Notes on the Topology of Complex Singularities

Liviu I. Nicolaescu

University of Notre Dame, Indiana, USA

Last modified: October 13, 2013.

Introduction

The algebraic varieties have played a very important role in the development of geometry. The lines and the conics where the first to be investigated and moreover, the study of equations leads naturally to algebraic geometry.

The past century has witnessed the introduction of new ideas and techniques, notably algebraic topology and complex geometry. These had a dramatic impact on the development of this subject. There are several reasons which make algebraic varieties so attractive. On one hand, it is their abundance and the wealth of techniques available to study them and, on the other hand, there are the often unexpected conclusions. These conclusions lead frequently to new research questions in other directions.

The gauge theoretic revolution of the past two decades has only increased the role played by these objects. More recently, Simon Donaldson has drawn attention to Lefschetz' old techniques of studying algebraic manifolds by extending them to the much more general context of symplectic manifolds. I have to admit that I was not familiar with Lefschetz' ideas and this gave me the impetus to teach a course on this subject and write up semiformal notes. The second raison d'être of these notes is my personal interest in the isolated singularities of complex surfaces.

Loosely speaking, Lefschetz created a holomorphic version of Morse theory when the traditional one was not even born. He showed that a holomorphic map f from a complex manifold M to the complex projective line \mathbb{P}^{1} which admits only nondegenerate critical points contains a large amount of nontrivial topological information about M. This information can be recovered by understanding the behavior of the smooth fibers of f as they approach a singular one.

Naturally, one can investigate what happens when f has degenerate points as well and, unlike the real case, there are many more tools at our disposal when approaching this issue in the holomorphic context. This leads to the local study of isolated singularities.

These notes cover the material I presented during the graduate course I taught at the University of Notre Dame in the spring of 2000. This course emphasized two subjects, Lefschetz theory and isolated singularities, relying mostly on basic algebraic topology covered by a regular first year graduate course. ${ }^{1}$ Due to obvious time constraints these notes barely scratch this subject and yes, I know, I have left out many beautiful things. You should view these notes as an invitation to further study.

The first seven chapters cover Lefschetz theory from scratch and with many concrete and I hope relevant examples. The main source of inspiration for this part was the beautiful but dense paper [46]. The second part is an introduction to the study of isolated singularities of holomorphic maps. We spend some time explaining the algebraic and the topological meaning of the Milnor number and we prove Milnor fibration theorem. As sources of inspiration we used the classical $[6,56]$.

I want to tank my friends and students for their comments and suggestions. In the end I am responsible for any shortcomings. You could help by e-mailing me your comments, corrections, or just to say hello.

[^0]Notre Dame, Indiana 2000

Contents

Introduction i
1 Complex manifolds 1
1.1 Basic definitions 1
1.2 Basic examples 3
2 The critical points contain nontrivial information 9
2.1 Riemann-Hurwitz theorem 9
2.2 Genus formula 12
3 Further examples of complex manifolds 15
3.1 Holomorphic line bundles 15
3.2 The blowup construction 21
4 Linear systems 25
4.1 Some fundamental constructions 25
4.2 Projections revisited 27
5 Topological applications of Lefschetz pencils 31
5.1 Topological preliminaries 31
5.2 The set-up 33
5.3 Lefschetz Theorems 35
6 The Hard Lefschetz theorem 41
6.1 The Hard Lefschetz Theorem 41
6.2 Primitive and effective cycles 43
7 The Picard-Lefschetz formulæ 47
7.1 Proof of the Key Lemma 47
7.2 Vanishing cycles, local monodromy and the Picard-Lefschetz formula 50
7.3 Global Picard-Lefschetz formulæ 61
8 The Hard Lefschetz theorem and monodromy 63
8.1 The Hard Lefschetz Theorem 63
8.2 Zariski's Theorem 65
9 Basic facts about holomorphic functions of several variables 69
9.1 The Weierstrass preparation theorem and some of its consequences 69
9.2 Fundamental facts of complex analytic geometry 76
9.3 Tougeron's finite determinacy theorem 86
10 A brief introduction to coherent sheaves 91
10.1 Ringed spaces and coherent sheaves 91
10.2 Coherent sheaves on complex spaces 98
10.3 Flatness 102
11 Singularities of holomorphic functions of two variables 105
11.1 Examples 105
11.2 Normalizations 108
11.3 Puiseux series and Newton polygons 112
11.4 Very basic intersection theory 127
11.5 Embedded resolutions and blow-ups 131
12 The link and the Milnor fibration of an isolated singularity 151
12.1 The link of an isolated singularity 151
12.2 The Milnor fibration 153
13 The Milnor fiber and local monodromy 169
13.1 The Milnor fiber 169
13.2 The local monodromy, the variation operator and the Seifert form of an isolated singularity 173
13.3 Picard-Lefschetz formula revisited 177
14 The monodromy theorem 179
14.1 Functions with ordinary singularities 179
14.2 The collapse map 181
14.3 A'Campo's Formulæ 190
15 Toric resolutions 195
15.1 Affine toric varieties 195
15.2 Toric varieties associated to fans 206
15.3 The toric variety determined by the Newton diagram of a polynomial 222
15.4 The zeta-function of the Newton diagram 232
15.5 Varchenko' Theorem 234
16 Cohomology of toric varieties 239
17 Newton nondegenerate polynomials in two and three variables 241
17.1 Regular simplicial resolutions of 3-dimensional fans 241
Bibliography 241
Index 247

Chapter 1

Complex manifolds

We assume basic facts of complex analysis such as the ones efficiently surveyed in [31, Sec.0.1]. We will denote the imaginary unit $\sqrt{-1}$ by \boldsymbol{i}.

1.1 Basic definitions

Roughly speaking, a n-dimensional complex manifold is obtained by holomorphically gluing open sets of \mathbb{C}^{n}. More rigorously, a n-dimensional complex manifold is a locally compact, Hausdorff topological space X together with a n-dimensional holomorphic atlas. This consists of the following objects.

- An open cover $\left(U_{\alpha}\right)$ of X.
- Local charts, i.e. homeomorphism $h_{\alpha}: U_{\alpha} \rightarrow \mathcal{O}_{\alpha}$ where \mathcal{O}_{α} is an open set in \mathbb{C}^{n}.

They are required to satisfy the following compatibility condition.

- All the change of coordinates maps (or gluing maps)

$$
F_{\beta \alpha}: h_{\alpha}\left(U_{\alpha \beta}\right) \rightarrow h_{\beta}\left(U_{\alpha \beta}\right), \quad\left(U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}\right)
$$

defined by the commutative diagram

are biholomorphic.
For a point $p \in U_{\alpha}$, we usually write

$$
h_{\alpha}(p)=\left(z_{1, \alpha}(p), \cdots, z_{n, \alpha}(p)\right)
$$

or $\left(z_{1}(p), \cdots, z_{n}(p)\right)$ if the choice α is clear from the context.

From the definition of a complex manifold it is clear that all the local holomorphic objects on \mathbb{C}^{n} have a counterpart on any complex manifold. For example a function $f: X \rightarrow \mathbb{C}$ is said to be holomorphic if

$$
f_{\alpha} \circ h_{\alpha}^{-1}: \mathcal{O}_{\alpha} \subset \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad\left(f_{\alpha}:=\left.f\right|_{U_{\alpha}}\right)
$$

is holomorphic. The holomorphic maps $X \rightarrow \mathbb{C}^{m}$ are defined in the obvious fashion.
If Y is a complex m-dimensional manifold with a holomorphic atlas $\left(V_{i} ; g_{i}\right)$ and $F: X \rightarrow$ Y is a continuous map, then F is holomorphic if for every i the map

is holomorphic.
Definition 1.1.1. Suppose X is a complex manifold and $x \in X$. By local coordinates near x we will understand a biholomorphic map from a neighborhood of x onto an open subset of \mathbb{C}^{n}.

Remark 1.1.2. The complex space \mathbb{C}^{n} with coordinates $\left(z_{1}, \cdots, z_{n}\right), z_{k}:=x_{k}+\boldsymbol{i} y_{k}$ is equipped with a canonical orientation given by the volume form

$$
d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d z_{n}=\left(\frac{\boldsymbol{i}}{2}\right)^{n} d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}
$$

and every biholomorphic map between open subsets preserves this orientation. This shows that every complex manifold is equipped with a natural orientation.

If $F: X \rightarrow \mathbb{C}^{m}, F=\left(F_{1}, \cdots, F_{m}\right)$ is a holomorphic map then a point $x \in X$ is said to be regular if there exist local coordinates $\left(z_{1}, \cdots, z_{n}\right)$ near m such that the Jacobian matrix

$$
\left(\frac{\partial F_{i}}{\partial z_{j}}(m)\right)_{1 \leq i \leq m, 1 \leq j \leq n}
$$

has maximal rank $\min (\operatorname{dim} X, m)$. This definition extends to holomorphic maps $F: X \rightarrow Y$. A point $x \in X$ which is not regular is called critical. A point $y \in Y$ is said to be a regular value of F if the fiber $F^{-1}(y)$ consist only of regular points. Otherwise y is called a critical value of F.

If $\operatorname{dim} Y=1$ then, a critical point $x \in X$ is said to be nondegenerate if there exist local coordinates $\left(z_{1}, \cdots, z_{n}\right)$ near x and a local coordinate u near $F(x)$ such that F can be locally described as a function $u(\vec{z})$ and the Hessian

$$
\operatorname{Hess}_{x}(F):=\left(\frac{\partial^{2} u}{\partial z_{i} \partial z_{j}}(x)\right)_{1 \leq i, j \leq n}
$$

is nondegenerate, i.e.

$$
\operatorname{det} \operatorname{Hess}_{x}(F) \neq 0
$$

Definition 1.1.3. A holomorphic map

$$
F: X \rightarrow Y
$$

is said to be a Morse map if

- $\operatorname{dim} Y=1$.
- All the critical points of F are nondegenerate.
- If $y \in Y$ is a critical value, then the fiber $F^{-1}(y)$ contains an unique critical point.

Example 1.1.4. The function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}, f=z_{1}^{2}+\cdots+z_{n}^{2}$ is Morse.

1.2 Basic examples

We want to describe a few fundamental constructions which will play a central role in this course.

Example 1.2.1 (The projective space). The N-dimensional complex projective space \mathbb{P}^{N} can be regarded as the compactification of \mathbb{C}^{N} obtained by adding the point at infinity on each (complex) line through the origin. Equivalently, we can define this space as the points at infinity (the "horizon") of \mathbb{C}^{N+1}. We will choose this second interpretation as starting point of the formal definition.

Each point $\left(z_{0}, z_{1}, \cdots, z_{N}\right) \in \mathbb{C}^{N+1} \backslash\{0\}$ determines a unique one dimensional subspace (line) which we denote by $\left[z_{0}: \cdots: z_{N}\right]$. As a set, the projective space \mathbb{P}^{N} consists of all these lines. To define a topological structure, note that we can define \mathbb{P}^{N} as the quotient of $\mathbb{C}^{N+1} \backslash\{0\}$ modulo the equivalence relation

$$
\mathbb{C}^{N+1} \backslash\{0\} \ni \vec{u} \sim \vec{v} \in \mathbb{C}^{N+1} \backslash\{0\} \Longleftrightarrow \exists \lambda \in \mathbb{C}^{*} ; \vec{v}=\lambda \vec{u} .
$$

The natural projection $\pi: \mathbb{C}^{N+1} \backslash\{0\} \rightarrow \mathbb{P}^{N}$ can be given the explicit description

$$
\vec{z}=\left(z_{0}, z_{1}, \cdots, z_{N}\right) \mapsto[\vec{z}]:=\left[z_{0}: \cdots: z_{N}\right] .
$$

A subset $U \subset \mathbb{P}^{N}$ is open iff $\pi^{-1}(U)$ is open in \mathbb{C}^{N+1}. The canonical holomorphic atlas on \mathbb{P}^{N} consists of the open sets

$$
U_{i}:=\left\{\left[z_{0}: \cdots z_{N}\right] ; \quad z_{i} \neq 0\right\}, \quad i=0, \cdots, N
$$

and local coordinates

$$
\begin{gathered}
\zeta=\zeta_{i}: U_{i} \rightarrow \mathbb{C}^{N} \\
{\left[z_{0}: \cdots: z_{N}\right] \mapsto\left(\zeta_{1}, \cdots, \zeta_{N}\right)}
\end{gathered}
$$

where

$$
\zeta_{k}=\left\{\begin{array}{ccc}
z_{k-1} / z_{i} & \text { if } & k \leq i \\
z_{k} / z_{i} & \text { if } & k>i
\end{array} .\right.
$$

Clearly, the change of coordinates maps are biholomorphic. For example, the projective line \mathbb{P}^{1} is covered by two coordinates charts U_{0} and U_{1} with coordinates $z=z_{1} / z_{0}$ and respectively $\zeta=z_{0} / z_{1}$. The change of coordinates map is

$$
z \mapsto \zeta=1 / z
$$

which is clearly holomorphic.
Observe that each of the open sets U_{i} is biholomorphic to \mathbb{C}^{N}. Moreover, the complement

$$
\mathbb{P}^{N} \backslash U_{i}=\left\{\left[z_{0}: \cdots z_{N}\right] ; \quad z_{i}=0\right\}
$$

can be naturally identified with $\mathbb{P}^{N-1}=$ "horizon" of \mathbb{C}^{N}. Thus \mathbb{P}^{N} decomposes as $U_{0} \cong \mathbb{C}^{N}$ plus the "horizon", \mathbb{P}^{N-1}.

Example 1.2.2 (Submanifolds). Suppose X is a complex n-dimensional manifold. A codimension k submanifold of X is a closed subset $Y \subset X$ with the following property.

For every point $y \in Y$ there exists an open neighborhood $U_{y} \subset X$ and local holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ on U_{y} such that

- $z_{1}(y)=\cdots=z_{N}(y)=0$.
- $y^{\prime} \in U_{y} \cap Y \Longleftrightarrow z_{1}\left(y^{\prime}\right)=\cdots=z_{k}\left(y^{\prime}\right)=0$.

The codimension k submanifolds are complex manifolds of dimension $n-k$. There is a simple way of producing submanifolds.

Theorem 1.2.3. (Implicit function theorem) If $F: X \rightarrow Y$ is a holomorphic map, $\operatorname{dim} Y=k$ and $y \in Y$ is a regular value of F then the fiber $F^{-1}(y)$ is a codimension k submanifold of X.

Regular values exist in rich supply. More precisely, we have the following result. For a proof we refer to [55].

Theorem 1.2.4. (Sard Theorem) If $F: X \rightarrow Y$ is a holomorphic map then the set of critical points has measure zero.

Thus, most fibers $F^{-1}(y)$ are smooth submanifolds. We say that the generic fiber is smooth. In this course we will explain how to extract topological information about a complex manifold by studying the holomorphic maps

$$
f: X \rightarrow T, \quad \operatorname{dim} T=1
$$

and their critical points. We can regard X as an union of the fibers $F^{-1}(t), t \in T$. Most of them are smooth hypersurfaces with the possible exception of the fibers corresponding to the critical values. We will show that a good understanding of the changes in the topology and geometry of the fiber $F^{-1}(t)$ as t approaches a critical value often leads to nontrivial conclusions.

Example 1.2.5 (Algebraic manifolds). An algebraic manifold is a compact submanifold of some projective space \mathbb{P}^{N}. To construct such examples of complex manifolds consider the space $\mathcal{P}_{d, N}$ of degree d homogeneous polynomials in the variables z_{0}, \cdots, z_{N}. This is a complex vector space of dimension $\binom{d+N}{d}$. We denote its projectivization by $\mathbb{P}(d, N)$.

To any $P \in \mathcal{P}_{d, N}$ we can associate a closed subset $V_{P} \subset \mathbb{P}^{N}$ defined by

$$
V_{P}=\left\{\left[z_{0} ; \cdots: z_{N}\right] \in \mathbb{P}^{N} ; \quad P\left(z_{0}, \cdots, z_{N}\right)=0\right\} .
$$

V_{P} is called a hypersurface of degree d. This depends only on the image $[P]$ of the polynomial P in $\mathbb{P}(d, N)$. We claim that for most P the hypersurface V_{P} is a codimension-1 submanifold.

We will use a standard transversality trick. Consider the complex manifold

$$
X:=\left\{([\vec{z}],[P]) \in \mathbb{P}^{N} \times \mathbb{P}(d, N) ; \quad P(\vec{z})=0\right\} .
$$

A simple application of the implicit function theorem shows that X is a smooth submanifold. The hypersurface V_{P} can be identified with the fiber $F^{-1}(P)$ of the natural holomorphic map

$$
F: X \rightarrow \mathbb{P}(d, N), \quad([\vec{z}],[P]) \mapsto[P] .
$$

According to Sard's theorem most fibers are smooth.
The special case $d=1$ deserves special consideration. The zero set of a linear polynomial P is called a hyperplane. In this case the hyperplane V_{P} completely determines the image of P in $\mathbb{P}(1, N)$ and that is why $\mathbb{P}(1, N)$ can be identified with the set of hyperplanes in \mathbb{P}^{N}. The projective space $\mathbb{P}(1, N)$ is called the dual of \mathbb{P}^{N} and is denoted by $\check{\mathbb{P}}^{N}$.

We can consider more general constructions. Given a set $\left(P_{s}\right)_{s \in S}$ of homogeneous polynomials in the variables z_{0}, \cdots, z_{N} we can define

$$
V(S):=\bigcap_{s \in S} V_{P_{s}}
$$

$V(S)$ is called an projective variety. Often it is a smooth submanifold. The celebrated Chow theorem states that all algebraic manifolds can be obtained in this way. We refer to [31, Sec. 1.3] for more details. In this course we will describe some useful techniques of studying the topology of algebraic manifolds and varieties.

We conclude this section by discussing a special class of holomorphic maps.
Example 1.2.6 (Projections). Suppose X is a smooth, degree d curve in \mathbb{P}^{2}, i.e it is a codimension- 1 smooth submanifold of \mathbb{P}^{2} defined as the zero set of a degree d polynomial $P \in \mathcal{P}_{d, 2}$. A hyperplane in \mathbb{P}^{2} is a complex projective line. Fix a point $C \in \mathbb{P}^{2}$ and a line $L \subset \mathbb{P}^{2} \backslash\{C\}$. For any point $p \in \mathbb{P}^{2} \backslash\{C\}$ we denote by $[C p]$ the unique projective line determined by C and p and by $f(p)$ the intersection of $[C p]$ and L. The ensuing map

$$
f: \mathbb{P}^{2} \backslash\{C\} \rightarrow L
$$

is holomorphic and it is called the projection from C to $L . C$ is called the center of the projection. By restriction this induces a holomorphic map

$$
f: X \backslash\{C\} \rightarrow L
$$

(see Figure 1.1). Its critical points are the points $p \in X$ such that $[C p]$ is tangent to X. The center C can be chosen at ∞ i.e. on the line $z_{0}=0$ in \mathbb{P}^{2}. The lines through C can now be visualized as lines parallel to a fixed direction in \mathbb{C}^{2}, corresponding to the point at ∞.

Suppose $C \notin X$. The projection is a well defined map $f: X \rightarrow L$. Since X has degree d every line in \mathbb{P}^{2} intersects X in d points, counting multiplicities. In fact, by Sard's theorem

Figure 1.1: Projecting from a point to a line
a generic line will meet X in D distinct points. Since the holomorphic maps preserve the orientation we deduce that the degree of f is d (see [55] for more details about the degree of a smooth map).

The number of critical points of this map is related to a classical birational invariant of X. To describe it we need to introduce a few duality notions.

The dual of the center C is the line $\check{C} \in \check{\mathbb{P}}^{2}$ consisting of all hyperplanes (lines) in \mathbb{P}^{2} passing through C. The dual of X is the closed set $\check{X} \subset \check{\mathbb{P}}^{2}$ consisting of all the lines in \mathbb{P}^{2} tangent to $X . \check{X}$ is a (possibly) singular curve in \mathbb{P}^{2}, i.e. it can be describe as the zero locus of a homogeneous polynomial.

A critical point of the projection map $f: X \rightarrow L$ corresponds to a line trough C (point in \check{C}) which is tangent to X (which belongs to \check{X}). Thus the expected number of critical points is the expected number of intersection points between the curve \check{X} and the line \check{C}. This is precisely the degree of \check{X} classically known as the class of X.

Remark 1.2.7. Historically, the complex curves appeared in mathematics under a different guise, namely as multi-valued algebraic functions. For example the function

$$
y= \pm \sqrt{x(x-1)(x-t)}
$$

is 2 -valued and its (2-sheeted) graph is the affine curve

$$
y^{2}=x(x-1)(x-t) .
$$

We can identify the complex affine plane \mathbb{C}^{2} with the region $z_{0} \neq 0$ of \mathbb{P}^{2} using the correspondence

$$
z=z_{1} / z_{0}, \quad y=z_{2} / z_{0}
$$

This leads to the homogenization

$$
z_{2}^{2} z_{0}=z_{1}\left(z_{1}-z_{0}\right)\left(z_{1}-t z_{0}\right)
$$

This is a cubic in \mathbb{P}^{2} which can be regarded as the closure in \mathbb{P}^{2} of the graph of the above algebraic function.

Chapter 2

The critical points contain nontrivial information

We want to explain on a simple but important example the claim in the title. More concretely we will show that the critical points determine most of the topological properties of a holomorphic map

$$
f: \Sigma \rightarrow T
$$

where Σ and T are complex curves, i.e. compact, connected, 1-dimensional complex manifolds.

2.1 Riemann-Hurwitz theorem

Before we state and prove this important theorem we need to introduce an important notion.
Consider a holomorphic function $f: D \rightarrow \mathbb{C}$ such that $f(0)=0$, where D denotes the unit open disk centered at the origin of the complex line \mathbb{C}. Since f is holomorphic it has a Taylor expansion

$$
f(0)=\sum_{n \geq 0} a_{n} z^{n}
$$

which converges uniformly on the compacts of D. Since $f(0)=0$ we deduce $a_{0}=f(0)=0$ so that we can write

$$
f(z)=z^{k}\left(a_{k}+a_{k+1} z+\cdots\right), \quad k>0
$$

The integer k is called the multiplicity of $z_{0}=0$ in the fiber $f^{-1}(0)$. If additionally, $z_{0}=0$ happens to be a critical point as well, $f^{\prime}(0)=0$ then $k \geq 2$ and the integer $k-1$ is called the Milnor number (or the multiplicity) of the critical point. We denote it by $\mu(f, 0)$. Observe that 0 is a nondegenerate critical point iff it has Milnor number $\mu=1$. For uniformity, define the Milnor number of a regular point to be zero.

Lemma 2.1.1 (Baby version of Tougeron's determinacy theorem). Let $f: D \rightarrow \mathbb{C}$ be as above. Set $\mu=\mu(f, 0)>0$. Then there exist small open neighborhoods U, Z of $0 \in D$ and a biholomorphic map $U \rightarrow Z$ described by

$$
U \ni u \mapsto z=z(u) \in Z
$$

such that

$$
f(z(u))=u^{\mu+1}, \quad \forall u \in U
$$

Proof If $\mu=0$ then $f^{\prime}(0) \neq 0$ and the lemma follows from the implicit function theorem. In fact the biholomorphic map is $z=f^{-1}(u)$. Suppose $\mu>0$.

We can write

$$
f(z)=z^{\mu+1} g(z)
$$

where $g(0) \neq 0$. We can find a small open neighborhood V of 0 and a holomorphic function $r: V \rightarrow \mathbb{C}$ so that

$$
g(z)=(r(z))^{\mu+1} \Longleftrightarrow r(z)=\sqrt[\mu+1]{g(z)}, \quad \forall z \in V
$$

The map

$$
z \mapsto u:=z r(z)
$$

satisfies $u(0)=0, u^{\prime}(0) \neq 0$ so that it defines a biholomorphism $Z \rightarrow U$ between two small open neighborhoods Z and U of 0 . We see that $f(z)=u^{\mu+1}$, for all $z \in Z$.

The power map $u \rightarrow u^{k}$ defines k-sheeted branched cover of the unit disk D over itself. It is called cover because, off the bad point 0 , it is a genuine k sheeted cover

$$
D \backslash\{0\} \ni u \mapsto u^{k} \in D \backslash\{0\} .
$$

There is a branching at zero meaning that the fiber over zero, which consists of a single geometric point, is substantially different from the generic fiber, which consists of k-points (see Figure 2.1). We see that the Milnor number $k-1$ is equal to the number of points in a general fiber (k) minus the number of points in the singular fiber(1).

If X and Y are one dimensional complex manifolds, then by choosing coordinates any holomorphic function $f: X \rightarrow Y$ can be locally described as a holomorphic function $f: D \rightarrow \mathbb{C}$ so we define the Milnor number of a critical point (see [58, Sec. II.4] for a proof that the choice of local coordinates is irrelevant). According to Lemma 2.1.1, the type of branching behavior described above occurs near each critical point. Moreover, the critical points are isolated so that if X is compact the (nonconstant) map f has only finitely many critical points. In particular, only finitely many Milnor numbers $\mu(f, x), x \in X$ are nonzero.

Suppose now that Σ and T are two compact complex curves and $f: \Sigma \rightarrow T$ is a nonconstant holomorphic map. Topologically, they are 2-dimensional closed, oriented manifolds, Riemann surfaces. Their homeomorphism type is completely determined by their Euler characteristics. Suppose $\chi(T)$ is known. Can we determine $\chi(\Sigma)$ from properties of f ? The Riemann-Hurwitz theorem states that this is possible provided that we have some mild global information (the degree) and some detailed local information (the Milnor numbers of its critical points).

Figure 2.1: Visualizing the branched cover $u \mapsto u^{3}$

Theorem 2.1.2 (Riemann-Hurwitz). Suppose $\operatorname{deg} f=d>0$. Then

$$
\chi(\Sigma)=d \chi(T)-\sum_{p \in \Sigma} \mu(f, p) .
$$

Proof Denote by $t_{1}, \cdots, t_{n} \in T$ the critical values of f. Fix a triangulation \mathcal{T} of T containing the critical values amongst its vertices. Denote by V, E, F the set of vertices, edges and respectively faces of this triangulation. Hence

$$
\chi(T)=\# V-\# E+\# F .
$$

For each $t \in T$ set

$$
\mu(t):=\sum_{f(p)=t} \mu(f, p) .
$$

Observe that $\mu(t)=0$ iff t is regular value. Moreover, a simple argument (see Figure 2.2) shows that

$$
\begin{equation*}
\mu\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \# f^{-1}(t)-\# f^{-1}\left(t_{0}\right)=d-\# f^{-1}\left(t_{0}\right), \quad \forall t_{0} \in T \tag{2.1.1}
\end{equation*}
$$

The map f is onto (why ?) and we can lift the triangulation \mathcal{T} to a triangulation $\tilde{\mathcal{T}}=f^{-1}(\mathcal{T})$ of Σ. Denote by \tilde{V}, \tilde{E} and \tilde{F} the sets of vertices, edges and respectively faces of this triangulation. Since the set of critical points of f is discrete (finite) we deduce

$$
\# \tilde{E}=d \# E, \quad \# \tilde{F}=d \# F
$$

Moreover, using (2.1.1) we deduce

$$
\# \tilde{V}=d \# T-\sum_{t \in T} \mu(t)=d \# T-\sum \mu(f, p) .
$$

Thus

$$
\chi(\Sigma)=\# \tilde{V}-\# \tilde{E}+\# \tilde{F}=d(\# V-\# E+\# F)-\sum \mu(f, p) .
$$

Figure 2.2: A degree 10 cover

Corollary 2.1.3. Suppose $f: \Sigma \rightarrow \mathbb{P}^{1}$ is a holomorphic map which has only nondegenerate critical points. If ν is their number and $d=\operatorname{deg} f$ then

$$
\chi(\Sigma)=2 d-\nu .
$$

2.2 Genus formula

We will illustrate the strength of Riemann-Hurwitz theorem on a classical problem. Consider a degree d plane curve curve, i.e. the zero locus in \mathbb{P}^{2} of a homogeneous polynomial $P \in \mathcal{P}_{d, 2}$, $X=V_{P}$. As we have explained in Chapter 1, for generic P, the set V_{P} is a compact, one dimensional submanifold manifold of \mathbb{P}^{2}. Its topological type is completely described by its Euler characteristic, or equivalently by its genus. We have the following formula due to Plücker. (We refer to [58, Sec. II.2] for a more general version.)

Theorem 2.2.1. (Genus formula) For generic $P \in \mathcal{P}_{d, 2}$ the curve V_{P} is a Riemann surface of genus

$$
g\left(V_{P}\right)=\frac{(d-1)(d-2)}{2} .
$$

Proof We will use Corollary 2.1.3. To produce holomorphic maps $V_{P} \rightarrow \mathbb{P}^{1}$ we will use projections. Fix a line $\mathbb{L} \subset \mathbb{P}^{2}$ and a point $C \in \mathbb{P}^{2} \backslash V_{P}$. We get a projection map $f: X \rightarrow \mathbb{L}$. This is a degree d holomorphic map. Modulo a linear change of coordinates we can assume all the critical points are situated in the region $z_{0} \neq 0$ and C is the point at infinity $[0: 1: 0]$. In the affine plane $z_{0} \neq 0$ with coordinates $x=z_{1} / z_{0}, y=z_{2} / z_{0}$, the point C corresponds to the lines parallel to the x-axis $(y=0)$. In this region the curve V_{P} is described by the equation

$$
F(x, y)=0
$$

where $F(x, y)=P(1, x, y)$ is a degree d inhomogeneous polynomial. The critical points of the projection map are the points (x, y) on the curve $F(x, y)=0$ where the tangent is horizontal

$$
0=\frac{d y}{d x}=-\frac{F_{x}^{\prime}}{F_{y}^{\prime}} .
$$

Thus the critical points are solutions of the system of polynomial equations

$$
\left\{\begin{array}{c}
F(x, y)=0 \\
F_{x}^{\prime}(x, y)=0
\end{array}\right.
$$

The first polynomial has degree d while the second polynomial has degree $d-1$. For generic P this system will have exactly $d(d-1)$ distinct solutions. The corresponding critical points will be nondegenerate. Thus

$$
2-2\left(g\left(V_{P}\right)=\chi\left(V_{P}\right)=2 d-d(d-1)\right.
$$

so that

$$
g\left(V_{P}\right)=\frac{(d-1)(d-2)}{2}
$$

Liviu I. Nicolaescu

Chapter 3

Further examples of complex manifolds

3.1 Holomorphic line bundles

A holomorphic line bundle formalizes the intuitive idea of a holomorphic family of complex lines (1-dimensional complex vector spaces). The simplest example is that of a trivial family

$$
\underline{\mathbb{C}}_{M}:=\mathbb{C} \times M
$$

where M is a complex manifold. Another nontrivial example is the family of lines tautological parametrized by a projective space \mathbb{P}^{N}.

More generally, a holomorphic line bundle consists of three objects.

- The total space (i.e. the disjoint union of all lines in the family) which is a complex manifold L.
- The base (i.e the space of parameters) which is a complex manifold M.
- The natural projection (i.e. the rule describing how to label each line in the family by a point in M) which is a holomorphic map $\pi: L \rightarrow M$.
(L, π, M) is called a line bundle if for every $x \in M$ there exist
- an open neighborhood U of x in M;
- a biholomorphic map $\Psi: \pi^{-1}(U) \rightarrow \mathbb{C} \times U$
such that the following hold.
- Each fiber $L_{m}:=\pi^{-1}(m)(m \in M)$ has a structure of complex, one dimensional vector space.
- The diagram below is commutative

- The induced map $\Psi(m): L_{m} \rightarrow \mathbb{C} \times\{m\}$ is a linear isomorphism.

The map Ψ is called a local trivialization of L (over U).
From the definition of a holomorphic line bundle we deduce that we can find an open cover $\left(U_{\alpha}\right)_{\alpha \in A}$ of M and trivializations Ψ_{α} over U_{α}. These give rise to gluing maps on the overlaps $U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}$. These are holomorphic maps

$$
g_{\beta \alpha}: U_{\alpha \beta} \rightarrow \operatorname{Aut}(\mathbb{C}) \cong \mathbb{C}^{*}
$$

determined by the commutative diagram

The gluing maps satisfy the cocycle condition

$$
g_{\alpha \gamma}(m) \cdot g_{\gamma \beta}(m) \cdot g_{\beta \alpha}(m)=\mathbf{1}_{\mathbb{C}}, \quad \forall \alpha, \beta, \gamma \in A, \quad m \in U_{\alpha \beta \gamma}:=U_{\alpha} \cap U_{\beta} \cap U_{\gamma} .
$$

We can turn this construction on its head and recover a line bundle from the associated cocycle of gluing maps $g_{\beta \alpha}$. In fact, it is much more productive to think of a line bundles in terms of gluing cocycles. Observe that the total space L can be defined as a quotient

$$
\left(\coprod_{\alpha \in A} \mathbb{C} \times U_{\alpha}\right) / \sim
$$

where \sim is the equivalence relation

$$
\mathbb{C} \times U_{\alpha} \ni\left(z_{\alpha}, m_{\alpha}\right) \sim\left(z_{\beta}, m_{\beta}\right) \in \mathbb{C} \times U_{\beta} \Longleftrightarrow m_{\alpha}=m_{\beta}=: m, \quad z_{\beta}=g_{\beta \alpha}(m) z_{\alpha}
$$

Definition 3.1.1. A holomorphic section of a holomorphic line bundle $L \xrightarrow{\pi} M$ is a holomorphic map

$$
u: M \rightarrow L
$$

such that $u(m) \in L_{m}$ for all $m \in M$. We denote by $\mathcal{O}_{M}(L)$ the space of holomorphic sections of $L \rightarrow M$.

Every line bundle admits at least one section, the zero section which associates to each $m \in M$ the origin of the vector space L_{m}. Observe that if a line bundle L is given by a gluing cocycle $g_{\beta \alpha}$, then a section can be described by a collection of holomorphic functions

$$
f_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}
$$

satisfying the compatibility equations

$$
f_{\beta}=g_{\beta \alpha} f_{\alpha}
$$

Example 3.1.2 (The tautological line bundle). Intuitively, the tautological line bundle over \mathbb{P}^{N} is the family of lines parameterized by \mathbb{P}^{N}. We will often denote its total space by τ_{N}. It is defined by the incidence relation

$$
\tau_{N}:=\left\{[z, \ell] \in \mathbb{C}^{N+1} \times \mathbb{P}^{N} ; \quad z \in \ell\right\} .
$$

Notice that we have a tautological projection

$$
\pi: \tau_{N} \rightarrow \mathbb{P}^{N}, \quad[z, \ell] \mapsto \ell
$$

To show that τ_{N} is a complex manifold and $\left(\tau_{N}, \pi, \mathbb{P}^{N}\right)$ is a holomorphic line bundle we need to construct holomorphic charts on τ_{N} and to construct local trivializations. We will achieve both goals simultaneously. Consider the canonical open sets

$$
U_{i}=\left\{\left[z_{0}: \cdots: z_{N}\right] \in \mathbb{P}^{N} ; \quad z_{i} \neq 0\right\} \cong \mathbb{C}^{N}, \quad i=0, \cdots, N
$$

Denote by $\left(\zeta_{1}, \cdots, \zeta_{N}\right)$ the natural coordinates on this open set

$$
\zeta_{k}=\zeta_{k}(\ell):=\left\{\begin{array}{cc}
z_{k-1} / z_{i} & k \leq i \tag{3.1.1}\\
z_{k} / z_{i} & k>i
\end{array} .\right.
$$

We can use these coordinates to introduce local coordinates $\left(u_{0}, u_{1}, \cdots, u_{N}\right)$ on

$$
\pi^{-1}\left(U_{i}\right) \cong\left\{\left(z_{0}, \cdots, z_{N} ; \ell\right) \in \mathbb{C}^{N+1} \times U_{i} ; \quad\left(z_{0}, \cdots, z_{N}\right) \in \ell\right\}
$$

More precisely, we set

$$
u_{0}:=z_{i}, \quad u_{k}:=\zeta_{k}(\ell), \quad k=1, \cdots, N .
$$

Observe that the equalities (3.1.1) lead to the fundamental equalities

$$
\begin{equation*}
z_{k}=u_{k+1} u_{0}, \quad 0 \leq k<i, \quad z_{i}=u_{0}, \quad z_{k}=u_{k} u_{0}, k>i . \tag{3.1.2}
\end{equation*}
$$

We define a trivialization

$$
\pi^{-1}\left(U_{i}\right) \rightarrow \mathbb{C} \times U_{i}
$$

by

$$
\pi^{-1}\left(U_{i}\right) \ni\left(z_{0}, \cdots, z_{N} ; \ell\right) \mapsto\left(z_{i} ; \zeta_{1}, \cdots, \zeta_{N}\right)=\left(u_{0} ; u_{1}, \cdots, u_{N}\right)
$$

From this description it is clear that the gluing cocycle is given by

$$
g_{j i}\left(\left[z_{0} ; \cdots ; z_{N}\right]\right)=z_{j} / z_{i}
$$

The zero section of this bundle is the holomorphic map

$$
u: \mathbb{P}^{N} \cong\{0\} \times \mathbb{P}^{N} \hookrightarrow \tau_{N} \subset \mathbb{C}^{N+1} \times \mathbb{P}^{N}
$$

The image of the zero section is a hypersurface of τ_{N} which in the local coordinates $\left(u_{k}\right)$ on $\pi^{-1}\left(U_{i}\right)$ is described by the equation

$$
u_{0}=0 .
$$

Observe that the complement of the zero section in τ_{N} is naturally isomorphic to $\mathbb{C}^{N+1} \backslash\{0\}$. The isomorphism is induced by the natural projection

$$
\beta_{N}: \mathbb{P}^{N} \backslash \tau_{N}\left(\mathbb{P}^{N}\right) \rightarrow \mathbb{C}^{N+1} \backslash\{0\}
$$

The equation (3.1.2) represents a local coordinate description of the blowdown map β_{N}.
To understand the subtleties of the above constructions it is instructive to consider the special case of the tautological line bundle over \mathbb{P}^{1}. The projective line can be identified with the Riemann sphere $S^{2}=\mathbb{C} \cup\{\infty\}$. The two open sets U_{0} and U_{1} on \mathbb{P}^{1} correspond to the canonical charts

$$
U_{0}=V_{N}:=S^{2} \backslash \text { South Pole, } U_{1}:=V_{S}:=S^{2} \backslash \text { North Pole }
$$

with coordinates $z=z_{1} / z_{0}\left(\right.$ on $\left.V_{N}\right)$ and $\zeta=z_{0} / z_{1}\left(\right.$ on $\left.V_{S}\right)$ related by $\zeta:=1 / z$. On the overlap

$$
U_{01}=S^{2} \backslash\{\text { North and South Pole }\}
$$

with coordinate z, the transition function g_{10} is given by

$$
g_{10}(z)=g_{S N}(z)=z_{1} / z_{0}=z
$$

The total space is covered by two coordinate charts

$$
W_{N}=\pi^{-1}\left(U_{N}\right), \quad W_{S}:=\pi^{-1}\left(V_{N}\right)
$$

with coordinates given by

$$
(s, t) \text { on } W_{N} \text { where } z_{0}=s, z_{1}=s t
$$

and

$$
(u, v) \text { on } W_{S} \text { where } z_{0}=u v, z_{1}=v .
$$

The transition map between the two coordinate charts is

$$
(u, v)=\left(s t, t^{-1}\right)
$$

In the coordinates (s, t) the transition map g_{10} is given by $z_{1} / z_{0}=t$.
There are several functorial operations one can perform on line bundles. We will describe some of them by explaining their effect on gluing cocycles.

Suppose we are given two holomorphic line bundles $L, \tilde{L} \rightarrow M$ defined by the open cover $\left(U_{\alpha}\right)$ and the holomorphic gluing cocycles

$$
g_{\beta \alpha}, \tilde{g}_{\beta \alpha}: U_{\alpha \beta} \rightarrow \mathbb{C}^{*}
$$

The dual of L is the holomorphic line bundle L^{*} defined by the holomorphic gluing cocycle

$$
1 / g_{\beta \alpha}: U_{\beta \alpha} \rightarrow \mathbb{C}^{*}
$$

The tensor product of the line bundle L, \tilde{L} is the line bundle $L \otimes \tilde{L}$ defined by the gluing cocycle $g_{\beta \alpha} \tilde{g}_{\beta \alpha}$.

A bundle morphism $L \rightarrow \tilde{L}$ is a holomorphic section of $\tilde{L} \otimes L^{*}$. Equivalently, a bundle morphism is a holomorphic map $L \rightarrow \tilde{L}$ such that for every $m \in M$ we have $\phi\left(L_{m}\right) \subset \tilde{L}_{m}$ and the induced map $L_{m} \rightarrow \tilde{L}_{m}$ is linear. The notion of bundle isomorphism is defined in an obvious fashion. We denote by $\operatorname{Pic}(M)$ the set of isomorphism classes of holomorphic line bundles over M The tensor product induces an Abelian group structure on $\operatorname{Pic}(M)$. The trivial line bundle \mathbb{C}_{M} is the neutral element while the inverse of a line bundle is given by its dual.

