPH /
Eurographics Workshop on Graphics Hardware, pages 57–68, August 1997.

[Flügge55] Johannes Fl¨ugge.Das Photographische Objektiv. Springer Wien, 1955.

120 BIBLIOGRAPHY

[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Com-
puter Graphics, Principles and Practice, Second Edition. Addison-Wesley,
Reading, Massachusetts, 1990.

[Glassner95] Andrew Glassner.Principles of Digital Image Synthesis. Morgan Kaufmann,
1995.

[Gortler96] Steven J. Gortler, Radek Grzeszczuk, Richard Szelinski, and Michael F. Cohen.
The Lumigraph. InComputer Graphics (SIGGRAPH ’96 Proceedings), pages
43–54, August 1996.

[Greene86] Ned Greene. Applications of world projections. InProceedings of Graphics
Interface ’86, pages 108–114, May 1986.

[Gremban88] Keith D. Gremban, Charles E. Thorpe, and Takeo Kanade. Geometric camera
calibration using systems of linear equations. InIEEE International Conference
on Robotics and Animation, volume 1, pages 562–567, 1988.

[GSPC79] Graphics Standards Planning Committee. Status report of the graphics stan-
dards planning committee. InComputer Graphics (SIGGRAPH ’79 Proceed-
ings), page 274, August 1979.

[Gu97] Xianfeng Gu, Steven J. Gortler, and Michael F. Cohen. Polyhedral geometry
and the two-plane parameterization. InRendering Techniques ’97 (Proceedings
of Eurographics Rendering Workshop), pages 1–12, June 1997.

[Haeberli90] Paul E. Haeberli and Kurt Akeley. The accumulation buffer: Hardware support
for high-quality rendering. InComputer Graphics (SIGGRAPH ’90 Proceed-
ings), pages 309–318, August 1990.

[Haeberli93] Paul Haeberli and Mark Segal. Texture mapping as a fundamental drawing prim-
itive. In Fourth Eurographics Workshop on Rendering, pages 259–266, June
1993.

[Hall89] Roy Hall. Illumination and Color in Computer Generated Imagery. Springer-
Verlag, New York, 1989.

[Hanrahan90] Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations.
In Computer Graphics (SIGGRAPH ’90 Proceedings), pages 289–298, August
1990.

[Hanrahan93] Pat Hanrahan.Radiosity and Realistic Image Synthesis, Chapter Rendering Con-
cepts. Academic Press, 1993.

BIBLIOGRAPHY 121

[Hansen97] Paul Hansen. Introducing pixel texture. InDeveloper News, pages 23–26. Sili-
con Graphics Inc., May 1997.

[He91] X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg. A comprehensive
physical model for light reflection. InComputer Graphics (SIGGRAPH ’91
Proceedings), pages 175–186, July 1991.

[Heidrich97a] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. An image-based
model for realistic lens systems in interactive computer graphics. InGraphics
Interface ’97, pages 68–75, 1997.

[Heidrich97b] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. Sampling pro-
cedural shaders using affine arithmetic (technical sketch). InSIGGRAPH ’97
Visual Proceedings, 1997.

[Heidrich98a] Wolfgang Heidrich, Jan Kautz, Philipp Slusallek, and Hans-Peter Seidel.
Canned lightsources. InRendering Techniques ’98 (Proceedings of Eurograph-
ics Rendering Workshop), 1998.

[Heidrich98b] Wolfgang Heidrich and Hans-Peter Seidel. Efficient rendering of anisotropic
surfaces using computer graphics hardware. InProceedings of the Image and
Multi-dimensional Digital Signal Processing Workshop (IMDSP), 1998.

[Heidrich98c] Wolfgang Heidrich and Hans-Peter Seidel. A model for anisotropic reflections
in OpenGL (technical sketch). InSIGGRAPH ’98 Visual Proceedings, 1998.

[Heidrich98d] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environment
maps. InEurographics/SIGGRAPH Workshop on Graphics Hardware, pages
39–45, 1998.

[Heidrich98e] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. Sampling pro-
cedural shaders using affine arithmetic.ACM Transactions on Graphics, pages
158–176, 1998.

[Heidrich99a] Wolfgang Heidrich and Hendrik Lensch. Direct rendering of vector-quantized
light fields with graphics hardware. Technical report, University of Erlangen-
Nürnberg, Computer Graphics Group, 1999. in preparation.

[Heidrich99b] Wolfgang Heidrich, Hendrik Lensch, Michael F. Cohen, and Hans-Peter Seidel.
Light field techniques for reflections and refractions. InRendering Techniques
’99 (Proceedings of Eurographics Rendering Workshop), 1999.

[Heidrich99c] Wolfgang Heidrich, Hartmut Schirmacher, and Hans-Peter Seidel. A warping-
based refinement of lumigraphs. InProceedings of WSCG, 1999.

122 BIBLIOGRAPHY

[Heidrich99d] Wolfgang Heidrich and Hans-Peter Seidel. Realistic, hardware-accelerated
shading and lighting. InComputer Graphics (SIGGRAPH ’99 Proceedings),
August 1999.

[Heidrich99e] Wolfgang Heidrich, R¨udiger Westermann, Hans-Peter Seidel, and Thomas Ertl.
Applications of pixel textures in visualization and realistic image synthesis. In
ACM Symposium on Interactive 3D Graphics, 1999.

[Kajiya85] James T. Kajiya. Anisotropic reflection models. InComputer Graphics (SIG-
GRAPH ’85 Proceedings), pages 15–21, August 1985.

[Kajiya86] James T. Kajiya. The rendering equation. InComputer Graphics (SIGGRAPH
’86 Proceedings), pages 143–150, August 1986.

[Keller97] Alexander Keller. Instant radiosity.Computer Graphics (SIGGRAPH ’97 Pro-
ceedings), pages 49–56, August 1997.

[Kilgard97] Mark J. Kilgard. Realizing OpenGL: Two implementations of one architecture.
In Eurographics/SIGGRAPH Workshop on Graphics Hardware, 1997.

[Kilgard99] Mark Kilgard. Personal communication, April 1999.

[Kolb95] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model for com-
puter graphics. InComputer Graphics (SIGGRAPH ’95 Proceedings), pages
317–324, August 1995.

[Lafortune97] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P.
Greenberg. Non-linear approximation of reflectance functions. InComputer
Graphics (SIGGRAPH ’97 Proceedings), pages 117–126, August 1997.

[Lalonde97a] Paul Lalonde and Alain Fournier. Filtered local shading in the wavelet domain.
In Rendering Techniques ’97 (Proceedings of Eurographics Rendering Work-
shop), pages 163–174, June 1997.

[Lalonde97b] Paul Lalonde and Alain Fournier. Generating reflected directions from BRDF
data.Computer Graphics Forum (Proceedings of Eurographics ’97), 16(3):293–
300, August 1997.

[Larson97] Gregory Larson. LogLuv encoding for TIFF images. Technical report, Silicon
Graphics, 1997. http://www.sgi.com/Technology/pixformat/tiffluv.html.

[Lengyel97] Jed Lengyel and John Snyder. Rendering with coherent layers. InComputer
Graphics (SIGGRAPH ’97 Proceedings), pages 233–242, August 1997.

BIBLIOGRAPHY 123

[Levoy96] Marc Levoy and Pat Hanrahan. Light field rendering. InComputer Graphics
(SIGGRAPH ’96 Proceedings), pages 31–42, August 1996.

[Lewis93] Robert R. Lewis. Making shaders more physically plausible. InFourth Euro-
graphics Workshop on Rendering, pages 47–62, June 1993.

[Loos98] Joachim Loos, Philipp Slusallek, and Hans-Peter Seidel. Using wavefront trac-
ing for the visualization and optimization of progressive lenses. InEurographics
’99, pages 255–266, September 1998.

[McReynolds98] Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson. Advanced
graphics programming techniques using OpenGL. InSIGGRAPH 1998 Course
Notes, July 1998.

[Miller98a] Gavin Miller, Mark Halstead, and Michael Clifton. On-the-fly texture compu-
tation for real-time surface shading.IEEE Computer Graphics & Applications,
18(2):44–58, March–April 1998.

[Miller98b] Gavin Miller, Steven Rubin, and Dulce Ponceleon. Lazy decompression of sur-
face light fields for precomputed global illumination. InRendering Techniques
’98 (Proceedings of Eurographics Rendering Workshop), pages 281–292, March
1998.

[Molnar92] Steven Molnar, John Eyles, and John Poulton. PixelFlow: High-speed render-
ing using image composition. InComputer Graphics (SIGGRAPH ’92 Proceed-
ings), pages 231–240, July 1992.

[Montrym97] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J.
Migdal. InfiniteReality: A real-time graphics system. InComputer Graphics
(SIGGRAPH ’97 Proceedings), pages 293–302, August 1997.

[Myskowski94] Karol Myskowski and Tosiyasu. L. Kunii. Texture mapping as an alternative
for meshing during walkthrough animation. InPhotorealistic Rendering Tech-
niques, pages 389–400. Springer, June 1994.

[Nayar97] Shree K. Nayar. Catadioptric omnidirectional camera. InIEEE Conference on
Computer Vision and Pattern Recognition, pages 482–488, June 1997.

[Nayar98] Shree Nayar. Omnidirectional image sensing. Invited Talk at the 1998 Workshop
on Image-Based Modeling and Rendering, March 1998.

[Neider93] Jackie Neider, Tom Davis, and Mason Woo.OpenGL Programming Guide.
Addison Wesley, 1993.

124 BIBLIOGRAPHY

[nVIDIA98] nVIDIA. RIVA TNT Product Overview, 1998. http://www.nvidia.com.

[Ofek98] Eyal Ofek and Ari Rappoport. Interactive reflections on curved objects. In
Computer Graphics (SIGGRAPH ’98 Proceedings), pages 333–342, July 1998.

[Olano98] Marc Olano and Anselmo Lastra. A shading language on graphics hardware:
The PixelFlow shading system. InComputer Graphics (SIGGRAPH ’98 Pro-
ceedings), pages 159–168, July 1998.

[Paul94] Brian Paul. Mesa web site. http://www.ssec.wisc.edu/ brianp/Mesa.html, 1994.

[Pedrotti93] F. Pedrotti and L. Pedrotti.Introduction to Optics. Prentice Hall, second edition,
1993.

[Peercy97] Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hardware.
In Computer Graphics (SIGGRAPH ’97 Proceedings), pages 303–306, August
1997.

[Perlin89] Ken Perlin and Eric M. Hoffert. Hypertexture. InComputer Graphics (SIG-
GRAPH ’89 Proceedings), pages 253–262, July 1989.

[Pixar89] Pixar.The RenderMan Interface. Pixar, San Rafael, CA, September 1989.

[Poulin90] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. InCom-
puter Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 273–282, Au-
gust 1990.

[Rushmeier97] Holly Rushmeier, Gabriel Taubin, and Andr´e Guéziec. Applying shape from
lighting variation to bump map capture. InRendering Techniques ’97 (Proceed-
ings of Eurographics Rendering Workshop), pages 35–44, June 1997.

[Schilling96] Andreas Schilling, G¨unter Knittel, and Wolfgang Straßer. Texram: A smart
memory for texturing.IEEE Computer Graphics and Applications, 16(3):32–
41, May 1996.

[Schilling97] Andreas Schilling. Toward real-time photorealistic rendering: Challenges and
solutions. In1997 SIGGRAPH / Eurographics Workshop on Graphics Hard-
ware, pages 7–16, August 1997.

[Schlick93] Christophe Schlick. A customizable reflectance model for everyday rendering.
In Fourth Eurographics Workshop on Rendering, pages 73–83, June 1993.

[Segal92] Marc Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli.
Fast shadow and lighting effects using texture mapping.Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):249–252, July 1992.

BIBLIOGRAPHY 125

[Segal98] Mark Segal and Kurt Akeley.The OpenGL Graphics System: A Specification
(Version 1.2), 1998.

[SGI96] Silicon Graphics Inc.Pixel Texture Extension, December 1996. Specification
document, available from http://www.opengl.org.

[SGI97] Silicon Graphics Inc.Multitexture Extension, September 1997. Specification
document, available from http://www.opengl.org.

[Shinya94] Mikio Shinya. Post-filtering for depth of field simulation with ray distribution
buffer. InProceedings of Graphics Interface ’94, pages 59–66, May 1994.

[Sillion89] Francois X. Sillion and Claude Puech. A general two-pass method integrating
specular and diffuse reflection. InComputer Graphics (SIGGRAPH ’89 Pro-
ceedings), pages 335–344, July 1989.

[Sillion91] Francois X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P. Green-
berg. A global illumination solution for general reflectance distributions. In
Computer Graphics (SIGGRAPH ’91 Proceedings), pages 187–196, July 1991.

[Sillion94] Francois X. Sillion and Claude Puech.Radiosity & Global Illumination. Morgan
Kaufmann, 1994.

[Sloan97] Peter-Pike Sloan, Michael F. Cohen, and Steven J. Gortler. Time critical Lumi-
graph rendering. InSymposium on Interactive 3D Graphics, 1997.

[Sloan99] Peter-Pike Sloan. Private communication, January 1999.

[Slusallek95] Philipp Slusallek and Hans-Peter Seidel. Vision: An architecture for global
illumination calculations. IEEE Transactions on Visualization and Computer
Graphics, 1(1):77–96, March 1995.

[Slusallek98] Philipp Slusallek, Marc Stamminger, Wolfgang Heidrich, Jan-Christian Popp,
and Hans-Peter Seidel. Composite lighting simulations with lighting networks.
IEEE Computer Graphics and Applications, 18(2):22–31, March 1998.

[Smith67] Bruce G. Smith. Geometrical shadowing of a random rough surface.IEEE
Transactions on Antennas and Propagation, 15(5):668–671, September 1967.

[Snyder98] John Snyder and Jed Lengyel. Visibility sorting and compositing without split-
ting for image layer decomposition. InComputer Graphics (SIGGRAPH ’98
Proceedings), pages 219–230, July 1998.

126 BIBLIOGRAPHY

[Stalling97] Detlev Stalling, Malte Z¨ockler, and Hans-Christian Hege. Fast display of illumi-
nated field lines.IEEE Transactions on Visualization and Computer Graphics,
3(2):118–128, 1997.

[Stamminger95] Marc Stamminger, Philipp Slusallek, and Hans-Peter Seidel. Interactive walk-
throughs and higher order global illumination. InModeling, Virtual Worlds,
Distributed Graphics, pages 121–128, November 1995.

[Stürzlinger97] Wolfgang St¨urzlinger and Rui Bastos. Interactive rendering of globally illumi-
nated glossy scenes. InRendering Techniques ’97, pages 93–102, 1997.

[Tanner98] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The
clipmap: A virtual mipmap. InComputer Graphics (SIGGRAPH ’98 Proceed-
ings), pages 151–158, July 1998.

[Torborg96] Jay Torborg and Jim Kajiya. Talisman: Commodity Real-time 3D graphics for
the PC. InComputer Graphics (SIGGRAPH ’96 Proceedings), pages 353–364,
August 1996.

[Torrance66] Kenneth E. Torrance, E. M. Sparrow, and R. C. Birkebak. Polarization, di-
rectional distribution, and off-specular peak phenomena in light reflected from
roughened surfaces.Journal of the Optical Society of America, 56(7):916–925,
July 1966.

[Torrance67] Kenneth E. Torrance and E. M. Sparrow. Theory for off-specular reflection from
roughened surfaces.Journal of the Optical Society of America, 57(9):1105–
1114, September 1967.

[Tsang98] Glenn Tsang, Sherif Ghali, Eugene L. Fiume, and Anastasios N. Venetsanopou-
los. A novel parameterization of the light field. InProceedings of the Image and
Multi-dimensional Digital Signal Processing Workshop (IMDSP), 1998.

[Voorhies94] D. Voorhies and J. Foran. Reflection vector shading hardware. InComputer
Graphics (SIGGRAPH ’94 Proceedings), pages 163–166, July 1994.

[Walter97] Bruce Walter, G¨un Alppay, Eric Lafortune, Sebastian Fernandez, and Don-
ald P. Greenberg. Fitting virtual lights for non-diffuse walkthroughs.Computer
Graphics (SIGGRAPH ’97 Proceedings), pages 45–48, August 1997.

[Ward92] Gregory J. Ward. Measuring and modeling anisotropic reflection.Computer
Graphics (SIGGRAPH ’92 Proceedings), pages 265–273, July 1992.

BIBLIOGRAPHY 127

[Westermann98] R¨udiger Westermann and Thomas Ertl. Efficiently using graphics hardware in
volume rendering applications. InComputer Graphics (SIGGRAPH ’98 Pro-
ceedings), pages 169–178, July 1998.

[Williams78] Lance Williams. Casting curved shadows on curved surfaces. InComputer
Graphics (SIGGRAPH ’78 Proceedings), pages 270–274, August 1978.

[Williams83] Lance Williams. Pyramidal parametrics. InComputer Graphics (SIGGRAPH
’83 Proceedings), pages 1–11, July 1983.

[Zöckler96] Malte Zöckler, Detlev Stalling, and Hans-Christian Hege. Interactive visualiza-
tion of 3D-vector fields using illuminated stream lines. InIEEE Visualization
’96, pages 107–113, 1996.