A notion intimately related to the notion of line bundle is that of divisor. Roughly speaking, a divisor is a formal linear combination over \mathbb{Z} of codimension- 1 subvarieties. We present a few examples which will justify the more formal definition to come.

Example 3.1.3. (a) Suppose $f: D \rightarrow \mathbb{C}$ is a holomorphic function defined on the unit open disk in \mathbb{C} such that $f^{-1}(0)=\{0\}$. The origin is a codimension one subvariety and so it defines a divisor (0) on D. We define the zero divisor of f by

$$
(f)_{0}=n(0)
$$

where n is the multiplicity of 0 as a root of f. ($n=$ Milnor number of f at zero +1 .)
(b) Suppose $f: D \rightarrow \mathbb{C} \cup\{\infty\}$ is meromorphic suppose its zeros are $\left(\zeta_{i}\right)$ with multiplicities n_{i} while its poles are $\left(\mu_{j}\right)$ of orders $\left(m_{j}\right)$. The zero divisor of f is the formal linear combination

$$
(f)_{0}=\sum_{i} n_{i} \zeta_{i}
$$

while the polar divisor is

$$
(f)_{\infty}=\sum_{j} m_{j} \mu_{j} .
$$

The principal divisor defined by f is

$$
(f)=(f)_{0}-(f)_{\infty}=(f)_{0}-(1 / f)_{0}
$$

Observe that if $g: D \rightarrow \mathbb{C}$ is a holomorphic, nowhere vanishing function, then $(g f)=(f)$.
(c) More generally, if M is a complex manifold and $f: M \rightarrow \mathbb{C} \cup\{\infty\}$ is a meromorphic function, i.e. a holomorphic map $f: M \rightarrow \mathbb{P}^{1}$, then the principal divisor associated to f is the formal combination of subvarieties

$$
(f)=\left(f^{-1}(0)\right)-\left(f^{-1}(\infty)\right) .
$$

What's hidden in this description is the notion of multiplicity which needs to be incorporated.
(d) A codimension 1 submanifold V of a complex manifold M defines a divisor on M.

In general, a divisor is obtained by patching the principal divisors of a family of locally defined meromorphic functions. Concretely a divisor is described by an open cover $\left(U_{\alpha}\right)$ and a collection of meromorphic functions

$$
f_{\alpha}: U_{\alpha} \rightarrow \mathbb{C} \cup\{\infty\}
$$

such that on the overlaps $U_{\alpha \beta}$ the ratios f_{α} / f_{β} are nowhere vanishing holomorphic functions. This means that on the overlaps f_{α} and f_{β} have zeros/poles of the same order.

A divisor is called effective if the defining functions f_{α} are holomorphic. A meromorphic function $f: M \rightarrow \mathbb{C} \cup\{\infty\}$ defines a divisor (f) called the principal divisor determined by f. We denote by \emptyset the divisor determined by the constant function 1 . We denote by $\operatorname{Div}(M)$ the set of divisors on M and by $\operatorname{PDiv}(M)$ the set of principal divisors.

To a divisor D with defining functions f_{α} one can associate a line bundle $[D]$ described by the gluing cocycle

$$
g_{\beta \alpha}=f_{\beta} / f_{\alpha}
$$

If D, E are two divisors described by the defining functions f_{α} and respectively g_{α}, we denote by $D+E$ the divisor described by $f_{\alpha} g_{\beta}$. Also, denote by $-D$ the divisor described by $\left(1 / f_{\alpha}\right)$. Observe that

$$
D+(-D)=\emptyset
$$

and $(\operatorname{Div}(M),+)$ is an abelian group, and $\mathbf{P D i v}$ is a subgroup. Since

$$
[D+E]=[D] \otimes[E], \quad[-D]=[D]^{*} \text { in } \operatorname{Pic}(M)
$$

the map

$$
\operatorname{Div}(M) \ni D \mapsto[D] \in \operatorname{Pic}(M)
$$

is a morphism of Abelian groups. Its kernel is precisely $\operatorname{PDiv}(M)$ and thus we obtain an injective morphism

$$
\operatorname{Div}(M) / \operatorname{PDiv}(M) \rightarrow \operatorname{Pic}(M)
$$

A theorem of Hodge-Lefschetz states that this map is an isomorphism when M is an algebraic manifold (see [31, Sec. I.2]).
Example 3.1.4. Consider the tautological line bundle $\tau_{N} \rightarrow \mathbb{P}^{N}$. Its dual is called the hyperplane line bundle and is denoted by H_{N}. If $\left(U_{i}\right)_{i=0, \cdots, N}$ is the standard atlas on \mathbb{P}^{n} we see that H_{N} is given by the gluing cocycle

$$
g_{j i}=z_{i} / z_{j} .
$$

We claim that any linear function

$$
A: \mathbb{C}^{N+1} \rightarrow \mathbb{C}, \quad\left(z_{0}, z_{1}, \cdots, z_{N}\right) \mapsto a_{0} z_{0}+\cdots+a_{N} z_{N}
$$

defines a section of H. More precisely define

$$
A_{i}: U_{i} \rightarrow \mathbb{C}, \quad A_{i}\left(\left[z_{0}: \cdots: z_{N}\right]\right)=\frac{1}{z_{i}} A\left(z_{0}, \cdots, z_{N}\right)
$$

Clearly

$$
A_{j}=\left(z_{i} / z_{j}\right) A_{i}=g_{j i} A_{i}
$$

which proves the claim.
Similarly, any degree d homogeneous polynomial P in the variables z_{0}, \cdots, z_{N} defines a holomorphic section of H^{d}. We thus have constructed an injection

$$
\mathcal{P}_{d, N} \hookrightarrow \mathcal{O}_{\mathbb{P}^{N}}\left(H^{d}\right)
$$

In fact, this map is an isomorphism (see [31, Sec. I.3]).

3.2 The blowup construction

To understand this construction consider the following ideal experiment. Suppose we have two ants A_{1}, A_{2} walking along two fibers of the tautological line bundle τ_{N} towards the image of the zero section. The ants have "shadows", namely the points $\beta_{N}\left(A_{i}\right) \in \mathbb{C}^{N+1}$ by $S_{i}, i=1,2$. These shadows travel towards the origin of \mathbb{C}^{N+1} along two different lines. As the shadows get closer and closer to the origin, in reality, the ants are far apart, approaching the distinct points of \mathbb{P}^{N} corresponding to the two lines described by the shadows. This separation of trajectories is the whole point of the blowup construction which we proceed to describe rigorously.

Suppose M is complex manifold of dimension N and m is a point in M. The blowup of M at m is the complex manifold \hat{M}_{m} constructed as follows.

1. Choose a small open neighborhood U of M biholomorphic to the open unit ball $B \subset \mathbb{C}^{N}$. Set

$$
\hat{U}_{m}:=\beta_{N-1}^{-1}(B) \subset \tau_{N_{1}} .
$$

2. The blowdown map β_{N-1} establishes an isomorphism

$$
\hat{U}_{m} \backslash \mathbb{P}^{N-1} \cong B \backslash\{0\} \cong U \backslash\{m\} .
$$

Now glue \hat{U}_{m} to $M \backslash\{m\}$ using the blowdown map to obtain \hat{M}_{m}.
Observe that there exists a natural holomorphic map $\beta: \hat{M}_{m} \rightarrow M$ called the blowdown map. The fiber $\beta^{-1}(m)$ is called the exceptional divisor and it is a hypersurface isomorphic to \mathbb{P}^{N-1}. It is traditionally denoted by E. Observe that the map

$$
\beta: \hat{M}_{m} \backslash E \rightarrow M \backslash\{m\}
$$

is biholomorphic.
Example 3.2.1. τ_{N-1} is precisely the blowup of \mathbb{C}^{N} at the origin

$$
\tau_{N-1} \cong \hat{\mathbb{C}}_{0}^{N}
$$

Exercise 3.2.1. Prove that the blowup of the complex manifold M at a point m is diffeomeorphic in an orientation preserving fashion to the connected sum

$$
M \# \overline{\mathbb{P}}^{N}
$$

where $\overline{\mathbb{P}}^{N}$ denotes the oriented smooth manifold obtained by changing the canonical orientation of \mathbb{P}^{N}.

Definition 3.2.2. Suppose $m \in M$ and S is a closed subset in M. The proper transform of S in \hat{M}_{m} is the closure of $\beta^{-1}(S \backslash\{m\})$ in \hat{M}_{m}. We will denote it by \bar{S}_{m}.

The following examples describes some of the subtleties of the proper transform construction.

Figure 3.1: Proper transforms of singular curves

Example 3.2.3. (a) Consider the set

$$
S=\left\{z_{0} z_{1}=0\right\} \subset M:=\mathbb{C}^{2} .
$$

It consists of the two coordinate axes. We want to describe $\bar{S}_{0} \subset \hat{M}_{0}$.
The blowup \hat{M}_{0} is covered by two coordinate charts

$$
\left\{V_{0},\left(u_{0}, u_{1}\right) ; z_{0}=u_{0}, z_{1}=u_{0} u_{1}\right\}
$$

and

$$
\left\{V_{1},\left(v_{0}, v_{1}\right) ; z_{1}=v_{0}, z_{0}=v_{0} v_{1}\right\} .
$$

Inside V_{0}, the set $S^{b} \backslash E=\beta^{-1}(S \backslash 0)$ has the description

$$
u_{0}^{2} u_{1}=0, \quad u_{0} \neq 0 \Longleftrightarrow u_{1}=0, \quad u_{0} \neq 0
$$

while inside V_{1} it has the description

$$
v_{0}^{2} v_{1}=0, \quad v_{0} \neq 0 \Longleftrightarrow v_{1}=0, \quad v_{0} \neq 0
$$

On the overlap $V_{0} \cap V_{1}$ we have the transition rules

$$
u_{0}=z_{0}=v_{0} v_{1}, \quad u_{1}=z_{1} / z_{0}=1 / v_{1} .
$$

We see that $S^{b} \backslash E \cap\left(V_{0} \cap V_{1}\right)=\emptyset$. The proper transform of S consists of two fibers of the tautological line bundle $\tau_{1} \rightarrow \mathbb{P}^{1}$, namely the fibers above the poles (see Figure 3.1).
(b) Consider

$$
S=\left\{z_{0}^{2}=z_{1}^{3}\right\} \subset M:=\mathbb{C}^{2} .
$$

Inside V_{0} the set $S^{b} \backslash E$ has the description

$$
S_{0}: u_{0}^{2}\left(1-u_{0} u_{1}^{3}\right)=0, \quad u_{0} \neq 0
$$

while inside V_{1} it has the description

$$
S_{1}: \quad v_{0}^{2}\left(v_{0}-v_{1}^{2}\right)=0, \quad v_{0} \neq 0
$$

Observe that the closure of S_{0} in V_{0} does not meet the exceptional divisor. The closure of S_{1} inside V_{1} is the parabola $v_{0}=v_{1}^{2}$ which is tangent to the exceptional divisor at the point $v_{0}=0=v_{1}$ (see Figure 3.1).

Chapter 4

Linear systems

4.1 Some fundamental constructions

Loosely speaking, a linear system is a holomorphic family of divisors parametrized by a projective space. Instead of a formal definition we will analyze a special class of examples. For more information we refer to [31].

Suppose $X \hookrightarrow \mathbb{P}^{N}$ is a compact submanifold of dimension n. Each $P \in \mathcal{P}_{d, N} \backslash\{0\}$ determines a (possibly singular) hypersurface

$$
V_{P}:=\left\{\left[z_{0}: \cdots: z_{N}\right] \in \mathbb{P}^{N} ; P\left(z_{0}, \cdots, z_{N}\right)=0\right\} .
$$

The intersection

$$
X_{P}:=X \cap V_{P}
$$

is a degree- d hypersurface (thus a divisor) on X. Observe that V_{P} and X_{P} depend only on the image $[P]$ of P in the projectivization $\mathbb{P}(d, N)$ of $\mathcal{P}_{d, N}$.

Each projective subspace $U \subset \mathbb{P}(d, N)$ defines a family $\left(X_{P}\right)_{[P] \in U}$ of hypersurfaces on X. This is a linear system. When $\operatorname{dim} U=1$, i.e. U is a projective line, we say that the family $\left(X_{P}\right)_{P \in U}$ is a pencil. The intersection

$$
B=B_{U}:=\bigcap_{P \in U} X_{P}
$$

is called the base locus of the linear system. The points in B are called basic points. Any point $x \in X \backslash B$ determines a hyperplane $H_{x} \in U$ described by the equation

$$
H_{x}:=\{P \in U ; \quad P(x)=0\} .
$$

The hyperplanes of U determine a projective space \check{U}, the dual of U. (Observe that if U is 1-dimensional then $U=\breve{U}$.) We see that a linear system determines a holomorphic map

$$
f_{U}: X_{*}:=X \backslash B \rightarrow \check{U}, \quad x \mapsto H_{x} .
$$

We define the modification of X determined by the linear system $\left(X_{P}\right)_{P \in U}$ to be the variety

$$
\hat{X}=\hat{X}_{U}=\{(x, H) \in X \times \check{U} ; \quad P(x)=0, \quad \forall P \in H \subset U\} .
$$

When $\operatorname{dim} U=1$ this has the simpler description

$$
\hat{X}=\hat{X}_{U}=\left\{(x, P) \in X \times U ; \quad P(x)=0 \Longleftrightarrow x \in V_{P}\right\} .
$$

We have a pair of holomorphic maps induced by the natural projections

Observe that π_{X} induces a biholomorphic map $\hat{X}_{*}:=\pi_{X}^{-1}\left(X_{*}\right) \rightarrow X_{*}$ and we have a commutative diagram

In general, B and \hat{X}_{U} are not smooth objects. Also, observe that when $\operatorname{dim} U=1$ the map $\hat{f}: \hat{X} \rightarrow \check{U}$ can be regarded as a map to U.

Example 4.1.1 (Pencils of cubics). Consider two homogeneous cubic polynomials $A, B \in$ $\mathcal{P}_{3,2}$ (in the variables z_{0}, z_{1}, z_{2}). For generic A, B these are smooth, cubic curves in \mathbb{P}^{2} and the genus formula tells us they are homemorphic to tori. By Bézout's theorem, these two general cubics meet in 9 distinct points, p_{1}, \cdots, p_{9}. For $\mathbf{t}:=\left[t_{0}: t_{1}\right] \in \mathbb{P}^{1}$ set

$$
C_{\mathbf{t}}:=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{P}^{2} ; t_{0} A\left(z_{0}, z_{1}, z_{2}\right)+t_{1} B\left(z_{0}, z_{1}, z_{2}\right)=0\right\} .
$$

The family $C_{\mathbf{t}}, \mathbf{t} \in \mathbb{P}^{1}$, is a pencil on $X=\mathbb{P}^{2}$. The base locus of this system consists of the nine points p_{1}, \cdots, p_{9} common to all the cubics. The modification

$$
\hat{X}:=\left\{\left(\left[z_{0}, z_{1}, z_{2}\right], \mathbf{t}\right) \in \mathbb{P}^{2} \times \mathbb{P}^{1} ; \quad t_{0} A\left(z_{0}, z_{1}, z_{2}\right)+t_{1} B\left(z_{0}, z_{1}, z_{2}\right)=0\right\}
$$

is isomorphic to the blowup of X at these nine points

$$
\hat{X} \cong \hat{X}_{p_{1}, \cdots, p_{9}}
$$

For general A, B the induced map $\hat{f} \rightarrow \mathbb{P}^{1}$ is Morse, and its generic fiber is a torus (or equivalently, an elliptic curve). The manifold \hat{X} is a basic example of elliptic fibration. It is usually denoted by $E(1)$.

Exercise 4.1.1. Prove the claim in the above example that

$$
\hat{X} \cong \hat{X}_{p_{1}, \cdots, p_{9}}
$$

Remark 4.1.2. When studying linear systems defined by projective subspaces $U \subset \mathbb{P}(d, N)$ it suffices to consider only the case $d=1$, i.e. linear systems of hyperplanes. This follows easily using the Veronese embedding

$$
\nu_{d, N}: \mathbb{P}^{N} \hookrightarrow \mathbb{P}(d, N), \quad[\vec{z}] \mapsto\left[\left(z_{\omega}\right)\right]:=\left[\left(z^{\omega}\right)_{|\omega|=d}\right]
$$

where $\vec{z} \in \mathbb{C}^{N+1} \backslash\{0\}$

$$
\omega=\left(\omega_{0}, \cdots, \omega_{N}\right) \in \mathbb{Z}_{+}^{N+1}, \quad|\omega|=\sum_{i=0}^{N} \omega_{i}, \quad z^{\omega}=\prod_{i=0}^{N} z_{i}^{\omega_{i}} \in \mathcal{P}(|\omega|, N) .
$$

Any $P=\sum_{|\omega|=d} p_{\omega} \vec{z}^{\omega} \in \mathcal{P}(d, N)$ defines a hyperplane in $\mathbb{P}(d, N)$

$$
H_{P}=\left\{\sum_{|\omega|=d} p_{\omega} z_{\omega}=0\right\} .
$$

Observe that

$$
\mathcal{V}\left(V_{P}\right) \subset H_{P}
$$

so that

$$
\mathcal{V}\left(X \cap V_{P}\right)=\mathcal{V}(X) \cap H_{P} .
$$

Definition 4.1.3. A Lefschetz pencil on $X \hookrightarrow \mathbb{P}^{N}$ is a pencil determined by a one dimensional projective subspace $U \hookrightarrow \mathbb{P}(d, N)$ with the following properties.
(a) The base-locus B is either empty or it is a smooth, codimension 2-submanifold of X.
(b) \hat{X} is a smooth manifold.
(c) The holomorphic map $\hat{f}: \hat{X} \rightarrow U$ is a Morse function.

If the base locus is empty, then $\hat{X}=X$ and the Lefschetz pencil is called a Lefschetz fibration.

We have the following genericity result. Its proof can be found in [46, Sec.2].
Theorem 4.1.4. Fix a compact submanifold $X \hookrightarrow \mathbb{P}^{N}$. Then for any generic projective line $U \subset \mathbb{P}(d, N)$, the pencil $\left(X_{P}\right)_{P \in U}$ is Lefschetz.

4.2 Projections revisited

According to Remark 4.1.2, it suffices to consider only pencils generated by degree 1 polynomials. In this case, the pencils can be given a more visual description.

Suppose $X \hookrightarrow \mathbb{P}^{N}$ is a compact complex manifold. Fix a $N-2$ dimensional projective subspace $A \hookrightarrow \mathbb{P}^{N}$ called the axis. The hyperplanes containing A form a line in $U \subset \check{\mathbb{P}}^{N} \cong$ $\mathbb{P}(1, N)$. It can be identified with any line in \mathbb{P}^{N} which does not intersect A. Indeed if S is such a line (called screen) then any hyperplane H containing A intersects S a single point $s(H)$. We have thus produced a map

$$
U \ni H \mapsto s(H) \in S
$$

Conversely, any point $s \in S$ determines an unique hyperplane $[A s]$ containing A and passing through s. The correspondence

$$
S \ni s \mapsto[A s] \in U
$$

is the inverse of the above map; see Figure 4.1. The base locus of the linear system

Figure 4.1: Projecting onto the "screen" S

$$
\left(X_{s}=[A s] \cap X\right)_{s \in S}
$$

is $B=X \cap A$. All the hypersurfaces X_{s} pass through the base locus B. For generic A this is a smooth, codimension 2-submanifold of X. We have a natural map

$$
f: X \backslash B \rightarrow S, \quad x \mapsto[A x] \cap S
$$

We can now define the elementary modification of X to be

$$
\hat{X}:=\left\{(x, s) \in X \times S ; \quad x \in X_{s}\right\} .
$$

The critical points of \hat{f} correspond to the hyperplanes through A which contain a tangent (projective) plane to X. We have a similar diagram

We define

$$
\hat{B}:=\pi^{-1}(B) .
$$

Observe that

$$
\hat{B}:=\{(b, s) \in B \times S ; \quad b \in[A s]\}=B \times S,
$$

and the natural projection $\pi: \hat{B} \rightarrow B$ coincides with the projection $B \times S \rightarrow B$. Set

$$
\hat{X}_{s}:=\hat{f}^{-1}(s) .
$$

The projection π induces a homeomorphism $\hat{X}_{s} \rightarrow X_{s}$.
Example 4.2.1. Observe that when $N=2$ then A is a point. Assume that $X \hookrightarrow \mathbb{P}^{2}$ is a degree d smooth curve as $A \notin X$. We have used the above construction in the proof of the genus formula. There we proved that, generically, every Lefschetz pencil on X has exactly $d(d-1)$ critical points.

Example 4.2.2. Suppose X is the plane

$$
\left\{z_{3}=0\right\} \cong \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{3} .
$$

Assume A is the line $z_{1}=z_{2}=0$ and S is the line $z_{0}=z_{3}=0$. The base locus consists of the single point $B=[1: 0: 0: 0] \in X$. The pencil obtained in this fashion consists of all lines passing through B.

Observe that $S \subset X$. Moreover, the line S can be identified with the line at ∞ in \mathbb{P}^{2}. The map $f: X \backslash\{B\} \rightarrow S$ determined by this pencil is simply the projection onto the line at ∞ with center B. The modification of X defined by this pencil is precisely the blowup of \mathbb{P}^{2} at B.

Chapter 5

Topological applications of Lefschetz pencils

The existence of a Lefschetz pencil imposes serious restrictions on the topology of an algebraic manifold. In this lecture we will discuss some of them. Our presentation follows closely [46].

5.1 Topological preliminaries

Before we proceed with our study of Lefschetz pencil we need to isolate a few basic facts of algebraic topology. An important technical result in the sequel will be Ehresmann fibration theorem.

Theorem 5.1.1. ([23, Ehresmann]) Suppose $\Phi: E \rightarrow B$ is a smooth map between two smooth manifolds such that

- Φ is proper, i.e. $\Phi^{-1}(K)$ is compact for every compact $K \subset B$.
- Φ is a submersion, i.e. $\operatorname{dim} E \geq \operatorname{dim} B$ and F has no critical points.
- If $\partial E \neq \emptyset$ then the restriction $\partial \Phi$ of Φ to ∂E continues to be a submersion.

Then $\Phi:(E, \partial E) \rightarrow B$ is a smooth fiber bundle, i.e. there exists a smooth manifold F, called the standard fiber and an open cover $\left(U_{i}\right)_{i \in I}$ of B with the following property. For every $i \in I$ there exists a diffeomorphism

$$
\Psi_{i}: \Phi^{-1}\left(U_{i}\right) \rightarrow F \times U_{i}
$$

such that the diagram below is commutative.

The above result implies immediately that the fibers of Φ are all compact manifolds diffeomorphic to the standard fiber F.

Exercise 5.1.1. Use Ehresmann fibration theorem to show that if $X \hookrightarrow \mathbb{P}^{N}$ is an n dimensional algebraic manifold and $P_{1}, P_{2} \in \mathcal{P}_{d, N}$ are two generic polynomials then

$$
V_{P_{1}} \cap X \cong_{\text {diffeo }} X \cap V_{P_{2}} .
$$

Hint: Consider the set

$$
\mathcal{Z}:=\{(x,[P]) \in X \times \mathbb{P}(d, N) ; \quad P(x)=0\}
$$

Show it is a complex manifold and analyze the map

$$
\pi: \mathcal{Z} \rightarrow \mathbb{P}(d, N), \quad(x,[P]) \mapsto[P]
$$

Prove that the set of its regular values is open and connected and then use Ehresmann fibration theorem.

In the sequel we will frequently use the following consequence of the excision theorem for singular homology, [67, Chap. 6,§6].

Suppose $f(X, A) \rightarrow(Y, B)$ is a continuous mapping between pairs of compact Euclidean neighborhood retracts (ENR's), such that

$$
f: X \backslash A \rightarrow Y \backslash B
$$

is a homeomorphism. Then f induces an isomorphism

$$
f_{*}: H_{*}(X, A ; \mathbb{Z}) \rightarrow H_{*}(Y, B ; \mathbb{Z}) .
$$

Instead of rigorously defining the notion of ENR let us mention that the zero set of an analytic map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an ENR. More generally every locally compact and locally contractible ${ }^{1}$ subset of an Euclidean space is an ENR. We refer to [10, Appendix E] for more details about ENR's.

Exercise 5.1.2. Prove the above excision result.
In the sequel, unless otherwise stated, $H_{*}(X)$ (resp. $H^{*}(X)$) will denote the integral singular homology (resp. cohomology) of the space X. For every compact oriented, m dimensional manifold M denote by $P D_{M}$ the Poincaré duality map

$$
H^{q}(M) \rightarrow H_{m-q}(M), \quad u \mapsto u \cap[M] .
$$

The orientation conventions for the \cap-product are determined by the equality

$$
\langle v \cup u, c\rangle=\langle v, u \cap c\rangle,
$$

where $\langle\bullet, \bullet\rangle$ denotes the Kronecker pairing $H^{*} \times H_{*} \rightarrow \mathbb{Z}$. This convention is compatible with the fiber-first orientation convention for bundles. Recall that this means that if $F \hookrightarrow E \rightarrow B$ is a smooth fiber bundle, with oriented base B and standard fiber F then the total space is equipped with the orientation

$$
\operatorname{or}(E)=\operatorname{or}(F) \wedge \operatorname{or}(B)
$$

[^1]
5.2 The set-up

Suppose $X \hookrightarrow \mathbb{P}^{N}$ is an n-dimensional algebraic manifold, and $S \subset \mathbb{P}(d, N)$ is a one dimensional projective subspace defining a Lefschetz pencil $\left(X_{s}\right)_{s \in S}$ on X. As usual, denote by B the base locus

$$
B=\bigcap_{s \in S} X_{s}
$$

and by \hat{X} the modification

$$
\hat{X}=\left\{(x, s) \in X \times S ; x \in X_{s}\right\} .
$$

We have an induced Lefschetz fibration $\hat{f}: \hat{X} \rightarrow S$ with fibers

$$
\hat{X}_{s}:=\hat{f}^{-1}(s)
$$

and a surjection

$$
p: \hat{X} \rightarrow X
$$

which induces homeomorphisms $\hat{X}_{s} \rightarrow X_{s}$. Observe that $\operatorname{deg} p=1$. Set

$$
\hat{B}:=p^{-1}(B) .
$$

Observe that we have a tautological diffeomorphism

$$
\hat{B} \rightarrow \cong B \times S, \quad \hat{B} \ni(x, s) \mapsto(x, s) \in B \times S
$$

Since $S \cong S^{2}$ we deduce from Künneth theorem that we have an isomorphism

$$
H_{q}(\hat{B}) \cong H_{q}(B) \oplus H_{q-2}(B)
$$

and a natural injection

$$
H_{q-2}(B) \rightarrow H_{q}(\hat{B}), \quad H_{q-2}(B) \ni c \mapsto c \times[S] \in H_{q}(\hat{B}) .
$$

Using the inclusion map $\hat{B} \rightarrow \hat{X}$ we obtain a natural morphism

$$
\kappa: H_{q-2}(B) \rightarrow H_{q}(\hat{X})
$$

Lemma 5.2.1. The sequence

$$
\begin{equation*}
0 \rightarrow H_{q-2}(B) \xrightarrow{\kappa} H_{q}(\hat{X}) \xrightarrow{p_{*}} H_{q}(X) \rightarrow 0 \tag{5.2.1}
\end{equation*}
$$

is exact and splits for every q. In particular, \hat{X} is connected iff X is connected.
Proof The proof will be carried out in several steps.
Step $1 p_{*}$ admits a natural right inverse. Consider the Gysin morphism

$$
p^{!}: H_{q}(X) \rightarrow H_{q}(\hat{X}), \quad p^{!}=P D_{\hat{X}} p^{*} P D_{X}^{-1},
$$

i.e. the diagram below is commutative.

We will show that $p_{*} p^{!}=\mathbf{1}$. Let $c \in H_{q}(X)$ and set $u:=P D_{X}^{-1}(x), u \cap[X]=c$. Then

$$
p^{\prime}(c)=p^{*}(u) \cap[\hat{X}] .
$$

Then

$$
p_{*} p^{!}(c)=p_{*} p^{*}(u) \cap p_{*}([\hat{X}])=u \cap p_{*}([\hat{X}])=\operatorname{deg} p(u \cap[X])=c .
$$

Step 2. Conclusion We use the long exact sequences of the pairs $(\hat{X}, \hat{B}),(X, B)$ and the morphism between them induced by p_{*}. We have the following commutative diagram

The excision theorem shows that the morphisms p_{*}^{\prime} are isomorphisms. Moreover, p_{*} is surjective. The conclusion in the lemma now follows by diagram chasing.

Exercise 5.2.1. Complete the diagram chasing argument.

Decompose now the projective line S into two closed hemispheres

$$
S:=D_{+} \cup D_{-}, \quad S^{1}=D_{+} \cap D_{-}, \quad \hat{X}_{ \pm}:=\hat{f}^{-1}\left(D_{ \pm}\right), \quad \hat{X}_{0}:=\hat{f}^{-1}\left(S^{1}\right)
$$

such that all the critical values of $\hat{f}: \hat{X} \rightarrow S$ are contained in the interior of D_{+}. Choose a point - on the Equator $\partial D_{+} \cong S^{1}$. Denote by r the number of critical points ($=$ the number of critical values) of the Morse function \hat{f}. In the remainder of this chapter we will assume the following fact. Its proof is deferred to Chapter 7.
Lemma 5.2.2 (Key Lemma).

$$
H_{q}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \cong\left\{\begin{array}{ccc}
0 & \text { if } & q \neq n=\operatorname{dim} X \\
\mathbb{Z}^{r} & \text { if } & q=n
\end{array} .\right.
$$

Remark 5.2.3. The number of r of nondegenerate singular points of a Lefschetz pencil defined by linear polynomials is a projective invariant of X. Its meaning when X is a plane curve was explained in Chapter 1 and we computed it explicitly in Chapter 2. A similar definition holds in higher dimensions as well; see [46].

5.3 Lefschetz Theorems

All of the results in this section originate in the remarkable work of S. Lefschetz [48] in the 1920's. We follow the modern presentation in [46].

Using Ehresmann fibration theorem we deduce

$$
\hat{X}_{-} \cong \hat{X}_{\bullet} \times D_{-}, \quad \hat{X}_{0} \cong \hat{X}_{\bullet} \times S^{1}
$$

so that

$$
\left(\hat{X}_{-}, \hat{X}_{0}\right) \cong \hat{X}_{\bullet} \times\left(D_{-}, S^{1}\right)
$$

\hat{X}_{\bullet} is a deformation retract of \hat{X}_{-}. In particular, the inclusion

$$
\hat{X}_{\bullet} \hookrightarrow \hat{X}_{-}
$$

induces isomorphisms

$$
H_{*}\left(\hat{X}_{\bullet}\right) \cong H_{*}\left(\hat{X}_{-}\right) .
$$

Using excision and Künneth formula we obtain the sequence of isomorphisms

$$
\begin{equation*}
H_{q-2}\left(\hat{X}_{\bullet}\right) \xrightarrow{\times\left[D_{-}\right]} H_{q}\left(\hat{X}_{\bullet} \times\left(D_{-}, S^{1}\right)\right) \cong H_{q}\left(\hat{X}_{-}, \hat{X}_{0}\right) \xrightarrow{\text { excis }} H_{q}\left(\hat{X}, \hat{X}_{+}\right) . \tag{5.3.1}
\end{equation*}
$$

Consider now the long exact sequence of the triple ($\hat{X}, \hat{X}_{+}, \hat{X}_{\bullet}$),

$$
\cdots \rightarrow H_{q+1}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \rightarrow H_{q+1}\left(\hat{X}, \hat{X}_{\bullet}\right) \rightarrow H_{q+1}\left(\hat{X}, \hat{X}_{+}\right) \xrightarrow{\partial} H_{q}\left(X_{+}, \hat{X}_{\bullet}\right) \rightarrow \cdots
$$

If we use the Key Lemma and the isomorphism (5.3.1) we deduce that we have the isomorphisms

$$
\begin{equation*}
L: H_{q+1}\left(\hat{X}, \hat{X}_{\bullet}\right) \rightarrow H_{q-1}\left(\hat{X}_{\bullet}\right), q \neq n, n-1, \tag{5.3.2}
\end{equation*}
$$

and the 5 -term exact sequence

$$
\begin{equation*}
0 \rightarrow H_{n+1}\left(\hat{X}, \hat{X}_{\bullet}\right) \rightarrow H_{n-1}\left(\hat{X}_{\bullet}\right) \rightarrow H_{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \rightarrow H_{n}\left(\hat{X}^{\prime}, \hat{X}_{\bullet}\right) \rightarrow H_{n-2}\left(\hat{X}_{\bullet}\right) \rightarrow 0 \tag{5.3.3}
\end{equation*}
$$

Here is a first nontrivial consequence.
Corollary 5.3.1. If X is connected and $n=\operatorname{dim} X>1$ then the generic fiber $\hat{X}_{\bullet} \cong X_{\bullet}$ is connected.

Proof Using (5.3.2) we obtain the isomorphisms

$$
H_{0}\left(\hat{X}, \hat{X}_{\bullet}\right) \cong H_{-2}\left(\hat{X}_{\bullet}\right)=0, \quad H_{1}\left(\hat{X}, \hat{X}_{\bullet}\right) \cong H_{-1}\left(\hat{X}_{\bullet}\right)=0
$$

Using the long exact sequence of the pair $\left(\hat{X}, \hat{X}_{\bullet}\right)$ we deduce that

$$
H_{0}\left(\hat{X}_{\bullet}\right) \cong H_{0}(\hat{X}) .
$$

Since X is connected, Lemma 5.2.1 now implies $H_{0}(\hat{X})=0$ thus proving the corollary.

Remark 5.3.2. The above connectivity result is a holomorphic phenomenon and it is a special case of Zariski's Connectedness Theorem, [59], or [65, vol. II]. The level sets of a smooth function on a smooth manifold may not be connected. The proof of the corollary does not overtly uses the holomorphy assumption. This condition is hidden in the proof of the Key Lemma.

The next result generalizes the Riemann-Hurwitz theorem for Morse maps

$$
f: \Sigma \rightarrow \mathbb{P}^{1}, \quad \Sigma \text { complex algebraic curve. }
$$

Corollary 5.3.3.

$$
\begin{gathered}
\chi(\hat{X})=2 \chi\left(\hat{X}_{\bullet}\right)+(-1)^{n} r, \\
\chi(X)=2 \chi\left(X_{\bullet}\right)-\chi(B)+(-1)^{n} r .
\end{gathered}
$$

Proof From (5.2.1) we deduce

$$
\chi(\hat{X})=\chi(X)+\chi(B)
$$

On the other hand, the long exact sequence of the pair ($\hat{X}, \hat{X}_{\bullet}$) implies

$$
\chi(\hat{X})-\chi\left(\hat{X}_{\bullet}\right)=\chi\left(\hat{X}, \hat{X}_{\bullet}\right) .
$$

Using (5.3.2), (5.3.3) and the Key Lemma we deduce

$$
\chi\left(\hat{X}, \hat{X}_{\bullet}\right)=\chi\left(\hat{X}_{\bullet}\right)+(-1)^{n} r .
$$

Thus

$$
\chi(\hat{X})=2 \chi\left(\hat{X}_{\bullet}\right)+(-1)^{n} r
$$

and

$$
\chi(X)=2 \chi\left(\hat{X}_{\bullet}\right)-\chi(B)+(-1)^{n} r .
$$

Example 5.3.4. Consider again two cubic polynomials $A, B \in \mathcal{P}_{3,2}$ defining a Lefschetz pencil on $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{3}$. We can use the above corollary to determine the number r of singular points of this pencil. More precisely we have

$$
\chi\left(\mathbb{P}^{2}\right)=2 \chi\left(X_{\bullet}\right)-\chi(B)+r .
$$

We have seen that B consists of 9 distinct points. According to the genus formula the generic fiber, which is a degree 3 curve, must be a torus, so that $\chi\left(X_{\bullet}\right)=0$. Finally, $\chi\left(\mathbb{P}^{1}\right)=3$. We deduce $r=12$ so that the generic elliptic fibration

$$
\hat{\mathbb{P}}_{p_{1}, \cdots, p_{9}}^{2} \rightarrow \mathbb{P}^{1}
$$

has 12 singular fibers.

Exercise 5.3.1. Suppose X is an algebraic surface $(\operatorname{dim} X=2)$ and $\left(X_{s}\right)_{s \in \mathbb{P}^{1}}$ defines a Lefschetz fibration with generic fiber X_{s} of genus g. Express the number of singular fibers of X in terms of topological invariants of X and X_{s}.

Exercise 5.1.1 shows that the diffeomorphism type of a hypersurface $V_{P} \cap X$ is independent of the generic polynomial P of fixed degree. Moreover, for general P, the hypersurface can be included in a Lefschetz pencil. Hence, studying the topological properties of the embedding

$$
V_{P} \cap X \hookrightarrow X
$$

is equivalent to studying the topological properties of the embedding $X_{\bullet} \hookrightarrow X$.
Theorem 5.3.5 (Lefschetz hypersurface section theorem). The inclusion

$$
X_{\bullet} \hookrightarrow X
$$

induces isomorphisms

$$
H_{q}\left(X_{\bullet}\right) \rightarrow H_{q}(X)
$$

if $q<\frac{1}{2} \operatorname{dim}_{\mathbb{R}} X_{\bullet}=n-1$ and an epimorphism if $q=n-1$. Equivalently, this means

$$
H_{q}\left(X, X_{\bullet}\right)=0, \quad \forall q \leq n-1 .
$$

Proof We will used an argument similar to the one in the proof of (5.3.2), (5.3.3). More precisely, we will analyze the long exact sequence of the triple $\left(\hat{X}, \hat{X}_{+} \cup \hat{B}, \hat{X}_{\bullet} \cup \hat{B}\right)$.

Using excision we deduce

$$
H_{q}\left(\hat{X}, \hat{X}_{+} \cup \hat{B}\right)=H_{q}\left(\hat{X}, \hat{X}_{+} \cup B \times D_{-}\right) \cong H_{q}\left(\hat{X}_{-}, \hat{X}_{0} \cup B \times D_{-}\right)
$$

(use Ehresmann fibration theorem)

$$
\cong H_{q}\left(\left(X_{\bullet}, B\right) \times\left(D_{-}, S^{1}\right)\right) \cong H_{q-2}\left(X_{\bullet}, B\right)
$$

Using the Excision theorem again we obtain an isomorphism

$$
p_{*}: H_{q}\left(\hat{X}, \hat{X}_{\bullet} \cup \hat{B}\right) \cong H_{q}\left(X, X_{\bullet}\right)
$$

Finally, we have an isomorphism

$$
\begin{equation*}
H_{*}\left(\hat{X}_{+} \cup \hat{B}, \hat{X}_{\bullet} \cup \hat{B}\right) \cong H_{*}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \tag{5.3.4}
\end{equation*}
$$

Indeed, excise $B \times \operatorname{Int}\left(D_{-}\right)$from both terms of the pair $\left(\hat{X}_{+} \cup \hat{B}, \hat{X} \cup \hat{B}\right)$. Then

$$
\hat{X}_{+} \cup \hat{B} \backslash\left(B \times \operatorname{Int}\left(D_{-}\right)\right)=\hat{X}_{+}
$$

and, since $\hat{X} \bullet \cap \hat{B}=\{\bullet\} \times B$, we deduce

$$
\hat{X}_{\bullet} \cup \hat{B} \backslash\left(B \times \operatorname{Int}\left(D_{-}\right)\right)=\hat{X}_{\bullet} \cup\left(D_{+} \times B\right)
$$

Observe that

$$
\hat{X}_{\bullet} \cap\left(D_{+} \times B\right)=\{\bullet\} \times B
$$

and $D_{+} \times B$ deformation retracts to $\{\bullet\} \times B$. Hence $\hat{X}_{\bullet} \cup\left(D_{+} \times B\right)$ is homotopically equivalent to \hat{X}_{\bullet} thus proving (5.3.4).