128 BIBLIOGRAPHY

Deutschsprachige Teile

Inhaltsverzeichnis

Zusammenfassung vii

Danksagungen ix

Inhalt xi

Darstellungsverzeichnis xv

Formelverzeichnis xvii

1 Einleitung 1

1.1 Architekturen f¨ur Graphikhardware . 2

1.2 Programmierschnittstellen. 5

1.3 Kapitelüberblick . 6

2 Radiometrie und Photometrie 9

2.1 Radiometrie. 9

2.2 Photometrie. 11

2.3 Die bidirektionale Reflexionsverteilungsfunktion. 13

2.3.1 Reflektanz und Transmittanz. 14

2.3.2 Physikalische Reflexions- und Transmissionseigenschaften von Materialien14

2.4 Die Renderinggleichung. 17

3 Verwandte Arbeiten 19

3.1 Beleuchtungsmodelle. 19

3.1.1 Ambiente und diffuse Beleuchtung. 20

3.1.2 Modelle von Phong und Blinn-Phong. 21

132 INHALTSVERZEICHNIS

3.1.3 Das verallgemeinerte Modell der Cosinus-Loben. 22

3.1.4 Modell von Torrance und Sparrow. 22

3.1.5 Anisotrope Reflexion nach Banks. 24

3.2 Mehrschrittverfahren f¨ur die hardwarebasierte Bildsynthese. 24

3.2.1 Visualisierung von L¨osungen der globalen Beleuchtungssimulation. . . 26

3.3 Lichtfelder. 26

3.3.1 Lumigraphen: Lichtfelder mit zus¨atzlicher Geometrie 28

4 Die Renderingpipeline 29

4.1 Verarbeitung der Geometrie. 30

4.2 Rasterisierung. 31

4.2.1 Mehrfachtexturen. 32

4.3 Operationen auf Fragmenten. 32

4.4 Operationen w¨ahrend des Transfers von Pixeldaten. 33

4.5 Zusammenfassung. 34

5 Lokale Beleuchtung mit alternativen Reflexionsmodellen 35

5.1 Isotrope Modelle . 36

5.2 Anisotropie . 39

5.3 Hardwareerweiterungen f¨ur alternative Beleuchtungsmodelle. 40

5.3.1 Neue Modi zur Generierung von Texturkoordinaten. 41

5.3.2 Ein flexibles, knotenbasiertes Beleuchtungsmodell. 43

5.4 Diskussion. 44

6 Schatten 47

6.1 Projezierte Geometrie. 47

6.2 Schattenvolumina. 49

6.3 Schattenbilder. 50

6.3.1 Schattenbilder unter Verwendung des Alphatests. 51

6.4 Diskussion. 52

7 Komplexe Lichtquellen 55

7.1 Simulation und Messung von Lichtquellen. 56

7.2 Rekonstruktion von Beleuchtung aus Lichtfeldern. 57

INHALTSVERZEICHNIS 133

7.2.1 Qualitativ hochwertige Referenzl¨osungen. 57

7.2.2 Hardwarerekonstruktion. 59

7.2.3 Andere Beleuchtungsmodelle und Schatten. 61

7.3 Diskussion. 62

8 Reflexion und Brechung basierend auf Umgebungskarten 65

8.1 Parametrisierungen f¨ur Umgebungskarten. 66

8.2 Eine beobachterunabh¨angige Parametrisierung. 68

8.2.1 Referenzierung der Umgebungskarte f¨ur beliebige Blickpunkte. 70

8.2.2 Implementierung unter Verwendung von Graphikhardware. 72

8.2.3 Aufbau einer Mip-Map Hierarchie. 75

8.3 Visualisierung globaler Beleuchtung basierend auf Umgebungskarten. 75

8.3.1 Verallgemeinerte spiegelnde Reflexionen mit Fresnel Term. 77

8.3.2 Vorfilterung von Umgebungskarten f¨ur matte Spiegelungen. 78

8.3.3 Brechung und Transmission. 80

8.4 Diskussion. 81

9 Bumpmaps und Normalenkarten 83

9.1 Lokale Beleuchtung mit dem Blinn-Phong Modell. 84

9.1.1 Antialiasing. 85

9.2 Andere Beleuchtungsmodelle. 86

9.3 Umgebungskarten. 87

9.4 Diskussion. 88

10 Lichtfeldbasierte Reflexion und Brechung 91

10.1 Vorberechnete Lichtfelder. 93

10.2 Entkopplung von Beleuchtung und Oberfl¨achengeometrie. 95

10.3 Diskussion. 96

11 Linsensysteme 99

11.1 Kameramodelle in der Computergraphik. 100

11.1.1 Die Lochkamera. 100

11.1.2 Das Modell der d¨unnen Linsen. 101

11.1.3 Bildsynthese mittels d¨unner Linsen . 102

134 INHALTSVERZEICHNIS

11.1.4 Das Modell der dicken Linsen. 103

11.1.5 Geometrische Linsenbeschreibungen. 103

11.2 Ein bildbasiertes Kameramodell. 103

11.2.1 Approximation von Linsensystemen. 104

11.2.2 Hierarchische Unterteilung. 106

11.2.3 Berechnung des Projektionszentrums. 108

11.3 Diskussion. 108

12 Zusammenfassung und Ausblick 111

12.1 Vorschläge für zukünftige Generationen von Graphikhardware. 113

12.2 Zusammenfassung. 115

Literaturverzeichnis 117

Deutschsprachige Teile 129

Inhaltsverzeichnis 131

Einleitung 135

Architekturen für Graphikhardware. 136

Programmierschnittstellen. 140

Kapitelüberblick. 141

Zusammenfassung und Ausblick 143

Vorschläge für zukünftige Generationen von Graphikhardware. 145

Zusammenfassung. 147

Einleitung

Interaktive Graphik ist ein Gebiet dessen Zeit gekommen ist. Bis vor kurzem
war sie eine esoterische Spezialität, die teuere Hardware, beachtliche Com-
puterresourcen und eigentümliche Software erforderte. In den letzten Jahren
hat sie jedoch von der kontinuierlichen und manchmal spektakulären Reduk-
tion des Preis/Leistungsverhältnisses f̈ur Hardware (z.B. f̈ur PCs mit ihren
standardm̈aßig verf̈ugbaren graphischen Displays), sowie von der Entwick-
lung von m̈achtigen, Hardware-unabḧangigen Graphikpaketen profitiert, die
eine rationale und einfache Graphikprogrammierung ermöglichen.

James Foley und Andries van Dam, Vorwort zuFundamentals of Interactive
Computer Graphics, 1982.

In den frühen 1980er Jahren, als dieses Zitat zu Papier gebracht wurde, charakterisierte es
es eine Situation, in der die zuvor dominierende Vektorgraphik z¨ugig durch Rastergraphik er-
setzt wurde, und sich die ersten Graphikstandards wie Core [GSPC79] und GKS [Encarnac¸ão80]
entwickelten. Obwohl weder der IBM PC, noch der Apple Macintosh zu dieser Zeit bereits
eingeführt waren, wurde die Framebufferhardware immer preiswerter, zweidimensionale Lini-
nengraphik wurde auf vergleichsweise billigen Systemen verf¨ugbar, und graphische Benutzer-
schnittstellen erschienen. Die Zeit f¨ur interaktive Graphik war in der Tat gekommen.

Etwa 15 Jahre sp¨ater, in der Mitte der 1990er, ergab sich eine ¨ahnliche Situation f¨ur dreidi-
mensionale Graphik. Allm”ahlich konnten Personalcomputer schattierte, beleuchtete und tex-
turierte Dreiecke hinreichend schnell darstellen, um f¨ur praxisrelevante Aufgaben eingesetzt zu
werden. Dreidimensionale Graphik wurde zunehmend im Massenmarkt eingesetzt, zun¨achst
nur im Spielebereich, bald aber auch im Bereich betriebswirtschaftlicher und ingenieurwis-
senschaftlicher Anwendungen. Heute, im Jahre 1999, wird kaum ein Computer mehr ohne sub-
stantielle Spezialhardware f¨ur dreidimensionale Graphik verkauft.

Die Reduktion des Preis/Leistungsverh¨altnisses l¨aßt sich vor allem auf zwei Tatsachen zu-
rückführen. Erstens sind alle modernen Prozessoren schnell genug, um Geometrieverarbeitung

136 Einleitung

in Software durchzuf¨uhren. Das hat zur Folge, daß spezielle Geometrieeinheiten f¨ur kleine und
mittlere Systeme nicht mehr erforderlich sind. Zweitens gingen die Preise f¨ur Speicherchips in
den letzten Jahren drastisch zur¨uck. Dies hat es erm¨oglicht, signifikante Mengen von dezidiertem
Graphik- und Texturspeicher eng an die Rasterisierungshardware anzukoppeln.

Auf der Softwareseite ersetzte der de-facto-Standard OpenGL zu großen Teilen propriet¨are
Bibliotheken wie Starbase (Hewlett Packard), Iris GL (Silicon Graphics) und XGL (Sun Mi-
crosystems). Dadurch isr es Programmierern inzwischen m¨oglich, graphische Anwendungen
für eine Vielzahl von Plattformen zu entwickeln, wodurch die Entwicklungskosten f¨ur solche
Anwendungen dramatisch reduziert werden konnten. Das Thema der Programmierschnittstellen
wird weiter unten genauer betrachtet.

Das Hauptaugenmerk bei der Entwicklung neuer Hardware galt bis vor kurzem der schnell-
eren Abarbeitung der traditionellen Graphikpipeline. Heute sind selbst auf Ger¨aten der unteren
Preisklasse mehrere Millionen texturierte, beleuchtete Dreiecke pro Sekunde erreichbar. Das
hat zur Auswirkung, daß sich der Schwerpunkt von h¨oherer Geschwindigkeit hin zu h¨oherer
Qualität und erweiterter Funktionalit¨at verlagert, wodurch die Hardware f¨ur eine vollkommen
neue Klasse von Anwendungen eingesetzt werden kann.

Diese Dissertation stellt eine Reihe neuer Algorithmen f¨ur die qualitativ hochwertige Be-
leuchtungsberechnung und Schattierung unter Zuhilfenahme von Graphikhardware vor. Im Ver-
lauf der Entwicklung dieser Algorithmen identifizieren wir Bausteine, die wir als wichtig f¨ur
zukünftige Generationen von Graphikhardware ansehen. Einige davon sind etablierte Funk-
tionen der Graphikhardware, die in einer innovativen, unerwarteten Weise eingesetzt werden.
Andere sind experimentelle Funktionen, die noch nicht weit verbreitet sind, und wieder andere
werden von uns neu eingef¨uhrt.

Die Arbeit trägt daher auf zwei Arten zum Gebiet der Computergraphik bei: einerseits
wird eine Reihe neuer Algorithmen f¨ur die realistische Bildsynthese unter Zuhilfenahme von
Graphikhardware vorgestellt. Diese sind in der Lage, Bilder von einer Qualit¨at wie sie ein-
fachen Raytracern entspricht, in interaktiver Geschwindigkeit auf heutigen Graphiksystemen zu
erzeugen. Andererseits definiert und identifiziert sie Funktionen und Bausteine, welche f¨ur die
realistische Beleuchtungsberechnung und Schattierung wichtig sind, und tr¨agt damit dazu bei,
daß in der Zukunft bessere Hardware gebaut werden kann.

Architekturen f ür Graphikhardware

Als Grundlage f¨ur die Diskussion von Algorithmen, welche Graphikhardware ausnutzen, und zur
Einführung zuk¨unftiger Erweiterungen, ist es hilfreich durch ein Modell von einer spezifischen
Implementierung zu abstrahieren. Der oben erw¨ahnte Standardisierungsprozeß hat ein solches
abstraktes Modell, dieRenderingpipeline, hervorgebracht. Der ¨uberwiegende Teil der im Augen-

1.2 Architekturen f ür Graphikhardware 137

blick verfügbaren Graphikhardware basiert auf diesem Modell, welches wir in Kapitel4 genauer
beschreiben. Es hat sich auch gezeigt, daß die Rendering Pipeline flexibel genug ist, um neue
Funktionalität zu integrieren, ohne bestehende Anwendungen unbrauchbar zu machen.

In den vergangenen Jahren gab es auch eine Reihe von Forschungsprojekten zu alternativen
Graphikarchitekturen. Die wichtigsten von ihnen sind:

Frameless Rendering:Eines der Probleme herk¨ommlicher interaktiver Bildsynthesesysteme
ist, daß Ver¨anderungen erst dann sichtbar werden, wenn bereits die ganze Szene gezeich-
net wurde. Dies f¨allt insbesondere dann negativ auf, wenn die Szene zu groß ist, um mit
interaktiven Bildwiederholraten dargestellt werden zu k¨onnen. Die dadurch entstehende
Verzögerung zwischen Interaktion und visueller Antwort verursacht beim Betrachter ein
Schwindelgef¨uhl welches alsMotion Sicknessbekannt geworden ist. Dies gilt insbeson-
dere, wenn immersive Ausgabeger¨ate wie etwa Head-Mounted Displays verwendet wer-
den.

Frameless rendering [Bishop94] hat zum Ziel, dieses Problem durch die Darstellung von
Detailergebnissen der Benutzerinteraktion in den Griff zu bekommen. Zuf¨allig ausgew¨ahl-
te Pixel auf dem Bildschirm werden auf den neuesten Stand gebracht, wobei die jeweils
neueste Objekt- und Augposition Verwendung findet. Dies bewirkt, daß das Bild nach
einer starken Bewegung verrauscht oder unscharf wirkt, aber schnell gegen das eigentliche
Bild konvergiert, sobald die Bewegung aufh¨ort. Da jede Interaktion durch diëAnderung
einzelner Pixel unmittelbar sichtbar wird, wird die Gefahr der Motion Sickness dramatisch
reduziert. Gleichzeitig scheinen erste Studien zu belegen, daß das menschliche visuelle
System nicht ¨ubermäßig durch das Rauschen und die Unsch¨arfe irritiert wird.

Der große Nachteil von Frameless Rendering ist der Verlust an Koh¨arenz. Wo herk¨ommli-
che Graphiksysteme effiziente Scanlinetechniken verwenden k¨onnen, um die Scankonver-
tierung von Dreiecken durchzuf¨uhren, ist Raycasting praktisch die einzige M¨oglichkeit,
um zufällig ausgew¨ahlte Pixel auf den neuesten Stand zu bringen. Daher steht zu erwarten,
daß leistungsf¨ahigere Hardware ben¨otigt wird, um Pixelfüllraten zu erreichen, wie sie mit
herkömmlicher Hardware erreichbar sind. Zudem scheint Frameless Rendering ungeeignet
für alle Anwendungen, bei denen der Anwender feine Details identifizieren oder verfolgen
muß. Solche Details sind nur dann erkennbar, wenn f¨ur eine gewisse Zeit keine Bewegung
stattfindet.

Im Augenblick ist keine Hardwareimplementierung von Frameless Rendering bekannt. In
[Bishop94] wurde eine Softwaresimulation verwendet, um das Konzept zu bewerten.

Talisman: Das Talisman-Projekt ist eine Initiative von Microsoft, welche auf das untere Preis-
segment abzielt. Es unterscheidet sich von der herk¨ommlichen Renderingpipeline durch
zwei wesentliche Punkte. Erstens wird, anstatt die Szenendatenbank nur einmal pro Bild

138 Einleitung

zu durchlaufen und dabei alle Polygone unabh¨angig von ihrer Bildschirmposition zu zeich-
nen, der Framebuffer in Rechtecke von32 × 32 Pixeln unterteilt. Jedes Rechteck besitzt
eine Liste der geometrischen Primitive, die in ihm sichtbar sind. Diese Liste wird in einem
Vorverarbeitungsschritt f¨ur jedes Bild neu erzeugt. Durch diesen Ansatz wird dezidierter
Graphikspeicher eingespart, da der Tiefenpuffer und andere, nicht direkt sichtbare Spe-
icherbereiche wie etwa der Alphakanal von allen Rechtecken gemeinsam genutzt wer-
den können. Aufgrund der fallenden Speicherpreise ist allerdings fraglich, wie signifikant
dieser Vorteil tats¨achlich ist.

Der andere große Unterschied zu herk¨ommlichen Systemen ist das Konzept der Wiederver-
wendung zuvor gezeichneter Bildteile f¨ur neue Bilder. Zu diesem Zweck wird die Szene
in eine Reihe unabh¨angiger Schichten zerlegt, welche von hinten nach vorne sortiert wer-
den. Diese Schichten werden separat voneinander gezeichnet und nachtr¨aglich zu einem
Gesamtbild zusammengef¨ugt. Wenn sich der Augpunkt ¨andert und sich Objekte in nach-
folgenden Bildern bewegen, kann ein gewisser Teil der Ebenen wiederverwendet werden,
indem zweidimensionale affine Transformationen auf sie angewendet werden. Erst wenn
der Fehler, der durch dieses Verfahren verursacht wird, eine gewisse Schranke ¨uberschrei-
tet, muß die Geometrie neu gezeichnet werden.