The long exact sequence of the triple $\left(\hat{X}, \hat{X}_{+} \cup \hat{B}, \hat{X} \cup \hat{B}\right)$ can now be rewritten

$$
\cdots \rightarrow H_{q-1}\left(X_{\bullet}, B\right) \xrightarrow{\partial} H_{q}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \rightarrow H_{q}\left(X, X_{\bullet}\right) \rightarrow H_{q-2}\left(X_{\bullet}, B\right) \xrightarrow{\partial} \cdots
$$

Using the Key Lemma we obtain the isomorphisms

$$
\begin{equation*}
L^{\prime}: H_{q}\left(X, X_{\bullet}\right) \rightarrow H_{q-2}\left(X_{\bullet}, B\right), \quad q \neq n, n+1 \tag{5.3.5}
\end{equation*}
$$

and the 5 -term exact sequence

$$
\begin{equation*}
0 \rightarrow H_{n+1}\left(X, X_{\bullet}\right) \rightarrow H_{n-1}\left(X_{\bullet}, B\right) \rightarrow H_{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \rightarrow H_{n}\left(X, X_{\bullet}\right) \rightarrow H_{n-2}\left(X_{\bullet}, B\right) \rightarrow 0 . \tag{5.3.6}
\end{equation*}
$$

We now argue by induction over n. The result is obviously true for $n=1$. Observe that B is a hypersurface in $X_{\bullet}, \operatorname{dim}_{\mathbb{C}} X_{\bullet}=n-1$, and thus, by induction, the map

$$
H_{q}(B) \rightarrow H_{q}\left(X_{\bullet}\right)
$$

is an isomorphism for $q \leq n-2$ and an epimorphism for $q=n-2$. Using the long exact sequence of the pair $\left(X_{\bullet}, B\right)$ we deduce that

$$
H_{q}\left(X_{\bullet}, B\right)=0, \quad \forall q \leq n-2
$$

Using (5.3.5) we deduce

$$
H_{q}\left(X, X_{\bullet}\right) \cong H_{q-2}\left(X_{\bullet}, B\right) \cong 0, \quad \forall q \leq n-1
$$

We can now conclude the proof using the long exact sequence of the pair $\left(X, X_{\bullet}\right)$.

Corollary 5.3.6. If X is a hypersurface in \mathbb{P}^{n} then

$$
b_{k}(X)=b_{k}\left(\mathbb{P}^{n}\right), \quad \forall k \leq n-2 .
$$

In particular, if X is a hypersurface in \mathbb{P}^{3} then $b_{1}(X)=0$.
Consider the connecting homomorphism

$$
\partial: H_{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \rightarrow H_{n-1}\left(\hat{X}_{\bullet}\right)
$$

Its image

$$
V:=\partial\left(H_{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right)\right) \subset H_{n-1}\left(\hat{X}_{\bullet}\right)=H_{\operatorname{dim}_{\mathbb{C}} \hat{X}_{\bullet}}\left(\hat{X}_{\bullet}\right)
$$

is called the module of vanishing cycles. Using the long exact sequences of the pairs $\left(\hat{X}_{+}, \hat{X}_{\bullet}\right)$ and $\left(X, X_{\bullet}\right)$ and the Key Lemma we obtain the following commutative diagram

All the vertical morphisms are induced by the map $p: \hat{X} \rightarrow X$. The morphism p_{1} is onto because it appears in the sequence (5.3.6) where $H_{n-2}\left(X_{\bullet}, B\right)=0$ by Lefschetz hypersurface section theorem. p_{2} is clearly an isomorphism since p induces a homeomorphism $\hat{X}_{\bullet} \cong X_{\bullet}$. Using the five lemma we conclude that p_{3} is an isomorphism. The above diagram shows that

$$
\begin{align*}
& V=\operatorname{ker}\left(i_{*}: H_{n-1}\left(X_{\bullet}\right) \rightarrow H_{n-1}(X)\right)=\operatorname{Image}\left(\partial: H_{n}\left(X, X_{\bullet}\right) \rightarrow H_{n-1}\left(X_{\bullet}\right)\right), \tag{5.3.7a}\\
& r k H_{n-1}\left(X_{\bullet}\right)=r k V+r k H_{n-1}(X) . \tag{5.3.7b}
\end{align*}
$$

These observations have a cohomological counterpart

This diagram shows that

$$
\begin{aligned}
I^{*}:=\operatorname{ker}\left(\delta: H^{n-1}\left(\hat{X}_{\bullet}\right) \rightarrow H^{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right)\right) \cong \operatorname{ker}\left(\delta: H^{n-1}\left(X_{\bullet}\right) \rightarrow H^{n}\left(X, X_{\bullet}\right)\right) \\
\cong \operatorname{Im}\left(i^{*}: H^{n-1}(X) \rightarrow H^{n-1}\left(X_{\bullet}\right)\right) .
\end{aligned}
$$

Define the module of invariant cycles to be the Poincaré dual of I^{*}

$$
I:=\left\{u \cap\left[X_{\bullet}\right] ; u \in I^{*}\right\} \subset H_{n-1}\left(X_{\bullet}\right)
$$

or equivalently

$$
I=\operatorname{Im}\left(i^{!}: H_{n+1}(X) \rightarrow H_{n-1}\left(X_{\bullet}\right)\right), \quad i^{!}:=P D_{X} \cdot i^{*} P D_{X}^{-1}
$$

Since i^{*} is $1-1$ on $H^{n-1}(X)$ we deduce $i^{!}$is $1-1$ so that

$$
\begin{equation*}
r k I=r k H_{n+1}(X)=r k H_{n-1}(X) . \tag{5.3.8}
\end{equation*}
$$

The last equality implies the following result.

Theorem 5.3.7 (Weak Lefschetz Theorem).

$$
r k H_{n-1}\left(X_{\bullet}\right)=r k I+r k V
$$

Using the Key Lemma, the universal coefficients theorem and the equality

$$
I^{*}=\operatorname{ker}\left(\delta: H^{n-1}\left(\hat{X}_{\bullet}\right) \rightarrow H^{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right)\right)
$$

we deduce

$$
I^{*}=\left\{\omega \in H^{n-1}\left(\hat{X}_{\bullet}\right) ; \quad\langle\omega, v\rangle=0, \quad \forall v \in V\right\}
$$

Observe that $n-1=\frac{1}{2} \operatorname{dim} \hat{X}_{\bullet}$ and thus, the Kronecker pairing on $H_{n-1}\left(X_{\bullet}\right)$ is given by the intersection form. This is nondegenerate by Poincaré duality. Thus

$$
\begin{gathered}
I:=\left\{y \in H_{n-1}\left(X_{\bullet}\right) ; y \cdot v=0, \quad \forall v \in V\right\} . \\
* * *
\end{gathered}
$$

Let us summarize the facts we have proved so far. We defined

$$
\begin{aligned}
V & :=\operatorname{image}\left(\partial: H_{n}\left(X, X_{\bullet}\right) \rightarrow H_{n-1}\left(X_{\bullet}\right)\right) \\
I & :=\operatorname{image}\left(i^{!}: H_{n+1}(X) \rightarrow H_{n-1}\left(X_{\bullet}\right)\right)
\end{aligned}
$$

and we showed that

$$
V=\operatorname{ker}\left(i_{*}: H_{n-1}\left(X_{\bullet}\right) \rightarrow H_{n-1}(X)\right)
$$

$i^{!}: H_{n+1}(X) \rightarrow H_{n-1}\left(X_{\bullet}\right)$ is $1-1$,

$$
\begin{gathered}
I=\left\{y \in H_{n-1}\left(X_{\bullet}\right) ; \quad y \cdot v=0, \quad \forall v \in V\right\} \\
r k I=r k H_{n+1}(X)=r k H_{n-1}(X) \\
r k H_{n-1}\left(X_{\bullet}\right)=r k I+r k V
\end{gathered}
$$

Chapter 6

The Hard Lefschetz theorem

The last theorem in the previous section is only the tip of the iceberg. In this chapter we enter deeper into the anatomy of an algebraic manifold and try to understand the roots of the weak Lefschetz theorem. In this chapter, unless specified otherwise, $H_{*}(X)$ denotes the homology with coefficients in \mathbb{R}. Also, assume for simplicity that the pencil $\left(X_{s}\right)_{s \in \mathbb{P}^{1}}$ consists of hyperplane sections. (We already know this does not restrict the generality.) We continue to use the notations in Lecture 5. Denote by $\omega \in H^{2}(X)$ the Poincaré dual of the hyperplane section X_{\bullet}, i.e.

$$
\left[X_{\bullet}\right]=\omega \cap[X] .
$$

6.1 The Hard Lefschetz Theorem

For any cycle $c \in H_{q}(X)$, its intersection with X_{\bullet} is a new cycle in X_{\bullet} of codimension 2 in c, i.e. a ($q-2$)-cycle. This intuitive yet unrigorous operation can be formally described as the cap product with ω

$$
\omega \cap: H_{q}(X) \rightarrow H_{q-2}(X)
$$

which factors through X •

Proposition 6.1.1. The following statements are equivalent.

$$
\begin{gather*}
V \cap I=0 . \tag{1}\\
V \oplus I=H_{n-1}\left(X_{\bullet}\right) . \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
i_{*}: H_{n-1}\left(X_{\bullet}\right) \rightarrow H_{n-1}(X) \text { maps I isomorphically onto } H_{n-1}(X) \tag{3}
\end{equation*}
$$

$$
\text { The map } \omega \cap: H_{n+1}(X) \rightarrow H_{n-1}(X) \text { is an isomorphism. }
$$

$\left(\mathrm{HL}_{4}\right)$

The restriction of the intersection form on $H_{n-1}\left(X_{\bullet}\right)$ to V remains nondegenerate.
$\left(\mathbf{H L}_{5}\right)$

The restriction of the intersection form to I remains nondegenerate.
$\left(\mathbf{H L}_{6}\right)$

Proof The weak Lefschetz theorem shows that $\left(\mathbf{H L}_{1}\right) \Longleftrightarrow\left(\mathbf{H L}_{2}\right)$.
$\left(\mathbf{H L}_{2}\right) \Longrightarrow\left(\mathbf{H L}_{3}\right)$. Use the fact established in Chapter 5 that

$$
V=\operatorname{ker}\left(i_{*}: H_{n-1}\left(X_{\bullet}\right) \rightarrow H_{n-1}(X)\right)
$$

$\left(\mathbf{H L}_{3}\right) \Longrightarrow\left(\mathbf{H L}_{4}\right)$. In Chaper 5 we proved that $i^{!}: H_{n+1}(X) \rightarrow H_{n-1}\left(X_{\bullet}\right)$ is a monomorphism with image I. By $\left(\mathbf{H L}_{3}\right), i_{*}: I \rightarrow H_{n-1}(X)$ is an isomorphism.
$\left(\mathbf{H L}_{4}\right) \Longrightarrow\left(\mathbf{H L}_{3}\right)$ If $i_{*} \circ i^{!}=\omega \cap: H_{n+1}(X) \rightarrow H_{n-1}(X)$ is an isomorphism then we conclude that $i_{*}: \operatorname{Im}\left(i^{!}\right)=I \rightarrow H_{n-1}(X)$ is onto. In Lecture 5 we have shown that $\operatorname{dim} I=$ $\operatorname{dim} H_{n-1}(X)$ so that $i_{*}: H_{n-1}\left(X_{\bullet}\right) \rightarrow H_{n-1}(X)$ must be $1-1$.
$\left(\mathbf{H L}_{2}\right) \Longrightarrow\left(\mathbf{H L}_{5}\right),\left(\mathbf{H L}_{2}\right) \Longrightarrow\left(\mathbf{H L}_{6}\right)$. This follows from the fact established in the previous lecture that I is the orthogonal complement of V with respect to the intersection form.
$\left(\mathbf{H L}_{5}\right) \Longrightarrow\left(\mathbf{H L}_{1}\right)$ and $\left(\mathbf{H L}_{6}\right) \Longrightarrow\left(\mathbf{H L}_{1}\right)$. Suppose we have a cycle $c \in V \cap I$. Then

$$
c \in I \Longrightarrow c \cdot v=0, \quad \forall v \in V
$$

while

$$
c \in V \Longrightarrow c \cdot z=0, \quad \forall z \in I .
$$

When the restriction of the intersection from to either V or I is nondegenerate the above equalities imply $c=0$ so that $V \cap I=0$.

Theorem 6.1.2 (The Hard Lefschetz Theorem). The equivalent statements ($\left.\mathbf{H L}_{1}\right)-\left(\mathbf{H L}_{6}\right)$ above are true (for the homology with real coefficients).

This is a highly nontrivial result. Its complete proof requires a sophisticated analytical machinery (Hodge theory) and is beyond the scope of these lectures. We refer the reader to [31, Sec.0.7] for more details. In the remainder of this chapter we will discuss other topological facets of this remarkable theorem.

6.2 Primitive and effective cycles

Set

$$
X_{0}:=X, \quad X_{1}:=X_{\bullet}, \quad X_{2}:=B
$$

so that X_{i+1} is a generic smooth hyperplane section of X_{i}. We can iterate this procedure and obtain a chain

$$
X_{0} \supset X_{1} \supset X_{2} \supset \cdots \supset X_{n} \supset \emptyset .
$$

so that $\operatorname{dim} X_{q}=n-q$, and X_{q} is a generic hyperplane section of X_{q-1}. Denote by $I_{q} \subset H_{n-q}\left(X_{q}\right)$ the module of invariant cycles,

$$
I_{q}=\operatorname{Image}\left(i^{!}: H_{n-q+2}\left(X_{q-1}\right) \rightarrow H_{n-q}\left(X_{q}\right)\right)
$$

and is Poincaré dual

$$
I_{q}^{*}=\operatorname{Image}\left(i^{*}: H^{n-q}\left(X_{q-1}\right) \rightarrow H^{n-q}\left(X_{q}\right)\right)=P D_{X_{q}}^{-1}\left(I_{q}\right) .
$$

The Lefschetz hyperplane section theorem implies that the morphisms

$$
i_{*}: H_{k}\left(X_{q}\right) \rightarrow H_{k}\left(X_{j}\right), \quad j \leq q
$$

are isomorphisms for $k+q<n$. We conclude by duality that

$$
i^{*}: H^{k}\left(X_{j}\right) \rightarrow H^{k}\left(X_{q}\right), \quad(j \leq q)
$$

is an isomorphism if $k+q<n$.
Using $\left(\mathbf{H L}_{3}\right)$ we deduce that

$$
i_{*}: I_{q} \rightarrow H_{n-q}\left(X_{q-1}\right)
$$

is an isomorphism. Using the above version of the Lefschetz hyperplane section theorem we conclude that

$$
i_{*} \text { maps } I_{q} \text { isomorphically onto } H_{n-q}(X)
$$

Now observe that

$$
I_{q}^{*}=\operatorname{Image}\left(i^{*}: H^{n-q}\left(X_{q-1} \rightarrow H^{n-1}\left(X_{q}\right)\right)\right.
$$

and, by Lefschetz hyperplane section theorem we have the isomorphisms

$$
H^{n-q}\left(X_{0}\right) \xrightarrow{i^{*}} H^{n-q}\left(X_{1}\right) \xrightarrow{i^{*}} \cdots \xrightarrow{i^{*}} H^{n-q}\left(X_{q-1}\right) .
$$

Using Poincaré duality we obtain

$$
i^{!} \text {maps } H_{n+q}(X) \text { isomorphically onto } I_{q} \text {. }
$$

Iterating $\left(\mathbf{H L}_{6}\right)$ we obtain
The restriction of the intersection form of $H_{n-q}(X)$ to I_{q} remains non-degenerate. ($\dagger \dagger \dagger$)
The isomorphism i_{*} carries the intersection form on I_{q} to a nondegenerate form on $H_{n-q}(X) \cong H_{n+q}(X)$. When $n-q$ is odd this a skew-symmetric form, and thus the nondegeneracy assumptions implies

$$
\operatorname{dim} H_{n-q}(X)=\operatorname{dim} H_{n+q}(X) \in 2 \mathbb{Z}
$$

We have thus proved the following result.

Corollary 6.2.1. The the odd dimensional Betti numbers $b_{2 k+1}(X)$ of X are even.
Remark 6.2.2. The above corollary shows that not all even dimensional manifolds are algebraic. Take for example $X=S^{3} \times S^{1}$. Using Künneth formula we deduce

$$
b_{1}(X)=1 .
$$

This manifold is remarkable because it admits a complex structure, yet it is not algebraic! As a complex manifold it is known as the Hopf surface (see [15, Chap.1]).

The q-th exterior power ω^{q} is Poincaré dual to the fundamental class

$$
\left[X_{q}\right] \in H_{2 n-2 q}(X)
$$

of X_{q}. Therefore we have the factorization

Using ($\dagger \dagger$) and (\dagger) we obtain the following generalization of $\left(\mathbf{H L}_{4}\right)$.
Corollary 6.2.3. For $q=1,2, \cdots, n$ the map

$$
\omega^{q} \cap: H_{n+q}(X) \rightarrow H_{n-q}(X)
$$

is an isomorphism.
Clearly, the above corollary is equivalent to the Hard Lefschetz Theorem. In fact, we can formulate and even more refined version.

Definition 6.2.4. (a) An element $c \in H_{n+q}(X), 0 \leq q \leq n$ is called primitive if

$$
\omega^{q+1} \cap c=0 .
$$

We will denote by $P_{n+q}(X)$ the subspace of $H_{n+q}(X)$ consisting of primitive elements.
(b) An element $z \in H_{n-q}(X)$ is called effective if

$$
\omega \cap z=0 .
$$

We will denote by $E_{n-q}(X)$ the subspace of effective elements.
Observe that

$$
c \in H_{n+q}(X) \text { is primitive } \Longleftrightarrow \omega^{q} \cap c \in H_{n-q}(X) \text { is effective. }
$$

Roughly speaking, a cycle is effective if it does not intersect the "part at infinity of X ", $X \cap$ hyperplane.

Theorem 6.2.5 (Lefschetz decomposition). (a) Every element $c \in H_{n+q}(X)$ decomposes uniquely as

$$
\begin{equation*}
c=c_{0}+\omega \cap c_{1}+\omega^{2} \cap c_{2}+\cdots \tag{6.2.1}
\end{equation*}
$$

where $c_{j} \in H_{n+q+2 j}(X)$ are primitive elements.
(b) Every element $z \in H_{n-q}(X)$ decomposes uniquely as

$$
\begin{equation*}
z=\omega^{q} \cap z_{0}+\omega^{q+1} \cap z_{1}+\cdots \tag{6.2.2}
\end{equation*}
$$

where $z_{j} \in H_{n+q+2 j}(X)$ are primitive elements.
Proof Observe that because the above representations are unique and since

$$
(6.2 .2)=\omega^{q} \cap(6.2 .1)
$$

we deduce that Corollary 6.2 .3 is a consequence of the Lefschetz decomposition.
Conversely, let us show that (6.2.1) is a consequence of Corollary 6.2.3. We will use a descending induction starting with $q=n$. Clearly, a dimension count shows that

$$
P_{2 n}(X)=H_{2 n}(X), \quad P_{2 n-1}(X)=H_{2 n-1}(X)
$$

and (6.2.1) is trivially true for $q=n, n-1$. For the induction step it suffices to show that every element $c \in H_{n+q}(X)$ can be written uniquely as

$$
c=c_{0}+\omega c_{1}, \quad c_{1} \in H_{n+q+2}(X), \quad c_{0} \in P_{n+q}(X) .
$$

According to Corollary 6.2 .3 there exists an unique $z \in H_{n+q+2}(X)$ such that

$$
\omega^{q+2} \cap z=\omega^{q+1} \cap c
$$

so that

$$
c_{0}:=c-\omega \cap z \in P_{n+q}(X) .
$$

To prove uniqueness, assume

$$
0=c_{0}+\omega \cap c_{1}, \quad c_{0} \in P_{n+q}(X) .
$$

Then

$$
0=\omega^{q+1} \cap\left(c_{0}+\omega \cap c_{1}\right) \Longrightarrow \omega^{q+2} \cap c_{1}=0 \Longrightarrow c_{1}=0 \Longrightarrow c_{0}=0
$$

The Lefschetz decomposition shows that the homology of X is completely determined by its primitive part. Moreover, the above proof shows that

$$
0 \leq \operatorname{dim} P_{n+q}=b_{n+q}-b_{n+q+2}=b_{n-q}-b_{n-q-2}
$$

which imply

$$
1=b_{0} \leq b_{2} \leq \cdots \leq b_{2\lfloor n / 2\rfloor}, \quad b_{1} \leq b_{3} \leq \cdots \leq b_{2\lfloor(n-1) / 2\rfloor+1},
$$

where $\lfloor x\rfloor$ denotes the integer part of x. These inequalities introduce additional topological restrictions on algebraic manifolds. For example, the sphere S^{4} cannot be an algebraic manifold because $b_{2}\left(S^{4}\right)=0<b_{0}\left(S^{4}\right)=1$.

Chapter 7

The Picard-Lefschetz formulæ

In this lecture we finally take a look at the Key Lemma and try to elucidate its origins. We will continue to use the notations in the previous two lectures. This time however $H_{\bullet}(-)$ will denote the homology with \mathbb{Z}-coefficients.

7.1 Proof of the Key Lemma

Recall that the function $\hat{f}: \hat{X} \rightarrow \mathbb{P}^{1}$ is Morse and its critical values t_{1}, \cdots, t_{r} are all in D_{+}. We denote its critical points by p_{1}, \cdots, p_{r}, so that

$$
\hat{f}\left(p_{j}\right)=t_{j}, \quad \forall j .
$$

We will identify D_{+}with the unit disk at $0 \in \mathbb{C}$. Let us introduce some notations. Let $j=1, \cdots, r$.

- Denote by D_{j} a closed disk of very small radius ρ centered at $t_{j} \in D_{+}$. If $\rho \ll 1$ these disks are pairwise disjoint.
- Connect $\zeta \in \partial D_{+}$to $t_{j}+\rho \in \partial D_{j}$ by a smooth path ℓ_{j} such that the resulting paths $\ell_{1}, \cdots, \ell_{r}$ are disjoint (see Figure 7.1). Set $k_{j}:=\ell_{j} \cup D_{j}, \ell=\bigcup \ell_{j}$ and $k=\bigcup k_{j}$.
- Denote by B_{j} a small ball in \hat{X} centered at p_{j}.

The proof of the Key Lemma will be carried out in several steps.
Step 1 Localizing around the singular fibers. Set $L:=f^{-1}(\ell)$ and $K:=\hat{f}^{-1}(k)$. We will show that \hat{X}_{ζ} is a deformation retract of L and K is a deformation retract of \hat{X}_{+}so that the inclusions

$$
\left(\hat{X}_{+}, \hat{X}_{\zeta}\right) \hookrightarrow\left(\hat{X}_{+}, L\right) \hookleftarrow(K, L)
$$

induce isomorphisms of all homology (and homotopy) groups.
Observe that k is a strong deformation retract of D_{+}and ζ is a strong deformation retract of ℓ. Using Ehresmann fibration theorem we deduce that we have fibrations

$$
f: L \rightarrow \ell, \hat{f}: \hat{X}_{+} \backslash \hat{f}^{-1}\left\{t_{1}, \cdots, t_{r}\right\} \rightarrow D_{+} \backslash\left\{t_{1}, \cdots, t_{r}\right\} .
$$

Using the homotopy lifting property of fibrations (see [36, §4.3] we obtain strong deformation retractions

$$
L \rightarrow \hat{X}_{\zeta}, \quad \hat{X}_{+} \backslash \hat{f}^{-1}\left\{t_{1}, \cdots, t_{r}\right\} \rightarrow K \backslash \hat{f}^{-1}\left\{t_{1}, \cdots, t_{r}\right\} .
$$

Figure 7.1: Isolating the critical values

Step 2 Localizing near the critical points. Set $T_{j}:=\hat{f}^{-1}\left(D_{j}\right) \cap B_{j}, F_{j}:=f^{-1}\left(t_{j}+\rho\right) \cap B_{j}$

$$
T:=\bigcup T_{j}, \quad F:=\bigcup F_{j} .
$$

The excision theorem shows that the inclusion

$$
(B, F) \rightarrow(K, L)
$$

induces an isomorphism

$$
\bigoplus_{j=1}^{r} H_{\bullet}\left(T_{j}, F_{j}\right) \rightarrow H_{\bullet}(K, L) \cong H_{\bullet}\left(\hat{X}_{+}, \hat{X}_{\zeta}\right)
$$

Step 3 Conclusion We will show that for every $j=1, \cdots, r$ we have

$$
H_{q}\left(T_{j}, F_{j}\right)=\left\{\begin{array}{lll}
0 & \text { if } & q \neq \operatorname{dim}_{\mathbb{C}} X=n \\
\mathbb{Z} & \text { if } & q=n
\end{array}\right.
$$

At this point we need to use the nondegeneracy of p_{j}. To simplify the presentation, in the sequel we will drop the subscript j.

We can regard B as the unit open ball B centered at $0 \in \mathbb{C}^{n}$ and \hat{f} as a function $B \rightarrow \mathbb{C}$ such that $\hat{f}(0)=0$ and $0 \in B$ is a nondegenerate critical point of \hat{f}. By making B even smaller we can assume the origin is the only critical point. At this point we want to invoke the following classical result. It is a consequence of the more general Tougeron finite determinacy theorem which will be proved later in this course. For a direct proof we refer to the classical source [54].
Lemma 7.1.1 (Morse Lemma). There exist local holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ in an open neigborhood $0 \in U \subset B$ such that

$$
\left.\hat{f}\right|_{U}=z_{1}^{2}+\cdots+z_{n}^{2} .
$$

Figure 7.2: Isolating the critical points

By making B even smaller we can assume that it coincides with the neighborhood U postulated by Morse Lemma. Now observe that T and F can be given the explicit descriptions

$$
\begin{gather*}
T:=\left\{\left(z_{1}, \cdots, z_{n}\right) ; \sum_{i}\left|z_{i}\right|^{2} \leq \varepsilon^{2},\left|\sum_{i} z_{i}^{2}\right|<\rho\right\} \tag{7.1.1}\\
F=F_{\rho}:=\left\{z \in T ; \sum_{i} z_{i}^{2}=\rho\right\} .
\end{gather*}
$$

The description (7.1.1) shows that T can be contracted to the origin. This shows that the connecting homomorphism

$$
H_{q}(T, F) \rightarrow H_{q-1}(F)
$$

is an isomorphism for $q \neq 0$. Moreover $H_{0}(T, F)=0$. The Key Lemma is now a consequence of the following result.

Lemma 7.1.2. F_{ρ} is diffeomeorhic to the disk bundle of the tangent bundle $T S^{n-1}$.
Proof Set $z_{j}:=u_{j}+\boldsymbol{i} v_{j}, \vec{u}=\left(u_{1}, \cdots, u_{n}\right), \vec{v}=\left(v_{1}, \cdots, v_{n}\right),|\vec{u}|^{2}:=\sum_{j} u_{j}^{2},|\vec{v}|^{2}:=\sum_{j} v_{j}^{2}$. The fiber F has the description

$$
\begin{gathered}
|\vec{u}|^{2}=\rho+|\vec{v}|^{2}, \quad \vec{u} \cdot \vec{v}=0 \in \mathbb{R} \\
|\vec{u}|^{2}+|\vec{v}|^{2} \leq \varepsilon^{2} .
\end{gathered}
$$

Now let

$$
\vec{\xi}:=\left(\rho+|v|^{2}\right)^{-1 / 2} \vec{u} \in \mathbb{R}^{n} .
$$

In the coordinates ξ, \vec{v} the fiber F has the description

$$
|\vec{\xi}|^{2}=1, \quad \vec{\xi} \cdot \vec{v}=0,2|\vec{v}|^{2} \leq \varepsilon^{2}-\rho .
$$

The first equality describes the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$. The condition

$$
\vec{\xi} \cdot \vec{v} \Longleftrightarrow \vec{v} \perp \vec{\xi}
$$

shows that \vec{v} is tangent to S^{n-1} at ξ. The last inequality shows that the tangent vector \vec{v} has length $\leq \sqrt{\left(\varepsilon^{2}-\rho\right) / 2}$. It is now obvious that F is the disk bundle of $T S^{n-1}$. This completes the proof of the Key Lemma.

7.2 Vanishing cycles, local monodromy and the Picard-Lefschetz formula

We want to analyze in greater detail the picture evolving from the proof of Lemma 7.1.2. Denote by B a small closed ball centered at $0 \in \mathbb{C}^{n}$ and consider

$$
f: B \rightarrow \mathbb{C}, \quad f(z)=z_{1}^{2}+\cdots+z_{n}^{2}
$$

We have seen that the regular fiber of $F=F_{\rho}=f^{-1}(\rho)(0<\rho \ll 1)$ is diffeomorphic to a disc bundle over a $n-1$-sphere S_{ρ} of radius $\sqrt{\rho}$. This sphere is defined by the equation

$$
S_{\rho}:=\{\vec{v}=0\} \cap f^{-1}(\rho) \Longleftrightarrow\left\{\vec{v}=0, \quad|\vec{u}|^{2}=\rho\right\} .
$$

As $\rho \rightarrow 0$, i.e. we are looking at fibers closer and closer to the singular one $F_{0}=f^{-1}(0)$, the radius of this sphere goes to zero, while for $\rho=0$ the fiber is locally the cone $z_{1}^{2}+\cdots+z_{n}^{2}=$ 0 . The homology class in F carried by this collapsing sphere generates $H_{n-1}(F)$. This homology class was named vanishing cycle by Lefschetz. We will denote it by Δ (see Figure 7.3). The proof of the Key Lemma in the previous section shows that Lefschetz' vanishing cycles coincide with what we previously named vanishing cycles.

Observe now that since $\partial: H_{n}(B, F) \rightarrow H_{n-1}(F)$ is an isomorphism, there exists a relative n-cycle $Z \in H_{n}(B, F)$ such that

$$
\partial Z=\Delta
$$

Z is known as the thimble determined by the vanishing cycle Δ. It is filled in by the family $\left(S_{\rho}\right)$ of shrinking spheres. In Figure 7.3 it is represented by the shaded disk.

Exercise 7.2.1. Find an equation describing the thimble.
Denote by $D_{r} \subset \mathbb{C}$ the open disk of radius r centered at the origin and by $B_{r} \subset \mathbb{C}^{n}$ the ball of radius r centered at the origin. We will use the following technical result whose proof is left to the reader as an exercise.

Figure 7.3: The vanishing cycle for functions of $n=2$ variables

Lemma 7.2.1. For any $\rho, r>0$ such that $r^{2}>\rho$ the maps

$$
\begin{gathered}
f: X_{\varepsilon, \rho}=\left(B_{r} \backslash F_{0}\right) \cap f^{-1}\left(D_{\rho}\right) \rightarrow D_{\rho} \backslash\{0\}=: D_{\rho}^{*}, \\
f_{\partial}: \partial X_{r, \rho}=\partial B_{\varepsilon} \cap f^{-1}\left(D_{\rho}\right) \rightarrow D_{\rho}
\end{gathered}
$$

are proper, surjective, submersions.
Exercise 7.2.2. Prove the above lemma.
Set $r=2, \rho=1+\varepsilon,(0<\varepsilon \ll 1), X=X_{r=2, \rho=1+\varepsilon}, B=B_{2}, D=D_{1+\varepsilon}$. According to the Ehresmann fibration theorem we have the fibrations

with standard fiber the manifold with boundary $F \cong f^{-1}(1) \cap \bar{B}_{2}$ and

with standard fiber $\partial F \cong f^{-1}(1) \cap \partial \bar{B}$. We deduce that ∂X is a trivial bundle

$$
\partial X \cong \partial F \times D
$$

We can describe one such trivialization explicitly. Denote by \mathbb{M} the standard model for the fiber, incarnated as the unit disk bundle determined by the tangent bundle of the unit sphere $S^{n-1} \hookrightarrow \mathbb{R}^{n} . \mathbb{M}$ has the algebraic description

$$
\mathbb{M}=\left\{(\vec{u}, \vec{v}) \in \mathbb{R}^{n} \times \mathbb{R}^{n} ;|\vec{u}|=1, \quad \vec{u} \cdot \vec{v}=0, \quad|\vec{v}| \leq 1\right\} .
$$

Note that

$$
\partial \mathbb{M}=\left\{(\vec{u}, \vec{v}) \in \mathbb{R}^{n} \times \mathbb{R}^{n} ; \quad|\vec{u}|=1=|\vec{v}|, \quad \vec{u} \cdot \vec{v}=0\right\} .
$$

As in the previous section we have

$$
F=f^{-1}(1)=\left\{\vec{z}=\vec{x}+\boldsymbol{i} \vec{y} \in \mathbb{C}^{n} ;|\vec{x}|^{2}+|\vec{y}|^{2} \leq 4,|\vec{x}|^{2}=1+|\vec{y}|^{2}, \vec{x} \cdot \vec{y}=0\right\}
$$

and a diffeomorphism

$$
\Phi: F \rightarrow \mathbb{M}, \quad F \ni \vec{z}=\vec{x}+i \vec{y} \mapsto\left\{\begin{array}{l}
\vec{u}=\frac{1}{\left(1+|\vec{y}|^{2}\right)^{1 / 2}} \vec{x} \\
\vec{v}=\alpha \vec{y}
\end{array}, \alpha=\sqrt{\frac{2}{3}} .\right.
$$

Its inverse is given by

$$
\mathbb{M} \ni(\vec{u}, \vec{v}) \stackrel{\Phi^{-1}}{\mapsto}\left\{\begin{array}{l}
\vec{x}=\left(1+|\vec{v}|^{2} / \alpha^{2}\right)^{1 / 2} \vec{u} \\
\vec{y}=\frac{1}{\alpha} \vec{v}
\end{array} .\right.
$$

Set

$$
F_{w}:=f^{-1}(w) \cap \bar{B}, \quad 0 \leq|w| \leq 1+\varepsilon .
$$

Note that

$$
\partial F_{a+i b}=\left\{\vec{x}+\boldsymbol{i} \vec{y} ; \quad|\vec{x}|^{2}=a+|\vec{y}|^{2}, \quad 2 \vec{x} \cdot \vec{y}=b, \quad|\vec{x}|^{2}+|\vec{y}| 2=4\right\} .
$$

For every $w=a+i b \in \bar{D}_{1}$ define

$$
\Gamma_{w}: \partial F_{w} \rightarrow \partial \mathbb{M}, \quad \partial F_{w} \ni \vec{x}+\boldsymbol{i} \vec{y} \mapsto\left\{\begin{array}{l}
\vec{u}=c_{1}(w) \vec{x} \\
\vec{v}=c_{3}(w)\left(\vec{y}+c_{2}(w) \vec{x}\right)
\end{array}\right.
$$

where

$$
\begin{equation*}
c_{1}(w)=\left(\frac{2}{4+a}\right)^{1 / 2}, \quad c_{2}(w)=-\frac{b}{4+a}, \quad c_{3}(w)=\left(\frac{8+2 a}{16-a^{2}-b^{2}}\right)^{1 / 2} . \tag{7.2.1}
\end{equation*}
$$

The family $\left(\Gamma_{w}\right)_{|w|<1+\varepsilon}$ defines a trivialization $\partial X \rightarrow \partial \mathbb{M} \times D$.
Fix once and for all this trivialization and a metric h on ∂F. We now equip ∂X with the product metric $g_{\partial}:=h \oplus h_{0}$ where h_{0} denotes the Euclidean metric on D_{1}. Now extend g_{∂} to a metric on X and denote by H the sub-bundle of $T X$ consisting of tangent vectors g-orthogonal to the fibers of f. The differential f_{*} produces isomorphisms

$$
f_{*}: H_{p} \rightarrow T_{f(p)} D_{1}^{*}, \quad \forall x \in X_{\varepsilon, \rho} .
$$

In particular, any vector field V on D_{1}^{*} admits a unique horizontal lift, i.e. a smooth section V^{h} of H such that $f_{*}\left(V^{h}\right)=V$.

Fix a point $\zeta \in \partial D^{*}$ and suppose $w:[0,1] \rightarrow D^{*}$ is a closed path beginning and ending at ζ

$$
w(0)=w(1)=\zeta .
$$

Using the horizontal lift of \dot{w} we obtain for each $p \in f^{-1}(\zeta)$ a smooth path $\tilde{w}_{p}:[0,1] \rightarrow X$ which is tangent to the horizontal sub-bundle H and it is a lift of w starting at p, i.e. the diagram below is commutative

We get in this fashion a map

$$
h_{w}: F=f^{-1}(\zeta) \rightarrow f^{-1}(\zeta), \quad p \mapsto \tilde{w}_{p}(1)
$$

The standard results on the smooth dependence of solutions of ODE's on initial data show that h_{w} is a smooth map. It is in fact a diffeomorphism of F with the property that

$$
\left.h_{w}\right|_{\partial F}=\mathbf{1}_{\partial F} .
$$

The map h_{w} is not canonical because it depends on several choices: the choice of trivialization $\partial X \cong \partial F \times D_{*}$, the choice of metric h on F and the choice of the extension g of ga.

We say that two diffeomorphisms $G_{0}, G_{1}: F \rightarrow F$ such that $\left.G_{i}\right|_{\partial F}=\mathbf{1}_{\partial F}$ are isotopic if there exists a homotopy

$$
G:[0,1] \times F \rightarrow F
$$

connecting them such that for each t the map $G_{t}=G(t, \bullet): F \rightarrow F$ is a diffeomorphism satisfying $\left.G_{t}\right|_{\partial F}=\mathbf{1}_{\partial F}$ for all $t \in[0,1]$.

The isotopy class of $h_{w}: F \rightarrow F$ is independent of the various choices listed above and in fact depends only on the image of w in $\pi_{1}\left(D^{*}, \zeta\right)$. The induced map

$$
h_{w}: H_{\bullet}(F) \rightarrow H_{\bullet}(F)
$$

is called the monodromy along the loop w. The correspondence

$$
h: \pi_{1}\left(D_{*}, \zeta\right) \ni w \mapsto h_{w} \in \operatorname{Aut}\left(H_{\bullet}(F)\right)
$$

is a group morphism called the local monodromy. Since $\left.h_{w}\right|_{\partial F}=\mathbf{1}_{\partial F}$ we obtain another morphism

$$
h: \pi_{1}\left(D^{*}, \zeta\right) \rightarrow \operatorname{Aut}\left(H_{\bullet}(F, \partial F)\right)
$$

which will continue to call local monodromy.

Observe that if $z \in H_{\bullet}(F, \partial F)$ is a relative cycle (i.e. z is a chain such that $\partial z \in \partial F$) then for every $\gamma \in \pi_{1}\left(D_{\rho}^{*}, \zeta\right)$ we have

$$
\partial z=\partial h_{\gamma} z \Longrightarrow \partial\left(z-h_{w} z\right)=0
$$

so that $\left(z-h_{w} z\right)$ is a cycle in F. In this fashion we obtain a map

$$
\operatorname{var}: \pi_{1}\left(D^{*}, \zeta\right) \rightarrow \operatorname{Hom}\left(H_{n-1}(F, \partial F) \rightarrow H_{n-1}(F)\right), \quad \operatorname{var}_{\gamma}(z)=h_{\gamma} z-z
$$

$\left(z \in H_{n-1}(F, \partial F), \gamma \in \pi_{1}\left(D^{*}, \zeta\right)\right)$ called the variation map.
The vanishing cycle $\Delta \in H_{n-1}(F)$ is represented by the zero section of \mathbb{M} described in the (\vec{u}, \vec{v}) coordinates by $\vec{v}=0$. It is oriented as the unit sphere $S^{n-1} \hookrightarrow \mathbb{R}^{n}$. Let

$$
\vec{u}_{ \pm}=(\pm 1,0, \cdots, 0) \in \Delta, \quad P_{ \pm}=\left(\vec{u}_{ \pm}, \overrightarrow{0}\right) \in \mathbb{M}
$$

The standard model \mathbb{M} admits a natural orientation as the total space of a fibration where we use the fiber-first convention of Chapter 6

$$
\text { or }(\text { total space })=\mathbf{o r}(\text { fiber }) \wedge \text { or }(\text { base }) .
$$

We will refer to this orientation as the bundle orientation.
Near $P_{+} \in \mathbb{M}$ we can use as local coordinates the pair $(\vec{\xi}, \vec{\eta}), \vec{\xi}=\left(u_{2}, \cdots, u_{n}\right), \vec{\eta}=$ $\left(v_{2}, \cdots, v_{n}\right)$. The orientation of Δ at \vec{u}_{+}is given by

$$
d u_{2} \wedge \cdots \wedge d u_{n} \stackrel{\Phi}{\longleftrightarrow} d x_{2} \wedge \cdots \wedge d x_{n} .
$$

The orientation of the fiber over \vec{u}_{+}is given by

$$
d v_{2} \wedge \cdots \wedge d v_{n} \stackrel{\Phi}{\longleftrightarrow} d y_{2} \wedge \cdots \wedge d y_{n} .
$$

Thus

$$
\text { or }_{\text {bundle }}=d v_{2} \wedge \cdots \wedge d v_{n} \wedge d u_{2} \wedge \cdots \wedge d u_{n} \longleftrightarrow d y_{2} \wedge \cdots \wedge d y_{n} \wedge d x_{2} \wedge \cdots \wedge d x_{n}
$$

On the other hand, F has a natural orientation as a complex manifold. We will refer to it as the complex orientation. The collection $\left(z_{2}, \cdots, z_{n}\right)$ defines holomorphic local coordinates on F near Φ^{-1} so that

$$
\mathbf{o r}_{\text {complex }}=d x_{2} \wedge d y_{2} \wedge \cdots \wedge d x_{n} \wedge d y_{n}
$$

We see that ${ }^{1}$

$$
\mathbf{o r}_{\text {complex }}=(-1)^{n(n-1) / 2} \mathbf{o r}_{\text {bundle }}
$$

Any orientation or on F defines an intersection pairing

$$
H_{n-1}(F) \times H_{n-1}(F) \rightarrow \mathbb{Z}
$$

[^2]formally defined by the equality
$$
c_{1} *_{\mathbf{o r}} c_{2}=\left\langle P D_{\text {or }}^{-1}\left(i_{*}\left(c_{1}\right)\right), c_{2}\right\rangle
$$
where $i_{*}: H_{n-1}(F) \rightarrow H_{n-1}(F, \partial F)$ is the inclusion induced morphism,
$$
P D_{\text {or }}: H^{n-1}(F) \rightarrow H_{n-1}(F, \partial F), u \mapsto u \cap[F]
$$
is the Poincaré-Lefschetz duality defined by the orientation or and $\langle-,-\rangle$ is the Kronecker pairing. More concretely, to compute the self-intersection number of the generator $\Delta \in$ $H_{n-1}(F)$ slightly perturb inside F the sphere S representing Δ,
$$
S \rightarrow S^{\prime}
$$
so that ${ }^{2} S_{\rho} \pitchfork S_{\rho}^{\prime}$, and then count the intersection points with appropriate signs determined by the chosen orientation. For that reason, the self-intersection number of Δ is
\[

$$
\begin{array}{r}
\Delta \circ \Delta=(-1)^{n(n-1) / 2} \Delta * \Delta=\mathbf{e}\left(T S^{n-1}\right)\left[S^{n-1}\right]=\chi\left(S^{n-1}\right) \\
=\left\{\begin{array}{lll}
0 & \text { if } & n \text { is even } \\
2 & \text { if } & n \text { is odd }
\end{array} .\right. \tag{7.2.2}
\end{array}
$$
\]

Above \mathbf{e} denotes the Euler class of $T S^{n-1}$.
Observe also that there exists an intersection pairing

$$
H_{n-1}(F, \partial F) \times H_{n-1}(F) \rightarrow \mathbb{Z}, u *_{\text {or }} v=\left\langle P D_{\text {or }}^{-1}(u), v\right\rangle
$$

which produces a morphism

$$
H_{n-1}(F, \partial F) \rightarrow \operatorname{Hom}\left(H_{n-1}(F), \mathbb{Z}\right), \quad z \mapsto z *_{\text {or }}
$$

Let us observe this is an isomorphism. Denote by $\nabla \in H_{n-1}(F, \partial F)$ the relative cycle carried by an oriented fiber of the disk bundle of $T S^{n-1}$ (see Figure 7.3) so that

$$
\nabla \circ \Delta=1 .
$$

Hence, the image of ∇ in $\operatorname{Hom}\left(H_{n-1}(F), \mathbb{Z}\right) \cong \mathbb{Z}$ is a generator. On the other hand, by Poincaré-Lefschetz duality we have

$$
H_{n-1}(F, \partial F) \cong H^{n-1}(F) \cong H^{n-1}\left(S^{n-1}\right) \cong \mathbb{Z}
$$

so that ∇ must be a generator of $H_{n-1}(F, \partial F)$.
The variation map is thus completely understood if we understand its effect on ∇ (see Figure 7.4). At this point we can be much more explicit. The loop

$$
\gamma_{0}: \quad[0,1] \ni t \mapsto w(t):=e^{2 \pi i t}
$$

[^3]

Figure 7.4: The effect of monodromy on ∇
generates the fundamental group of D^{*}. We denote by var : $H_{n-1}(F, \partial F) \rightarrow H_{n-1}(F)$ the variation along this loop. Observe that

$$
\operatorname{var}(\nabla)=m \cdot \Delta
$$

where

$$
m:=\nabla \circ \operatorname{var}(\nabla) .
$$

We want to describe the integer m explicitly. We have the following fundamental result.
Theorem 7.2.2 (Local Picard-Lefschetz formulæ).

$$
m=(-1)^{n}
$$

$$
\operatorname{var}_{\gamma_{0}}(\delta)=(-1)^{n}(\delta \circ \Delta) \Delta=(-1)^{n(n+1) / 2}(\delta * \Delta) \Delta, \quad \forall \delta \in H_{n-1}(F, \partial F)
$$

Proof ([40, Hussein-Zade]) The proof consists of a three-step reduction process. Set

$$
E:=f^{-1}\left(\partial D_{1}\right) \cap \bar{B} .
$$

E is a smooth manifold with boundary

$$
\partial E=f^{-1}\left(\partial D_{1}\right) \cap \partial \bar{B}_{2}
$$

It fibers over $\partial \bar{D}_{1}$ and the restriction $\partial E \rightarrow S^{1}$ is equipped with the trivialization $\left(\Gamma_{w}\right)_{|w|=1}$. Observe that $\left.\Phi\right|_{\partial F}=\Gamma_{1}$. Fix a vector field V on E such that

$$
f_{*}(V)=2 \pi \partial_{\theta} \text { and }\left.V\right|_{\partial E=\partial F \times S^{1}}:=2 \pi \partial_{\theta} .
$$

Denote by μ_{t} the time t-map of the flow determined by V. Observe that μ_{t} defines a diffeomorphism

$$
\mu_{t}: F \rightarrow F_{w(t)}
$$

compatible with the chosen trivialization Γ_{w} of ∂E. More explicitly, this means that the diagram below is commutative.

Consider also the flow Ω_{t} on E given by

$$
\Omega_{t}(\vec{z})=\exp (\pi \boldsymbol{i} t) \vec{z}=(\cos (\pi t) \vec{x}-\sin (\pi t) \vec{y})+\boldsymbol{i}(\sin (\pi t) \vec{x}+\cos (\pi t) \vec{y}) .
$$

This flow is periodic, satisfies

$$
\Omega_{t}(F)=F_{w(t)}
$$

but it is not compatible with the chosen trivialization of ∂E.
We pick two geometric representatives $T_{ \pm}$of ∇. In the standard model \mathbb{M} the representative consists of the fiber over \vec{u}_{+}and is given by the equation

$$
\vec{u}=\vec{u}_{+} .
$$

it is oriented by $d v_{2} \wedge \cdots \wedge d v_{n}$. Its image in F via Φ^{-1} is described by the equation

$$
\vec{x}=\left(1+|\vec{y}|^{2} / \alpha^{2}\right)^{1 / 2} \vec{u}_{+} \Longleftrightarrow x_{1}>0, \quad x_{2}=\cdots=x_{n}=0,
$$

and is oriented by $d y_{2} \wedge \cdots \wedge d y_{n}$.
The representative T_{-}is described in \mathbb{M} as the fiber over \vec{u}_{-}. The orientation of S^{n-1} at \vec{u}_{-}is determined by the outer-normal-first convention and we deduce that it is given by $-d u_{2} \wedge \cdots \wedge d u_{n}$. This implies that T_{-}is oriented by $-d v_{2} \wedge \cdots \wedge d v_{n}$. Inside F the the chain T_{-}is described by

$$
\vec{x}=\left(1+|\vec{y}|^{2} / \alpha^{2}\right)^{1 / 2} \vec{u}_{+} \Longleftrightarrow x_{1}<0, \quad x_{2}=\cdots=x_{n}=0,
$$

and is oriented by $-d y_{2} \wedge \cdots \wedge d y_{n}$. Note that $\Omega_{1}=-1$ so that, taking into account the orientations, we have

$$
\Omega_{1}\left(T_{+}\right)=(-1)^{n} T_{-}=(-1)^{n} \nabla
$$

Step 1. $m=(-1)^{n} \Omega_{1}\left(T_{+}\right) \circ \mu_{1}\left(T_{+}\right)$. Note that

$$
m=\nabla \circ\left(\mu_{1}\left(T_{+}\right)-T_{+}\right)=T_{-} \circ\left(\mu_{1}\left(T_{+}\right)-T_{+}\right) .
$$

Observe that the manifolds T_{+}and T_{-}in F are disjoint so that

$$
m=T_{-} \circ \mu_{1}\left(T_{+}\right)=(-1)^{n} \Omega_{1}\left(T_{+}\right) \circ \mu_{1}\left(T_{+}\right)
$$

Step 2. $\quad \Omega_{1}\left(T_{+}\right) \circ \mu_{1}\left(T_{+}\right)=\Omega_{t}\left(T_{+}\right) \circ \mu_{t}\left(T_{+}\right), \forall t \in(0,1]$. To see this observe that the manifolds $\Omega_{1}\left(T_{+}\right)$and $\mu_{t}\left(T_{+}\right)$have disjoint boundaries if $0<t \leq 1$. Hence the deformations $\Omega_{1}\left(T_{+}\right) \rightarrow \Omega_{1-s(1-t)}\left(T_{+}\right) \mu_{1}\left(T_{+}\right) \rightarrow \mu_{1-s(1-t)}\left(T_{+}\right)$do not change the intersection numbers.
Step 3. $\Omega_{t}\left(T_{+}\right) \circ \mu_{t}\left(T_{+}\right)=1$ if $t>0$ is sufficiently small. Set

$$
A_{t}:=\Omega_{t}\left(T_{+}\right), \quad B_{t}=\mu_{t}\left(T_{+}\right)
$$

Denote by C_{ε} the arc

$$
C_{\varepsilon}=\{\exp (2 \pi \boldsymbol{i t}) ; \quad 0 \leq t \leq \varepsilon\} .
$$

Extend the trivialization $\Gamma:\left.\partial E\right|_{C_{\varepsilon}} \rightarrow \partial \mathbb{M} \times C_{\varepsilon}$ to a trivialization

$$
\tilde{\Gamma}:\left.E\right|_{C_{\varepsilon}} \rightarrow \mathbb{M} \times C_{\varepsilon}
$$

such that

$$
\left.\tilde{\Gamma}\right|_{F}=\Phi .
$$

For $t \in[0, \varepsilon]$ we can view Ω_{t} and μ_{t} as diffeomorphisms $\omega_{t}, h_{t}: \mathbb{M} \rightarrow \mathbb{M}$ such that the diagrams below are commutative.

We will think of A_{t} and B_{t} as submanifolds in \mathbb{M}

$$
A_{t}=\omega_{t}\left(T_{+}\right), \quad B_{t}=h_{t}\left(T_{+}\right)
$$

Observe that $\left.h_{t}\right|_{\partial \mathbb{M}}=\mathbf{1}_{\mathbb{M}}$ so that $B_{t}\left(T_{+}\right)$is homotopic to T_{+}via homotopies which are trivial along the boundary. Such homotopies do not alter the intersection number and we have

$$
A_{t} \circ B_{t}=A_{t} \circ T_{+} .
$$

Observe now that along $\partial \mathbb{M}$ we have

$$
\begin{equation*}
\omega_{t}=S_{t}:=\Omega_{t} \circ \Gamma_{w(t)} \circ \Gamma_{1}^{-1} \tag{7.2.3}
\end{equation*}
$$

Choose $0<r<1 / 2$. For t sufficiently small the manifold B_{t} lies in neighborhood

$$
U_{r}:=\{(\vec{\xi}, \vec{\eta}) ;|\xi|<r, \quad|\vec{\eta}| \leq 1\}
$$

of the point $P_{+} \in \mathbb{M}$, where we recall that $\xi=\left(u_{2}, \cdots, u_{n}\right)$ and $\vec{\eta}=\left(v_{2}, \cdots, v_{n}\right)$ denote local coordinates on \mathbb{M} near P_{+}. More precisely if $P=(\vec{u}, \vec{v})$ is a point of \mathbb{M} near P_{+}then its $(\vec{\xi}, \vec{\eta})$ coordinates are $\operatorname{pr}(\vec{u}, \vec{v})$, where $\mathbf{p r}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$ is the orthogonal projection

$$
(\vec{u}, \vec{v}) \mapsto\left(u_{2}, \cdots, u_{n} ; v_{2}, \cdots, v_{n}\right)
$$

We can now rewrite (7.2.3) entirely in terms of the local coordinates $(\vec{\xi}, \vec{\eta})$ as

$$
\omega_{t}(\vec{\xi}, \vec{\eta})=S_{t}:=\operatorname{pr} \circ \Omega_{t} \circ \Gamma_{w(t)} \circ \Gamma_{1}^{-1}(u(\vec{\xi}, \vec{\eta}), \vec{v}(\vec{\xi}, \vec{\eta}))
$$

Now observe that S_{t} is the restriction to ∂F of a (real) linear operator

$$
L_{t}: \mathbb{R}^{n-1} \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}
$$

More precisely,

$$
L_{t}\left[\begin{array}{c}
\vec{\xi} \\
\vec{\eta}
\end{array}\right]=C(t) R(t) C(0)^{-1} \cdot\left[\begin{array}{c}
\vec{\xi} \\
\vec{\eta}
\end{array}\right],
$$

where

$$
C(t):=\left[\begin{array}{cc}
c_{1}(t) & 0 \\
c_{3}(t) c_{2}(t) & c_{3}(t)
\end{array}\right], \quad R(t):=\left[\begin{array}{cc}
\cos (\pi t) & -\sin (\pi t) \\
\sin (\pi t) & \cos (\pi t)
\end{array}\right]
$$

and $c_{k}(t):=c_{k}(w(t)), k=1,2,3$. The exact description of $c_{k}(w)$ is given in (7.2.1). We can thus replace $A_{t}=\omega_{t}\left(T_{+}\right)$with $L_{t}\left(T_{+}\right)$for all t sufficiently small without affecting the intersection number. Now observe that for t sufficiently small

$$
L_{t}=L_{0}+t \dot{L}_{0}+O\left(t^{2}\right), \quad \dot{L}_{0}:=\left.\frac{d}{d t}\right|_{t=0} L_{t} .
$$

Now observe that

$$
\dot{L}_{0}=\dot{C}(0) C(0)^{-1}+C(0) J C(0)^{-1}, \quad J=\dot{R}(0)=\pi\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Using (7.2.1) with $a=\cos (2 \pi t), b=\sin (2 \pi t)$ we deduce

$$
\begin{gathered}
c_{1}(0)=\sqrt{\frac{2}{5}}>0, \quad c_{2}(0)=0, \quad c_{3}(0)=\sqrt{\frac{2}{3}}>0 \\
\dot{c}_{1}(0)=\dot{c}_{3}(0)=0, \quad \dot{c}_{2}(0)=-\frac{2 \pi}{25}
\end{gathered}
$$

Thus

$$
\begin{gathered}
\dot{C}(0)=-\frac{2 \pi}{25}\left[\begin{array}{cc}
0 & 0 \\
c_{3}(0) & 0
\end{array}\right], \quad C(0)^{-1}=\left[\begin{array}{cc}
\frac{1}{c_{1}(0)} & 0 \\
0 & \frac{1}{c_{3}(0)}
\end{array}\right] \\
\dot{C}(0) C(0)^{-1}=-\frac{2 \pi}{25}\left[\begin{array}{cc}
0 & 0 \\
\frac{c_{3}(0)}{c_{1}(0)} & 0
\end{array}\right]
\end{gathered}
$$

Next

$$
C(0) J C(0)^{-1}=\pi\left[\begin{array}{cc}
c_{1}(0) & 0 \\
0 & c_{3}(0)
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{c_{1}(0)} & 0 \\
0 & \frac{1}{c_{3}(0)}
\end{array}\right]
$$

$$
=\pi\left[\begin{array}{cc}
c_{1}(0) & 0 \\
0 & c_{3}(0)
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{1}{c_{3}(0)} \\
\frac{1}{c_{1}(0)} & 0
\end{array}\right]=\pi\left[\begin{array}{cc}
0 & -\frac{c_{1}(0)}{c_{3}(0)} \\
\frac{c_{3}(0)}{c_{1}(0)} & 0
\end{array}\right]
$$

The upshot is that the matrix \dot{L}_{0} has the form

$$
\dot{L}_{0}=\left[\begin{array}{cc}
0 & -a \\
b & 0
\end{array}\right], a, b>0
$$

For t sufficiently small we can now deform A_{t} to $\left(L_{0}+t \dot{L}_{0}\right)\left(T_{+}\right)$such that during the deformation the boundary of A_{t} does not intersect the boundary of T_{+}. Such deformation again do not alter the intersection number. Now observe that $\Sigma_{t}:=\left(L_{0}+t \dot{L}_{0}\right)\left(T_{+}\right)$is the portion inside U_{r} of the $(n-1)$-subspace

$$
\vec{\eta} \mapsto\left(L_{0}+t \dot{L}_{0}\right)\left[\begin{array}{l}
0 \\
\vec{\eta}
\end{array}\right]=\left[\begin{array}{c}
-t a \vec{\eta} \\
\vec{\eta}
\end{array}\right] .
$$

It carries the orientation given by

$$
\left(-t a d u_{2}+d v_{2}\right) \wedge \cdots \wedge\left(-t a d u_{n}+d v_{n}\right) .
$$

Observe that Σ_{t} intersects the ($n-1$)-subspace T_{+}given by $\vec{\xi}=0$ transversely at the origin so that

$$
\Sigma_{t} \circ T_{+}= \pm
$$

The sign coincides with the sign of the real number ν defined by

$$
\begin{gathered}
\nu d v_{2} \wedge \cdots \wedge d v_{n} \wedge d u_{2} \wedge \cdots \wedge d u_{n} \\
=\left(-t a d u_{2}+d v_{2}\right) \wedge \cdots \wedge\left(-t a d u_{n}+d v_{n}\right) \wedge d v_{2} \wedge \cdots \wedge d v_{n} \\
=(-t a)^{n-1} d u_{2} \wedge \cdots \wedge d u_{n} \wedge d v_{2} \wedge \cdots \wedge d v_{n} \\
=(-1)^{(n-1)+(n-1)^{2}} d v_{2} \wedge \cdots \wedge d v_{n} \wedge d u_{2} \wedge \cdots \wedge d u_{n}
\end{gathered}
$$

Since $(n-1)+(n-1)^{2}$ is even we deduce that ν is positive so that

$$
1=\Sigma_{t} \circ T_{t}=\Omega_{t}\left(T_{+}\right) \circ \mu_{t}\left(T_{+}\right), \quad \forall 0<t \ll 1
$$

This completes the proof of the local Picard-Lefschetz formula.

Remark 7.2.3. For a different proof we refer to [50]. For a more conceptual proof of the Picard-Lefschetz formula we refer to [6, Sec.2.4]. We will analyze this point of view a bit later.

7.3 Global Picard-Lefschetz formulæ

Let us return to the setting at the beginning of Section 7.1. Recall that the function

$$
\hat{f}: \hat{X} \rightarrow S \cong \mathbb{P}^{1}
$$

is Morse and its critical values t_{1}, \cdots, t_{r} are all in D_{+}. We denote its critical points by p_{1}, \cdots, p_{r}, so that

$$
\hat{f}\left(p_{j}\right)=t_{j}, \quad \forall j .
$$

We will identify D_{+}with the unit disk at $0 \in \mathbb{C}$. Let us introduce some notations. Let $j=1, \cdots, r$.

- Denote by D_{j} a closed disk of very small radius ρ centered at $t_{j} \in D_{+}$. If $\rho \ll 1$ these disks are pairwise disjoint.
- Connect $\zeta \in \partial D_{+}$to $t_{j}+\rho \in \partial D_{j}$ by a smooth path ℓ_{j} such that the resulting paths $\ell_{1}, \cdots, \ell_{r}$ are disjoint (see Figure 7.1). Set $k_{j}:=\ell_{j} \cup D_{j}, \ell=\bigcup \ell_{j}$ and $k=\bigcup k_{j}$.
- Denote by B_{j} a small ball in \hat{X} centered at p_{j}.

Denote by γ_{j} the loop in $D_{+} \backslash\left\{t_{1}, \cdots, t_{r}\right\}$ based at ζ obtained by traveling along ℓ_{j} from ζ to $t_{j}+\rho$ and then once, counterclockwise around ∂D_{j} and then back to ζ along ℓ_{j}. The loops γ_{j} generate the fundamental group

$$
G:=\pi_{1}\left(S^{*}, \zeta\right), \quad S^{*}:=\mathbb{P}^{1} \backslash\left\{t_{1}, \cdots, t_{r}\right\} .
$$

Set

$$
\hat{X}_{+}^{*}:=\hat{f}^{-1}\left(S^{*}\right)
$$

We have a fibration

$$
\hat{f}: \hat{X}_{+}^{*} \rightarrow S^{*}
$$

and, as in the previous section, we have an action

$$
\mu: G \rightarrow \operatorname{Aut}\left(H_{\bullet}\left(\hat{X}_{\zeta}\right)\right)
$$

called the monodromy of the Lefschetz pencil.
From the above considerations we deduce that for each critical point p_{j} of \hat{f} there exists a cycle $\Delta_{j} \in H_{n-1}\left(\hat{X}_{\zeta}\right)$ corresponding to the vanishing cycle in a fiber near p_{j}. It is represented by an embedded S^{n-1} with normal bundle isomorphic (up to orientation) to $T S^{n-1}$. In fact, using (7.2.2) we deduce

$$
\Delta_{j} \cdot \Delta_{j}=(-1)^{n(n-1) / 2}\left(1+(-1)^{n-1}\right)=\left\{\begin{array}{clc}
0 & \text { if } & n \text { is even } \\
-2 & \text { if } & n \equiv-1 \bmod 4 \\
2 & \text { if } & n \equiv 1 \bmod 4
\end{array} .\right.
$$

This cycle bounds a thimble, $\tau_{j} \in H_{n}\left(\hat{X}_{+}, \hat{X}_{\zeta}\right)$ which is described as this sphere shrinks to p_{j}. Using the localization procedure in the first section and the local Picard-Lefschetz formulæ we obtain the following important result.

Theorem 7.3.1 (Global Picard-Lefschetz formulæ). (a) For $q \neq n-1=\operatorname{dim}_{\mathbb{C}} \hat{X}_{\zeta}$, the action of G on $H_{q}\left(\hat{X}_{\zeta}\right)$ is trivial i.e.

$$
\operatorname{var}_{\gamma_{j}}(z):=\mu_{\gamma_{j}}(z)-z=0, \quad \forall z \in H_{q}\left(\hat{X}_{\zeta}\right)
$$

(b) If $z \in H_{n-1}\left(\hat{X}_{\zeta}\right)$ then

$$
\operatorname{var}_{\gamma_{j}}(z):=\mu_{\gamma_{j}}(z)-z=(-1)^{n(n+1) / 2}\left(z \cdot \Delta_{j}\right) \Delta_{j}
$$

Exercise 7.3.1. Complete the proof of the global Picard-Leftschetz formula.
Hint Set $B:=\cup_{j} B_{i}, F_{j}:=f^{-1}\left(t_{j}+\rho\right) \cap \bar{B}_{j}$. Use the long exact sequence of the pair $\left(\hat{X}_{\zeta}, \hat{X}_{\zeta} \backslash B\right)$ and the excision property of this pair to obtain the natural short exact sequence

$$
0 \rightarrow H_{n-1}\left(\hat{X}_{\zeta} \backslash B\right) \rightarrow H_{n-1}\left(\hat{X}_{\zeta}\right) \rightarrow \bigoplus_{j=1}^{r} H_{n-1}\left(F_{j}, \partial F_{j}\right)
$$

where the last arrow is given by

$$
z \mapsto \bigoplus_{j}\left(z \cdot \Delta_{j}\right) \mho_{j}
$$

Definition 7.3.2. The monodromy group of the Lefschetz pencil is the subgroup of

$$
\mathcal{G} \subset \operatorname{Aut}\left(H_{n-1}\left(X_{\zeta}\right)\right)
$$

generated by the monodromies $\mu_{\gamma_{j}}$.
Remark 7.3.3. Suppose n is odd so that

$$
\Delta_{j} \cdot \Delta_{j}=2(-1)^{(n-1) / 2}
$$

Denote by q the intersection form on $L:=H_{n-1}\left(\hat{X}_{\zeta}\right)$. It is a symmetric bilinear form because $n-1$ is even. An element $u \in L$ defines the orthogonal reflection

$$
R_{u}: L \otimes \mathbb{R} \rightarrow L \otimes \mathbb{R}
$$

uniquely determined by the requirements

$$
\begin{aligned}
& R_{u}(x)=x+ t(x) u, \quad q\left(u, x+\frac{t(x)}{2} u\right)=0, \quad \forall x \in L \otimes \mathbb{R} \\
& \Longleftrightarrow R_{u}(x)=x-\frac{2 q(x, u)}{q(u, u)} u
\end{aligned}
$$

We see that the reflection defined by Δ_{j} is

$$
R_{j}(x)=x+(-1)^{(n+1) / 2} q\left(x, \Delta_{j}\right) \Delta_{j}
$$

This is precisely the monodromy along γ_{j}. This shows that the monodromy group \mathcal{G} is a group generated by involutions.

Chapter 8

The Hard Lefschetz theorem and monodromy

We now return to the Hard Lefschetz theorem and establish its connection to monodromy. The results in this lecture are essentially due to Pierre Deligne. We will follow closely the approach in [46]. We refer to [53] for a nice presentation of Deligne's generalization of the Hard Lefschetz theorem and its intimate relation with monodromy.

8.1 The Hard Lefschetz Theorem

In the proof of the Key Lemma we learned the reason why the submodule

$$
V: \operatorname{Image}\left(\partial: H_{n}\left(\hat{X}_{+}, \hat{X}_{\bullet}\right) \rightarrow H_{n-1}\left(\hat{X}_{\bullet}\right)\right) \subset H_{n-1}\left(\hat{X}_{\bullet}\right)
$$

is called the vanishing submodule: it is spanned by the vanishing cycles Δ_{j}. We can now re-define the sub-module I by

$$
I:=\left\{y \in H_{n-1}\left(\hat{X}_{\bullet}\right) ; \quad y \cdot \Delta_{j}=0, \quad \forall j\right\}
$$

(use the global Picard-Lefschetz formulæ)

$$
=\left\{y \in H_{n-1}\left(\hat{X}_{\bullet}\right) ; \quad \mu_{\gamma_{j}} y=y, \quad \forall j\right\} .
$$

We have thus proved the following result.
Proposition 8.1.1. I consist of the cycles invariant under the action of the monodromy group \mathcal{G}.

Theorem 8.1.2. For the homology with real coefficients the following statements are equivalent.
(a) The Hard Lefschetz Theorem (see Chapter 6).
(b) $V=0$ or V is a nontrivial simple \mathcal{G}-module.
(c) $H_{n-1}\left(\hat{X}_{\bullet}\right)$ is a semi-simple \mathcal{G}-module.

Proof $(b) \Longrightarrow(c)$. Consider the submodule $I \cap V$ of V. Since V is simple we deduce

$$
I \cap V=0 \text { or } I \cap V=V \neq 0 .
$$

The latter condition is impossible because \mathcal{G} acts nontrivially on V. Using the weak Lefschetz theorem

$$
\operatorname{dim} I+\operatorname{dim} V=\operatorname{dim} H_{n-1}\left(\hat{X}_{\bullet}\right)
$$

we deduce that $H_{n-1}\left(\hat{X}_{\bullet}\right)=I \oplus V$ so that $H_{n-1}\left(\hat{X}_{\bullet}\right)$ is a semi-simple \mathcal{G}-module.
$(c) \Longrightarrow(a)$. More precisely, we will show that (c) implies that the restriction of the intersection form q on $H_{n-1}\left(\hat{X}_{\bullet}\right)$ to I is nondegenerate.

Denote by \check{I} the dual module of I. We will show that the natural map

$$
I \rightarrow \check{I}, \quad z \mapsto q(z,-)
$$

is onto. Let $u \in \check{I}$. Since $H_{n-1}\left(\hat{X}_{\bullet}\right)$ is semi-simple the \mathcal{G}-module I admits a complementary \mathcal{G}-submodule M such that

$$
H_{n-1}\left(\hat{X}_{\bullet}\right)=I \oplus M .
$$

We can extend u to a linear functional U on $H_{n-1}\left(\hat{X}_{\bullet}\right)$ by setting it $\equiv 0$ on M. Since q is nondegenerate on $H_{n-1}\left(\hat{X}_{\bullet}\right)$ there exists $z \in H_{n-1}\left(\hat{X}_{\bullet}\right)$ such that

$$
U(x)=q(z, x+y), \quad \forall x \oplus y \in I \oplus M
$$

If $g \in \mathcal{G} \subset \operatorname{Aut}\left(H_{n-1}\left(\hat{X}_{\bullet}\right), q\right)$ then, since \mathcal{G} acts trivially on I and $\mathcal{G} M \subset M$ we deduce

$$
q(g z, x+y)=q\left(z, g^{-1}(x+y)\right)=q\left(z, x+g^{-1} y\right)=U(x), \quad \forall x \oplus y \in I \oplus M
$$

Thus $\mathcal{G} z=z \Longrightarrow z \in I$. This proves that the above map $I \rightarrow I$ is onto.
$(a) \Longrightarrow(b)$. More precisely, we will show that if the restriction of q to V is nondegenerate, then $V=0$ or V is a nontrivial simple \mathcal{G}-module. We will use the following auxiliary result whose proof is deferred to the next section.

Lemma 8.1.3. (a) The elementary monodromies $\mu_{1}:=\mu_{\gamma_{1}}, \cdots, \mu_{r}:=\mu_{\gamma_{r}}$ are pairwise conjugate in \mathcal{G} that is, for any $i, j \in\{1, \cdots, r\}$ there exists $g=g_{i j} \in \mathcal{G}$ such that

$$
\mu_{i}=g \mu_{j} g^{-1} .
$$

(b) For every $i, j \in\{1, \cdots, r\}$ there exists $g=g_{i j} \in \mathcal{G}$ such that

$$
\pm \Delta_{i}=g \Delta_{j} .
$$

Suppose $F \subset V$ is a \mathcal{G}-invariant subspace and $x \in F \backslash\{0\}$. Since q is nondegenerate on $\operatorname{span}\left\{\Delta_{j}\right\}=V$ we deduce there exists Δ_{i} such that

$$
q\left(x, \Delta_{i}\right) \neq 0 .
$$

Now observe that

$$
\mu_{i} \cdot x=x \pm q\left(x, \Delta_{i}\right) \Delta_{i}
$$

so that

$$
\Delta_{i}=\mp \frac{1}{q\left(x, \Delta_{i}\right)}\left(\mu_{i} \cdot x-x\right) \in F .
$$

Thus span $\left(\mathcal{G} \Delta_{i}\right) \subset F$. From Lemma 8.1.3 (b) we deduce

$$
\operatorname{span}\left(\mathcal{G} \Delta_{i}\right)=V .
$$

8.2 Zariski's Theorem

The proof of Lemma 8.1.3 relies on a nontrivial topological result of Oskar Zariski. We will present only a weaker version and we refer to [33] for a proof and more information.

Proposition 8.2.1. If Y is a (possibly singular) hypersurface in \mathbb{P}^{N} then for any generic projective line $L \hookrightarrow \mathbb{P}^{N}$ the inclusion induced morphism

$$
\pi_{1}(L \backslash Y) \rightarrow \pi_{1}\left(\mathbb{P}^{N} \backslash Y\right)
$$

is onto.
Remark 8.2.2. The term generic should be understood in an algebraic-geometric sense. More precisely, a subset S of a complex algebraic variety X is called generic if its complement $X \backslash S$ is contained in the support of a divisor on X. In the above theorem, the family \mathcal{L}_{N} of projective lines in \mathbb{P}^{N} is an algebraic variety isomorphic to the complex Grassmanian of 2-planes in \mathbb{C}^{N+1}. The above theorem can be rephrased as follows. There exists a hypersurface $\mathcal{W} \subset \mathcal{L}_{N}$, such that for any line $L \in \mathcal{L}_{N} \backslash \mathcal{W}$ the morphism

$$
\pi_{1}(L \backslash Y) \rightarrow \pi_{1}\left(\mathbb{P}^{N} \backslash Y\right)
$$

is onto.

Observe that a generic line intersects a hypersurface along a finite set of points of cardinality equal to the degree d of the hypersurface Y. Thus $L \backslash Y$ is homeomorphic to a sphere S^{2} with d points deleted. Fix a base point $b \in L \backslash Y$. Any point $p \in L \cap Y$ determines an element

$$
\gamma_{p} \in \pi_{1}(L \backslash Y, b)
$$

obtained by traveling in L from b to a point $p^{\prime} \in L$ very close to p along a path ℓ then going once, counterclockwise around p along a loop λ and then returning to b along ℓ. Thus, we can write

$$
\gamma_{p}=\ell \lambda \ell^{-1} .
$$

Lemma 8.2.3. Suppose now that

- Y is a, possibly singular, degree d connected hypersurface.
- L_{0}, L_{1} are two generic projective lines passing through the same point $b \in \mathbb{P}^{N} \backslash Y$ and
- $p_{i} \in L_{i} \cap Y, i=0,1$.

Then the loops

$$
\gamma_{p_{i}} \in \pi_{1}\left(L_{i} \backslash Y, b\right) \rightarrow \pi_{1}\left(\mathbb{P}^{N} \backslash Y, b\right)
$$

are conjugate in $\pi_{1}\left(\mathbb{P}^{N} \backslash Y, b\right)$.

Figure 8.1: The fundamental group of the complement of a hypersurface in \mathbb{P}^{N}
Sketch of proof For each $y \in Y$ denote by L_{y} the projective line determined by the points b and y. The set

$$
Z=\left\{y \in Y ; \pi_{1}\left(L_{y} \backslash Y, b\right) \rightarrow \pi_{1}\left(\mathbb{P}^{N} \backslash Y, b\right) \text { is not onto }\right\}
$$

is a complex (possibly singular) subvariety of codimension ≤ 1. In particular $Y^{*}:=Y \backslash Z$ is connected.

Denote by U a small open neighborhood of $Y \hookrightarrow \mathbb{P}^{N}$. (When Y is smooth U can be chosen to be a tubular neighborhood of Y in \mathbb{P}^{N}.) Connect the point p_{0} to p_{1} using a generic path $p(t)$ in Y^{*} and denote by U_{0} a small tubular neighborhood of this path inside U. We write

$$
\gamma_{p_{i}}=\ell_{i} \lambda_{i} \ell_{i}^{-1}, \quad i=0,1
$$

and we assume that the endpoint q_{i} of ℓ_{i} lives on $L_{p_{i}} \cap U$. Now connect q_{0} to q_{1} by a smooth path along ∂U_{0} and set $w=l_{0} \ell \ell_{1}^{-1}$ (see Figure 8.1). By inspecting this figure we obtain the following homotopic identities

$$
w \gamma_{p_{1}} w^{-1}=\mathbf{l}_{0} \ell \lambda_{1} \ell^{-1} \mathbf{l}_{0}^{-1}=\mathbf{l}_{0} \lambda_{0} \mathbf{l}_{0}^{-1}=\gamma_{p_{0}}
$$

Proof of Lemma 8.1.3 (outline) Assume for simplicity that the pencil $\left(X_{s}\right)_{s \in S}$ on X consists of hyperplane sections. Recall that the dual $\check{X} \subset \check{\mathbb{P}}^{N}$ of X is defined by

$$
\check{X}=\left\{H \in \check{\mathbb{P}}^{N} ; \text { all the projective lines in } H \text { are either disjoint or tangent to } X\right\} .
$$

More rigorously consider the variety

$$
W=\left\{(x, H) \in X \times \check{\mathbb{P}}^{N} ; x \in H\right\} .
$$

equipped with the natural projections

The \check{X} is the discriminant locus of π_{2}, i.e. it consists of all the critical values of π_{2}. One can show (although it is not trivial) that \check{X} is a (possible singular) hypersurface in $\check{\mathbb{P}}^{N}$ (see [46, Sec 2$]$ or [68] for a more in depth study of discriminants. In Chapter 9 we will explicitly describe the discriminant locus in a special situation.)

The Lefschetz pencil $\left(X_{s}\right)_{s \in S}$ is determined by a line $S \subset \check{\mathbb{P}}^{N}$. The critical points of the map $\hat{f}: \hat{X} \rightarrow S$ are precisely the intersection points $S \cap \tilde{X}$. The fibration

$$
\hat{X} \rightarrow S^{*}=S \backslash\left\{t_{1}, \cdots, t_{r}\right\}=S \backslash \check{X}
$$

is the restriction of the fibration

$$
\pi_{2}: W \backslash \pi_{2}^{-1}(\check{X}) \rightarrow \check{\mathbb{P}}^{N} \backslash \check{X}
$$

to $S \backslash \check{X}$. We see that the monodromy representation

$$
\mu: \pi_{1}\left(S^{*}, \bullet\right) \rightarrow \operatorname{Aut}\left(H_{n-1}\left(X_{\bullet}\right)\right)
$$

factors trough the monodromy

$$
\tilde{\mu}: \pi_{1}\left(\check{\mathbb{P}}^{N} \backslash \check{X}, \bullet\right) \rightarrow \operatorname{Aut}\left(H_{n-1}\left(X_{\bullet}\right)\right)
$$

Using Lemma 8.2.3 we deduce that the fundamental loops $\gamma_{i}, \gamma_{j} \in \pi_{1}\left(S^{*}, \bullet\right)$ are conjugate in $\pi_{1}\left(\check{\mathbb{P}}^{N} \backslash \check{X}, \bullet\right)$. Since the morphism

$$
i_{*}: \pi_{1}\left(S^{*}, \bullet\right) \rightarrow \pi_{1}\left(\check{\mathbb{P}}^{N} \backslash \check{X}, \bullet\right)
$$

is onto, we deduce that there exists

$$
g \in \pi_{1}\left(S^{*}, \bullet\right)
$$

such that

$$
i_{*}\left(\gamma_{i}\right)=i_{*}\left(g \gamma_{j} g^{-1}\right) \in \pi_{1}\left(\check{\mathbb{P}}^{N} \backslash \check{X}, \bullet\right)
$$

Hence

$$
\begin{equation*}
\mu\left(\gamma_{i}\right)=\mu\left(g \gamma_{j} g^{-1}\right) \in \mathcal{G} . \tag{8.2.1}
\end{equation*}
$$

This proves the first part of Lemma 8.1.3.
To prove the second part we use the global Picard-Lefschetz formulæ to rewrite the equality

$$
\mu\left(\gamma_{i} g\right)=\mu\left(g \gamma_{j}\right) \in \mathcal{G}
$$

as

$$
\begin{equation*}
\left(x \cdot \Delta_{j}\right) g\left(\Delta_{j}\right)=\left(g(x) \cdot \Delta_{i}\right) \Delta_{i}, \quad \forall x \in H_{n-1}(X \bullet ; \mathbb{R}) . \tag{8.2.2}
\end{equation*}
$$

By Poincaré duality, the intersection pairing is nondegenerate so that either $\Delta_{j}=0$ (so $\Delta_{i}=0$) or $x \cdot \Delta_{i} \neq 0$ which implies

$$
g\left(\Delta_{j}\right)=c \Delta_{i}, \quad c \in \mathbb{R}^{*}
$$

To determine the constant c we use the above information in (8.2.2).

$$
c\left(x \cdot \Delta_{j}\right) \Delta_{i}=\left(g(x) \cdot \Delta_{i}\right) \Delta_{i}=\left(x \cdot g^{-1}\left(\Delta_{i}\right)\right) \Delta_{i}=\frac{1}{c}\left(x \cdot \Delta_{j}\right) \Delta_{i} .
$$

Hence $c^{2}= \pm 1$ so that

$$
g\left(\Delta_{j}\right)= \pm \Delta_{i} .
$$

Chapter 9

Basic facts about holomorphic functions of several variables

Up to now we have essentially investigated the behavior of a holomorphic function near a nondegenerate critical point. To understand more degenerate situations we need to use more refined techniques. The goal of this chapter is to survey some of these techniques. In the sequel, all rings will be commutative with 1 .

9.1 The Weierstrass preparation theorem and some of its consequences

The Weierstrass preparation theorem can be regarded as generalization of the implicit function theorem to degenerate situations. To state it we need to introduce some notations.

For any complex manifold M and any open set $U \subset M$ we denote by $\mathcal{O}_{M}(U)$ the ring of holomorphic functions $U \rightarrow \mathbb{C}$.

Denote by $\mathcal{O}_{n, p}$ the ring of germs at $p \in \mathbb{C}^{n}$ of holomorphic functions. More precisely, consider the set \mathcal{F}_{p} of functions holomorphic in a neighborhood of p. Two such functions f, g are equivalent if there exists a neighborhood U of p contained in the domains of both f and g such that

$$
\left.f\right|_{U}=\left.g\right|_{U}
$$

The germ of $f \in \mathcal{F}_{p}$ at p is then the equivalence class of f, and we denote it by $[f]_{p}$. Thus $\mathcal{O}_{n, p}=\left\{[f]_{p} ; \quad f \in \mathcal{F}_{p}\right\}$.

For simplicity we set $\mathcal{O}_{n}:=\mathcal{O}_{n, 0}$. The unique continuation principle implies that we can identify \mathcal{O}_{n} with the ring $\mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ of power series in the variables z_{1}, \cdots, z_{n} convergent in a neighborhood of $0 \in \mathbb{C}^{n}$. For a function f holomorphic in a neighborhood of 0 , its germ at zero is described by the Taylor expansion at the origin.

Lemma 9.1.1. The ideal

$$
\mathfrak{m}_{n}=\left\{f \in \mathcal{O}_{n} ; \quad f(0)=0\right\}
$$

is the unique maximal ideal of \mathcal{O}_{n}. In particular, \mathcal{O}_{n} is a local ring.