Die Schwierigkeit im Zusammenhang mit der Talisman-Architektur ist es, eine gute Un-
terteilung in Schichten zu finden, und den Fehler zuverl¨assig abzusch¨atzen, der dadurch
entsteht, daß die bestehenden Schichten wiederverwendet werden, anstatt die Geometrie
neu zu zeichnen. Es ist auch wichtig, pl¨otzliche Änderungen zwischen wiederverwen-
deten und neugezeichneten Schichten zu vermeiden. In all diesen Bereichen hat es seit
der ersten Vorstellung des Talisman Projektes einige Fortschritte gegeben [Lengyel97,
Snyder98], aber einige Fragen sind noch immer offen. Eine davon ist, wie eine Program-
mierschnittstelle f¨ur diese Architektur aussehen sollte. Keine der bekannten Schnittstellen
scheint ohne deutliche Ver¨anderungen f¨ur die Unterteilung in Rechtecke und Schichten
geeignet. Diese Ver¨anderungen w¨urden wiederum zu Inkompatibilit¨aten mit bestehen-
den Anwendungen f¨uhren. Im Moment existiert keine kommerziell verf¨ugbare Imple-
mentierung der Talisman-Architektur, allerdings scheint Microsoft zusammen mit anderen
Firmen an einer solchen zu arbeiten.

PixelFlow: Das auf Bildkomposition basierende PixelFlow-Projekt [Molnar92] ist wohl eine
der vielversprechendsten Alternativen zur Renderingpipeline. Die Szenendatenbank wird
gleichmäßig auf eine Reihe von Graphikkarten aufgeteilt, welche jeweils sowohl eine
Geometrieeinheit als auch einen Scankonverter enthalten. Im Gegensatz zum Talisman-
Projekt ist diese Unterteilung beliebig und nicht an die Tiefensortierung in Schichten
gebunden. Jede der Graphikkarten zeichnet ein komplettes Bild ihrer Geometrie in voller
Bildschirmauflösung. Wie im Talisman-Projekt wird auch hier der Framebuffer in Recht-
ecke unterteilt, diesmal in einer Gr¨oße von128 × 128 Pixeln. Für jedes Pixel in einem

1.2 Architekturen f ür Graphikhardware 139

Rechteck existiert ein separater Pixelprozessor. In SIMD-Art wird so jedes Dreieck paral-
lel scankonvertiert.

Jedes fertige Rechteck wird dann mit dem entsprechen Rechteck der vorhergehenden Gra-
phikkarte verkn¨upft, und an die n¨achste Karte weitergereicht. Der Vorteil dieses Ansatzes
liegt darin begr¨undet, daß die ben¨otigte Bandbreite unabh¨angig von der Komplexit¨at der
Szene ist, und daß das System durch das Hinzuf¨ugen neuer Karten gut skaliert.

Die Punkte, in denen sich PixelFlow am deutlichsten von anderen Ans¨atzen unterschei-
det, sind die verz¨ogerte und prozedurale Schattierung. W¨ahrend in der normalen Render-
ingpipeline die Beleuchtung von Polygonen nur an den Knoten berechnet wird, und die
resultierenden Farbwerte dann interpoliert werden, interpoliert die verz¨ogerte Beleuch-
tungsberechnung die Normalen sowie andere Informationen, und berechnet die Beleuch-
tung dann separat f¨ur jedes Pixel. Wenn dies mit prozeduralen Oberfl¨achenbeschreibungen
kombiniert wird, ergibt sich die M¨oglichkeit zur Generierung ¨außerst komplexer und rea-
listischer Bilder. Einige der Effekte, die in dieser Arbeit vorgestellt werden, sind, zumind-
est prinzipiell, einfach auf PixelFlow zu implementieren [Olano98].

Allerdings hat auch die PixelFlow-Architektur Nachteile. Die verz¨ogerte Beleuchtungs-
berechnung erh¨oht die ben¨otigte Bandbreite. Zudem erh¨oht sich durch das Konzept der
Bildkomposition und die Unterteilung in Rechtecke die Latenz, so daß Motion Sickness
zum Problem werden kann. Antialiasing und Transparenz sind mit dieser Architektur
schwierig zu erreichen, da die Schattierung erst nach der Verkn¨upfung der Rechtecke
aller Graphikkarten erfolgt. Dies hat zur Folge, daß Information ¨uber Pixel hinter teil-
weise transparenten Objekten zum Zeitpunkt der Schattierung nicht mehr zur Verf¨ugung
steht. Zwar gibt es Verfahren, um transparente Objekte sowie Primitive mit Antialiasing
zu zeichnen, jedoch erh¨ohen diese weiter die Latenz, und beeintr¨achtigen auch die Perfor-
manz.

Ein letzter Nachteil, der sowohl PixelFlow als auch die anderen beiden Architekturen be-
trifft, ist die Notwendigkeit, die Szenendatenbank explizit auf der Graphikkarte vorzuhal-
ten. Nicht nur, daß dies die Speicheranforderungen auf der Graphikkarte deutlich erh¨oht
(Szenen, welche nicht in diesen Speicher passen, k¨onnen nicht verarbeitet werden), es
ergibt sich auch eine niedrigere Performanz und eine h¨ohere Latenz f¨ur hochgradig dyna-
mische Szenen (Immediate Mode Rendering). Nat¨urlich treffen aufgrund der Unterteilung
in Rechtecke auch die Hinweise zu Programmierschnittstellen zu, die im Hinblick auf das
Talisman Projekt gegeben wurden.

Dennoch ist das PixelFlow-Projekt eine vielversprechende neue Architektur, welche mit
hoher Wahrscheinlichkeit andere Neuentwicklungen bei der Graphikhardware beinflußt.
Bei Fertigstellung dieser Arbeit existieren einige Prototypen von PixelFlow, welche von
der Universität von Nord Carolina in Chapel Hill und von Hewlett Packard realisiert wur-

140 Einleitung

den. Eine Kommerzialisierung durch Hewlett Packard wurde jedoch abgebrochen.

Die vorangehende Diskussion zeigt, daß, obwohl Forschungsarbeiten im Bereich alternativer
Graphikhardware durchgef¨uhrt werden, Systeme, die auf der herk¨ommlichen Renderingpipeline
beruhen, noch f¨ur eine Weile die Mehrzahl der kommerziellen Systeme stellen werden. Daher
ist es sinnvoll, sich mit der Entwicklung von Erweiterungen dieser Pipeline auseinanderzuset-
zten, mit denen sowohl eine Leistungssteigerung als auch eine verbesserte Realit¨atsnähe erreicht
werden kann. Die Vergangenheit hat gezeigt, daß dies oft ohne inkompatibleÄnderungen durch
Hinzufügen neuer Funktionalit¨at in der entsprechenden Stufe der Pipeline m¨oglich ist. Diese
Flexibilität der Renderingpipeline zusammen mit ihrer großen Verf¨ugbarkeit ist auch der Grund,
warum wir sie als Basis f¨ur diese Arbeit gew¨ahlt haben.

Programmierschnittstellen

Programmierschnittstellen haben einen wichtigen Beitrag zu der Verbreitung interaktiver 3-di-
mensionaler Computergraphik geleistet. Obwohl Abh¨angigkeiten von einer konkreten Schnitt-
stelle in dem Rest dieser Arbeit weitestgehend vermieden werden, scheint es dennoch ange-
bracht, an dieser Stelle einige der damit verbundenen Problemstellungen zu diskutieren.

Die Programmierschnittstellen f¨ur Graphikhardware k¨onnen in drei Kategorien unterteilt
werden. Auf der untersten Ebene gibt es die sogenanntenImmediate-Mode-Schnittstellen, wel-
che als Hardwareabstraktionsschicht dienen und eine oft nur sehr d¨unne Schicht ¨uber der Gra-
phikhardware bilden. Die n¨achsth¨ohere Schicht ist die derRetained-Mode-, oder Szenengraph-
schnittstelle, welche die Szene in der Form eines ungerichteten, azyklischen Graphen (DAG) spe-
ichert. Auf der höchsten Abstraktionsebene finden sich schließlich Schnittstellen f¨ur die Hand-
habung großer Modelle, welche Freiformfl¨achen wie etwa NURBS und Subdivision-Fl¨achen ve-
rarbeiten. Diese f¨uhren auch eine Polygonreduktion und andere Optimierungen der Geometrie,
wie etwa Viewfrustum- oder Occlusionculling, durch.

Für die Zwecke dieser Dissertation sind Szenengraphschnittstellen und Schnittstellen f¨ur
große Modelle von untergeordneter Bedeutung, da die hier betrachteten Verfahren direkt auf
der zugrundeliegenden Hardware aufbauen. Im Bereich der Immediate-Mode-Schnittstellen
fand in den letzten Jahren ein betr¨achtlicher Standardisierungsprozeß statt. Auf Workstations
sowie im Bereich professioneller PC Anwendungen wurden die vorhergehenden propriet¨aren
Schnittstellen wie Starbase (Hewlett Packard), Iris GL (Silicon Graphics) und XGL (Sun Mi-
crosystems) schrittweise durch den Industriestandard OpenGL ersetzt. Zur gleichen Zeit hat
sich die Direct 3D Immediate-Mode-Schnittstelle vor allem f¨ur die Spieleentwicklung auf PCs
etabliert.