Proof Observe that $f \in \mathcal{O}_{n}$ is invertible iff

$$
f(0) \neq 0 \Longleftrightarrow f \in \mathcal{O}_{n} \backslash \mathfrak{m}_{n}
$$

which proves the claim in the lemma.

Lemma 9.1.2 (Hadamard Lemma). Suppose $f \in \mathbb{C}\left\{z_{1}, \cdots, z_{n} ; w_{1}, \cdots, w_{m}\right\}$ satisfies

$$
f\left(0, \cdots, 0 ; w_{1}, \cdots, w_{m}\right)=0 .
$$

Then there exist $f_{1}, \cdots, f_{n} \in \mathbb{C}\left\{z_{1}, \cdots, z_{n} ; w_{1}, \cdots, w_{m}\right\}$ such that

$$
f(z ; w)=\sum_{j=1}^{n} z_{j} f_{j}(z, w)
$$

Notice that the above lemma implies that \mathfrak{m}_{n} is generated by z_{1}, \cdots, z_{n}.

Proof

$$
f(z ; w)=f(z ; w)-f(0 ; w)=\int_{0}^{1} \frac{d f(t z ; w)}{d t} d t=\sum_{i=1}^{n} z_{i} \int_{0}^{1} \frac{\partial f}{\partial z_{i}}(t z ; w) d t=: \sum_{i=1}^{n} z_{i} f_{i}(z ; w)
$$

where the functions f_{i} are clearly holomorphic in a neighborhood of 0 . This completes the proof of Hadamard's Lemma.

An important tool in local algebra is Nakayama Lemma. For the reader who, like the author, is less fluent in commutative algebra we present below several typical applications of this important result.

Proposition 9.1.3 (Nakayama Lemma). Suppose R is a local ring with maximal ideal \mathfrak{m}. If E is a finitely generated R-module such that

$$
E \subset \mathfrak{m} \cdot E
$$

then $E=0$.
Proof Pick generators u_{1}, \cdots, u_{n} of E. We can now find $a_{j}^{i} \in \mathfrak{m}, i, j=1, \cdots, n$ such that

$$
u_{j}=\sum_{i} a_{j}^{i} u_{i}, \quad \forall j=1, \cdots, n .
$$

We denote by A the $n \times n$ matrix with entries a_{j}^{i} and by U the $n \times 1$ matrix with entries in E

$$
U=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

We have

$$
(1-A) U=0 .
$$

Since $\operatorname{det}(1-A) \in 1+\mathfrak{m}$ is invertible we conclude that $U \equiv 0$.

Corollary 9.1.4. Suppose R is a local ring with maximal ideal $\mathfrak{m}, E, F R$-modules such at F is finitely generated. Then

$$
F \subset E \Longleftrightarrow F \subset E+\mathfrak{m} F
$$

Proof The implication \Longrightarrow is trivial. To prove the converse notice that

$$
F \subset F \cap E+\mathfrak{m} F \Longrightarrow F /(F \cap E) \subset \mathfrak{m}(F /(F \cap E))
$$

The desired conclusion follows by applying Nakayama Lemma to the module $F /(F \cap E)$.

Corollary 9.1.5. Suppose R is a local ring with maximal ideal \mathfrak{m}, F is a finitely generated ideal and $x_{1}, \cdots, x_{n} \in F$. Then x_{1}, \cdots, x_{n} generate F if and only if they generate $F / \mathfrak{m} F$.

Proof Use Corollary 9.1.4 for the submodule E of F generated by x_{1}, \cdots, x_{n}.
We will present the Weierstrass preparation theorem in a form suitable for the applications we have in mind.

Definition 9.1.6. An analytic algebra is a \mathbb{C}-algebra R isomorphic to a quotient ring $\mathcal{O}_{n} / \mathcal{A}$ where $\mathcal{A} \subset \mathcal{O}_{n}$ is a finitely generated ideal.

Note that an analytic algebra $R=\mathcal{O}_{n} / \mathcal{A}$ is a local \mathbb{C}-algebra whose maximal ideal \mathfrak{m}_{R} is the projection of $\mathfrak{m}_{n} \subset \mathcal{O}_{n}$. Hadamard's lemma shows that the maximal ideal \mathfrak{m}_{R} is generated by the images of the coordinate germs z_{1}, \cdots, z_{n}.

A morphism of analytic algebras R, S is a morphism of \mathbb{C}-algebras $u: R \rightarrow S$.
Exercise 9.1.1. Prove that a morphism of analytic algebras $u: R \rightarrow S$ is local, i.e.

$$
u\left(\mathfrak{m}_{R}\right) \subset \mathfrak{m}_{S}
$$

A morphism of analytic algebras $u: R \rightarrow S$ is called finite if S, regarded as an R-module via u is finitely generated. In other words, there exist $s_{1}, \cdots, s_{m} \in S$ such that for any $s \in S$ there exist $r_{1}, \cdots r_{n} \in R$ so that

$$
s=u\left(r_{1}\right) s_{1}+\cdots+u\left(r_{n}\right) s_{n}
$$

A morphism of analytic algebras $u: R \rightarrow S$ is called quasi-finite if the morphism

$$
\bar{u}: R / \mathfrak{m}_{R} \cong \mathbb{C} \rightarrow S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle
$$

induces a finite dimensional \mathbb{C}-vector space structure on $S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$, where $\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$ denotes the ideal generated by $u\left(\mathfrak{m}_{R}\right)$. Clearly, a finite morphism is quasi-finite.

Lemma 9.1.7. $u: R \rightarrow S$ is quasi-finite if and only if there exists $r \in \mathbb{Z}_{+}$such that

$$
\mathfrak{m}_{S}^{r} \subset\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle .
$$

Proof Suppose $S=\mathcal{O}_{m} / \mathcal{A}$. We denote the coordinates on \mathbb{C}^{m} by ξ_{1}, \cdots, ξ_{m}. Suppose u is quasi-finite. Then for some $p \gg 0$ the germs $1, \xi_{j}, \cdots, \xi_{j}^{p}$ are linearly dependent modulo $\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle, \forall 1 \leq j \leq m$. For all $1 \leq j \leq m$ there exist

$$
a_{j 0}, a_{j 1}, \cdots, a_{j p} \in \mathbb{C}
$$

not all equal 0 , such that

$$
a_{j 0}+a_{j 1} \xi_{j}+\cdots,+a_{j p} \xi_{j}^{p} \in\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle .
$$

If $a_{j 0}, \cdots, a_{j(\nu-1)}=0$ and $a_{j \nu} \neq 0(\nu=\nu(j))$ then we deduce that for some $\sigma \in \mathfrak{m}_{S}$ we have

$$
\xi_{j}^{\nu}(1+\sigma) \in\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle .
$$

This implies $\xi_{j}^{\nu(j)} \in\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$. Thus

$$
u \text { quasi }- \text { finite } \Longrightarrow \exists r>0: \mathfrak{m}_{S}^{r} \subset\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle .
$$

The converse is obvious.
We have the following fundamental result. For a proof we refer to [41, $\S 3.2]$, [60, Chap2].
Theorem 9.1.8 (General Weierstrass Theorem). A morphism of analytic algebras $u: R \rightarrow$ S is a finite if and only if it is quasi-finite.

Let us present a few important consequences of this theorem.
Corollary 9.1.9. Suppose $u: R \rightarrow S$ is a homomorphism of analytical algebras. Then $s_{1}, \cdots, s_{p} \in S$ generate S as an R-module if and only if their images $\bar{s}_{1}, \cdots, \bar{s}_{p}$ in $S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$ generate the \mathbb{C}-vector space $S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$.
Proof Suppose \bar{s}_{i} generate $S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$. Then u is quasi-finite. Now the elements s_{i} generate S modulo \mathfrak{m}_{S} so that by Nakayama lemma they must generate the R-module S.

Definition 9.1.10. Consider a holomorphic map $F: U \subset \mathbb{C}_{x}^{n} \rightarrow \mathbb{C}_{y}^{n}$

$$
\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mapsto\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left(F_{1}(x), F_{2}(x), \cdots, F_{n}(x)\right)
$$

such that $F\left(p_{0}\right)=0$. The ideal of F at p_{0} is the ideal $I_{F}=I_{F, p_{0}} \subset \mathcal{O}_{n, p_{0}}$ generated by the germs of F_{1}, \cdots, F_{n} at p_{0}. The local algebra at p_{0} of F is the quotient

$$
Q_{F}=Q_{F, p_{0}}:=\mathcal{O}_{n, p_{0}} / I_{F} .
$$

F is called infinitesimally finite at p_{0} if the morphism

$$
F^{*}: \mathcal{O}_{n, F\left(p_{0}\right)} \rightarrow \mathcal{O}_{n, p_{0}}, \quad f \mapsto F \circ f
$$

is finite. The integer $\mu=\mu\left(F, p_{0}\right):=\operatorname{dim}_{\mathbb{C}} Q_{F, p_{0}}$ is called the multiplicity of F at p_{0}.

Corollary 9.1.11. Consider a holomorphic map

$$
F: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, x \mapsto\left(F_{1}(x), \cdots, F_{n}(x)\right)
$$

such that $F(0)=0$. Then the following are equivalent.
(i) F is infinitesimally finite at 0 .
(ii) $\operatorname{dim}_{\mathbb{C}} Q_{F}<\infty$.
(iii) There exists a positive integer μ such that $\mathfrak{m}_{n}^{\mu} \subset I_{F}$. (We can take $\mu=\operatorname{dim}_{\mathbb{C}} Q_{F}$.)

Proof We only have to prove (ii) \Longrightarrow (iii). Set $\mu:=\operatorname{dim}_{\mathbb{C}} Q_{F}$. We will show that given $g_{1}, \cdots, g_{\mu} \in \mathfrak{m}_{n}$ then

$$
g_{1} \cdots g_{\mu} \in I_{F}
$$

The germs $1, g_{1}, g_{1} g_{2}, \cdots, g_{1} g_{2} \cdots g_{\mu}$ are linearly dependent in Q_{F} so there exist $c_{0}, c_{1}, \cdots, c_{\mu} \in$ \mathbb{C}, not all equal to zero, such that

$$
c_{0}+c_{1} g_{1}+\cdots+c_{\mu} g_{1} \cdots g_{\mu} \in I_{F}
$$

Let c_{r} be the first coefficient different from zero. Then

$$
g_{1} \cdots g_{r}\left(c_{r}+c_{r+1} g_{r+1}+\cdots+c_{\mu} g_{r+1} \cdots g_{\mu}\right) \in I_{F} .
$$

The germ within brackets is invertible in \mathcal{O}_{n} so that $g_{1} \cdots g_{r} \in I_{F}$.

Definition 9.1.12. Suppose $0 \in \mathbb{C}^{n}$ is a critical point of $f \in \mathfrak{m}_{n} \subset \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$. Then the Jacobial ideal of f at 0 , denoted by $\mathfrak{J}(f)$, is the ideal generated by the first order partial derivatives of f. Equivalently

$$
\mathfrak{J}(f, 0)=\mathfrak{J}(f):=I_{d f}
$$

where $d f$ is the gradient map

$$
d f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \quad \mathbb{C}^{n} \ni z \mapsto\left(\frac{\partial f}{\partial z_{1}}(z), \cdots, \frac{\partial f}{\partial z_{n}}(z)\right)
$$

The Milnor number of 0 is the multiplicity at 0 of the gradient map. We denote it by $\mu(f, 0)$.

Exercise 9.1.2. Show that 0 is a nondegenerate critical point of $f \in \mathfrak{m}_{n}$ if and only if $\mu(f, 0)=1$.

Corollary 9.1.13. Suppose $f \in \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ is regular in the z_{n}-direction, i.e.

$$
g\left(z_{n}\right):=f\left(0, \cdots, 0, z_{n}\right) \neq 0 \in \mathbb{C}\left\{z_{n}\right\} .
$$

Denote by p the order of vanishing of $g\left(z_{n}\right)$ at 0 so that

$$
g\left(z_{n}\right)=z_{n}^{p} h\left(z_{n}\right), \quad h(0) \neq\left. 0 \Longleftrightarrow \partial_{z_{n}}^{p-1} f\right|_{(0,0)}=0,\left.\quad \partial_{z_{n}}^{p} f\right|_{(0,0)} \neq 0 .
$$

We have the following.
(Weierstrass Division Theorem) For every $\varphi \in \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ there exist

$$
q \in \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}, \quad b_{1}, \cdots, b_{p} \in \mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\}
$$

such that

$$
\varphi=q f+\sum_{i=1}^{p} b_{i} z_{n}^{p-i} .
$$

(Weierstrass Preparation Theorem) There exists an invertible $u \in \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ and

$$
a_{1}, \cdots, a_{p} \in \mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\}
$$

such that $a_{j}(0)=0$ and

$$
f=u \cdot\left(z_{n}^{p}+\sum_{j=1}^{p} a_{j} z_{n}^{p-j}\right)
$$

Definition 9.1.14. A holomorphic germ $P \in \mathcal{O}_{n}$ of the form

$$
P=z_{n}^{p}+\sum_{j=1}^{p} a_{j} z_{n}^{p-j}, \quad a_{q} \in \mathcal{O}_{n-1}
$$

such that $a_{q}(0)=0$ is called a Weierstrass polynomial.

Proof of Corollary 9.1.13 Let

$$
R:=\mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\}, \quad S:=\mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\} /(f)
$$

We denote by $u: R \rightarrow S$ the composition of the inclusion

$$
\mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\} \hookrightarrow \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}
$$

followed by the projection

$$
\mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\} \rightarrow \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\} /(f)
$$

The Weierstrass division theorem is then equivalent to the fact that the elements $1, z_{n}, \cdots, z_{n}^{p-1}$ generate S over R. By Corollary 9.1.9 it suffices to show that their images in $S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle$ generate this quotient as a complex vector space. Now observe that

$$
f\left(z_{1}, z_{2}, \cdots, z_{n}\right)-f\left(0, \cdots, 0, z_{n}\right)=\sum_{k=0}^{\infty} a_{k}\left(z_{1}, \cdots, z_{n-1}\right) z_{n}^{k}, \quad a_{k} \in \mathfrak{m}_{R}
$$

so that

$$
f\left(z_{1}, z_{2}, \cdots, z_{n}\right)-f\left(0, \cdots, 0, z_{n}\right) \in\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle
$$

Thus

$$
S /\left\langle u\left(\mathfrak{m}_{R}\right)\right\rangle=\mathbb{C}\left\{z_{1}, \cdots, z_{n-1}, z_{n}\right\} /\left(z_{1}, \cdots, z_{n-1}, f\right)
$$

$$
=\mathbb{C}\left\{z_{1}, \cdots, z_{n-1}, z_{n}\right\} /\left(z_{1}, \cdots, z_{n-1}, g\left(z_{n}\right)\right)=\mathbb{C}\left\{z_{n}\right\} /\left(g\left(z_{n}\right)=\mathbb{C}\left\{z_{n}\right\} /\left(z_{n}^{p}\right)\right.
$$

Clearly the images of $1, z_{n}, \cdots, z_{n}^{p-1}$ generate $\mathbb{C}\left\{z_{n}\right\} /\left(z_{n}^{p}\right)$.
Let us now apply the Weierstrass division theorem to $\varphi=z_{n}^{p}$. Then there exists $u \in$ $\mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ and $a_{j} \in \mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\}$. such that

$$
z_{n}^{p}=u \cdot f-\sum_{j=1}^{p} a_{j} z_{n}^{p-j} .
$$

If we set $z_{1}=\cdots=z_{n-1}=0$ we obtain

$$
z_{n}^{p}=u\left(0, \cdots, 0, z_{n}\right) g\left(z_{n}\right)-\sum_{j=1}^{p} a_{j}(0) z_{n}^{p-j}=u\left(0, \cdots, 0, z_{n}\right) z_{n}^{p} h\left(z_{n}\right)-\sum_{j=1}^{p} a_{j}(0) z_{n}^{p-j}
$$

where $h(0) \neq 0$. Observe that $u(0)=1 / h(0)$ so that u is invertible in \mathcal{O}_{n}. Hence

$$
f=u^{-1}\left(z_{n}^{p}+\sum_{j=1}^{p} a_{j} z_{n}^{p-j}\right)
$$

Note that if $a_{j}(0) \neq 0$ for some j then the order of vanishing of $f\left(0,0, \cdots, 0, z_{n}\right)$ at $z_{n}=0$ would be strictly smaller than p.

Remark 9.1.15. The preparation theorem is actually equivalent to Theorem 9.1.8; see [60].

Corollary 9.1.16 (Implicit function theorem). Suppose $f \in \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ is such that $f(0)=0$ and $\frac{\partial f}{\partial z_{n}}(0) \neq 0$. Then there exists $g \in \mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\}$ such that the zero set

$$
V(f):=\{z ; \quad f(z)=0\}
$$

coincides in a neighborhood of 0 with the graph of the function g,

$$
\Gamma_{g}:=\left\{z ; \quad z_{n}=g\left(z_{1}, \cdots, z_{n-1}\right)\right\}
$$

Proof Observe that

$$
f\left(0, \cdots, 0, z_{n}\right)=z_{n} h\left(z_{n}\right), \quad h(0) \neq 0
$$

From the Weierstrass Preparation Theorem we deduce

$$
f(0)=u\left(z_{n}-g\right)
$$

where $u \in \mathcal{O}_{n}$ is invertible and $g \in \mathbb{C}\left\{z_{1}, \cdots, z_{n-1}\right\}$. It is now clear that $V(f)=\Gamma_{g}$ near 0 .

Corollary 9.1.17. The ring \mathcal{O}_{n} is Noetherian (i.e. every ideal is finitely generated) and factorial (i.e. each $f \in \mathcal{O}_{n}$ admits an unique prime decomposition).

Proof The proof uses induction. Observe that every element $f \in \mathcal{O}_{1}$ admits an unique decomposition

$$
f=u \cdot z_{1}^{p}
$$

where $u \in \mathcal{O}_{1}$ is invertible. It follows immediately that \mathcal{O}_{1} is a PID (principal ideal domain) so that it is both Noetherian and factorial.

Assume now that \mathcal{O}_{k} is Noetherian and factorial for all $1 \leq k<n$. We will prove that \mathcal{O}_{n} is Noetherian and factorial. The Hilbert basis theorem and the Gauss lemma imply that the polynomial ring $\mathcal{O}_{n-1}\left[z_{n}\right] \subset \mathcal{O}_{n}$ is both Noetherian and factorial.

Suppose now that $I \subset \mathcal{O}_{n}$ is an ideal and $0 \neq f \in I$. According to the preparation theorem we may assume that after a possible re-labeling of the variables we have

$$
f=\left(z_{n}^{p}+\sum_{j=1}^{p} a_{j} z_{n}^{p-j}\right), a_{j} \in \mathcal{O}_{n-1}, u \in \mathcal{O}_{n} \text { is invertible. }
$$

Set $I^{\prime}:=I \cap \mathcal{O}_{n-1}\left[z_{n}\right] . I^{\prime}$ is finitely generate by $p_{1}, \cdots, p_{m} \in \mathcal{O}_{n-1}\left[z_{n}\right]$. We will show that I is generated by f, p_{1}, \cdots, p_{m}. Indeed, let us pick $g \in I$. Using the division theorem we have

$$
g=q f+r, \quad r \in \mathcal{O}_{n-1}\left[z_{n}\right]
$$

which shows that

$$
g \in\left(f, p_{1}, \cdots, p_{m}\right) .
$$

To show that is factorial we can use the preparation theorem to show that up to an invertible factor and/or a linear change of coordinates, each element in \mathcal{O}_{n} is a Weierstrass polynomial, i.e it belongs to $\mathcal{O}_{n-1}\left[z_{n}\right]$. The factoriality of \mathcal{O}_{n} now follows from the factoriality of the ring of Weierstrass polynomials.

Exercise 9.1.3. Complete the proof of factoriality of \mathcal{O}_{n}.

9.2 Fundamental facts of complex analytic geometry

We now want to present a series of basic objects and results absolutely necessary in the study of singularities. For details and proofs we refer to our main sources of inspiration [16, 21, 31, 41, 62].

The building bricks of complex analytic geometry are the analytic subsets of complex manifolds.
Definition 9.2.1. An analytic set is a subset A of a complex manifold M which can be locally described as the zero set of a finite collections of holomorphic functions. More precisely, this means that for any point $p \in A$ there exists an open neighborhood U in P and holomorphic functions $f_{1}, \cdots, f_{s}: U \rightarrow \mathbb{C}$ such that

$$
A \cap U=\left\{x \in M ; \quad f_{1}(x)=f_{2}(x)=\cdots=f_{s}(x)=0\right\} .
$$

For every open subset $V \subset U$ define

$$
\mathcal{J}_{A}(V):=\left\{f: U \rightarrow \mathbb{C} ; \quad f \text { holomorphic, } \quad A \cap U \subset f^{-1}(0)\right\}
$$

Suppose X is a Hausdorff space. Every point $p \in X$ defines an equivalence relation on 2^{X}

$$
A \sim_{p} B \Longleftrightarrow \exists \text { neighborhood } U \text { of } p \in X \text { such that } A \cap U=B \cap U .
$$

The equivalence class of a set A is called the germ of A at p and is denoted by \hat{A}_{p} or (A, p). Note that if p does not belong to the closure of A then $(A, p)=(\emptyset, p)$. The settheoretic operations \cup and \cap have counterparts on the space of germs. We denote these new operations by the same symbols. If A is an analytic subset of a complex manifold and $p \in \bar{A}$, then the germ (A, p) is called an analytic germ.

Definition 9.2.2. An analytic germ (A, p) is called reducible if it is a finite union of distinct analytic germs. An analytic germ is called irreducible if it is not reducible.

Given $f \in \mathcal{O}_{n}$ such that $f(0)=0$ (i.e. $f \in \mathfrak{m}_{n}$) we denote by $\hat{V}(f)$ the germ at 0 of the analytic set $V(f)=\{z ; f(z)=0\}$ at $0 \in \mathbb{C}^{n}$. For any ideal $I \subset \mathcal{O}_{n}$ we set

$$
\hat{V}(I):=\bigcap_{f \in I} \hat{V}(f) .
$$

Since \mathcal{O}_{n} is Noetherian, every ideal is finitely generated, so that the germs $\hat{V}(I)$ are analytic germs. Note that every analytic germ has this form.

Example 9.2.3. Consider the germ $f:=z_{1} z_{2} \in \mathcal{O}_{2}$. Then $\hat{V}(f)$ is reducible because it decomposes as $\hat{V}\left(z_{1}\right) \cup \hat{V}\left(z_{2}\right)$. On the other hand if $g=y^{2}-x^{3} \in \mathcal{O}_{2}$ then $\hat{V}(g)$ is irreducible.

The local (and global) properties of analytic sets are best described using the language of sheaves. We make a brief detour in the world of sheaves.

Definition 9.2.4. (i) Suppose X is a paracompact Hausdorff space. A presheaf of rings (groups, modules etc.) on X is a correspondence $U \mapsto \mathcal{S}(U), U$ open set in $X, \mathcal{S}(U)$ commutative ring (group, module etc.) such that for every open sets $U \subset V$ there exists a ring morphism $r_{U V}: \mathcal{S}(V) \rightarrow \mathcal{S}(U)$ such that if $U \subset V \subset W$ we have

$$
r_{U W}=r_{U V} \circ r_{V W} .
$$

We set $\left.f\right|_{U}:=r_{U V}(f), \forall U \subset V, f \in \mathcal{S}(V)$.
(ii) A presheaf \mathcal{S} is called a sheaf if it satisfies the following additional property. For any open set $U \subset X$, any open cover $\left(U_{\alpha}\right)_{\alpha \in A}$ of U, and any family $\left\{f_{\alpha} \in \mathcal{S}\left(U_{\alpha}\right)\right\}_{\alpha \in A}$ such that

$$
\left.f_{\alpha}\right|_{U_{\alpha \beta}}=\left.f_{\beta}\right|_{U_{\alpha \beta}}, \quad \forall \alpha, \beta, \quad\left(U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}\right),
$$

then there exists a unique element $f \in \mathcal{S}(U)$ such that $\left.f\right|_{U_{\alpha}}=f_{\alpha}, \forall \alpha \in A$. For every commutative ring R we denote by $\mathbf{S h}_{R}(X)$ the collection of sheaves of R-modules over X. When $R \cong \mathbb{Z}$ we write simply $\mathbf{S h}(X):=\mathbf{S h}_{\mathbb{Z}}(X)$.
(iii) Let \mathcal{S}_{0} and \mathcal{S}_{1} be two (pre)sheaves of rings (groups, modules etc.) A morphism of sheaves

$$
\phi: S_{0} \rightarrow \mathcal{S}_{1}
$$

is a collection of morphisms of rings (groups, modules etc.)

$$
\phi_{U}: S_{0}(U) \rightarrow S_{1}(U), \quad U \text { open }
$$

compatible with the restriction maps, i.e for every $V \subset U$ the diagram below is commutative.

We denote by $\operatorname{Hom}_{\mathbf{S h}(X)}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ the Abelian group (module) consisting of morphisms of sheaves $S_{0} \rightarrow S_{1}$. An isomorphism of sheaves is defined in an obvious fashion.
(iv) For any two sheaves $\left.\mathcal{S}_{0}, \mathcal{S}_{1} \in \mathbf{S h}_{(} X\right)$ we denote by $\underline{\operatorname{Hom}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ the sheaf defined by

$$
\underline{\operatorname{Hom}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)(U)=\operatorname{Hom}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\quad \mathcal{S}_{1}\right|_{U}\right)
$$

Suppose \mathcal{S} is a presheaf of rings on a paracompact space X. If U, V are open sets containing x and $f \in \mathcal{S}(U), g \in \mathcal{S}(V)$ then we say that f is equivalent to g near x, and we write this $f \sim_{x} g$, if there exists an open set W such that

$$
x \in W \subset U \cap V,\left.\quad f\right|_{W}=\left.g\right|_{W} .
$$

The \sim_{x} equivalence class of f is called the germ of f at x and is denoted by $[f]_{x}$. The set of germs at x is denoted by \mathcal{S}_{x} and is called the stalk of \mathcal{S} at x. The stalk has a natural ring structure.

Given a presheaf \mathcal{S} on a paracompact Hausdorff space X we form the disjoint union

$$
\tilde{\mathcal{S}}:=\coprod_{x \in X} \mathcal{S}_{x} .
$$

For every open set $U \subset X$ and any $f \in \mathcal{S}(U)$ we get a map

$$
\tilde{f}: U \rightarrow \tilde{S}, u \mapsto[f]_{u} \in \tilde{\mathcal{S}} .
$$

Observe that we have a natural projection $\pi: \tilde{\mathcal{S}} \rightarrow X$. Define

$$
W_{U, f}:=\tilde{f}(U)=\left\{[f]_{u} ; \quad u \in U\right\} \subset \tilde{\mathcal{S}} .
$$

The family $\mathcal{B}:=\left\{W_{U, f}\right\}$ of subsets of $\tilde{\mathcal{S}}$ satisfies the conditions

$$
\forall W_{1}, W_{2} \in \mathcal{B}, \quad \exists W_{3} \in \mathcal{B}: \quad W_{3} \subset W_{1} \cap W_{2}, \quad \bigcup_{W \in B} W=\tilde{\mathcal{S}} .
$$

These show that \mathcal{B} is a basis of a topology on $\tilde{\mathcal{S}}$. The natural projection $\pi: \tilde{\mathcal{S}} \rightarrow X$ is continuous, and moreover, for every germ $[f]_{x} \in \tilde{\mathcal{S}}$ there exists a neighborhood $W \in \mathcal{B}$ such that the restriction of π to W is a homeomorphism ${ }^{1}$ onto $\pi(W)$.

Denote by $\tilde{\mathcal{S}}(U)$ the space of continuous sections $f: U \rightarrow \tilde{\mathcal{S}}$ of π, i.e. continuous functions $f: \rightarrow \tilde{S}$ such that $f(u) \in \mathcal{S}_{u}$. The correspondence

$$
U \mapsto \tilde{\mathscr{S}}(U)
$$

is a sheaf of rings on X called the sheafification of \mathcal{S}, or the sheaf associated to the presheaf \mathcal{S}. Since every $f \in \mathcal{S}(U)$ tautologically defines a continuous section of $\pi: \tilde{\mathcal{S}} \rightarrow X$ we deduce that we have a natural morphism of presheaves $i: \mathcal{S} \rightarrow \tilde{\mathcal{S}}$. When \mathcal{S} is a sheaf then $\mathcal{S}=\tilde{\mathcal{S}}$.

A subsheaf of a sheaf \mathcal{F} over X is a sheaf \mathcal{G} such that $\mathcal{G}(U) \subset \mathcal{F}(U)$. Given a morphism of sheaves

$$
\phi: \mathcal{F} \rightarrow \mathcal{G}
$$

we define its kernel to be the subsheaf $\operatorname{ker} \phi$ of f defined by

$$
(\operatorname{ker} f)(U):=\operatorname{ker}\left(\phi_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)\right)
$$

The image of ϕ is the subsheaf of \mathcal{G} associated to the presheaf

$$
U \longmapsto \phi(\mathcal{F}(U)) .
$$

If $\mathcal{G} \subset \mathcal{F}$ is a subsheaf of \mathcal{F} the the quotient sheaf $\mathcal{F} / \mathcal{G}$ is the sheaf associated to the presheaf

$$
U \longmapsto \mathcal{F}(U) / \mathcal{G}(U) .
$$

Example 9.2.5. (a) If X is a topological space and R is a ring, then the correspondence

$$
U \text { open subset of } X \longmapsto R
$$

defines a sheaf on X called the constant sheaf with stalk R and denoted by $\underline{R}=X \underline{R}$.
(b) Suppose \mathcal{R} is a sheaf of rings on the topological space X. A sheaf of $\overline{\mathcal{R}}$-modules is a sheaf of Abelian groups \mathcal{S} equipped with a \mathcal{R}-multiplication, i.e. a morphism of sheaves

$$
\mathcal{R} \rightarrow{\underline{\operatorname{Hom}_{Z}}}_{\mathbb{Z}}(\mathcal{S}, S) .
$$

We denote by $\mathbf{S h}_{\mathcal{R}}$ the collection of sheaves of \mathcal{R} modules. The notion of morphisms of sheaves of \mathcal{R} modules is the obvious one. We denote by $\operatorname{Hom}_{\mathcal{R}}\left(\mathcal{S}_{0}, S_{1}\right)$ the Abelian group of morphisms of sheaves of \mathcal{R}-modules and by $\underline{\operatorname{Hom}}_{\mathcal{R}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ its "sheafy" conterpart

$$
\underline{\operatorname{Hom}}_{\mathcal{R}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)(U):=\operatorname{Hom}_{\mathcal{R}}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right)
$$

Given two sheaves $\mathcal{S}_{0}, \mathcal{S}_{1} \in \mathbf{S h}_{\mathcal{R}}(X)$ we denote by $\mathcal{S}_{0} \otimes_{\mathcal{R}} \mathcal{S}_{1}$ the sheaf associated to the presheaf

$$
U \longmapsto \mathcal{S}_{0}(U) \otimes_{\mathcal{R}(U)} \mathcal{S}_{1}(U) .
$$

We have the adjunction isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{R}}\left(\mathcal{S}_{0} \otimes_{\mathcal{R}} \mathcal{S}_{1}, \mathcal{S}_{2}\right) \cong \operatorname{Hom}_{\mathcal{R}}\left(\mathcal{S}_{0}, \underline{\operatorname{Hom}}_{\mathcal{R}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)\right) \tag{9.2.1}
\end{equation*}
$$

(c) The presheaf of bounded continuous functious on \mathbb{R} is not a sheaf. Its sheafification is the sheaf of continuous functions.

[^4]If $F: X \rightarrow Y$ is a continuous map between paracompact, Hausdorff spaces, and \mathcal{S} is a presheaf on X, then we get a presheaf $F_{*} \mathcal{S}$ on Y described by

$$
\left(F_{*} \mathcal{S}\right)(U)=\mathcal{S}\left(F^{-1}(U)\right)
$$

If \mathcal{S} is a sheaf then so is $F_{*} \mathcal{S}$. If \mathcal{T} is a sheaf on Y, and $\pi: \mathcal{T} \rightarrow Y$ denotes the natural projection then define

$$
F^{-1} \mathcal{T}=\mathcal{T} \times_{Y} X=\{(s, x) \in \mathcal{T} \times X ; \pi(s)=F(x)\}
$$

There is a natural projection $F^{-1} \mathcal{T} \rightarrow X$ and as above we can define a sheaf by using continuous sections of this projection. Note that

$$
\left(F^{-1} \mathfrak{T}\right)_{x}=\mathcal{T}_{F(x)}
$$

When \mathcal{T} is a subsheaf of the sheaf of continuous functions on Y and U is an open subset in X then we can define $F^{-1} \mathcal{T}(U)$ as consisting of pullbacks $g \circ F$ where g is the restriction of a continuous function defined on an open neighborhood of $F(U)$ in Y.

For any continuous map $F: X \rightarrow Y$ and for every sheaves \mathcal{S} on X and \mathcal{T} on Y we have a canonical adjunction isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathbf{S h}(X)}\left(F^{-1} \mathcal{T}, \mathcal{S}\right) \cong \operatorname{Hom}_{\mathbf{S h}(Y)}\left(\mathcal{T}, F_{*} \mathcal{S}\right) \tag{9.2.2}
\end{equation*}
$$

Example 9.2.6. (a) If X is a paracompact space and for every open set $U \subset X$ we denote by $C(U)$ the ring of complex valued continuous functions on U then the correspondence $U \mapsto C(U)$ is a sheaf on X.
(b) If A is an analytic subset of the complex manifold M then the correspondence

$$
V \longmapsto \mathcal{J}_{A}(V)
$$

defines a sheaf on M called the ideal sheaf of A.
(c) For every open set $V \subset M$ set

$$
\mathcal{O}_{A}(V \cap A):=\mathcal{O}_{\mathbb{C}}(V) / \mathcal{J}_{A}(V) .
$$

The correspondence $V \cap A \mapsto \mathcal{O}_{A}(V \cap A)$ is a sheaf on \mathbb{C}^{n} called the structural sheaf. The elements of $\mathcal{O}_{A}(V \cap A)$ should be regarded as holomorphic functions $U \cap A \rightarrow \mathbb{C}$.

Definition 9.2.7. Suppose A_{i} are analytic subsets of $\mathbb{C}^{n}, i=0,1$.
(i) A continuous map $F: A_{0} \rightarrow A_{1}$ is called holomorphic if for every open set $U_{0} \subset \mathbb{C}^{n}$ there exists a holomorphic map $\tilde{F}: U_{0} \rightarrow \mathbb{C}^{n}$ such that $\left.\tilde{F}\right|_{U_{0} \cap A_{0}}=F$. A biholomorphic map is homeomorphism $F: A_{0} \rightarrow A_{1}$ such that both F and F^{-1} are biholomorphic.
(ii) A holomorphic map $A_{0} \rightarrow \mathbb{C}$ is called a regular function.
(iii) A holomorphic map $F: A_{0} \rightarrow A_{1}$ is called finite if it is proper and its fibers are finite sets.

Example 9.2.8. Consider the holomorphic map $F: \mathbb{C} \rightarrow \mathbb{C}, z \mapsto z^{n}$. Denote by \mathcal{O} the sheaf of holomorphic functions in one variable. Then $F^{-1} \mathcal{O}$ is also a sheaf on \mathbb{C} and

$$
F^{-1} \mathcal{O}_{z_{0}} \cong\left\{\begin{array}{lll}
\mathbb{C}\{z\} & \text { if } & z_{0} \neq 0 \\
\mathbb{C}\left\{z^{n}\right\} & \text { if } & z_{0}=0
\end{array}\right.
$$

If D_{r} is the disc of radius r centered at the origin then

$$
\left(F^{-1} \mathcal{O}\right)\left(D_{r}\right)=\left\{f\left(z^{n}\right) ; \quad f: D_{r^{n}} \rightarrow \mathbb{C} \text { is holomorphic }\right\} .
$$

Theorem 9.2.9. (a) $A \operatorname{germ}(A, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ of analytic set is irreducible if and only if $\mathcal{J}_{A, 0}$ is a prime ideal of \mathcal{O}_{n}.
(b) Every reducible germ is a finite union of irreducible ones.

Theorem 9.2.10 (Noether normalization). Suppose $(A, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ is an irreducible germ of an analytic set. Then there exist a positive integer d and holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ on \mathbb{C}^{n} near 0 such that the natural map

$$
\varphi: \mathbb{C}\left\{z_{1}, \cdots, z_{d}\right\} \hookrightarrow \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\} \longrightarrow \mathcal{O}_{A, 0}
$$

is a finite, injective morphism of analytic algebras.
This theorem has a very simple geometric interpretation. If we think of A as an analytic subset in \mathbb{C}^{n}, then the normalization theorem essentially states that we can find a system of linear coordinates z_{1}, \cdots, z_{n} such that the restriction to A of the natural projection $\left(z_{1}, \cdots, z_{n}\right) \mapsto\left(z_{1}, \cdots, z_{d}\right)$ is a finite-to-one holomorphic map. The integer d is by definition of the dimension of A. The next result is a substantial enhancement of the Noether parametrization theorem. For a proof we refer to [21, II. $\S 4]$, [32, III.A] or [41, §3.4].
Theorem 9.2.11 (Local parametrization). Suppose $A \subset \mathbb{C}^{n}$ is an analytic set of dimension $d, 0 \in A$ and the germ $(A, 0)=V(\mathfrak{p})$, where $\mathfrak{p} \subset \mathcal{O}_{n, 0}$ is a prime ideal. Then we can find a system of linear coordinates $\left(z_{1}, \cdots, z_{n}\right)$ on \mathbb{C}^{n} and a small neighborhood U of $0 \in \mathbb{C}^{n}$ with the following properties.
(i) If we set $z^{\prime}:=\left(z_{1}, \cdots, z_{d}\right), z^{\prime \prime}=\left(z_{d+1}, \cdots, z_{n}\right)$,

$$
\mathbb{C}_{z^{\prime}}^{d}:=\left\{z \in \mathbb{C}^{n} ; \quad z^{\prime \prime}=0\right\}, \quad \mathbb{C}_{z^{\prime}, z_{d+1}}^{d+1}:=\left\{z \in \mathbb{C}^{n} ; \quad z_{d+2}=\cdots=z_{n}=0\right\} .
$$

and denote by $\mathbb{C}^{n} \xrightarrow{\pi_{d}} \mathbb{C}_{z^{\prime}}^{d}, \mathbb{C}^{n} \xrightarrow{\pi_{d+1}} \mathbb{C}_{z^{\prime}, z_{d+1}}^{d+1}$ the corresponding linear projections, thenand the map

$$
\pi_{d}: A \cap U \rightarrow \mathbb{C}_{z^{\prime}}^{d} \cap U
$$

is onto, finite and $\pi_{d}^{-1}(0) \cap A \cap U=\{0\}$.
(ii) There exist Weierstrass polynomials

$$
P\left(z^{\prime}, T\right), P_{k}\left(z^{\prime}, T\right) \in \mathbb{C}\left\{z^{\prime}\right\}[T], \quad k=d+2, \cdots, n
$$

all defined on U such that the discriminant $\Delta=\Delta\left(z^{\prime}\right) \in \mathcal{O}_{d}$ of P is nontrivial, and if $\mathfrak{q} \in \mathcal{O}_{n, 0}$ denotes the ideal generated by

$$
\left\{P\left(z^{\prime}, z_{d+1}\right), \quad \Delta\left(z^{\prime}\right) \cdot z_{k}-P_{k}\left(z^{\prime}, z_{d+1}\right), \quad k=d+2, \cdots, n\right\}
$$

then

$$
\mathfrak{p}=\mathcal{J}_{A, 0}
$$

and

$$
\Delta^{m} \mathfrak{p} \subset \mathfrak{q} \subset \mathfrak{p}, \quad m:=\max \{p,(n-d)(p-1)\}, \quad p:=\operatorname{deg}_{z_{d+1}} P
$$

(iii) We denote by D the discriminant locus

$$
D=\left\{\Delta\left(z^{\prime}\right)=0\right\} \subset \mathbb{C}_{z^{\prime}}^{d} \cap U,
$$

by B the hypersurface

$$
\left\{P_{d+1}\left(z_{d+1}\right)=0\right\} \cap U \subset \mathbb{C}_{z^{\prime}, z_{d+1}}^{d+1}
$$

and we set

$$
A^{*}:=A \backslash \pi_{d}^{-1}(D), \quad B^{*}=B \backslash \pi_{d}^{-1}(D)
$$

Then A^{*} is, connected, open and dense in A,

$$
\pi_{d+1}(A \cap U)=B
$$

the map

$$
\pi_{d+1}: A \cap U \rightarrow B
$$

is a p-to-1 cover branched over D and the set $A^{*} \cap U$ can be identified with the graph of the map

$$
W: B^{*} \rightarrow \mathbb{C}^{n-d-1}, \quad z_{k}=\frac{1}{\Delta\left(z^{\prime}\right)} P_{k}\left(z^{\prime}, z_{d+1}\right), \quad k=d+2, \cdots, n .
$$

Remark 9.2.12. (a) The fact that the projection $\pi_{d}: A \cap U \rightarrow \mathbb{C}_{z^{\prime}}^{d} \cap U$ is onto can be rephrased algebraically as

$$
\mathfrak{p} \cap \mathbb{C}\left\{z^{\prime}\right\}=(0)
$$

Since $\Delta \in \mathbb{C}\left\{z^{\prime}\right\} \backslash 0$ we deduce $\Delta \notin \mathfrak{p}$.
(b) The coordinate function z_{d+1} plays a special role in the local parametrization theorem. In fact it plays the following hidden role. From the finite extension

$$
\mathcal{O}_{d} \hookrightarrow \mathcal{O}_{n} / \mathfrak{p}
$$

we obtain a finite extension of the corresponding fields of fractions

$$
Q\left(\mathcal{O}_{d}\right) \hookrightarrow Q\left(\mathcal{O}_{n} / \mathfrak{p}\right) .
$$

The element $z_{d+1} \in Q\left(\mathcal{O}_{n} / \mathfrak{p}\right)$ is a primitive element of the above finite extension of fields. Moreover, P is the minimal polynomial of this primitive element. A little bit of Galois theory implies that the coefficients of this polynomial are in \mathcal{O}_{d}.

Example 9.2.13 (Local parametrization of hypersurfaces). It is useful analyze this result in the special case of hypersurfaces because it highlights the geometric meaning of this important theorem and explains the central role played by the Weierstrass division theorem.

Suppose (A, x) is the germ of a hypersurface A in \mathbb{C}^{n}. We assume $x=0$. This means there exists $f \in \mathcal{O}_{n}$ such that $f(0)=0$ and

$$
(A, 0)=(V(f), 0) .
$$

Assume for simplicity that f is irreducible. We can choose linear coordinates $\left(z_{1}, \cdots, z_{n}\right)$ on \mathbb{C}^{n} such that f is regular in the z_{n}-direction. By the Weierstrass preparation theorem we can write

$$
f=u(z) P\left(z_{n}\right)
$$

where $u \in \mathcal{O}_{n}, u(0) \neq 0$, and $P_{n} \in \mathcal{O}_{n-1}\left[z_{n}\right]$ is an irreducible Weierstrass polynomial of degree q

$$
P_{n}=z_{n}^{q}+\sum_{k=0}^{q-1} a_{k}\left(z^{\prime}\right) z_{n}^{k}, \quad z^{\prime}:=\left(z_{1}, \cdots, z_{n-1}\right) .
$$

The natural projection

$$
\pi:\left\{P\left(z^{\prime}, z_{n}\right)=0\right\} \ni\left(z^{\prime}, z_{n}\right) \mapsto z^{\prime} \in \mathbb{C}^{n-1}
$$

induces a one-to-one morphism $\mathcal{O}_{n-1} \rightarrow \mathcal{O}_{n} /(P)$, which factors trough the natural inclusion

$$
\mathcal{O}_{n-1} \hookrightarrow \mathcal{O}_{n}
$$

Weierstrass division theorem implies that this map is infinitesimally finite at $0 \in \mathbb{C}^{n}$.
We can go even further. We can think of the hypersurface $P=0$ as the graph of the multivalued function $\phi=\phi\left(z^{\prime}\right)$ defined by the algebraic equation

$$
\phi^{q}+\sum_{k=0}^{q-1} a_{k}\left(z^{\prime}\right) \phi^{k}=0 .
$$

Equivalently, we can think of P as a family of degree q polynomials parameterized by $z^{\prime} \in \mathbb{C}^{n-1}, P=P_{z^{\prime}}$. Then $\phi\left(z^{\prime}\right)$ can be identified with the set of roots of $P_{z^{\prime}}$. For most values of z^{\prime} this set consists of q-distinct roots.

Denote by $D \subset \mathbb{C}^{n-1}$ the subset consisting of those z^{\prime} for which $P_{z^{\prime}}$ has multiple roots. D is the discriminant locus of π. Note that $0 \in D$.

Equivalently, D is the vanishing locus of the discriminant $\Delta \in \mathcal{O}_{n-1}$ of P. Since P is irreducible we deduce that $\Delta \neq 0 \in \mathcal{O}_{n-1}$ so that $(D, 0) \nsubseteq\left(\mathbb{C}^{n-1}, 0\right)$. The subset $A^{*}:=\{P=0\} \backslash \pi^{-1}(D)$ is a smooth hypersurface in \mathbb{C}^{n} and the projection

$$
\pi: A^{*} \rightarrow \mathbb{C}^{n-1} \backslash D
$$

is a genuine $q: 1$ covering map. We conclude that locally a hypersurface can be represented as a finite cover of \mathbb{C}^{n-1} branched over a hypersurface. The branching locus is precisely the

Figure 9.1: A $3 \rightarrow 1$ branched cover and its discriminant locus (in red).
discriminant locus (see Figure 9.1). Moreover, when F is irreducible the nonsingular part A^{*} is connected.

As we have mentioned before, the discriminant locus consists of those z^{\prime} for which the polynomial $P_{z^{\prime}} \in \mathbb{C}\left[z_{n}\right]$ has multiple roots, i.e. $P_{z^{\prime}}\left(z_{n}\right)$ its z_{n}-derivative $P_{z^{\prime}}^{\prime}\left(z_{n}\right)$ have a root in common. This happens if and only if the discriminant of $P_{z^{\prime}}$ is zero (see [47, Chap. IV])

$$
\Delta\left(a_{1}\left(z^{\prime}\right), \cdots, a_{q}\left(z^{\prime}\right)\right)=0 .
$$

Example 9.2.14. Suppose $F(x)$ is a polynomial of one complex variable such that $F(0)=$ 0 . Then the hypersurface in \mathbb{C}^{2} given by

$$
C:=\left\{y^{2}=F(x)\right\}
$$

can be viewed as the graph of the 2 -valued function $y= \pm \sqrt{F(x)}$. The natural projection π onto the x axis displays C as a double branched cover of \mathbb{C},

$$
C \ni(x, y) \mapsto x .
$$

The branching locus is described in this case by the zero set of F which coincides with the zero set of the discriminant of the quadratic polynomial $P(y)=y^{2}-F$.

The next result is an immediate consequence of the normalization theorem and is at the root of the rigidity of analytic sets.

Corollary 9.2.15 (Krull intersection theorem). Suppose R is an analytic algebra, $R=$ \mathcal{O}_{n} / I. Then

$$
\bigcap_{k \geq 1} \mathfrak{m}_{R}^{k}=(0)
$$

Proof Using Noether normalization we can describe I as a finite extension of \mathbb{C}-algebras

$$
i: \mathbb{C}\left\{z_{1}, \cdots, z_{d}\right\} \hookrightarrow R .
$$

Using Lemma 9.1.7 we deduce that there exists $r>0$ such that

$$
\mathfrak{m}_{R}^{r} \subset \mathfrak{m}_{d} \subset \mathcal{O}_{d} \Longrightarrow \bigcap_{k \geq 1} \mathfrak{m}_{R}^{k} \subset \bigcap_{k \geq 1} \mathfrak{m}_{d}^{k}
$$

On the other hand we have the strong unique continuation property of holomorphic functions, which states that if all the partial derivatives of a holomorphic function vanish at a point then the holomorphic function must vanish in a neighborhood of that point. Another way of stating this is $\bigcap_{k \geq 1} \mathfrak{m}_{d}^{k}=0$.

Exercise 9.2.1. Suppose $(X, x) \subset \mathbb{C}^{n}$ and $(Y, y) \subset \mathbb{C}^{m}$ are germs of analytic sets and $u: \mathcal{O}_{Y, y} \rightarrow \mathcal{O}_{X, x}$ is a morphism of analytic algebras. Then there exist neighborhoods $\mathbb{C}^{n} \supset U \ni x$ and $\mathbb{C}^{m} \supset V \ni y$ and a holomorphic map

$$
F: U \rightarrow V
$$

such that $F(x)=y$ and $F^{*}=u: \mathcal{O}_{Y, F(x)} \rightarrow \mathcal{O}_{X, x}$.
Hint: Use Krull intersection theorem.
Exercise 9.2.2. Noether normalization shows that any analytic algebra is a finite extension of some \mathcal{O}_{d}. Prove that the converse is also true, i.e. if the \mathbb{C}-algebra is a finite extension of some \mathcal{O}_{d} then it must be an analytic algebra, i.e. it is the quotient of some \mathcal{O}_{n} by some ideal I.

- Let us summarize what we have established so far. We have shown that we can identify the germs of analytic sets with analytic algebras, i.e. quotients of the algebras $\mathcal{O}_{n}, n=1,2, \cdots$. This correspondence is in fact functorial. To any morphism of germs of analytic sets we can associate a morphism of analytic algebras, and any morphism of algebras can be obtain in this way. This shows that two analytic germs are isomorphic (i.e. biholomorphic) if and only if their associated local analytic algebras are isomorphic.
- We have have also seen that any analytic germ is a finite branched cover ${ }^{2}$ defines an analytic germ. Algebraically, this means than the category of analytic algebras is equivalent to the category of \mathbb{C}-algebras which are finite extensions of some \mathcal{O}_{n}.

To formulate our next result we need to remind a classical algebraic concept.
Definition 9.2.16. The radical of an ideal I of a ring R is the ideal \sqrt{I} defined by

$$
\sqrt{I}:=\left\{r \in R ; \quad \exists n \in \mathbb{Z}_{+}: r^{n} \in I\right\} .
$$

We have the following important nontrivial result.
Theorem 9.2.17 (Analytical Nullstellensatz). For every ideal $I \subset \mathcal{O}_{\mathbb{C}^{n}, 0}$ we have

$$
\mathcal{J}_{\hat{V}(I), 0}=\sqrt{I} .
$$

Equivalently this means that a function $f \in \mathcal{O}_{\mathbb{C}^{n}, 0}$ vanishes on the zero locus $V(I)$ of the ideal I if an only if a power f^{m} of f belongs to the ideal I.

[^5]Example 9.2.18. Consider $f=z^{n} \in \mathcal{O}_{1}$. Then $\hat{V}(f)$ is the germ at 0 of the set $A=\{0\}$. Note that $\mathfrak{J}(\hat{V}(f))=(z)=\mathfrak{m}_{1}$.

The above theorem implies that the finiteness of the Milnor number of a critical point is tantamount to the isolation of that point. More precisely, we have the following result ${ }^{3}$.

Proposition 9.2.19. Suppose $F: 0 \in U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \in \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and $F(0)=0$. Then the following are equivalent.
(i) 0 is an isolated solution of $F(z)=0$.
(ii) $\mu(F, 0)<\infty$.

Proof Denote by \hat{V} the germ of analytic subset generated by the ideal $I_{F} \subset \mathcal{O}_{n}$. If 0 is isolated then $\hat{V}=0$ and by analytical Nullstellensatz we have

$$
\sqrt{I_{F}}=\mathfrak{m}_{n}
$$

Hence there exists $k>0$ such that $\mathfrak{m}_{n}^{k} \subset I_{F}$ which implies $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / I_{F}<\infty$.
Conversely, if $\mu=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / I_{F}<\infty$ then $\mathfrak{m}_{n}^{\mu} \subset I_{F}$ so that $\hat{V}=0$, i.e. 0 is an isolated solution of $F(z)=0$.

Inspired by the above result we will say that a critical point p of a holomorphic function f is isolated if $\mu(f, p)<\infty$.

9.3 Tougeron's finite determinacy theorem

The Morse Lemma (which we have not proved in these lectures) has played a key role in the classical Picard-Lefschetz theory. It states that if 0 is a nondegenerate critical point of $f \in \mathfrak{m}_{n}$ then, we can holomorphically change coordinates to transform f into a polynomial of degree 2 . The change in coordinates requirements can be formulated more conceptually as follows.

Definition 9.3.1. Denote by \mathcal{G}_{n} the space of germs of holomorphic maps $G: 0 \in U \subset$ $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $G(0)=0$ and the differential of G at 0 is an invertible linear map $D G(0): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

The elements in \mathcal{G}_{n} can be regarded as local holomorphic changes of coordinates near $0 \in \mathbb{C} \cdot \mathcal{G}_{n}$ is a group. There is a right action of \mathcal{G}_{n} on \mathcal{O}_{n} defined by

$$
\mathcal{O}_{n} \ni f \mapsto f \circ G, \forall G \in \mathcal{G}_{n}
$$

Two germs $f, g \in \mathcal{O}_{n}$ are said to be right equivalent, $f \sim_{r} g$, if they belong to the same orbit of \mathcal{G}_{n}. In more intuitive terms, this means that g can be obtained from f by a local change of coordinates.

[^6]Definition 9.3.2. The k-jet at 0 of $f \in \mathcal{O}_{n}$ is the polynomial $j_{k}(f)=j_{k}(f, 0) \in$ $\mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ obtained by removing from the Taylor expansion of f at 0 the terms of degree $>k$. More precisely

$$
j_{k}(f):=\sum_{|\alpha| \leq k} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) z^{\alpha},
$$

where for any nonnegative multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ we set

$$
\begin{gathered}
|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}, \quad \alpha!:=\alpha_{1}!\cdots \alpha_{n}!, \\
z^{\alpha}:=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}, \quad \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}:=\frac{\partial^{|\alpha|} f}{\partial z_{1}^{\alpha_{1}} \cdots \partial z_{n}^{\alpha_{n}}} .
\end{gathered}
$$

Exercise 9.3.1. Suppose $I \subset \mathcal{O}_{n}$ is a proper ideal and $f \in \mathcal{O}_{n}$ is a holomorphic germ such that for every $k \geq 1$ there exists $f_{k} \in I$ so that

$$
j_{k}\left(f-f_{k}\right)=0 .
$$

Prove that $f \in I$. We can interpret this result by saying that if f can be approximated to any order by functions in I then f must be in I. In more geometric terms, this means that if two analytic sets have contact at a point of arbitrarily high order then they must coincide in a neighborhood of that point. This is a manifestation of the coherence of the sheaf of holomorphic functions. (Hint: Use Krull intersection theorem.)

Morse Lemma can now be rephrased by saying that if 0 is a critical point of f with $\mu(f, 0)=1$ then f is right equivalent to its second jet. The next result is a considerable generalization of Morse's Lemma. We refer to [2] for an even more general statement.

Theorem 9.3.3 (Tougeron finite determinacy theorem). Suppose 0 is an isolated critical point of $f \in \mathfrak{m}_{n}$ with Milnor number μ. Then f is right equivalent to $j_{\mu+1}(f)$.

Proof We follow the strategy in [2, Sec.63] or [61, Sec. 5] which is based on the so called homotopy method.

Roughly speaking our goal is to construct a local biholomorphism which will "kill" the terms of order $>\mu+1$ of f. One of the richest sources of biholomorphisms is via (time dependent) flows of vector fields. Our local biholomorphism will be described as the time-1 map of a flow defined by a time dependent vector field.

We will prove that for every $\varphi \in \mathfrak{m}_{n}^{\mu+2}$ the germ $f+\varphi$ is right equivalent to f. We have an affine path $f+t \varphi$. We seek a one parameter family $G_{t} \in \mathcal{G}_{n}$ such that

$$
\begin{equation*}
(f+t \varphi)\left(G_{t} z\right) \equiv f(z), \quad G_{0}(z)=z, \quad G_{t}(0)=0 \tag{9.3.1}
\end{equation*}
$$

Define the time dependent vector field

$$
V_{\tau}(z):=\left.\frac{d}{d t}\right|_{t=\tau} G_{t}(z)
$$

Differentiating (9.3.1) with respect to t we obtain the infinitesimal version of (9.3.1) known as the homology equation

$$
\begin{equation*}
V_{t}\left(G_{t}(z)\right) \cdot(f+t \varphi)=-\varphi\left(G_{t}(z)\right) \in \mathfrak{m}_{n}^{\mu+2} . \tag{9.3.2}
\end{equation*}
$$

The proof will be completed in two steps: solve the homology equation and then integrate its solution with respect to t.

Step 1. For every $\alpha \in \mathfrak{m}^{\mu+1}$ there exists a time dependent holomorphic vector field $V_{t}(z)=V_{t, \alpha}(z)$ defined in a neighborhood of 0 depending smoothly on $t \in[0,1]$ such that

$$
\begin{gather*}
V_{t}(0)=0 \forall t \in[0,1] \tag{9.3.3a}\\
V_{t, \alpha}(z) \cdot(f+t \varphi)(z)=\alpha(z), \quad \forall t \in[0,1], \forall|z| \ll 1 . \tag{9.3.3b}
\end{gather*}
$$

Step 2. The equation (9.3.1) has at least one solution.
Lemma 9.3.4. (a) The equation (9.3.3b) has at least one solution $V_{t, \alpha}$ for every $\alpha \in \mathfrak{m}^{\mu}$. (b) The "initial value" problem (9.3.3a) + (9.3.3b) has at least one solution for every $\alpha \in \mathfrak{m}^{\mu+1}$.

Proof Consider all the monomials $M_{1}, \cdots, M_{N} \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ of degree μ. We will first explain how to solve (9.3.3b) when $\alpha=M_{j}$. We already know that

$$
\mathfrak{m}^{\mu} \subset \mathfrak{J}(f)
$$

so that there exist $h_{i j} \in \mathcal{O}_{n}$ such that

$$
M_{j}=\sum_{i} h_{i j} \frac{\partial f}{\partial z_{i}} .
$$

Hence

$$
M_{j}=\sum_{i} h_{i j} \frac{\partial(f+t \varphi)}{\partial z_{i}}-t \sum_{i} h_{i j} \frac{\partial \varphi}{\partial z_{i}}
$$

Next observe that since $\varphi \in \mathfrak{m}^{\mu+2}$ we have ${ }^{4}$

$$
\frac{\partial \varphi}{\partial z_{i}} \in \mathfrak{m}^{\mu+1}
$$

We can therefore write

$$
\sum_{i} h_{i j} \frac{\partial \varphi}{\partial z_{i}}=\sum_{p} a_{j p} M_{p}, \quad a_{p j} \in \mathfrak{m}
$$

and

$$
M_{j}=\sum_{i} h_{i j} \frac{\partial(f+t \varphi)}{\partial z_{i}}-t \sum_{p} a_{j p} M_{p} .
$$

[^7]As in the proof of Nakayama Lemma we can consider this as a linear system for the row vector $\vec{M}:=\left(M_{1}, \cdots, M_{N}\right)$. More precisely we have

$$
\vec{M}(\mathbf{1}+t A)=\vec{B}_{t},
$$

where

$$
B_{\ell, t}=\sum_{i} h_{i \ell} \frac{\partial(f+t \varphi)}{\partial z_{i}} \in \mathfrak{J}(f+t \varphi)
$$

and the entries of $A=A(z)$ are in \mathfrak{m}. The matrix $(I+t A(z))$ is invertible for all $t \in[0,1]$ and all sufficiently small z. We denote by $K_{t}(z)$ its inverse. We deduce

$$
\vec{M}=\vec{B}_{t} K_{t}
$$

or more explicitly

$$
M_{j}=\sum_{\ell} K_{\ell j, t} B_{\ell, t}=\sum_{\ell, i} K_{\ell j, t} h_{i \ell} \frac{\partial(f+t \varphi)}{\partial z_{i}}
$$

Thus,

$$
V_{t, j}(z):=\sum_{i}\left(\sum_{\ell} h_{i \ell} K_{\ell j, t}\right) \frac{\partial}{\partial z_{i}}
$$

solves (9.3.3b) for $\alpha=M_{j}$. Observe that this vector field need not satisfy (9.3.3a).
Any $\alpha \in \mathfrak{m}^{\mu}$ can be represented as a linear combination

$$
\alpha=\sum_{j} \alpha_{j} M_{j}, \quad \alpha_{j} \in \mathcal{O}_{n}
$$

Then

$$
V_{t, \alpha}:=\sum_{j} \alpha_{j} V_{t, j}
$$

is a solution of (9.3.3b). If moreover $\alpha \in \mathfrak{m}^{\mu+1}$ so that $\alpha_{j}(0)=0$ then this $V_{t, \alpha}$ also satisfies the "initial condition" (9.3.3a).

Since $\varphi \in \mathfrak{m}^{\mu+2} \subset \mathfrak{m}^{\mu+1}$ we can find a solution $V_{t,-\varphi}$ of $(9.3 .3 \mathrm{a})+(9.3 .3 \mathrm{~b})$ with $\alpha=-\varphi$. To complete the proof of Tougeron's theorem we need to find a solution $G_{t}(z) \in \mathcal{G}_{n}$ of the equation

$$
\frac{d}{d t}(f+t \varphi)\left(G_{t} z\right)=0, \quad G_{t}(0)=0, \quad \forall t \in[0,1], \quad \forall|z| \ll 1
$$

Such a solution can be obtained by solving the differential equation

$$
\frac{d G_{t}}{d t}=V_{t,-\varphi}\left(G_{t}(z)\right), \quad G_{t}(0)=0
$$

Chapter 10

A brief introduction to coherent sheaves

10.1 Ringed spaces and coherent sheaves

Suppose A is an analytic subset of the complex manifold M. For every open subset $U \subset M$ we denote by $\mathcal{R}_{A}(U \cap A)$ the ring of regular functions $U \cap A \rightarrow \mathbb{C}$. We obtain in this fashion a sheaf on A. For every open set $U \subset M$ we have a natural map

$$
\mathcal{O}_{M}(U) \rightarrow \mathcal{R}_{A}(U \cap A)
$$

whose kernel is the ideal $\mathcal{J}_{A}(U)$ of holomorphic functions on U which vanish on $A \cap U$ so that we have an induced map

$$
\mathcal{O}_{M}(U) / \mathcal{J}_{A}(U)=\mathcal{O}_{A}(U \cap A) \rightarrow \mathcal{R}_{A}(U \cap A) .
$$

This is clearly an isomorphism of sheaves. For this reason we will always think of the structural sheaf of \mathcal{O}_{A} as a subsheaf of the sheaf of continuous functions on A. Note that the stalk $\mathcal{O}_{A, x}$ is an analytic algebra, and conversely, every analytic algebra is the stalk at some point of the structural sheaf of some analytic set.

Suppose $F: A \rightarrow B$ is a holomorphic map between two analytic sets, and let $p \in A$. Then F induces a natural morphism of sheaves

$$
F^{*} \in \operatorname{Hom}_{\mathbf{S h}(A)}\left(F^{-1} \mathcal{O}_{B}, \mathcal{O}_{A}\right)
$$

We deduce that for every $p \in A$, there is an induced morphism of analytic algebras

$$
F^{*}: \mathcal{O}_{B, F(p)} \rightarrow \mathcal{O}_{A, p}
$$

This suggest that one could interpret the morphisms of analytic algebras as germs of holomorphic maps. Exercise 9.2 . 1 shows that this is an accurate intuition.

The above considerations lead to the following important concept.
Definition 10.1.1. (i) A ringed space is a pair $\left(X, \mathcal{R}_{X}\right)$, where X is a topological space and \mathcal{R}_{X} is a sheaf of commutative rings with 1 . The ringed space $\left(X, \mathcal{R}_{X}\right)$ is called local
if for every $x \in X$ the stalk $\mathcal{R}_{X, x}$ is a local ring with maximal ideal $\mathfrak{m}_{x} . \mathcal{R}_{X}$ is called the structural sheaf of the ringed space.
(ii) A morphism of ringed spaces $\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a pair $\left(f, f^{\#}\right)$ where $f: X \rightarrow Y$ is a continuous map and

$$
f^{\#}: \operatorname{Hom}\left(f^{-1} \mathcal{R}_{Y}, \mathcal{R}_{X}\right)
$$

is a morphism of sheaves of rings. If the ringed spaces are local then a morphism of ringed spaces is called local if for every $x \in X$ the induced map

$$
f^{\#}: \mathcal{R}_{Y, f(x)} \rightarrow \mathcal{R}_{X, x}
$$

maps the maximal ideal $\mathfrak{m}_{f(x)}$ into the maximal ideal \mathfrak{m}_{x}.
Example 10.1.2. Suppose R is a commutative ring with 1 . Then the spectrum of R is the set $\operatorname{Spec} R$ is the set of all prime ideals of R. It is equipped with the Zariski topology whose closed sets are $V(S), S \subset R$

$$
V(S):=\{\mathfrak{p} \in \operatorname{Spec} R ; \quad S \subset \mathfrak{p}\}
$$

For every $\mathfrak{p} \in \operatorname{Spec} R$ we denote by $R_{\mathfrak{p}}$ the localization of R at \mathfrak{p}. For any Zariski open set $U \subset$ Spec R we denote by $\mathcal{R}(U)$ the set of functions

$$
f: U \longrightarrow \coprod_{\mathfrak{p} \in U} R_{\mathfrak{p}} \text { such that } f(\mathfrak{p}) \in R_{\mathfrak{p}}, \quad \forall \mathfrak{p} \in U
$$

and for every $\mathfrak{p} \in U$ we can find a Zariski open neighborhood V of $\mathfrak{p} \in U$ and elements $p, q \in R$ such that

$$
q \notin \mathfrak{q}, \quad f(\mathfrak{q})=\frac{p}{q}, \quad \forall \mathfrak{q} \in V .
$$

Then $U \rightarrow \mathcal{R}(U)$ defines a sheaf of rings on $\operatorname{Spec} R$ and the pair ($\operatorname{Spec} R, \mathcal{R}$) is a local ringed space. A morphism of rings $\phi: R_{0} \rightarrow R_{1}$ induces a continuous map

$$
f: \operatorname{Spec} R_{1} \rightarrow \operatorname{Spec} R_{0}, \quad f(\mathfrak{p})=\phi^{-1}(\mathfrak{p}) .
$$

The pair $(f, \phi):\left(\operatorname{Spec} R_{1}, \mathcal{R}_{0}\right) \rightarrow\left(\operatorname{Spec} R_{1}, \mathcal{R}_{1}\right)$ is a morphism of local ringed space. Conversely any morphism of local ringed spaces $\left(\operatorname{Spec} R_{1}, \mathcal{R}_{0}\right) \rightarrow\left(\operatorname{Spec} R_{1}, \mathcal{R}_{1}\right)$ is obtained in this fashion. For more details we refer to [34, Chap. II] or [65, vol.II].

Using the adjunction isomorphism (9.2.2) we deduce that a morphism of ringed spaces

$$
\left(f, f^{\#}\right):\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)
$$

induces a morphism of sheaves

$$
f^{\#}: \mathcal{R}_{Y} \rightarrow f_{*} \mathcal{R}_{X} .
$$

Observe that if \mathcal{S} is a sheaf of \mathcal{R}_{X}-modules then $f_{*} \mathcal{S}$ is naturally a sheaf of $f_{*} \mathcal{R}_{X}$-modules. Via the morphism $f^{\#}: \mathcal{R}_{Y} \rightarrow f_{*} \mathcal{R}_{X}$ we can regard $f_{*} \mathcal{S}$ as a sheaf of \mathcal{R}_{Y}-modules. Thus a morphism of ringed spaces $\left(f, f^{\#}\right):\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ induces a map

$$
f_{*}: \mathbf{S h}_{\mathcal{R}_{X}} \rightarrow \mathbf{S h}_{\mathcal{R}_{Y}}
$$

Given a sheaf \mathcal{F} of \mathcal{R}_{Y}-modules we obtain a sheaf $f^{-1} \mathcal{F}$ of $f^{-1} \mathcal{R}_{Y}$-modules over X. We can regard \mathcal{R}_{X} as a sheaf of $f^{-1} \mathcal{R}_{Y}$-modules via the morphism $f^{-1} \mathcal{R}_{Y} \xrightarrow{f^{\#}} \mathcal{R}_{X}$. We define

$$
f^{*} \mathcal{F}:=f^{-1} \mathcal{F} \otimes_{f^{-1} \mathcal{R}_{Y}} \mathcal{R}_{X}
$$

$f^{*} \mathcal{F}$ is a sheaf of \mathcal{R}_{X}-modules and we have an adjunction isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{R}_{X}}\left(\mathcal{F}^{*} \mathcal{F}, \mathcal{G}\right) \cong \operatorname{Hom}_{\mathcal{R}_{Y}}\left(\mathcal{F}, f_{*} \mathcal{R}_{Y}\right), \quad \forall \mathcal{F} \in \mathbf{S h}_{\mathcal{R}_{X}}, \quad \mathcal{G} \in \mathbf{S h}_{\mathcal{R}_{Y}} . \tag{10.1.1}
\end{equation*}
$$

We conclude that if A is an analytic subset of a complex manifold M then $\left(A, \mathcal{O}_{A}\right)$ is a local ringed space and any holomorphic map $F: A \rightarrow B$ between two analytic subsets induces in a natural way a morphism of local ringed spaces.

Definition 10.1.3. A complex space is a local ringed space $\left(X, \mathcal{O}_{X}\right)$, where \mathcal{O}_{X} is a subsheaf of the sheaf of complex valued continuous functions on X with the property that every point $x \in X$ has an open neighborhood U such that the local ringed space $\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$ is isomorphic to a local ringed space of the form $\left(A, \mathcal{O}_{A}\right)$, where A is an analytic subset of an open polydisk $D \subset \mathbb{C}^{N}$. We will refer to such a U as a coordinate neighborhood.

If $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ are complex spaces then a holomorphic map $f: X \rightarrow Y$ is a morphism of local ringed spaces $\left(f, f^{\#}\right):\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ such that for every $x \in X$ there exist coordinate neighborhoods U of x and V of $f(x)$ such that

$$
f(U) \subset V, \quad f: U \rightarrow V \text { is a holomorphic map between analytic sets }
$$

and

$$
f^{\#}(g)=g\left(f(x), \quad \forall g \in \mathcal{O}_{Y, f(x)}\right.
$$

Suppose $\left(X, \mathcal{R}_{X}\right)$ is a local ringed space. We denote by $\mathbf{S h}_{\mathcal{R}_{X}}$ the collection of sheaves of \mathcal{R}_{X}-modules. Given $\mathcal{S}_{0}, \mathcal{S}_{1} \in \mathbf{S h}_{\mathcal{R}_{X}}$ we denote by $\operatorname{Hom}_{\mathcal{R}_{X}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ the group of morphisms of sheaves of \mathcal{R}_{X}-modules.

Definition 10.1.4. Suppose $\left(X, \mathcal{R}_{X}\right)$ is a ringed space and $\mathcal{S} \in \mathbf{S h}_{\mathcal{R}_{X}}$.
(i) The sheaf \mathcal{S} is said to be of finite type if for every $x \in X$ there exists an open neighborhood U, a positive integer g and an epimorphism of sheaves

$$
\left.\left.\mathcal{R}_{X}^{g}\right|_{U} \rightarrow \mathcal{S}\right|_{U} .
$$

Equivalently, this means that there exists sections $s_{1}, \cdots, s_{g} \in \mathcal{S}(U)$ such that the germs $s_{1, y}, \cdots, s_{g, y}$ generate the stalk \mathcal{S}_{y} for any $y \in U$.
(ii) The sheaf \mathcal{S} is called coherent if it is of finite type and relationally finite, i.e. for any open set $U \subset X$ and any morphism of sheaves

$$
\phi:\left.\left.\mathcal{R}_{X}^{g}\right|_{U} \rightarrow \mathcal{S}\right|_{U}, \quad g \in \mathbb{Z}_{>0}
$$

the kernel is of finite type.

Let us analyze the coherence condition a bit further. First, observe that a morphism $\phi:\left.\left.\mathcal{R}_{X}^{g}\right|_{U} \rightarrow \mathcal{S}\right|_{U}$ can be identified with a section of $\vec{s} \in \mathcal{S}(U)^{g}$,

$$
\vec{s}=\left(s_{1}, \cdots, s_{g}\right) .
$$

For every section $\vec{f}=\left(f^{1}, \cdots, f^{g}\right)$ of \mathcal{R}_{X}^{g} on an open subset $V \subset U$ we set

$$
\langle\vec{s}, \vec{f}\rangle=\sum_{j} f^{j} s_{j}=\phi(\vec{f}) \in \mathcal{S}(V)
$$

The coherence means that for every $x \in U$ there exists an open neighborhood V and sections $\vec{f}_{1}, \cdots, \vec{f}_{r} \in \mathcal{R}_{X}^{g}(V)$ such that

$$
\left\langle\vec{s}, \overrightarrow{f_{k}}\right\rangle=0, \quad \forall k=1, \cdots, r
$$

and for every $y \in V$ and every $\vec{t} \in \mathcal{R}_{X, y}^{g}$ with the property $\left\langle\vec{s}_{y}, \vec{t}\right\rangle=0$ there exist $c_{1}, \cdots, c_{r} \in$ $\mathcal{R}_{X, y}$ such that

$$
\vec{t}=\sum_{k} c_{k} \vec{f}_{k}(y) .
$$

The finite type sheaves satisfy a property reminiscent of the unique continuation property of holomorphic functions.

Proposition 10.1.5. Suppose $\mathcal{S} \in \mathbf{S h}_{\mathcal{R}_{X}}$ is a finite type sheaf. Set

$$
\operatorname{supp} \mathcal{S}:=\left\{x \in X ; \mathcal{S}_{x} \neq 0\right\}
$$

Then the following hold.
(i) $\operatorname{supp} \mathcal{S}$ is a closed subset of X.
(ii) If s_{1}, \cdots, s_{g} are sections of \mathcal{S} defined in a neighborhood U of $x \in X$ such that $s_{1, x}, \cdots, s_{g, x}$ generate the stalk \mathcal{S}_{x} then there exists a neighborhood V of x in U such that for any $y \in V$ the germs $s_{1, y}, \cdots, s_{g, y}$ generate the stalk \mathcal{S}_{y}

Proof (i) We prove that $X \backslash \operatorname{supp} \mathcal{S}$ is open. Let $x \in X \backslash \operatorname{supp} \mathcal{S}$ so that $\mathcal{S}_{x}=0$. Since \mathcal{S} locally finitely generated there exists an open neighborhood U of X and sections $s_{1}, \cdots, s_{g} \in \mathcal{S}(U)$ such that $\left\{s_{1}(y), \cdots, s_{g}(y)\right\}$ generate \mathcal{S}_{y} for all $y \in U$. Since $\mathcal{S}_{x}=0$ we deduce that there exists a neighborhood V of x in U such that $\left.s_{i}\right|_{V}=0$ for all $i=1, \cdots, g$. Hence $\mathcal{S}_{y}=0$ for all $y \in V$ so that $V \subset X \backslash \operatorname{supp} \mathcal{S}$, i.e. $X \backslash \operatorname{supp} \mathcal{S}$ is open. Part (ii) is immediate.

The next result is frequently used to produce new coherent sheaves out of old ones. For a proof we refer to [64, I.13].

Theorem 10.1.6. Consider a short exact sequence in of sheaves of \mathcal{R}_{X}-modules

$$
0 \rightarrow \mathcal{S}_{0} \rightarrow \mathcal{S}_{1} \rightarrow \mathcal{S}_{2} \rightarrow 0
$$

If two of the sheaves $\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}$ are coherent, then so is the third.

Corollary 10.1.7. (i) Suppose $\phi \in \operatorname{Hom}_{\mathcal{R}_{X}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ is a morphism between coherent sheaves. Then the kernel, the image and the cokernel of ϕ are coherent sheaves.
(ii) Suppose $x \in X$ and $\phi \in \operatorname{Hom}_{\mathcal{R}_{X}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ is as above. If $\phi_{x}: \mathcal{S}_{0, x} \rightarrow \mathcal{S}_{1, x}$ is an isomorphism then so is ϕ_{y} for all y sufficiently close to x.

Proposition 10.1.8. (i) If $\mathcal{S}_{0}, \mathcal{S}_{1}$ are coherent subsheaves of the coherent sheaf $\mathcal{S} \in \mathbf{S h}_{\mathcal{R}_{X}}$ then the sheaves $S_{0}+\mathcal{S}_{1}$ and $S_{0} \cap \mathcal{S}_{1}$ are coherent.
(ii) If $\mathcal{S}_{0}, \mathcal{S}_{1}$ are coherent sheaves on the local ringed space $\left(X, \mathcal{R}_{X}\right)$ then $\mathcal{S}_{0} \otimes_{\mathcal{R}_{X}} \mathcal{S}_{1}$ and $\underline{H o m}_{\mathcal{R}_{X}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ are coherent sheaves.

Proof (i) The sheaf $\mathcal{S}_{0}+\mathcal{S}_{1}$ is coherent as a finite type subsheaf of of the coherent sheaf \mathcal{S}. Then the sheaf $\left(\mathcal{S}_{0}+\mathcal{S}_{1}\right) / \mathcal{S}_{1}$ is coherent and

$$
\mathcal{S}_{0} \cap \mathcal{S}_{1}=\operatorname{ker}\left(\mathcal{S}_{0} \longrightarrow\left(\mathcal{S}_{0}+\mathcal{S}_{1}\right) / \mathcal{S}_{1}\right)
$$

so that $\mathcal{S}_{0} \cap \mathcal{S}_{1}$ is coherent.
(ii) For any point $x \in X$ we can find an open neighborhood U and a short exact sequence

$$
\left.\left.\left.\mathcal{R}_{X}^{r}\right|_{U} \rightarrow \mathcal{R}_{X}^{g}\right|_{U} \rightarrow \mathcal{S}_{0}\right|_{U} \rightarrow 0
$$

so that we obtain a short exact sequence

$$
\left.\left.\left.\mathcal{S}_{1}^{r}\right|_{U} \rightarrow \mathcal{S}_{1}^{g}\right|_{U} \rightarrow\left(\mathcal{S}_{0} \otimes_{\mathcal{R}_{X}} \mathcal{S}_{1}\right)\right|_{U} \rightarrow 0
$$

which shows that $\left.\left(\mathcal{S}_{1} \otimes_{\mathcal{R}_{X}} \mathcal{S}_{1}\right)\right|_{U}$ is coherent. This implies the coherence of $\mathcal{S}_{0} \otimes_{\mathcal{R}_{X}} \mathcal{S}_{1}$ since coherence is a local property.

To prove the coherence of $\underline{\operatorname{Hom}}_{\mathcal{R}_{X}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)$ we need the following auxiliary result of independent interest.

Lemma 10.1.9. For every $x \in X$ the natural morphism

$$
\begin{equation*}
\rho: \underline{\operatorname{Hom}}_{\mathcal{R}_{X}}\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)_{x} \rightarrow \operatorname{Hom}_{\mathcal{R}_{X, x}}\left(\delta_{0, x}, \mathcal{S}_{1, x}\right) \tag{10.1.2}
\end{equation*}
$$

is an isomorphism.
Proof of Lemma 10.1.9 Suppose U is a neighborhood of x and $\phi \in \operatorname{Hom}_{\mathcal{R}_{U}}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right)$ is such that the induced morphism

$$
\phi_{x}: \mathcal{S}_{0, x} \rightarrow \mathcal{S}_{1, x}
$$

is trivial. Since \mathcal{S}_{0} is of finite type we deduce that ϕ is trivial in a neighborhood of x so that the morphism ρ in (10.1.2) is injective.

Let us now show that ρ is surjective. In other words, given a $\mathcal{R}_{X, x}$-morphism

$$
\phi: \mathcal{S}_{0, x} \rightarrow \mathcal{S}_{1, x}
$$

there exist a neighborhood U of x and $\psi \in \operatorname{Hom}_{\mathcal{R}_{U}}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right)$ such that $\psi_{x}=\phi$.
\mathcal{S}_{0} is coherent so that there exists a neighborhood V of x and a short exact sequence

$$
\left.\left.\left.\mathcal{R}_{X}^{r}\right|_{V} \xrightarrow{\kappa} \mathcal{R}_{X}^{g}\right|_{V} \xrightarrow{\gamma} \mathcal{S}_{0}\right|_{V} \rightarrow 0 .
$$

The morphism γ is described by sections $s_{1}, \cdots, s_{g} \in \mathcal{S}_{0}(V)$ such that the germs $s_{i, y}$, $i=1,2, \cdots, g$ generate the stalk $\mathcal{S}_{0, y}$ for any $y \in V$.