Da beide Schnittstellen auf der Annahme basieren, daß die zugrundeliegende Hardware auf
dem Konzept der Renderingpipeline (siehe auch Kapitel4) aufbaut, ist es nicht weiter verwun-

1.2 Kapitelüberblick 141

derlich, daß sich beider Funktionalit¨at mit den letzten Versionen immer weiter aneinander an-
genähert hat. Noch existierende Unterschiede im Funktionsumfang beruhen weniger auf prin-
zipiellen Differenzen, sondern auf unterschiedlichen Anforderungen der jeweiligen Marktseg-
mente, auf die die Schnittstellen abzielen.

Diese Tatsache erlaubt es uns, die Diskussion in den nachfolgenden Kapitel weitgehend un-
abhängig von einer konkreten Schnittstelle zu gestalten. Obwohl das abstrakte System, welches
als Grundlage f¨ur unsere Betrachtungen dient (siehe Kapitel4), im wesentlichen auf der Defini-
tion von OpenGL [Segal98] beruht, sind praktisch alle Ergebnisse auch auf andere Immediate-
Mode-Schnittstellen ¨ubertragbar. OpenGL wurde ausgew¨ahlt, weil es eine offene Struktur be-
sitzt, und zudem gut spezifiziert und dokumentiert ist.

Kapitel überblick

Der Rest dieser Arbeit ist wie folgt aufgebaut. In Kapitel2 werden kurz die physikalischen
Grundlagen der Bildsynthese zusammengefaßt. Kapitel3 diskutiert dann andere relevante Ar-
beiten, auf denen diese Dissertation aufbaut, und Kapitel4 definiert den Funktionsumfang der
Graphikhardware, den wir im Verlauf der Arbeit voraussetzen.

Anschließend besprechen wir eine Reihe von Verfahren, die auf ihre Art zu erh¨ohter Real-
itätstreue synthetischer Bilder beitragen. Den Anfang macht in Kapitel5 eine Beschreibung
von Techniken zur Verwendung hochwertiger, physikalisch basierter Beleuchtungsmodelle zur
lokalen Beleuchtungsberechnung mit Graphikhardware. Wir diskutieren insbesondere anisotrope
Reflexionen und die Verwendung des Torrance-Sparrow Modells.

Diesem Kapitel folgt eine Beschreibung von Schattenalgorithmen in Kapitel6. Dazu geh¨oren
insbesondere projizierte Geometrie, Schattenvolumina und Schattenkarten. Wir f¨uhren einen
neuen Algorithmus zur Behandlung von Schattenkarten ein, basierend auf dem, in Kapitel4
vorgestellten Funktionsumfang von Graphikhardware. Darauf folgend pr¨asentieren wir ein auf
Lichtfeldern basierendes Modell zur Repr¨asentation komplexer Lichtquellen in Kapitel7.

Reflexionen und Refraktionen basierend auf Umgebungskarten sind dann das Thema in Kapi-
tel 8. Dies beinhaltet die Entwicklung einer neuen Parametrisierung f¨ur solche Karten, sowie
Techniken zur Vorfilterung, um matte Reflexionen zu erzielen. Die vorgestellten Algorithmen
können dazu verwendet werden, vorberechnete L¨osungen des globalen Beleuchtungsproblems
auf nicht-diffusen, gekr¨ummten Flächen interaktiv zu visualisieren.

In Kapitel9 diskutieren wir dann Bumpmaps und Normalenkarten. Letztere k¨onnen mit den
Techniken der Kapitel5 und8 verbunden werden.

Darauf folgen in Kapitel10 Lichtfeld-basierte Ans¨atze für Reflexions- und Refraktionsef-
fekte, welche einen noch h¨oheren Grad an Realismus erzielen, als die in Kapitel8 vorgestellten
Verfahren. Bildbasierte Verfahren werden dann auch in Kapitel11 zur Simulation realistischer

142 Einleitung

Linsensysteme eingesetzt.

In Kapitel 12, schließen wir die Arbeit mit einer Zusammenfassung der vorgeschlagenen
Erweiterungen der Renderingpipeline und einer Diskussion ihrer Auswirkungen auf zuk¨unftige
Graphikhardware ab.

Zusammenfassung und Ausblick

Zusammenfassend ist festzustellen, daß eine Notwendigkeit besteht, den
Schwerpunkt bei der Entwicklung neuer Algorithmen für die Implemen-
tierung von 3D Graphikhardware zu verschieben. Die Anforderungen ent-
wickeln sich weg von “mehr Polygone” und “höhere Pixelf̈ullrate”, hin
zu komplexerer, dynamischer Geometrie, und gehaltvolleren Pixeln. Kom-
plexere, dynamische Geometrie heißt nicht notwendigerweise mehr Dreiecke,
oder schnellere Aktualisierung von Dreiecken, sondern bessere geometrische
Primitive und Bewegung mit geringerem Datenaufkommen, integrierten
Werkzeugen zur Inhaltserzeugung, Programmierschnittstellen, und hard-
warebeschleunigtem Rendering. Gehaltvollere Pixel heißt nicht notwendi-
gerweise mehr dargestellte Pixel, sondern daß jedes dargestellte Pixel das
Ergebnis von aufwendigeren Verfahren für Beleuchtung, Schattierung und
Texturierung ist. Das Endergebnis wird ein höherer Grad an Realismus bei
der interaktiven Erfahrung sein.

David B. Kirk, Unsolved Problems and Opportunities for High-quality, High-
performance 3D Graphics on a PC Platform, Eingeladener Vortrag, 1998
Eurographics/SIGGRAPH Workshop on Graphics Hardware ACM Computer
Graphics, pp. 11–13, August 1998.

Gegenstand dieser Dissertation sind Algorithmen zur qualitativ hochwertigen Schattierung
und Beleuchtungsberechnung unter Zuhilfenahme von Graphikhardware. Basierend auf physi-
kalischen Modellen f¨ur die Interaktion von Licht mit allen m¨oglichen Arten von Oberfl¨achen,
sowie auf einem abstrakten Modell f¨ur Graphikhardware, welches weitgehend auf bestehenden
Graphiksystemen beruht, wurde eine Reihe von Algorithmen entwickelt, um unterschiedliche
Probleme der Bildsynthese zu l¨osen.

Eine interessante Beobachtung ergibt sich aus der Tatsache, daß alle hier diskutierten Tech-
niken eine Gemeinsamkeit aufweisen: in allen werden diskret abgetastete Werte verwendet,

144 Zusammenfassung und Ausblick

um bestimmte Beleuchtungs- oder Schattierungseffekte zu erzielen. In Kapitel5 werden die
Beleuchtungsmodelle in mehrere Faktoren unterteilt, welche dann als 1- oder 2-dimensionale
Texturen gespeichert werden k¨onnen. Schattenkarten, wie sie in Kapitel6 zum Einsatz kom-
men, verwenden eine diskrete Abtastung der Geometrie einer Szene. Bumpmaps und Nor-
malenkarten (Kapitel9) können als diskret abgetastetes geometrisches Detail angesehen wer-
den, und schließlich repr¨asentieren Umgebungskarten (Kapitel8) und Lichtfelder (Kapitel7, 10
und11) eine diskrete Abtastung der Strahlungsdichte f¨ur einen konkreten Punkt oder eine Reihe
von Punkten im Raum.

Insbesondere die letzten beiden Beispiele, Umgebungskarten und Lichtfelder, sind vom bild-
basierten Rendering kommende Techniken, welche hier auf die Beleuchtung und Schattierung
geometrischer Objekte angewandt wurden. Wir glauben, daß dieser Art von Algorithmen eine
wichtige Rolle im qualitativ hochwertigen, interaktiven Rendering zukommen wird. Im Moment
stoßen die Lichtfeld-basierten Ans¨atze zwar an die Grenzen der verf¨ugbaren Graphikhardware,
da sie entweder, wie in Kapitel10, große Mengen von Texturspeicher, oder aber eine große
Anzahl von Renderingschritten (Kapitel7 und 11) benötigen. Jedoch wird ersteres Problem
durch weitere Preisreduktionen bei Speicherbausteinen sowie durch Graphikhardware, welche
komprimierte Texturen verwendet verschwinden. Das zweite Problem wird abgemildert durch
steigende Performanz sowie direkte Unterst¨utzung von Mehrschrittverfahren, wie etwa die M¨og-
lichkeit, mehrere Texturen zur gleichen Zeit zu verwenden.

Es gibt mehrere Gr¨unde, warum bildbasierte Verfahren, oder allgemeiner gesagt, Verfahren,
welche auf Abtastwerten basieren, in dieser Arbeit dominieren, und auch ganz allgemein immer
mehr Anwendung finden. Zun¨achst sind diese Daten das nat¨urliche Ergebnis aller Arten von
Messungen. Alle Werte, welche f¨ur Algorithmen in dieser Arbeit ben¨otigt werden, lassen sich
direkt durch Messungen generieren. Dies gilt sowohl f¨ur BRDFs, wie zum Beispiel in [Ward92]
nachzulesen ist, als auch f¨ur Normalenkarten [Rushmeier97], Umgebungskarten [Haeberli93,
Debevec98] und Lichtfelder [Gortler96, Levoy96].