There exists a neighborhood W of $x \in V$ and sections $\sigma_{1}, \cdots, \sigma_{g} \in \mathcal{S}_{1}(W)$ such that

$$
\sigma_{i, x}=\phi\left(s_{i, x}\right), \quad \forall i=1, \cdots, g
$$

Set $\vec{s}=\left(s_{1}, \cdots, s_{g}\right) \in \mathcal{S}_{0}(W)^{g}, \vec{\sigma}=\left(\sigma_{1}, \cdots, \sigma_{g}\right) \in \mathcal{S}_{1}(W)^{g}$. For $\vec{f}=\left(f^{1}, \cdots, f^{g}\right) \in \mathcal{R}_{X}(W)$ we set

$$
\gamma(\vec{f})=\langle\vec{s}, \vec{f}\rangle=\sum_{i} f^{i} s_{i} \in \mathcal{S}_{0}(W), \quad\langle\vec{\sigma}, \vec{f}\rangle=\sum_{i} f^{i} \sigma_{i} \in \mathcal{S}_{1}(W) .
$$

Let $\mathcal{K}:=\left.\operatorname{ker} \gamma \subset \mathcal{R}_{X}^{g}\right|_{V} . \mathcal{K}$ is of finite type so there exist a neighborhood W^{\prime} of $x \in W$ and sections $\vec{f}_{1}, \cdots, \overrightarrow{f_{\ell}} \in \mathcal{R}_{X}\left(W^{\prime}\right)^{g}$ such that the germs $\vec{f}_{s, y}$ span \mathcal{K}_{y} for all $y \in W^{\prime}$. We have

$$
\left\langle\vec{\sigma}, \vec{f}_{j}\right\rangle_{x}=\phi\left(\left\langle\vec{s}, \vec{f}_{j}\right\rangle_{x}\right)=0, \quad \forall j=1, \cdots, \ell
$$

so that there exists a neighborhood U of $x \in W^{\prime}$ such that

$$
\left.\left\langle\vec{\sigma}, \vec{f}_{j}\right\rangle\right|_{U}=0, \quad \forall j=1, \cdots, \ell .
$$

In particular, we deduce that

$$
\left\langle\vec{\sigma}_{y}, \vec{f}_{y}\right\rangle=0, \quad \forall \vec{f} \in \mathcal{K}_{y}, \quad \forall y \in U
$$

For every $y \in U$ a germ $s_{y} \in \mathcal{S}_{0, y}$ can be represented non-uniquely as

$$
\begin{equation*}
s_{y}=\left\langle\vec{s}_{y}, \vec{f}_{y}\right\rangle, \quad \vec{f} \in \mathcal{R}_{X, y}^{g} \tag{10.1.3}
\end{equation*}
$$

We set

$$
\psi_{y}\left(s_{y}\right)=\left\langle\vec{\sigma}_{y}, \vec{f}_{y}\right\rangle
$$

If s_{y} has two representations of the type (10.1.3),

$$
s_{y}=\left\langle\vec{s}_{y}, \vec{f}_{y}\right\rangle=\left\langle\vec{s}_{y}, \vec{h}_{y}\right\rangle,
$$

then

$$
\vec{f}_{y}-\vec{h}_{y} \in \mathcal{K}_{y} \Longrightarrow\left\langle\vec{\sigma}_{y}, \vec{f}_{y}-\vec{h}_{y}\right\rangle=0
$$

Hence the definition of $\psi_{y}\left(s_{y}\right)$ is independent of the representation (10.1.3) of s_{y}. Clearly $\phi\left(s_{x}\right)=\psi_{x}\left(s_{x}\right)$

Suppose $\mathcal{S}_{0}, \mathcal{S}_{1}$ are coherent sheaves. For every $x \in X$ there exists a neighborhood U and a short exact sequence

$$
\left.\left.\left.\mathcal{R}_{X}^{r}\right|_{U} \rightarrow \mathcal{R}_{X}^{g}\right|_{U} \rightarrow \mathcal{S}_{0}\right|_{U} \rightarrow 0
$$

In particular we obtain a sequence

$$
\begin{equation*}
0 \rightarrow \underline{\operatorname{Hom}}_{\mathcal{R}_{X}}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right) \rightarrow \underline{\operatorname{Hom}}_{\mathcal{R}_{X}}\left(\left.\mathcal{R}_{X}^{g}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right) \rightarrow \underline{\operatorname{Hom}}_{\mathcal{R}_{X}}\left(\left.\mathcal{R}_{X}^{r}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right) . \tag{10.1.4}
\end{equation*}
$$

Using Lemma 10.1.9 we obtain the following sequence at stalk level

$$
0 \rightarrow \operatorname{Hom}_{\mathcal{R}_{X, x}}\left(\mathcal{S}_{0_{x}}, \mathcal{S}_{1, x}\right) \rightarrow \operatorname{Hom}_{\mathcal{R}_{X, x}}\left(\mathcal{R}_{X, x}^{g}, \mathcal{S}_{1, x}\right) \rightarrow \operatorname{Hom}_{\mathcal{R}_{X, x}}\left(\mathcal{R}_{X, x}^{r}, \mathcal{S}_{1, x}\right)
$$

This sequence is exact since the sequence

$$
\mathcal{R}_{X, x}^{r} \rightarrow \mathcal{R}_{X, x}^{g} \rightarrow 0
$$

is exact. Next observe that the exact sequence (10.1.4) can be rewritten as

$$
\left.\left.0 \rightarrow \underline{\operatorname{Hom}}_{\mathcal{R}_{X}}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right) \rightarrow \mathcal{S}_{1}^{g}\right|_{U} \rightarrow \mathcal{S}_{1}^{r}\right|_{U}
$$

which produces a description of $\underline{H o m}_{\mathcal{R}_{X}}\left(\left.\mathcal{S}_{0}\right|_{U},\left.\mathcal{S}_{1}\right|_{U}\right)$ as a kernel of a morphism of coherent sheaves.

Proposition 10.1.10. Suppose X is a topological space, $\left(Y, \mathcal{R}_{Y}\right)$ a ringed space such that Y is a closed subset in X. Denote by $j: Y \hookrightarrow X$ the natural inclusion. A sheaf $\mathcal{S} \in \mathbf{S h}_{\mathcal{R}_{Y}}$ is \mathcal{R}_{Y}-coherent if and only if the sheaf $j_{*} \mathcal{S}$ is coherent as a sheaf of $j_{*} \mathcal{R}_{Y}$-modules.

Note that in the above proposition $j_{*} \mathcal{S}$ is precisely the extension by zero of \mathcal{S} to X, i.e.

$$
\left(j_{*} \mathcal{S}\right)_{x}=\left\{\begin{array}{ccc}
0 & \text { if } & x \in X \backslash Y \\
\mathcal{S}_{x} & \text { if } & x \in Y
\end{array}\right.
$$

Suppose \mathcal{R}_{X} is coherent when viewed as a module over itself. Given a coherent sheaf \mathcal{S} on X we denote by $\operatorname{Ann}(\mathcal{S})$ the subsheaf of \mathcal{R}_{X} with stalk at x defined by

$$
\operatorname{Ann}(\mathcal{S})_{x}:=\left\{f \in \mathcal{R}_{X, x} ; \quad f \cdot \mathcal{S}_{x}=0\right\}
$$

Equivalently, $\operatorname{Ann}(\mathcal{S})$ can be defined as the kernel of the multiplication morphism

$$
\mathcal{R}_{X} \rightarrow{\underline{\operatorname{Hom}_{\mathcal{R}_{X}}}}^{(\mathcal{S}, \mathcal{S}) .}
$$

In particular we deduce the following result.
Corollary 10.1.11. If \mathcal{R}_{X} is coherent and \mathcal{S} is a coherent sheaf of \mathcal{R}_{X}-modules, the annihilator sheaf Ann (S) is coherent.

Given a coherent sheaf \mathcal{F} on $\left(X, \mathcal{R}_{X}\right)$ and $\mathcal{G} \subset \mathcal{F}$ a coherent subsheaf we defined the transporter of \mathcal{F} in \mathcal{G} to be the sheaf of ideals

$$
(\mathcal{G}: \mathcal{F}):=\operatorname{Ann}(\mathcal{F} / \mathcal{G}), \quad(\mathcal{G}: \mathcal{F})_{x}:=\left\{u \in \mathcal{R}_{X, x}: u \cdot \mathcal{F}_{x} \subset \mathcal{G}_{x}\right\}
$$

More generally, given coherent subsheaves \mathcal{F}, \mathcal{G} of the same sheaf \mathcal{S} we define $(\mathcal{G}: \mathcal{F})$ to be the ideal sheaf with described by

$$
(\mathcal{G}: \mathcal{F})_{x}:=\left\{u \in \mathcal{R}_{X, x}: u \cdot \mathcal{F}_{x} \subset \mathcal{G}_{x}\right\} .
$$

Note that

$$
(\mathcal{G}: \mathcal{F})=(\mathcal{G} \cap \mathcal{F}: \mathcal{F})
$$

so that $(\mathcal{G}: \mathcal{F})$ is a coherent sheaf.
Proposition 10.1.12 (Change of rings). Suppose $\left(X, \mathcal{R}_{X}\right)$ is a ringed spaces such that \mathcal{R}_{X} is coherent, $\mathcal{J} \subset \mathcal{R}_{X}$ is a coherent ideal sheaf, and \mathcal{S} is a sheaf of $\mathcal{R}_{X} / \mathcal{J}$-modules. Then \mathcal{S} is coherent over $\mathcal{R}_{X} / \mathcal{J}$ if and only if it coherent over \mathcal{R}_{X}. In particular $\mathcal{R}_{X} / \mathcal{J}$ is coherent as a sheaf of $\mathcal{R}_{X} / \mathcal{J}$-modules.

For a proof we refer to [64, I.16].

10.2 Coherent sheaves on complex spaces

So far we have not produced one nontrivial example of coherent sheaf. We have merely pointed out to produce new coherent sheaves out of old ones. Once we have a few nontrivial example we can use the previous machinery to produce many more sophisticated examples. Here is the first nontrivial example.
Theorem 10.2.1 (Oka). The sheaf \mathcal{O}_{n} of holomorphic functions on \mathbb{C}^{n} is coherent.
Proof The proof is carried by induction over n. The case $n=0$ is trivial. We thus assume \mathcal{O}_{n-1} is coherent and we prove that \mathcal{O}_{n} is coherent. Clearly \mathcal{O}_{n} is of finite type. We need to prove that given an open set $U \subset \mathbb{C}^{n}$ and a morphism

$$
\gamma:\left.\left.\mathcal{O}_{n}\right|_{U} ^{r} \rightarrow \mathcal{O}_{n}\right|_{U}
$$

its kernel $\operatorname{ker} \gamma$ is a finite type sheaf. Let $x \in U$. Assume for simplicity $x=0 \in U$. Denote by $\delta_{i} \in \mathcal{O}_{n}(U)$ the canonical sections

$$
\vec{\delta}_{i}=\left(\delta_{i 1}, \cdots, \delta_{i r}\right) \in \mathcal{O}_{n}(U),
$$

where $\delta_{i j}$ denotes the Kronecker symbol. Set

$$
f_{i}:=\gamma\left(\vec{\delta}_{i}\right) .
$$

For every sections $\vec{\rho}=\left(\rho^{1}, \cdots, \rho^{r}\right), \vec{s}=\left(s^{1}, \cdots, s^{r}\right)$ of \mathcal{O}_{n}^{r} we set

$$
\vec{\rho} \cdot \vec{f}=\sum_{i} \rho^{i} f_{i}, \quad \vec{\rho} \cdot \vec{s}=\sum_{i} \rho^{i} s^{i} .
$$

$\left.\operatorname{ker} \gamma \subset \mathcal{O}_{n}^{r}\right|_{U}$ is the sheaf of relations (amongst the f^{\prime} 's), i.e. sections $\vec{\rho}$ satisfying

$$
\vec{\rho} \cdot \vec{f}=0
$$

After a linear change in coordinates in \mathbb{C}^{n} we can assume that there exists $d>0$ such that

$$
\partial_{z_{n}}^{d} f_{i}(0) \neq 0, \quad \forall i=1, \cdots, r .
$$

We identify \mathbb{C}^{n-1} with the subspace $\left\{z_{n}=0\right\}$. For $z \in \mathbb{C}^{n}$ we write $z=\left(z^{\prime}, z_{n}\right)$ and for any open set $V \subset \mathbb{C}^{n}$ we set $V^{\prime}=V \cap\left\{z_{n}=0\right\}$. Using the Weierstrass preparation theorem we can find a small open polydisk $D \subset U$ centered at 0 , Weierstrass polynomials $w_{i} \in \mathcal{O}_{n-1}\left(D^{\prime}\right)\left[z_{n}\right]$ and nowhere vanishing holomorphic functions $u_{i} \in \mathcal{O}_{n}(D)$ such that

$$
\operatorname{deg}_{z_{n}} w_{i} \leq d,\left.\quad f_{i}\right|_{D}=u_{i} w_{i}, \quad \partial_{z_{n}}^{d} f_{i}(z) \neq 0, \quad \forall i=, \cdots, r, \quad \forall z \in D
$$

We can assume without loss of generality that $u_{i} \equiv 1$ so that f_{i} are Weierstrass polynomials in z_{n} of degree $\leq d$. We have the following result.

Lemma 10.2.2. Let $p \in D$. Then $(\operatorname{ker} \gamma)_{p}$ is generated as an $\mathcal{O}_{n, p}$-module by germs $\vec{\rho}_{z}=$ $\left(\rho_{p}^{1}, \cdots, \rho_{p}^{g}\right) \in \mathcal{O}_{n, p}^{g}$ such that

$$
\rho_{p}^{i} \in \mathcal{O}_{n-1, p^{\prime}}\left[z_{n}\right], \quad \operatorname{deg}_{z_{n}} \rho_{z}^{i} \leq d
$$

Let us explain how the above lemma implies Oka's Theorem. For every integer ν we denote by \mathcal{S}_{ν} the sheaf over the hyperplane $\left\{z_{n}=0\right\}$ consisting of polynomials in z_{n} with coefficients in \mathcal{O}_{n-1} and with degree $\leq \nu$. We have $\mathcal{S}_{\nu} \cong \mathcal{O}_{n-1}^{\nu+1}$ and the induction assumption implies that \mathcal{S}_{ν} is coherent. Observe that \vec{f} can be viewed as a section of \mathcal{S}_{d}^{g}.

We have a morphism of sheaves

$$
\gamma_{d}: \mathcal{S}_{d}^{g} \rightarrow \mathcal{S}_{2 d}, \quad \vec{\rho} \mapsto \vec{\rho} \cdot \vec{f} .
$$

Since $\mathcal{S}_{2 d}$ is coherent we deduce that the kernel of the above map is of finite type. In particular we can find a polydisk $\Delta^{\prime} \subset D^{\prime}$ centered at $0^{\prime} \in \mathbb{C}^{n-1}$ and sections $\vec{R}_{1}, \cdots, \vec{R}_{m} \in \mathcal{S}_{d}^{g}$ such that for any $z^{\prime} \in \Delta^{\prime}$ the stalk ker $\gamma_{d, z^{\prime}}$ is generated as an $\mathcal{O}_{n-1, z^{\prime}}$-module by $\vec{R}_{1, z^{\prime}}, \cdots, \vec{R}_{m, z^{\prime}}$.

Using Lemma 10.2.2 we deduce that for any $p=\left(p^{\prime}, p_{n}\right) \in D$ such that $p^{\prime} \in \Delta^{\prime}$ the stalk ker γ_{z} is generated as an $\mathcal{O}_{n, z^{\prime}}$-module by $\vec{R}_{1, z^{\prime}}, \cdots \vec{R}_{m, z^{\prime}}$.

Proof of Lemma 10.2.2 Assume that

$$
d=\operatorname{deg}_{z_{n}} f_{g} \geq \operatorname{deg}_{z_{n}} f_{i}, \quad \forall i=1, \cdots, g
$$

Let $p=\left(p^{\prime}, p_{n}\right) \in D$. Since $\partial_{z_{n}}^{d} f_{g}(p) \neq 0$ we deduce from the Weierstrass preparation theorem applied at p that $f_{g, p}$ is a Weierstrass polynomial at in the variable $\left(z_{n}-p_{n}\right)$ of degree $d^{\prime} \leq d$. Suppose $\vec{\rho} \in \mathcal{O}_{n, p}$ is the germ at p of a relation.

For $i=1, \cdots, q-1$ the Weierstrass division theorem gives

$$
\rho^{i}=f_{g, p} q_{i}+r^{i}, \quad q_{i} \in \mathcal{O}_{n, p}, \quad r^{i} \in \mathcal{O}_{n-1}\left[z_{n}\right], \quad \operatorname{deg}_{z_{n}} r^{i}<\operatorname{deg}_{z_{n}} f_{q, p}=d^{\prime} .
$$

Consider the Koszul relations

$$
\vec{k}_{i j}=f_{j} \vec{\delta}_{i}-f_{i} \vec{\delta}_{j} .
$$

Observe that the components of the Koszul relations are polynomials in $\mathcal{O}_{n-1}\left[z_{n}\right]$ of degree $\leq d$. Moreover

$$
\vec{\rho}-q_{1} \vec{k}_{1, g}-\cdots-g_{g-1} \vec{k}_{g-1, g}=\left[\begin{array}{c}
r^{1} \\
\vdots \\
r^{g-1} \\
\rho^{q}+\sum_{i=1}^{g-1} q_{i} f_{i}
\end{array}\right]=: \vec{r} .
$$

It follows that $\vec{r} \in \operatorname{ker} \gamma_{p}$. By construction

$$
\operatorname{deg}_{z_{n}} r^{i}<d, \quad \forall i=1, \cdots, g-1 .
$$

The last component is not independent. From the relational equality $\vec{r} \cdot \vec{f}=0$ we deduce

$$
r^{g} f_{g}=-\sum_{i=1}^{g-1} r^{i} f_{i} .
$$

Observe that the degree of the right-hand-side is $\leq d^{\prime}+d$ so that

$$
\operatorname{deg}_{z_{n}} r^{g} f_{g} \leq d^{\prime}+d, \quad \operatorname{deg}_{z_{n}} f_{g}=d^{\prime} \Longrightarrow \operatorname{deg}_{z_{n}} r^{g} \leq d
$$

We have shown that any relation $\vec{\rho}$ can be written as an \mathcal{O}_{n}-liner combination of relations whose components are polynomials in $\mathcal{O}_{n-1}\left[z_{n}\right]$ of degree $\leq d$.

Theorem 10.2.3 (Oka-Cartan). Suppose $U \subset \mathbb{C}^{n}$ is an open set and $A \subset U$ is an analytic subset. Then the ideal sheaf \mathcal{J}_{A} is coherent.

Proof Suppose $0 \in A$. We can assume the germ $(A, 0)$ is irreducible. Otherwise by shrinking if necessarily U we have $A=A_{1} \cup \cdots \cup A_{k}$ and

$$
\mathcal{J}_{A}=\mathcal{J}_{A_{1}} \cap \cdots \cap \mathcal{J}_{A_{k}} .
$$

If the sheaves of ideals $\mathcal{J}_{A_{j}}$ are coherent then so is \mathcal{J}_{A}.
Fix holomorphic functions f_{1}, \cdots, f_{g} defined in a neighborhood V of 0 such that their germs at 0 generate the prime ideal $\mathfrak{p}=\mathcal{J}_{A, 0} \subset \mathcal{O}_{n, 0}$.

If the neighborhood V is small enough we can find from the Local Parametrization Theorem 9.2 .11 a function Δ on V (the discriminant) such that $A^{*}=A \cap V \backslash D, D:=$ $\{\Delta=0\}$ is smooth and for every $p \in A^{*}$ we have

$$
\left(f_{1, p}, \cdots, f_{g, p}\right)=\mathcal{J}_{A, p} .
$$

Now consider the following ideal sheaf on V

$$
\mathcal{J}:=\left(f_{1}, \cdots, f_{g}\right):(\Delta) .
$$

By Oka's Theorem 10.2 .1 the ideal sheaves $\left(f_{1}, \cdots, f_{g}\right)$ and (Δ) are coherent so that \mathcal{J} is coherent.

Choose finitely many generators h_{1}, \cdots, h_{s} for \mathcal{J}. At 0 we have

$$
\Delta_{0} \cdot h_{j, 0} \in\left(f_{1,0}, \cdots, f_{g, 0}\right)=\mathcal{J}_{A, 0}=\text { prime ideal. }
$$

Since $\Delta_{0} \notin \mathcal{J}_{A, 0}$ (this follows from part (ii) of the local parametrization theorem) we deduce

$$
h_{j, 0} \in \mathcal{J}_{A, 0}, \quad \forall j=1,2, \cdots, s .
$$

We conclude that by shrinking the size of V we can assume that we have the equality of sheaves

$$
\begin{equation*}
\left(f_{1}, \cdots, f_{g}\right):(\Delta)=\left(f_{1}, \cdots, f_{g}\right) \tag{10.2.1}
\end{equation*}
$$

Now let $p \in V$ and $h \in \mathcal{J}_{A, p}$. Then h is defined on a small neighborhood W of p in V and h vanishes on $A \cap W$, i.e.

$$
h^{-1}(0) \supset A \cap W .
$$

To prove that $h_{p} \in\left(f_{1, p}, \cdots, f_{g, p}\right)$ it suffices to show that

$$
\begin{equation*}
\left(f_{1, p}, \cdots, f_{g, p}\right):\left(h_{p}\right)=\mathcal{O}_{n, p} . \tag{10.2.2}
\end{equation*}
$$

On the neighborhood W of p in V the transporter ideal $\mathcal{F}:=\left(f_{1}, \cdots, f_{g}\right):(h)$ is coherent and thus it has finitely many generators u_{1}, \cdots, u_{t}. Since $\mathcal{J}_{A, q}=\left(f_{1, q}, \cdots, f_{g, q}\right)$ for all $q \in V \backslash D$ we deduce

$$
h_{q} \in\left(f_{1, q}, \cdots, f_{g, q}\right), \quad \forall q \in V \backslash D,
$$

so that $\mathcal{F}_{q}=\mathcal{O}_{n, q}$. Thus the equality (10.2.2) holds for $p \in V \backslash D$. Assume $p \in V \cap D$.

Since $\mathcal{F}_{q}=\mathcal{O}_{n, q}$ for all $q \in V \backslash D$ we deduce

$$
\left\{u_{1}=\cdots=u_{t}=0\right\} \subset D=\{\Delta=0\} .
$$

It follows from the analytical Nullstellensatz that there exists an integer $r=r(p) \geq 0$ such that

$$
\Delta_{p}^{r} \in\left(u_{1, p}, \cdots, u_{t, p}\right)=\left(f_{1, p}, \cdots f_{g, p}\right):\left(h_{p}\right) .
$$

We assume r is the minimal integer with this property. We want to prove that $r=0$, i.e. $1 \in \mathcal{F}_{p}$.

Assume $r>0$. Then

$$
\Delta_{p} \cdot\left(\Delta_{p}^{r-1} \cdot h_{p}\right) \in\left(f_{1, p}, \cdots f_{g, p}\right) \Longrightarrow \Delta_{p}^{r-1} \cdot h_{p} \in\left(f_{1, p}, \cdots f_{g, p}\right):\left(\Delta_{p}\right)
$$

Using (10.2.1) we deduce

$$
\Delta_{p}^{r-1} \cdot h_{p} \in \in\left(f_{1, p}, \cdots f_{g, p}\right):\left(\Delta_{p}\right)=\left(f_{1, p}, \cdots f_{g, p}\right),
$$

i.e.

$$
\Delta_{p}^{r-1} \in\left(f_{1, p}, \cdots f_{g, p}\right):\left(h_{p}\right)
$$

which contradicts the minimality of r. Hence

$$
1 \in\left(f_{1, p}, \cdots f_{g, p}\right):\left(h_{p}\right) \Longrightarrow\left(f_{1, p}, \cdots f_{g, p}\right):\left(h_{p}\right)=\mathcal{O}_{n, p}
$$

Using Theorem 10.2.3, Proposition 10.1.12 and the extension property in Proposition 10.1.10 we deduce the following result.

Corollary 10.2.4. Suppose A is an analytic subset inside an open set $U \subset \mathbb{C}^{n}$. Then the structural sheaf \mathcal{O}_{A} over A is coherent as a module over itself.

Definition 10.2.5. Suppose A is an analytic subset of a complex manifold and $\mathcal{J} \subset \mathcal{O}_{A}$ is an ideal sheaf. Then the variety associated to \mathcal{J} is defined by

$$
V(\mathcal{J}):=\left\{a \in A ; \quad f(a)=0, \quad \forall f \in \mathcal{J}_{a}\right\} .
$$

It is easy to see that if \mathcal{J} is a coherent ideal sheaf then the variety $V(\mathcal{J})$ is an analytic subset of A.

Proposition 10.2.6. Suppose \mathcal{S} is a coherent sheaf on a complex manifold M. Then

$$
\operatorname{supp} \mathcal{S}=V(\operatorname{Ann}(\mathcal{S}))
$$

In particular $\operatorname{supp} \mathcal{S}$ is an analytic subset.

Proof From Oka's theorem and Corollary 10.1.11 we deduce that the annihilator ideal $\operatorname{Ann}(\mathcal{S})$ is coherent. In particular $V:=V(\operatorname{Ann}(\mathcal{S}))$ is an analytic subset.

Let us prove that $V \subset \operatorname{supp} \mathcal{S}$. Let $a \in V\left(\operatorname{Ann}(\mathcal{S})\right.$. We have to prove that $\mathcal{S}_{a} \neq 0$. Indeed, if $\mathcal{S}_{a}=0$ then $1 \in \operatorname{Ann}(\mathcal{S})_{a}$ but $1(a) \neq 0$ so that $a \notin V$.

Conversely, assume $\mathcal{S}_{a} \neq 0$. Then $\operatorname{Ann}(\mathcal{S})_{a} \nsubseteq \mathcal{O}_{A, a}$. In particular Ann $(\mathcal{S})_{a}$ lies inside the unique maximal ideal $\mathfrak{m}_{a} \subset \mathcal{O}_{A, a}$. Since

$$
\mathfrak{m}_{a}=\left\{f \in \mathcal{O}_{A, a} ; f(a)=0\right\}
$$

we deduce $a \in V$.
Suppose $\left(f, f^{\#}\right):\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a morphism of complex spaces. For any $\mathcal{S} \in$ $\mathbf{S h}_{\mathcal{O}_{X}}$ the higher direct images $R^{q} f_{*} \mathcal{S}$ are naturally sheaves of \mathcal{O}_{Y} modules. We have the following nontrivial result. For a proof we refer to [7, 21]

Theorem 10.2.7 (Grauert direct image). Suppose $\left(f, f^{\#}\right):\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is aproper morphism of complex spaces. Then for every coherent sheaf of \mathcal{O}_{X}-modules \mathcal{S} the higher direct images $R^{q} f_{*} \mathcal{S}$ are coherent sheaves of \mathcal{O}_{Y}-modules.

Corollary 10.2.8. Suppose $f:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a finite holomorphic map. Then $f_{*} \mathcal{O}_{X}$ is a coherent sheaf of \mathcal{O}_{Y}-modules.

10.3 Flatness

We would like to spend some time reviewing a rather mysterious algebraic condition which lies behind many continuity results in complex geometry. For proofs and more information we refer to $[9,24,51]$.

Suppose R is a commutative ring with 1 . An R-module M is called flat if for any injective morphism of R-modules $\varphi: N_{0} \hookrightarrow N_{1}$ the induced morphism

$$
\varphi \otimes \mathbb{1}_{M}: N_{0} \otimes_{R} M \rightarrow N_{1} \otimes_{R} M,
$$

is also injective. The flatness is a local condition in the sense that an R-module M is flat if and only if its localization $M_{\mathfrak{m}}$ at any maximal ideal $\mathfrak{m} \subset R$ is a flat $R_{\mathfrak{m}}$-module. Equivalently, M is flat if for any prime ideal $\mathfrak{p} \subset R$ the localization $M_{\mathfrak{p}}$ is a flat $R_{\mathfrak{p}}$-module.

A morphism of rings $f: R \rightarrow S$ is called flat if S, regarded as a R-module is flat.
Proposition 10.3.1. Suppose M is an R-module. Then the following conditions are equivalent.
(i) M is flat.
(ii.a) $\operatorname{Tor}_{k}^{R}(N, M)=0$, for any R-module N and any $k \geq 1$.
(ii.b) $\operatorname{Tor}_{1}^{R}(N, M)=0$, for any R-module N.
(iii) $\operatorname{Tor}_{1}^{R}(R / I, M)=0$ for any finitely generated ideal $I \subset R$.
(iv) If $A=\left(a_{i j}\right)$ is a $n \times m$ matrix with entries in R viewed a R-linear map $R^{m} \rightarrow R^{n}$ then

$$
\vec{x} \in \operatorname{ker}\left(A \otimes \mathbb{1}_{M}: M^{n} \rightarrow M^{m}\right),
$$

if and only if there exists a $m \times p$ matrix $B=\left(b_{j k}\right)$ with entries in R and $\vec{y} \in M^{p}$ such that

$$
\vec{x}=B \cdot \vec{y}, \quad A \cdot B=0 .
$$

Since flatness is a local condition we only need to understand when a module over a local ring is flat.

Theorem 10.3.2 (Infinitesimal criterion of flatness). Suppose (R, \mathfrak{m}) is a Noetherian local ring, (S, \mathfrak{n}) is a Noetherian local R-algebra such that

$$
\mathfrak{m} S \subset \mathfrak{n}
$$

and M is a finitely generated S-module. Then the following conditions are equivalent.
(i) M is a flat R-module.
(ii) $\operatorname{Tor}_{1}^{R}(R / \mathfrak{m}, M)=0$.
(iii) For every $n \geq 1$ the R / \mathfrak{m}^{n}-module $M / \mathfrak{m}^{n} M$ is flat.
(iv) For every $n \geq 1$ the R / \mathfrak{m}^{n}-module $M / \mathfrak{m}^{n} M$ is free.

Definition 10.3.3. Suppose $\left(f, f^{\#}\right):\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a morphism of ringed spaces. The morphism is said to be flat at $x \in X$ if the ring morphism $f^{\#}: \mathcal{R}_{Y, f(x)} \rightarrow \mathcal{R}_{X, x}$ is flat. The morphism is called flat if it is flat at every point $x \in X$.

Chapter 11

Singularities of holomorphic functions of two variables

To get an idea of the complexity of the geometry of an isolated singularity we consider in greater detail the case of isolated singularities of holomorphic functions of two variables. This is is a classical subject better which plays an important role in the study of plane algebraic curves. For more details we refer to $[12,14,41]$ from which this chapter is inspired. We begin by considering a few guiding examples.

11.1 Examples

As we have indicated in the previous chapter, all the information about the local structure of an analytic set near a point is entirely contained in the analytic algebra associated to that point. In particular, if $P \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ is a polynomial such that $P(0)=0$, and 0 is an isolated critical point of P, then the local structure of the hypersurface $P=0$ near $0 \in \mathbb{C}^{n}$ contains a lot of information about the critical point 0 .

Example 11.1.1. (Nodes) Consider the polynomial $P(x, y)=x y \in \mathbb{C}\{x, y\}$. Then the origin $0 \in \mathbb{C}^{2}$ is a nondegenerate critical point of P, i.e. $\mu(P, 0)=1$. Near 0 the hypersurface A defined by $P=0$ has the form in Figure 11.1. The analytic algebra of $(A, 0)$ is given by

Figure 11.1: The node $x y=0$ in \mathbb{C}^{2}.
the quotient $\mathcal{O}_{A, 0}:=\mathbb{C}\{x, y\} /(x y)$. Note that $\mathcal{O}_{A, 0}$ is not an integral domain. If we rotate the figure by 45 degrees we see that A is a double branched cover of a line.

Example 11.1.2. (Cusps) Consider the polynomials $P(x, y)=y^{2}-x^{3} \in \mathbb{C}\{x, y\}$, and $Q(x, y)=y^{2}-x^{5} \in \mathbb{C}\{x, y\}$. Their zero sets $V(P)$ and $V(Q)$ are depicted in Figure 11.2. This figure also shows that both curves are double branched covers of the affine line.

Figure 11.2: The cusps $y^{2}=x^{3}$ in red, and $y^{2}=x^{5}$, in blue.
The Jacobian ideal of P at 0 is $\mathfrak{J}(P, 0)=\left(x^{2}, y\right)$, while the Jacobian ideal of Q at 0 is $\mathfrak{J}(Q, 0)=\left(x^{4}, y\right)$. We deduce that $\mu(P, 0)=2$ while $\mu(Q, 0)=4$. This shows that the functions P and Q ought to have different behaviors near 0 .

The analytic algebra of $V(P)$ at zero is $R(P):=\mathbb{C}\{x, y\} /\left(y^{2}-x^{3}\right)$, and the analytic algebra of $V(Q)$ near zero is $R(Q):=\mathbb{C}\{x, y\} /\left(y^{2}-x^{5}\right)$. Both are integral domains so that none of the them is isomorphic to the analytic algebra of the node in Figure 11.1. This suggests that the behavior near these critical points ought to be different from the behavior near a nondegenerate critical point.

We can ask whether $R(P) \cong R(Q)$. Intuitively, this should not be the case, because $\mu(P, 0) \neq \mu(Q, 0)$. The problem with the Milnor number μ is that it is an extrinsic invariant, determined by the way these two curves sit in \mathbb{C}^{2}, or equivalently, determined by the defining equations of these two curves. We cannot decide this issue topologically because $V(P)$ and $V(Q)$ are locally homeomorphic near 0 to a two dimensional disk. We have to find an intrinsic invariant of curves which distinguishes these two local rings.

First, we want to provide a more manageable description of these two rings. Define

$$
\varphi_{3}: \mathbb{C}\{x, y\} \rightarrow \mathbb{C}\{t\}, \quad x \mapsto t^{2}, \quad y \mapsto t^{3},
$$

and

$$
\varphi_{5}: \mathbb{C}\{x, y\} \rightarrow \mathbb{C}\{t\}, \quad x \mapsto t^{2}, \quad y \mapsto t^{5} .
$$

Observe that $\left(y^{2}-x^{k}\right) \subset \operatorname{ker} \varphi_{k}, k=3,5$. Let us now prove the converse, $\operatorname{ker} \varphi_{k} \subset\left(y^{2}-x^{k}\right)$. We consider only the case $k=3$. Suppose $f(x, y) \in \operatorname{ker} \varphi_{3}$. We write

$$
f=\sum_{m, n \geq 0} A_{m n} x^{m} y^{n} .
$$

Then

$$
\begin{equation*}
0=\varphi_{3}(f)=\sum_{m, n \geq 0} A_{m n} t^{2 m+3 n}=\sum_{k=0}^{\infty}\left(\sum_{2 m+3 n=k} A_{m n}\right) t^{k}=0 . \tag{11.1.1}
\end{equation*}
$$

Consider the quasihomogeneous polynomial $\Phi_{k}=\sum_{2 m+3 n=k} A_{m n} x^{m} y^{n}$. We want to show that $\left(y^{2}-x^{3}\right) \mid \Phi_{k}$. Set

$$
S_{k}:=\left\{(m, n) \in \mathbb{Z}_{+}^{2} ; 2 m+3 n=k\right\} .
$$

We denote by $\pi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ the natural projection $(m, n) \mapsto m$, and we set $m_{0}=\max \pi\left(S_{k}\right)$. Then there exists a unique $n_{0} \in \mathbb{Z}_{+}$such that $\left(m_{0}, n_{0}\right) \in S_{k}$. We can then represent

$$
S_{k}:=\left\{\left(m_{0}-3 s, n_{0}+2 s\right) ; 0 \leq s \leq\left\lfloor m_{0} / 3\right\rfloor\right\}
$$

and

$$
\Phi_{k}=x^{m_{0}} y^{n_{0}} \sum_{s=0}^{\left\lfloor m_{0} / 3\right\rfloor} C_{s} u^{s}, u:=\frac{y^{2}}{x^{3}}, \quad C_{s}:=A_{\left(m_{0}-3 s\right),\left(n_{0}+2 s\right)}
$$

The condition

$$
\sum_{s=0}^{\left\lfloor m_{0} / 3\right\rfloor} C_{s}=0
$$

implies that $u=1$ is a root of the polynomial $p(u)=\sum_{s} C_{s} u^{s}$. Hence we have

$$
\Phi_{k}=x^{m_{0}} y^{n_{0}}(u-1) \sum_{j=0}^{\left\lfloor m_{0} / 3\right\rfloor-1} D_{j} u^{j}=\left(y^{2}-x^{3}\right) \sum_{j=0}^{\left\lfloor m_{0} / 3\right\rfloor-1} D_{j} x^{m_{0}-3 j} y^{n_{0}+2 j}
$$

This shows that φ_{3} induces an one-to-one morphism $\varphi_{3}: R(P) \rightarrow \mathbb{C}\{t\}$ We denote by $R_{2,3}$ its image. We conclude similarly that φ_{5} induces an one-to one morphism $R(Q) \rightarrow \mathbb{C}\{t\}$ and we denote by $R_{2,5}$ its image. We will now show that the rings $R_{2,3}$ and $R_{2,5}$ are not isomorphic.

Consider for $k=3,5$ the morphisms of semigroups

$$
\pi_{2, k}:\left(\mathbb{Z}_{+}^{2},+\right) \rightarrow\left(\mathbb{Z}_{+},+\right), \quad(m, n) \mapsto 2 m+k n
$$

The image of $\pi_{2, k}$ is a sub-semigroup of $\left(\mathbb{Z}_{+},+\right)$which we denote by E_{k}. Observe that

$$
E_{3}=\{0,2,3,4,5, \cdots\}, \quad E_{5}=\{0,2,4,5,6, \cdots\}
$$

For each $f=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{C}\{t\}$ define $e(f) \in \mathbb{Z}_{+}$by the equality

$$
e(f):=\min \left\{n ; \quad a_{n} \neq 0\right\}
$$

We get surjective morphisms of semigroups

$$
e:\left(R_{2, k}, \cdot\right) \rightarrow\left(E_{k},+\right), \quad f \mapsto e(f)
$$

Suppose we have a ring isomorphism $\Phi: R_{2,3} \rightarrow R_{2,5}$. Set $A=\Phi\left(t^{2}\right), B=\Phi\left(t^{3}\right), a=e(A)$, and $b=e(B)$. Observe that $a, b>0$ and $e\left(\Phi\left(t^{2 m+3 n}\right)\right)=a m+b n \in E_{5}$. We have thus produced a surjective morphism of semigroups

$$
\Psi: E_{3} \rightarrow E_{5}, \quad(2 m+3 n) \mapsto a m+b n .
$$

Since $2=\min E_{3} \backslash\{0\}$ we deduce either $a=2$, or $b=2$, Assume $a=2$. Since Ψ is surjective, we deduce that $b=5$. To get a contradiction it suffices to produce two pairs (m_{i}, n_{i}) $\in \mathbb{Z}_{+}^{2}$, $i=1,2$ such that

$$
2 m_{1}+3 n_{1}=2 m_{2}+3 n_{2} \text { and } 2 m_{1}+5 n_{1} \neq 2 m_{2}+5 n_{2}
$$

For example $11=2 \cdot 1+3 \cdot 3=2 \cdot 4+3 \cdot 1$ but $2 \cdot 1+5 \cdot 3=17 \neq 13=2 \cdot 4+5 \cdot 1$.

Exercise 11.1.1. Consider an additive sub-monoid ${ }^{1} S \subset(\mathbb{Z},+)$. Suppose that S is asymptotically complete, i.e. there exists $\nu=\nu_{S}>0$ such that $n \in S, \forall n \geq \nu_{S}$.
(a) Prove that S is finitely generated.
(b) Let

$$
r=\min \left\{g \in \mathbb{Z}_{+} ; \exists s_{1}, \cdots, s_{g} \in S \text { which generate } S\right\} .
$$

Suppose G_{1} and G_{2} are two sets of generators such that $\left|G_{1}\right|=\left|G_{2}\right|=r$. Then $G_{1}=G_{2}$. In other words, S has a unique minimal set of generators. This finite set of positive integers is therefore an invariant of S.

We have discussed Example 11.1.2 in great detail for several reasons. First, we wanted to convince the reader that by reducing the study of the local structure of a singularity to a purely algebraic problem does by no means lead to an immediate answer. As we saw, deciding whether the two rings $R_{2,3}$ and $R_{2,5}$ are isomorphic is not at all obvious. The technique used in solving this algebraic problem is another reason why we consider Example 11.1.2 very useful. Despite appearances, this technique works for the isolated singularities of any holomorphic function of two variables. In the next section we describe one important algebraic concept hidden in the above argument.

11.2 Normalizations

Suppose $f \in \mathbb{C}\{x, y\}$ is a holomorphic function defined in a neighborhood of $0 \in \mathbb{C}$ such that 0 is an isolated critical point. Assume it is an irreducible Weierstrass y-polynomial in $f \in \mathbb{C}\{x\}[y]$.

Denote by $Z=Z(f)$ the zero set of f, and by $\mathcal{O}_{Z, 0}=\mathbb{C}\{x, y\} /(f)$ the local ring of the germ $(Z, 0)$. It is an integral domain. Following Example 11.1.2, we try to embed $\mathcal{O}_{Z, 0}$ in $\mathbb{C}\{t\}$, such that $\mathbb{C}\{t\}$ is a finite $\mathcal{O}_{Z, 0}$-module. More geometrically, Z is a complex 1 dimensional analytic set in \mathbb{C}^{2}, better known as a plane (complex) curve. A normalization is a then a germ of a finite map $\mathbb{C} \rightarrow \mathbb{Z}$ with several additional properties to be discussed later.