Weiterhin sind regelm¨aßig angeordnete Abtastwerte in h¨ochstem Maße geeignet f¨ur hard-
warebasierte Anwendungen, da sie einfach Felder von Werten darstellen. Komplexe, f¨ur Hard-
wareimplementierungen ungeeignete Datenstrukturen entfallen auf diese Art. Zudem sind die
Zugriffsmuster auf solche Felder oft ebenfalls sehr regelm¨aßig, so daß Techniken zur Puffer-
ung eingesetzt werden k¨onnen. Ein letzter Punkt ist, daß Verfahren, welche auf Abtastwerten
basieren, eine große Anzahl von Stufen mit unterschiedlichem Kosten/Nutzen Verh¨altnis ermö-
glichen. Wenn in zuk¨unftigen Generationen von Hardware mehr dezidierter Graphikspeicher
verfügbar ist, kann ohne großen Aufwand die Abtastrate oder Anzahl der Quantisierungsstufen
erhöht werden, was eine unmittelbare Verbesserung der Bildqualit¨at zur Folge hat.

Eine Alternative zu abtastbasierten Ans¨atzen währe beispielsweise die Verwendung proze-
duraler Beschreibungen [Hanrahan90, Pixar89, Olano98]. Die beiden großen Vorteile dieses
Ansatzes sind sowohl die Aufl¨osungsunabh¨angigkeit, als auch eine kompakte Repr¨asentation.

1.2 Vorschl̈age f̈ur zukünftige Generationen von Graphikhardware 145

Auf der anderen Seite ben¨otigen solche Architekturen ¨außerst flexible, programmierbare Raste-
risierungshardware, welche in der Herstellung teuer ist. Auch f¨ur Echtzeitanwendungen stellt der
prozedurale Ansatz ein Problem dar, da im voraus nicht bekannt ist, wie lange die Ausf¨uhrung
einer prozeduralen Oberfl¨achenbeschreibung dauern wird. Insbesondere kann diese Zeit von
Pixel zu Pixel, aber auch von Bild zu Bild stark variieren, so daß eine gleichm¨aßige Lastvertei-
lung zwischen parallelen Rasterisierungseinheiten schwierig ist. Die Aquisition von Ausgangs-
daten und Kosten/Nutzen-Abw¨agungen sind ebenfalls kompliziert.

Vorschläge f̈ur zukünftige Generationen von
Graphikhardware

Die meisten der hier vorgeschlagenen Algorithmen arbeiten effizient auf zeitgem¨aßer Graphik-
hardware, einige verwenden dabei jedoch bestimmte Funktionalit¨aten, welche noch nicht auf
einer großen Anzahl von Plattformen zur Verf¨ugung stehen. Diese Funktionsgruppen sind im
Einzelnen:

Mehrere Texturen zur gleichen Zeit. Einige der Verfahren, wie etwa die Verwendung alterna-
tiver Beleuchtungsmodelle (Kapitel5), oder die parabolische Parametrisierung f¨ur Umge-
bungskarten (Kapitel8), profitieren von der M¨oglichkeit, gleichzeitig mehrere Texturen
auf ein Objekt anzuwenden [SGI97], indem dadurch die Anzahl der Renderingschritte re-
duziert wird. Für keinen der hier pr¨asentierten Algorithmen sind mehrere Texturen absolut
notwendig, aber f¨ur einige sind sie hilfreich.

Bildverarbeitungsoperationen Einige Algorithmen, insbesondere die Verfahren zur Darstel-
lung von Normalenkarten von Kapitel9, benötigen Farbmatrizen und Farbtabellen. Diese
sind ein Teil der sogenanntenBildverarbeitungsoperationen, welche in OpenGL Version
1.2 formal als eine separate Untermenge spezifiziert wurden [Segal98]. Obwohl die Un-
terstützung dieser Untermenge keine Voraussetzung f¨ur OpenGL-Kompatibilität ist, steht
zu erwarten, daß viele Hersteller sie in zuk¨unftigen Versionen ihrer Hardware unterst¨utzen
werden. Im Moment sind sie als Erweiterungen auf einer Reihe von Workstations ver-
fügbar, inklusive derer von Silicon Graphics, f¨ur welche die Algorithmen dieser Arbeit
implementiert wurden.

Interessanterweise werden diese Operationen in der vorliegenden Arbeit nicht etwa f¨ur typ-
ische Bildverarbeitungsalgorithmen eingesetzt, sondern f¨ur die Beleuchtungs- und Schat-
tierungsverfahren. Eine Reihe anderer Algorithmen profitiert ebenfalls von dieser Funk-
tionalität, ohne daß es Bildverarbeitungsanwendungen w¨ahren (siehe [Westermann98] und
[Heidrich99e]). Die Bezeichnung “Imaging Subset”, welche in [Segal98] eingeführt wird,

146 Zusammenfassung und Ausblick

ist daher etwas irref¨uhrend, und birgt die Gefahr, daß die M¨achtigkeit dieser Operationen
untersch¨atzt wird.

Pixeltexturen werden in der vorliegenden Arbeit von mehreren Algorithmen, einschließlich
den Normalenkarten (Kapitel9) und lichtfeldbasierten Brechungen (Kapitel10) verwen-
det. Pixeltexturen werden augenblicklich von Silicon Graphics als “experimentelle Er-
weiterung” klassifiziert, die nur auf einer Plattform (Octane-Graphik mit Unterst¨utzung
für Texturemapping) verf¨ugbar ist. Selbst diese Implementierung folgt nicht in allen De-
tails der Spezifikation [SGI96].

Wir sind der Meinung, daß alle drei Funktionsgruppen so hilfreich sind, daß sie zum Funk-
tionsumfang zuk¨unftiger Graphikhardware geh¨oren sollten. Wie schon oben erw¨ahnt, kann dies
für Mehrfachtexturen und die Bildverarbeitungsoperationen auch als gegeben angenommen wer-
den.

Die Zukunft der Pixeltexturen ist weitaus weniger klar. Der experimentelle Charakter der
Erweiterung ist eine ernstzunehmende Einschr¨ankung. Ihre N¨utzlichkeit, welche auch an an-
derer Stelle belegt ist [Heidrich99e], macht die Entwicklung von Algorithmen f¨ur sie dennoch
interessant. Dies w¨are umsomehr der Fall, wenn projektive Texturen in die Spezifikation mit
aufgenommen w¨urden, wie in den Kapiteln6 und 9 vorgeschlagen. Doch selbst ohne diese
Änderung haben Pixeltexturen eine ganze Reihe von Anwendungen. Die hier beschriebenen
Algorithmen zeigen nur einen kleinen Teil davon, demonstrieren aber das Potential dieser Er-
weiterung für die effiziente, qualitativ hochwertige Bildsynthese.

Zusätzlich zur Verwendung und Bewertung des Funktionsumfangs bestehender Graphikhard-
ware werden in der vorliegenden Arbeit auch einige neue Erweiterungen vorgeschlagen. Zusam-
menfassend sind dies

• eine Reihe neuer Modi zur automatischen Generierung von Texturkoordinaten. Diese die-
nen der direkten Unterst¨utzung der alternativen Beleuchtungsmodelle von Kapitel5 und
der parabolischen Umgebungskarten von Kapitel8. Dieselben Verfahren k¨onnten auch zur
Beleuchtung von Bumpmaps herangezogen werden (Kapitel9).

• ein zusätzlicher Tangentenvektor, welcher f¨ur jeden Knoten angegeben werden kann und
entsprechend der Modellierungsmatrix transformiert wird. Dieser wird ben¨otigt, um phy-
sikalisch basierte anisotrope Reflexionsmodelle zu implementieren.

• In Kapitel 5 wurde auch ein komplett neues abtastbasiertes Beleuchtungsmodell vorge-
stellt, welches geeignet ist, das herk¨ommliche Phong-Modell zu ersetzen. Damit besteht
die Beleuchtungsberechnung f¨ur einen Knoten aus mehreren Skalarprodukten und dem
Nachschlagen in einer Tabelle, und ist somit nicht wesentlich teurer als die knotenbasierte
Phong-Beleuchtung.

1.2 Zusammenfassung 147

Zusätzlich zu diesen konkreten Vorschl¨agen wird sich zuk¨unftige Graphikhardware mit einer
Reihe anderer Themen auseinandersetzen m¨ussen. Zun¨achst werden Methoden f¨ur die Reduk-
tion des Bedarfs an dezidiertem Textur- Bildschirmspeicher ben¨otigt. Dies beinhaltet die Un-
terstützung von komprimierten Texturen, sowie die M¨oglichkeit, nur Ausschnitte einer großen
Textur im Texturspeicher vorzuhalten. Das erstere Themengebiet wird bereits von einiger neuer
PC Hardware in Angriff genommen [nVIDIA98], während in [Tanner98] ein Ansatz für das
zweite vorgeschlagen wurde.

Weiterhin sind bereits erste Implementierungen mit direkter Unterst¨utzung für Bumpmaps
und Beleuchtungsberechnung pro Pixel verf¨ugbar [nVIDIA98]. Diese Ansätze könnten mit un-
seren Techniken f¨ur physikalisch basierte Beleuchtungsmodelle von Kapitel9 kombiniert wer-
den.

Für eine weitere Verbesserung der Renderingqualit¨at sollte zukünftige Graphikhardware auch
Formate mit hohem Dynamikbereich f¨ur die Speicherung von Texturen und berechneten Zwi-
schenbildern vorsehen. Zwei Beispiele f¨ur solche Formate sind Fließkommarepr¨asentationen
für Farbkan¨ale, und das LogLuv Format [Larson97]. Dieser Themenkomplex bringt einige Pro-
bleme mit sich, da solche Formate Fließkommaarithmetik in der Rasterisierungseinheit voraus-
setzen, was f¨ur eine Implementierung der Rendering Pipeline nach Kapitel4 nicht notwendig
ist. Jedoch ben¨otigt Hardware für Bumpmapping oder Fließkomma-Tiefenpuffer, wie etwa
[nVIDIA98], während der Rasterisierungsphase ebenfalls Fließkommaarithmetik, so daß die
zusätzlichen Kosten f¨ur Formate mit hohem Dynamikbereich nicht zu groß ausfallen d¨urften.

Schließlich wird es endlich Zeit f¨ur einer direkte Hardwareunterst¨utzung von Schatten. Aus
Gründen, die in Kapitel6 genauer erl¨autert werden, halten wir hierf¨ur Schattenkarten f¨ur am
besten geeignet. Dies kann entweder in Form spezieller Erweiterungen geschehen, wie etwa
in [Segal92] vorgeschlagen, oder durch den Alphatest unter Verwendung der Algorithmen von
Kapitel 6 und [Heidrich99e]. Im letzteren Fall sollte die Hardware Framebufferkonfigurationen
mit besonders tiefen Alphakan¨alen (mindestens 24 bit) unterst¨utzen.

Auch Hardwareunterst¨utzung für neue geometrische Primitive, wie etwa Subdivision-Fl¨a-
chen, oder auch Algorithmen zur Reduktion der geometrischen Komplexit¨at durch Viewfrustum-
oder Occlusionculling sind wichtige Schwerpunkte zuk¨unftiger Forschungsarbeiten. Diese lie-
gen jedoch außerhalb des Rahmens der vorliegenden Arbeit.

Zusammenfassung

Die vorliegende Dissertation f¨uhrt eine Reihe neuer Algorithmen f¨ur qualitativ hochwertige
Schattierung und Beleuchtungsberechnung unter Zuhilfenahme von Graphikhardware ein. Ins-
besondere wurden Verfahren zur Erzeugung verschiedener lokaler Schattierungs- und Beleuch-
tungseffekte, sowie zur Visualisierung globaler Beleuchtungseffekte vorgestellt. Dies schließt

148 Zusammenfassung und Ausblick

Algorithmen für Schatten, Normalenkarten, alternative Beleuchtungsmodelle, spiegelnde und
matt spiegelnde Reflexionen auf gekr¨ummten Flächen, sowie realistische Linsenmodelle und
Lichtquellen ein. Alle diese Verfahren sind zueinander orthogonal in dem Sinne, daß sie beliebig
miteinander kombiniert werden k¨onnen, wobei sich jedoch die Anzahl der Renderingschritte
erhöht.

Im Verlauf der Entwicklung dieser Verfahren haben wir wichtige Funktionsbl¨ocke für zu-
künftige Generationen von Graphikhardware identifiziert. Einige von diesen sind etablierte Op-
erationen, welche auf eine neue, innovative Art verwendet werden, andere sind experimentelle
Operationen, welche noch keine weite Verbreitung gefunden haben, und wieder andere sind voll-
kommen neue Erweiterungen, die von uns eingef¨uhrt wurden.

Alle vorgestellten Algorithmen basieren auf der Verwendung diskreter Abtastwerte. Zuk¨unf-
tige Arbeiten können, auf diesen Ideen aufbauend, weitere Methoden der Anwendung von Licht-
feldern für Beleuchtungseffekte auf Oberfl¨achen untersuchen. Wir sind zuversichtlich, daß noch
viele andere interaktive Techniken aufbauend auf dieser Grundidee entwickelt werden k¨onnen.

Andere Gebiete f¨ur zukünftige Arbeiten sind beispielsweise Verfahren f¨ur Volumeneffekte
und partizipierende Medien. Zwar trifft es zu, daß die Darstellung von Volumina basierend
auf einer 3D-Texturierung f¨ur Visualisierungsanwendungen im medizinischen oder ingenieur-
wissenschafftlichen Bereich untersucht wurden, allerdings sind die Anforderungen f¨ur die re-
alistische Bildsynthese anderer Art. Anstatt wichtige Eigenschaften eines Volumendatensatzes
vermitteln zu wollen, verlangt dieser Anwendungsbereich nach realistischen Effekten wie etwa
Beleuchtung oder Schatten, welche von einem Volumen geworfen werden. Die effiziente Darstel-
lung solcher Effekte mit Hilfe von Graphikhardware wird zur Zeit nicht hinreichend von wis-
senschaftlichen Arbeiten abgedeckt.

Schließlich ist auch die Aquisition von realen Daten und Modellen ein wichtiges Anliegen.
Dies trifft auf alle Bereiche der Computergraphik zu, ist f¨ur interaktive Anwendungen aber
besonders attraktiv, da hier die gemessenen Daten oft direkt mit der Graphikhardware weiterver-
arbeitet werden k¨onnen, zum Beispiel unter Zuhilfenahme der Techniken die in der vorliegenden
Dissertation entwickelt wurden.

	Introduction
	Graphics Architectures
	Programming Interfaces
	Chapter Overview

	Radiometry and Photometry
	Radiometry
	Photometry
	Bidirectional Reflection Distribution Functions
	Reflectance and Transmittance
	Physical Reflection and Transmission Properties of Materials

	Rendering Equation

	Related Work
	Reflection Models
	Ambient and Diffuse Lighting
	Models by Phong and Blinn-Phong
	Generalized Cosine Lobe Model
	Torrance-Sparrow Model
	Anisotropic Model by Banks

	Hardware and Multi-Pass Techniques
	Visualization of Global Illumination Solutions

	Light Fields
	Lumigraphs: Light Fields with Additional Geometry

	Rendering Pipeline
	Geometry Processing
	Rasterization
	Multiple Textures

	Per-Fragment Operations
	Framebuffer and Pixel Transfer Operations
	Summary

	Local Illumination with Alternative Reflection Models
	Isotropic Models
	Anisotropy
	Hardware Extensions for Alternative Lighting Models
	New Modes for Texture Coordinate Generation
	A Flexible Per-Vertex Lighting Model

	Discussion

	Shadows
	Projected Geometry
	Shadow Volumes
	Shadow Maps
	Shadow Maps Using the Alpha Test

	Discussion

	Complex Light Sources
	Simulating and Measuring Light Sources
	Reconstruction of Illumination from Light Fields
	High-quality Reference Solutions
	Hardware Reconstruction
	Other Material Models and Shadows

	Discussion

	Environment Mapping Techniques for Reflections and Refractions
	Parameterizations for Environment Maps
	A View-independent Parameterization
	Lookups from Arbitrary Viewing Positions
	Implementation Using Graphics Hardware
	Mip-map Level Generation

	Visualizing Global Illumination with Environment Maps
	Generalized Mirror Reflections using a Fresnel Term
	Glossy Prefiltering of Environment Maps
	Refraction and Transmission

	Discussion

	Bump- and Normal Mapping
	Local Blinn-Phong Illumination
	Anti-aliasing

	Other Reflection Models
	Environment Mapping
	Discussion

	Light Field-based Reflections and Refractions
	Precomputed Light Fields
	Decoupling Illumination from Surface Geometry
	Discussion

	Lens Systems
	Camera Models in Computer Graphics
	The Pinhole Model
	The Thin Lens Model
	Rendering Thin Lenses
	The Thick Lens Model
	The Geometric Lens Model

	An Image-Based Camera Model
	Approximating Lens Systems
	Hierarchical Subdivision
	Computing the Center of Projection

	Discussion

	Conclusions and Future Work
	Suggestions for Future Graphics Hardware
	Conclusion