Observe that when $f=y^{2}-x^{3}$ we get such an embedding by setting $x=t^{2}, y=t^{3}$ so that $t=y / x$. We see that in this case we can obtain $\mathbb{C}\{t\}$ as a simple extension of $\mathcal{O}_{z, 0}$, more precisely,

$$
\mathbb{C}\{t\} \cong \mathcal{O}_{Z, 0}[y / x] .
$$

Similarly, when $f=y^{2}-x^{5}$ we set $x=t^{2}, y=t^{5}$ so that $t=y / x^{2}$, and

$$
\mathbb{C}\{t\} \cong \mathcal{O}_{Z, 0}\left[y / x^{2}\right] .
$$

Note that in both cases t is an integral element over $\mathcal{O}_{Z, 0}$, i.e. it satisfies a polynomial equation of the form

$$
t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}=0, \quad a_{k} \in \mathcal{O}_{Z, 0}
$$

In both cases we have $t^{2}-x=0$. This shows that in both cases $\mathbb{C}\{t\}$ is a finite $\mathcal{O}_{Z, 0}$-module. To analyze the general case we need to introduce some terminology.

[^8]Definition 11.2.1. Suppose R is an integral domain, and $K \supset R$ is a field.
(a) An element $x \in K$ is said to be integral over R over R if there exists a polynomial $P \in R[T]$ with leading coefficient 1 such that $P(x)=0$. We denote by $\tilde{R}_{K} \subset K$ the set of integral elements in K. When K is the field of fractions $Q(R)$ of R we write \tilde{R} instead of $\tilde{R}_{Q(R)}$.
(b) R is said to be integrally closed in K if $R=\tilde{R}_{K}$. The ring R is called integrally closed, if it is integrally closed in its field of fractions $Q(R)$.

Exercise 11.2.1. (a) Prove that $x \in Q(R)$ is integrally closed if and only if the R-module $R[x]$ is finitely generated.
(b) Suppose $R \subset S$ as a finite extension of integral Noetherian domains (i.e. S is finitely generated as an R-module), and K is a field containing S. If an element $\alpha \in K$ is integral over S, then it is also integral over R.
(b) Prove that \tilde{R} is a ring.

Exercise 11.2.2. Prove that any unique factorization domain is integrally closed.
Definition 11.2.2. The set \tilde{R} is a subring of $Q(R)$ called the normalization of R. Observe that \tilde{R} is integrally closed.

Example 11.2.3. Let $f=y^{2}-x^{3} \in \mathbb{C}\{x, y\}$, and $Z=\{f=0\} \subset \mathbb{C}^{2}$. The isomorphism $\mathbb{C}\{t\} \cong \mathcal{O}_{Z, 0}[y / x]$ shows that we can view $\mathbb{C}\{t\}$ as a subring of the field of fractions of $\mathcal{O}_{Z, 0}$.

We have the following fundamental result.
Theorem 11.2.4. Suppose $f \in \mathbb{C}\{x, y\}$ is irreducible, $f(0)=0$. Assume y is regular in the y-direction and set $R_{f}:=\mathbb{C}\{x, y\} /(f)$. Then the normalization \tilde{R}_{f} of R_{f} is isomorphic to $\mathbb{C}\{t\}$.

There are several essentially equivalent ways of approaching this theorem, which state various facts specific only to dimension 1. It is thus not surprising that the concept of dimension should play an important role in any proof. We will present a proof which combines ideas from [21, 41], and assumes only the geometric background presented so far. For a more algebraic proof we refer to [41].

Sketch of proof We can assume f is a Weierstrass polynomial of degree q,

$$
f(x, y)=y^{q}+a_{1}(x) y^{q-1}+\cdots+a_{q}(x) \in \mathbb{C}\{x\}[y], \quad a_{j}(0)=0, \quad \forall j=1, \cdots q .
$$

Denote by Z_{y} a small neighborhood of $(0,0)$ in $\{y=0\}$, and by Z_{f} a small neighborhood of $(0,0)$ in $f^{-1}(0)$. The natural projection

$$
\mathbb{C}^{2} \rightarrow \mathbb{C}, \quad(x, y) \mapsto x
$$

induces a degree q cover $\pi_{f}: Z_{f} \rightarrow Z_{y}$, branched over the zero set of the discriminant $\Delta(x)$ of f. We can assume Z_{y} is small enough so that $\Delta^{-1}(0) \cap Z_{y}=\{0\}$. We set

$$
Z_{f}^{*}:=Z_{f} \backslash\{(0,0)\}=\pi^{-1}\left(Z_{y}^{*}\right), \quad Z_{y}^{*}:=Z_{y} \backslash\{0\} .
$$

Since f is irreducible we deduce Z_{f}^{*} is a connected, smooth one dimensional complex manifold, and $\pi: Z_{f}^{*} \rightarrow Z_{x}$ is q-sheeted connected cover of the punctured disk Z_{y}^{*}. Thus we can find a small disk D in \mathbb{C} centered at 0 , and a bi-holomorphic map

$$
\phi: D^{*} \rightarrow Z_{f}^{*}
$$

such that the diagram below is commutative

The holomorphic functions x, y on Z_{f} define by pullback bounded holomorphic functions on the punctured disk D^{*}, and they extend to holomorphic functions $x(t), y(t)$ on D. Moreover, $x(t)=t^{q}$. We view the coordinate t as a bounded holomorphic function on D. It induces by pullback via ϕ^{-1} a bounded holomorphic function $t=t(x, y)$ on Z_{f}^{*}. We want to prove that it is the restriction of a meromorphic function on Z_{f}. More precisely, we want to prove that, by eventually shrinking the size of Z_{f} we have

$$
t=\left.\frac{A(x, y)}{B(x, y)}\right|_{Z_{f}}, \quad A, B \in \mathbb{C}\{x, y\}
$$

Denote by K_{x} the field of meromorphic functions in the variable x, i.e. K_{x} is the field of fractions of $\mathbb{C}\{x\}$. Denote by K_{f} the field of fractions of R_{f}. K_{f} is a degree q extension of K_{x} and in fact, it is a primitive extension. As primitive element we can take the restriction of the function y to Z_{f}.

For every point $p \in Z_{y}^{*}$ there exists a small neighborhood U_{p}, and q holomorphic functions

$$
r_{j}=r_{j, p}(x): U_{p} \rightarrow \mathbb{C}
$$

such that

$$
\pi^{-1}\left(U_{p}\right)=\bigcup_{j=1}^{q}\left\{\left(x, r_{j}(x)\right) ; \quad x \in U_{p}\right\} .
$$

In particular, this means that for each $x \in U_{p}$ the roots of the polynomial

$$
f(x, y)=y^{q}+a_{1}(x) y^{q-1}+\cdots+a_{q}(x) \in \mathbb{C}\{x\}[y]
$$

are $r_{1}(x), \cdots, r_{1}(x)$, so that

$$
f(x, y)=\prod_{j=1}^{q}\left(y-r_{j}(x)\right), \quad \Delta(x)=\prod_{i \neq j}\left(r_{i}(x)-r_{j}(x)\right)=\prod_{j=1}^{q} \partial_{y} f\left(x, r_{j}(x)\right) .
$$

For $(x, y) \in \pi^{-1}\left(U_{p}\right)$ define the Lagrange interpolation polynomial

$$
R(x, y):=f(x, y) \cdot \sum_{j=1}^{q} \frac{t\left(x, r_{j}(x)\right)}{\partial_{y} f\left(x, r_{j}(x)\right) \cdot\left(y-r_{j}(x)\right)}
$$

Note that $R(x, y)=t(x, y), \forall(x, y) \in \pi^{-1}\left(U_{p}\right)$. Observe that $\Delta(x) R(x, y)$ is a polynomial in y with coefficients holomorphic functions in the variable $x \in U_{p}$. The coefficients of this polynomial do not depend on p and are in fact bounded holomorphic functions on Z_{y}^{*} and thus they extend to genuine holomorphic functions on Z_{y}. We have thus proved the existence of q holomorphic functions b_{1}, \cdots, b_{q} on Z_{1} such that

$$
\Delta(x) t(x, y)=y^{q}+b_{1}(x) y^{q-1}+\cdots+b_{q}(x)
$$

which shows that $t \in K_{f}$ as claimed.
We thus get a map $\Phi: R_{f} \rightarrow \mathbb{C}\{t\}$, defined by $x \mapsto t^{q}, y=y(t)$. Let us first show it is an injection. Indeed, if $P\left(t^{q}, y(t)\right)=0$ for some $P \in \mathbb{C}\{x, y\}$ then we deduce from the analytical Nullstellensatz that $P \in(f)$. This is also a finite map because it is quasifinite,

$$
t^{q}=x \in \Phi\left(\mathfrak{m}_{R_{f}}\right)
$$

We can thus regard $\mathbb{C}\{t\}$ as a finite extension of R_{f}. Now observe that $\mathbb{C}\{t\} \subset Q\left(R_{f}\right)$ because $t \in Q\left(R_{f}\right)$. Since $\mathbb{C}\{t\}$ is integrally closed we deduce that $\mathbb{C}\{t\}$ is precisely the normalization of R_{f}.

The holomorphic map $\phi: D \rightarrow Z_{f}$ constructed above, which restricts to a biholomorphism $\phi: D^{*} \rightarrow Z_{f}^{*}$ is called a resolution of the singularity of the germ of the curve $f=0$ at the point $(0,0)$. We have proved that we can resolve the singularities of the irreducible germs. The reducible germs are only slightly more complicated. One has to resolve each irreducible branch separately.

Definition 11.2.5. Suppose $(C, 0)$ is an irreducible germ of a plane curve defined by an equation $f(x, y)=0$. Then a resolution of $(C, 0)$ is a pair (\tilde{C}, π) where \tilde{C} is a smooth curve and $\pi: \tilde{C} \rightarrow C$ is a holomorphic map with the following properties
(a) $\pi^{-1}(0)$ consists of a single point $\{p\}$.
(b) $\pi: \tilde{C} \backslash \pi^{-1}(0) \rightarrow C \backslash\{0\}$ is biholomorphic.

A resolution defines a finite morphism $\pi^{*}: \mathcal{O}_{C, 0} \rightarrow \mathcal{O}_{\tilde{C}, p}$ called the normalization and we set

$$
\delta(C, 0):=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\tilde{C}, p} / \pi^{*} \mathcal{O}_{C, 0} .
$$

The integer $\delta(C, 0)$ is called the delta invariant of the singularity. Later on we will prove that it indeed is an invariant of the singularity.

Exercise 11.2.3. Prove that the polynomial $y^{2}-x^{2 k+1}$ is irreducible as an element in $\mathbb{C}\{x, y\}$.

Example 11.2.6. Let $C_{2, k}$ denote the germ at 0 of the curve $y^{2}-x^{2 k+1}$. As in Example 11.1.2 we see that $\mathcal{O}_{C, 0} \cong \mathbb{C}\left\{S_{k}\right\}$ where S_{k} is the sub-monoid of $\left(\mathbb{Z}_{+},+\right)$generated by 2 and $2 k+1$, and $\mathbb{C}\left\{S_{k}\right\} \subset \mathbb{C}\{t\}$ is the subring defined by

$$
\mathbb{C}\left\{S_{k}\right\}=\left\{f=\sum_{m \in S_{k}} a_{m} t^{m}\right\} .
$$

Then

$$
\delta\left(C_{k}, 0\right)=\operatorname{dim} \mathbb{C}\{t\} / \mathbb{C}\left\{S_{k}\right\}=\#\left(\mathbb{Z}_{+} \backslash S_{k}\right)=k
$$

We will next present a constructive description of the resolution of an irreducible singularity based on Newton polygons, and then we will discuss a few numerical invariants of an isolated singularity of a curve.

11.3 Puiseux series and Newton polygons

The resolution described in the proof of Theorem 11.2.4 has a very special form

$$
x=t^{q}, \quad y=y(t) \in \mathbb{C}\{t\}, \quad f\left(t^{q}, y(t)\right)=0 .
$$

If we think, as the classics did, that y is an algebraic function of x implicitly defined by the equation $f(x, y)=0$, we can use the above resolution to produce a power series description of $y(x)$. More precisely, we set $t=x^{1 / q}$ and we see that

$$
y=\sum_{k \geq 0} y_{k} x^{k / q} .
$$

Such a description is traditionally known as a Puiseux series expansion.
The above argument is purely formal, since the the function $z \mapsto z^{1 / q}$ is a multivalued function. Denote by $\mathbb{C}((z))$ the field of fractions of the ring of formal power series $\mathbb{C}[[z]]$. It can be alternatively described as the ring of formal Laurent series in the variable z. Denote by $\mathbb{C}\left(\left(z^{1 / n}\right)\right)$ the finite extension of $\mathbb{C}((z))$ defined by

$$
\mathbb{C}\left(\left(z^{1 / n}\right)\right):=\frac{\mathbb{C}((z))[t]}{\left(t^{n}-z\right)}
$$

Observe that if $m \mid n$ then we have a natural inclusion

$$
\imath_{n m}: \mathbb{C}\left(\left(z^{1 / m}\right)\right) \hookrightarrow \mathbb{C}\left(\left(z^{1 / n}\right)\right), \quad z^{1 / m} \mapsto\left(z^{1 / n}\right)^{n / m}
$$

or more rigorously,

$$
\frac{\mathbb{C}((z))[t]}{\left(t^{m}-z\right)} \hookrightarrow \frac{\mathbb{C}((z))[s]}{\left(s^{n}-z\right)}, \quad t \mapsto s^{n / m} .
$$

The inductive limit of this family of fields is denoted by $\mathbb{C}\langle\langle z\rangle\rangle$. The elements of this field are called Puiseux-Laurent series and can be uniquely described as formal series

$$
f=\sum_{k \geq d} a_{k} z^{k / n}, \quad d, n \in \mathbb{Z}, \quad n>0, \quad \text { g.c.d. }\left(\{n\} \cup\left\{k ; \quad a_{k} \neq 0\right\}\right)=1 .
$$

Define

$$
S(f):=\left\{k ; \quad a_{k} \neq 0\right\}, \quad o_{z}(f):=\frac{\min S(f)}{n} .
$$

$S(f)$ is called the support of $f, o_{z}(f)$ is called the order of f and n is called the polydromy order. We denote it by $\nu(f)$. A Puiseux series is then a Puiseux-Laurent series f such that $o_{z}(f) \geq 0$. It is convenient to describe a Puiseux series f of polydromy order n in the form

$$
f(z)=g\left(z^{1 / n}\right), \quad g \in \mathbb{C}[[x]] .
$$

Observe that g is uniquely determined by the identity

$$
g(x)=f\left(x^{n}\right)
$$

We say that g is the power series expansion associated to f. The Puiseux series f is called convergent if the associated power series is convergent.

Theorem 11.2.4 shows that if $f \in \mathbb{C}\{x\}[y]$ is a Weierstrass polynomial, irreducible as an element in $\mathbb{C}\{x, y\}$, then there exists a (convergent) Puiseux series $y=y(x)$ such that

$$
f(x, y(x))=0 .
$$

Moreover, the polydromy order of $y(x)$ is equal to the y-degree of the Weierstrass polynomial $f(x, y)$. In particular, this means that the polynomial in y has a root in the extension $\mathbb{C}\langle\langle x\rangle\rangle$ of $Q(\mathbb{C}\{x\})$.

The Galois group of the extension $\mathbb{C}((x)) \hookrightarrow \mathbb{C}\left(\left(x^{1 / n}\right)\right)$ is a cyclic group of G_{n} order n. Fix a generator ρ of G_{n}. Then there exists a primitive n-th root ϵ of 1 such that

$$
(\rho f)\left(x^{1 / n}\right)=f\left(\epsilon x^{1 / n}\right), \quad \forall f \in \mathbb{C}\left(\left(x^{1 / n}\right)\right)
$$

We conclude immediately that if $f(x, y) \in \mathbb{C}\{x\}[y]$ is a Weierstrass polynomial of degree n, irreducible as an element of $\mathbb{C}\{x, y\}$, and $y \in \mathbb{C}\left(\left(x^{1 / n}\right)\right)$ is a convergent Puiseux series resolving the singularity at 0 of $f(x, y)=0$ then

$$
f(x, y)=\prod_{\epsilon^{n}=1}\left(y-y\left(\epsilon x^{1 / n}\right)\right) .
$$

A natural question arises. How do we effectively produce a Puiseux series expansion for an algebraic function $y(x)$ defined by an irreducible equation $f(x, y)=0$? In the remainder of this section we will outline a classical method, based on Newton polygons.

Definition 11.3.1. Let $f=\sum_{\alpha} a_{\alpha} X^{\alpha} \in \mathbb{C}\{x, y\}$, where $\alpha \in \mathbb{Z}_{+}^{2}$, and $X^{\alpha}:=x^{\alpha_{1}} y^{\alpha_{2}}$. The the support of f is the set

$$
S(f):=\left\{\alpha \in \mathbb{Z}_{+}^{2} ; \quad a_{\alpha} \neq 0\right\} .
$$

Definition 11.3.2. The Newton polygon associated to $S \subset \mathbb{Z}_{+}^{2}$ is the convex hull of the set $S+\mathbb{Z}_{+}^{2}$. We denoted it by $\Gamma(S)$. The Newton polygon of $f \in \mathbb{C}\{x, y\}$ is the Newton polygon of its support. We set $\Gamma(f):=\Gamma(S(f))$.

Figure 11.3: The Newton polygon of $f=y^{6}+3 x^{11} y^{4}+2 x^{10} y^{3}-3 x^{22} y^{2}+6 x^{21} y+x^{33}-x^{20}$.

The Newton polygon of a set $S \subset \mathbb{Z}_{+}^{2}$ is noncompact. It has finitely many vertices $P_{0}, P_{1}, \cdots, P_{r} \in \mathbb{Z}_{+}^{2}$, which we label in decreasing order of their heights, i.e. if P_{i} has coordinates $\left(a_{i}, b_{i}\right)$ then

$$
b_{0}>b_{1}>\cdots>b_{q} \geq 0
$$

Note that $0 \leq a_{0}<a_{1}<\cdots<a_{q}$. Define the height of a Newton Polynomial to be $h t(\Gamma(S))=b_{0}-b_{1}$, and the width to be $w d(\Gamma(S))=a_{q}-a_{0}$. A Newton polygon is called convenient P_{0} is on the vertical axis, and P_{r} is on the horizontal axis, i.e. $a_{1}=0, b_{r}=0$. In Figure 11.3 is depicted a Newton polygon with two vertices.

In general, a Newton polygon has a finite number of vertices $r+1$, and a finite number of finite edges, r. It has two infinite edges, a vertical one, and a horizontal one. Note that f is y-regular of order m (i.e. $y \mapsto f(0, y)$ has a zero of order m at $y=0$) if and only if the first vertex of its Newton polygon is the point $(0, m)$ on the vertical axis.

The following elementary result offers an indication that the Newton polygon captures some nontrivial information about the geometry of a planar curve.

Exercise 11.3.1. If $f \in \mathbb{C}\{x, y\}$ is irreducible then its Newton polygon is convenient and has a single finite edge.

It is not always easy or practical to draw the picture of the Newton polygon of a given polynomial, so we should have of understanding its basic geometric characteristics without having to draw it. This can be achieved using basic facts of convex geometry.

Set $V:=\mathbb{R}^{2}, L:=\mathbb{Z}^{2} \subset V, L_{+}:=\mathbb{Z}_{+}^{2} \subset L$, and denote by V^{\sharp} the dual of V. Suppose $S \subset L_{+}$. The polar of $\Gamma(S)$ is the convex set

$$
\Gamma(S)^{\sharp}=\left\{\chi \in V^{\sharp} ; \quad\langle\chi, v\rangle \geq 0, \quad \forall v \in \Gamma(S)\right\} .
$$

The restriction of any linear functional $\chi \in \Gamma(S)^{\sharp}$ to $\Gamma(S)$ achieves its minimum either at a vertex of $\Gamma(S)$ or along an entire edge of $\Gamma(S)$. For uniformity, we will use the term face to denote vertices and finite edges. A vertex is a 0 -face, and an edge is a 1 -face. For each
$\chi \in \Gamma(S)^{\sharp}$ we denote by ϕ_{χ} the face of $\Gamma(S)$ along which χ achieves its minimum. We say that $\phi(\chi)$ is the trace of χ along $\Gamma(S)$. Define the supporting function of $\Gamma(S)$ to be

$$
\ell_{S}: \Gamma(S)^{\sharp} \rightarrow \mathbb{R} \rightarrow \mathbb{R}_{+}, \quad \ell_{S}(\chi)=\min \{\langle\chi, v\rangle ; \quad v \in \Gamma(S)\} .
$$

Observe that

$$
\phi(\chi)=\left\{v \in \Gamma(S) ; \quad\langle\chi, v\rangle=\ell_{S}(\chi)\right\} .
$$

Two linear functionals $\chi_{1}, \chi_{2} \in \Gamma(S)^{\sharp}$ are called equivalent if $\phi\left(\chi_{1}\right)=\phi\left(\chi_{2}\right)$. We denote by C_{χ} the closure of the equivalence class of χ. We have the following elementary result.

Exercise 11.3.2. For each $\chi \in \Gamma(S)^{\sharp}$ the set C_{χ} is rational cone, i.e. it is a closed, convex cone generated over \mathbb{R} by a finite collection of vectors in the dual lattice

$$
L^{b}:=\left\{\chi \in V^{\sharp} ; \quad\langle\chi, v\rangle \in \mathbb{Z}, \quad \forall v \in L\right\}
$$

Definition 11.3.3. A 2-dimensional fan is a finite collection \mathcal{F} of rational cones in V^{\sharp} with the following properties.
(a) A face of a cone in \mathcal{F} is a cone in \mathcal{F}.
(b) The intersection of two cones in \mathcal{F} is a cone in \mathcal{F}.

We have the following result.
Proposition 11.3.4. Consider a set $S \subset L_{+}$and its Newton polygon $\Gamma(S)$. Then the collection

$$
\Phi(S):=\left\{C_{\chi} ; \quad \chi \in \Gamma(S)^{\sharp}\right\}
$$

is a fan.
Proof Denote by $\left\{P_{0}, P_{1}, \cdots, P_{r}\right\}$ the vertices of $\Gamma(S)$ arranged in decreasing order of their heights. For $i=1, \cdots, r$, denote by λ_{i} the line trough the origin perpendicular to $P_{i-1} P_{i}$. Observe that

$$
0<\text { slope }\left(\lambda_{1}\right)<\operatorname{slope}\left(\lambda_{2}\right)<\cdots<\operatorname{slope}\left(\lambda_{r}\right)<\infty .
$$

These rays partition the first quadrant V_{+}of V into a fan consisting of the origin, the nonnegative parts of the horizontal and vertical axes, the parts of the rays λ_{i} inside the first quadrant, and the angles formed by these rays. If we identify V and V^{\sharp} using the Euclidean metric, then we can a fan in V^{\sharp} consisting precisely of the cones $C_{\chi}, \chi \in \Gamma(S)^{\sharp}$.

We see that the one dimensional cones in $\Phi(S)$ correspond to the one dimensional faces of $\Gamma(S)$ (see Figure 11.4). We denote by $\Delta=\Delta_{S}$ the steepest 1-face of $\Gamma(S)$. It is the first 1 -face, counting from left to right. It corresponds to the first (least inclined) non-horizontal ray in the associated fan.

For each 1-face ϕ of $\Gamma(S)$, the corresponding one-dimensional cone C_{ϕ} in $\Phi(S)$ contains an additive monoid $C_{\phi} \cap L^{b}$ generated by the lattice vector on C_{ϕ} closest to the origin. We

Figure 11.4: A Newton polygon (in black) and its associated fan (in red).
denote this vector by \vec{w}_{ϕ}, and we will refer to it as the weight of the one-dimensional face ϕ. Observe that the face ϕ is the trace of $\vec{w}=\left(w_{1}, w_{2}\right)$ on $\Gamma(S)$, and the coordinates $\left(w_{1}, w_{2}\right)$ are coprime integers. The quantity

$$
d(\phi):=\ell_{S}\left(\vec{w}_{\phi}\right)=\langle\vec{w}, v\rangle, \quad v \in \phi
$$

is called the (weighted) degree of the the face ϕ. The weight of $\Gamma(S)$ is defined to be the weight of the first face Δ.

Definition 11.3.5. Suppose $f=\sum_{\alpha} a_{\alpha} X^{\alpha} \in \mathbb{C}\{x, y\}$, and Δ is the first face of $\Gamma(f)$. We set

$$
f_{\Delta}=\sum_{\alpha \in \Delta} a_{\alpha} X^{\alpha} .
$$

The function f is called nondegenerate if it is y-regular and the weight of Δ has the form $(1, w), w \in \mathbb{Z}_{>0}$.

Example 11.3.6. The Newton polygon in Figure 11.3 has an unique 1 -face ϕ described by the equation

$$
\phi: \frac{x}{20}+\frac{y}{6}=1, \quad x, y \geq 0 .
$$

The corresponding cone in the associated fan is the ray

$$
C_{\phi}: \quad y=\frac{10}{3} x, x \geq 0 .
$$

We deduce that the weight of this face is $\vec{w}=(3,10)$ and its degree is 60 .

Consider now an irreducible $f \in \mathbb{C}\{x, y\}$. We assume it is a Weierstrass polynomial in y. Its Newton polygon Γ_{f} has only one face. We denote by \vec{w} the weight of the unique finite 1 -face of Δ and by d_{0} its degree. For each $\alpha \in L_{+}$we denote by $\operatorname{deg}_{w}\left(X^{\alpha}\right)$ its \vec{w}-weighted degree,

$$
\operatorname{deg}_{w}\left(X^{\alpha}\right)=\langle\vec{w}, \alpha\rangle=w_{1} \alpha_{1}+w_{2} \alpha_{2}
$$

We can write

$$
f:=\sum_{\alpha \in L_{+}} a_{\alpha} X^{\alpha}
$$

where $a_{\alpha}=0$ if $\alpha \notin S(f)$. Then

$$
f=\sum_{d \geq d_{0}} f_{d}, \text { where } f_{d}:=\sum_{\operatorname{deg}_{w} \alpha=d} a_{\alpha} X^{\alpha}, \quad\left(\operatorname{deg}_{w} \alpha:=\langle\vec{w}, \alpha\rangle\right) .
$$

To find a Puiseux series expansion of the algebraic function $y=x(x)$ defined by $f(x, y)=0$ we will employ a method of successive approximation. We first look for a Puiseux series of the form

$$
x:=x_{1}^{w_{1}}, \quad: y=x_{1}^{w_{2}}\left(a_{0}+y_{1}\right), \quad c_{0} \in \mathbb{C}, \quad y_{1}=y_{1}\left(x_{1}\right) \in \mathbb{C}\left\{x_{1}\right\}, \quad y_{1}(0)=0 .
$$

Observe that

$$
f_{d}\left(x_{1}^{w_{1}}, x_{1}^{w_{2}}\left(a_{0}+x_{1}^{w_{2}} y_{1}\right)\right)=x_{1}^{d} \sum_{\operatorname{deg}_{w} \alpha=d} a_{\alpha}\left(c_{0}+y_{1}\right)^{\alpha_{2}}
$$

so that

$$
f\left(x_{1}^{w_{1}}, x_{1}^{w_{2}}\left(a_{0}+x_{1}^{w_{2}} y_{1}\right)\right)=O\left(x_{1}^{d_{0}}\right), \quad \forall y_{1}
$$

We want to find c_{0} such that

$$
f\left(x_{1}^{w_{1}}, x_{1}^{w_{2}}\left(a_{0}+x_{1}^{w_{2}} y_{1}\right)\right)=O\left(x_{1}^{d_{0}+1}\right), \quad \forall x_{2} .
$$

We see that this is possible iff c_{0} is a root of the polynomial equation

$$
f_{d_{0}}\left(1, c_{0}\right)=f_{\Delta}\left(1, c_{0}\right)=\sum_{\operatorname{deg}_{w} \alpha=d_{0}} a_{\alpha} c_{0}^{\alpha_{2}}=0 .
$$

Now define a new function

$$
f_{1}\left(x_{1}, y_{1}\right):=\frac{1}{x_{1}^{d_{0}}} f\left(x_{1}^{w_{1}}, x_{1}^{w_{2}}\left(c_{0}+y_{1}\right)\right) \in \mathbb{C}\left\{x_{1}, y_{1}\right\} .
$$

We believe it is more illuminating to illustrate the above construction on a concrete example, before we proceed with the next step.

Example 11.3.7. Consider the Weierstrass polynomial

$$
f(x, y)=y^{6}+3 x^{11} y^{4}+2 x^{10} y^{3}-3 x^{22} y^{2}+6 x^{21} y+x^{33}-x^{20} \in \mathbb{C}\{x\}[y]
$$

with elementary Newton polynomial depicted in Figure 11.3. The weight of the unique finite 1 -face is according to Example 11.3.6, $\vec{w}=(3,10)$, and its degree is 60 . Then

$$
f_{\Delta}=f_{60}(x, y):=y^{6}+2 x^{10} y^{3}-x^{20} .
$$

so that $f_{\Delta}(1, y)=y^{6}+2 y^{3}-1$. It has six roots determined by

$$
r^{3}=-1 \pm \sqrt{2}
$$

Pick one of them, and denote it by c_{0}. Then

$$
\begin{gathered}
\frac{1}{x^{60}} f\left(x^{3}, x^{10}\left(c_{0}+y\right)\right) \\
=\left(c_{0}+y\right)^{6}+3 x^{13}\left(c_{0}+y\right)^{4}+2\left(c_{0}+y\right)^{3}-3 x^{26}\left(c_{0}+y\right)^{2}+6 x^{13}\left(c_{0}+y\right)+x^{39}-1 \\
=y^{6}+6 c_{0} y^{5}+\left(3 x^{13}+15 c_{0}^{2}\right) y^{4}+\left(12 c_{0} x^{13}+2+20 c_{0}^{3}\right) y^{3} \\
+\left(15 c_{0}^{4}+6 c_{0}+18 c_{0}^{2} x^{13}-3 x^{26}\right) y^{2}+\left(6 c_{0}^{5}+6 c_{0}^{2}+12 c_{0}^{3} x^{13}-6 c_{0} x^{26}\right) y \\
+\left(13 c_{0}^{4}+6 c_{0}\right) x^{13}-3 c_{0}^{2} x^{26}+x^{39} .
\end{gathered}
$$

This looks ugly! However, here is a bit of good news. The height of the Newton polygon of f_{1} is substantially smaller. It is equal to one, and it is due to the presence of the nontrivial monomial $\left(6 c_{0}^{5}+6 c_{0}^{2}\right) y$ which shows that the multi-exponent $(0,1)$ lies in the support of f_{1}. Let us phrase this in different terms. The condition that $(0,1) \in S\left(f_{1}\right)$ is equivalent to $\frac{\partial f_{1}}{\partial y}(0,0) \neq 0$. Using the holomorphic implicit function theorem we deduce that we can express y as a holomorphic function of $x, y=y_{1}(x)$. Note that $y_{1}(x)$ vanishes up to order 13 at $x=0$, i.e. it has a Taylor expansion of the form

$$
y_{1}(x)=c_{1} x^{13}+\text { higher order terms. }
$$

We now have a Puiseux expansion

$$
x=x_{1}^{3}, \quad y=x_{1}^{10}\left(c_{0}+y_{1}\left(x_{1}\right)\right)=c_{0} x_{1}^{10}+c_{1} x_{1}^{23}+\cdots
$$

All the other monomials arising in the power series expansion of $y_{1}\left(x_{1}\right)$ can be (theoretically) determined inductively from the implicit equation $f_{1}\left(x_{1}, y_{1}\right)=0$. Practically, the volume of computation can be overwhelming.

The above example taught us some valuable lessons. First, the passage from f to f_{1} reduces the complexity of the problem (in a sense yet to be specified). We also see that once we reach a Newton polygon of height one the problem is essentially solved, because we can invoke the implicit function theorem. The transformation $f \mapsto f_{1}$ produces a hopefully simpler curve gem $\left(C_{1}, 0\right)$ and holomorphic map $\left(C_{1}, 0\right) \mapsto(C, 0)$.

Let us formalize this construction. Denote by $\mathfrak{R}\{x, y\}$ the set of holomorphic functions $f \in \mathbb{C}\{x, y\} y$-regular. Define a multivalued transformation

$$
\mathcal{P}: \mathfrak{R}\{x, y\} \ni f \mapsto \mathcal{P}(f) \subset \mathfrak{R}\left\{x_{1}, y_{1}\right\}
$$

where

$$
\hat{f}\left(x_{1}, y_{1}\right) \in \mathcal{P}(f) \Longleftrightarrow \hat{f}\left(x_{1}, y_{1}\right)=\frac{1}{x_{1}^{d_{0}}} f\left(x_{1}^{w_{1}}, x_{1}^{w_{2}}\left(r+y_{1}\right)\right)
$$

where $r \in \mathbb{C}$ is a root of the polynomial equation

$$
f_{\Delta}(1, r)=0
$$

We first need to show that \mathcal{P} is well defined.

Lemma 11.3.8. Let $f \in \mathfrak{R}\{x, y\}$ be y-regular of order m. Then $\operatorname{deg} f_{\Delta}(1, y)=m$ and any $\hat{f} \in \mathcal{P} f$ is y_{1}-regular of order $m_{1} \leq m$, where m_{1} is the multiplicity of the root r of the degree m polynomial $f_{\Delta}(1, y) \in \mathbb{C}[y]$. Moreover, $m_{1}=m$ iff $f_{\Delta}(1, y)=c(y-r)^{m}$ in which case the weight $\left(w_{1}, w_{2}\right)$ of Δ is nondegenerate, i.e. $w_{1}=1$.

Proof Denote by $\vec{w}=\left(w_{1}, w_{2}\right)$ the weight of $\Gamma(f)$ and by d_{0} the weighted degree of f_{Δ}. Denote by P and Q the endpoints of the first edge Δ of $\Gamma(f), P=P(0, m)$ and $Q=Q(a, b)$, $b<m$. Pick a root r of $f_{\Delta}(1, y)=0$ and set

$$
\hat{f}\left(x_{1}, y_{1}\right)=\frac{1}{x_{1}^{d_{0}}} f\left(x_{1}^{w_{1}}, x_{1}^{w_{2}}\left(r+y_{1}\right)\right) .
$$

We write

$$
f=\sum_{d \geq d_{0}} f_{d}(x, y),
$$

where $f_{d} \in \mathbb{C}[x, y], \operatorname{deg}_{w} f_{d}=d$. Then

$$
\frac{1}{x_{1}^{d_{0}}} f\left(x_{1}, x_{1}^{w_{2}}\left(r+y_{1}\right)\right)=f_{\Delta}\left(1, r+y_{1}\right)+\sum_{k=1}^{\infty} x_{1}^{k} f_{d}\left(1, r+y_{1}\right) .
$$

On the other hand

$$
f_{\Delta}(1, y)=c \prod_{j=1}^{m}\left(y-r_{j}\right), \quad c \in \mathbb{C}^{*}
$$

so that, if r is a root of of $f_{\Delta}(1, y)$ of multiplicity m_{1} we get

$$
f_{\Delta}\left(1, r+y_{1}\right)=c y_{1}^{m_{1}} \prod_{j=m_{1}+1}^{m}\left(y_{1}+r-r_{j}\right) .
$$

The lemma is now obvious.
The above lemma shows that for every y-regular germ f there exists $k_{0}>0$ such that for all $k \geq k_{0}$ all the germs $g \in \mathcal{P}^{k}(f)$ are nondegenerate. To understand what is happening let us consider a few iterations $f_{n} \mapsto f_{n+1} \in \mathcal{P}\left(f_{n}\right), n=0,1$.

$$
f_{1}\left(x_{1}, y_{1}\right)=\frac{1}{x_{1}^{d_{0}}} f\left(x_{1}^{w_{11}}, x_{1}^{w_{21}}\left(y_{1}+r_{1}\right)\right)
$$

We can formally set $x_{1}=x^{1 / w_{11}}$ and

$$
y=x^{w_{21} / w_{11}}\left(y_{1}+r_{1}\right) .
$$

At the second iteration we get $x_{2}=x_{1}^{1 / w_{12}}=x^{1 / w_{11} w_{12}}$ and

$$
\begin{gathered}
y_{1}=x_{1}^{w_{22} / w_{12}}\left(y_{2}+r_{2}\right) \Longrightarrow y=x^{w_{21} / w_{11}}\left(x^{w_{22} / w_{11} w_{12}}\left(y_{2}+r_{2}\right)+r_{1}\right) \\
=r_{1} x^{w_{21} / w_{11}}+r_{2} x^{\frac{w_{21}}{w_{11}}+\frac{w_{22}}{w_{11} w_{12}}}+y_{2} x^{\frac{w_{21}}{w_{11}}+\frac{w_{22}}{w_{11} w_{12}}} .
\end{gathered}
$$

In the limit we will obtain a power series of the form

$$
y=\sum_{k=1}^{\infty} r_{k} x^{a_{k}}
$$

where the rational exponents a_{k} are determined inductively from

$$
a_{k+1}=a_{k}+\frac{w_{2(k+1)}}{w_{1(k+1)}} \cdot \frac{1}{w_{11} w_{12} \cdots w_{1 k}}
$$

where $\vec{w}_{k}=\left(w_{1 k}, w_{2 k}\right)$ is the weight of f_{k}. For $k \geq k_{0}$ we have $w_{1 k}=1$ so that the denominators of the exponents a_{k} will not increase indefinitely. In the limit we obtain a formal Puiseux series $y=y(x) \in \mathbb{C}\left(\left(x^{1 / N}\right)\right)$ which solves

$$
f(x, y(x))=0
$$

Assume for simplicity that f is irreducible in $\mathbb{C}\{x, y\}$. Then we can write

$$
f(x, y)=\prod_{k=0}^{N-1}(y-y(\epsilon x)), \quad \epsilon=\exp \left(\frac{2 \pi i}{N}\right)
$$

On the other hand, we know that $f(x, y)$ admits a convergent Puiseux series expansion which must coincide with one of the formal Puiseux expansions $y(\epsilon x)$. This shows that all the Formal Puiseux expansions must be convergent, and in particular, any formal Puiseux expansion obtained my the above iterative method must be convergent.

Example 11.3.9. Consider the germ $f(x, y)=y^{3}-x^{5}-x^{7}$. It has weight $\vec{w}=(3,5)$ and

$$
f_{\Delta}=y^{3}-x^{5}, \quad \operatorname{deg}_{w} f_{\Delta}=15
$$

so that $f_{\Delta}(1, y)=y^{3}-1$, which has $r_{1}=1$ as a root of multiplicity 1 . Then

$$
f_{1}\left(x_{1}, y_{1}\right)=\frac{1}{x_{1}^{15}} f\left(x_{1}^{3}, x_{1}^{5}\left(1+y_{1}\right)\right)=\left(1+y_{1}\right)^{3}-1-x_{1}^{6}=y_{1}^{3}+3 y_{1}^{2}+y_{1}-x_{1}^{6}
$$

The germ f_{1} has weight $(1,6)$ and

$$
\left(f_{1}\right)_{\Delta}=y_{1}-x_{1}^{6}, \quad \operatorname{deg}_{w}=6 .
$$

The degree 1-polynomial $f_{1}\left(1, y_{1}\right)=y_{1}-1$ has only one root $r_{2}=1$, and we can define

$$
\begin{aligned}
f_{2}\left(x_{2}, y_{2}\right) & =\frac{1}{x_{2}^{6}} f_{1}\left(x_{2}, x_{2}^{6}\left(1+y_{2}\right)\right)=\frac{1}{x_{2}^{6}}\left\{\left(1+x_{2}^{6}\left(1+y_{2}\right)\right)^{3}-1-x_{2}^{6}\right\} \\
& =3\left(1+x_{2}^{6}\right) y_{2}+3 x_{2}^{6}\left(1+y_{2}\right)^{2}+x_{2}^{12}\left(1+y_{2}\right)^{3}-1
\end{aligned}
$$

In this case $\vec{w}=(1,6),\left(f_{2}\right)_{\Delta}=3 y_{2}-3 x_{2}^{6}$, so we can take $y_{2}=x_{2}^{6}\left(1+y_{3}\right)$. We deduce

$$
\begin{gathered}
y_{2}=x_{2}^{6}\left(1+y_{3}\right), \quad y_{1}=x_{2}^{6}\left(1+y_{2}\right), x_{2}=x_{1} \Longrightarrow y_{1}=x_{1}^{6}+x_{1}^{12} y_{3} \\
y=x_{1}^{5}\left(1+y_{1}\right), x_{1}=x^{1 / 3} \Longrightarrow y=x^{5 / 3}+x^{2+5 / 3}+x^{4+5 / 3} y_{3}=x^{5 / 3}+x^{11 / 3}+x^{17 / 3} y_{3}
\end{gathered}
$$

The above computations suggest that computing the whole Puiseux series expansion may be a computationally challenging task. A natural question arises.

How many terms of the Puiseux series do we need to compute to capture all the relevant information about the singularity?

The term "relevant information" depends essentially on what type of questions we are asking. There are essentially two types of questions: topological and analytical (geometrical).

Definition 11.3.10. Consider two irreducible Weierstrass polynomials $f_{i} \in \mathbb{C}\{x\}[y], i=$ 0,1 , such that $f_{0}(0,0)=0$. Set $C_{i}:=\left\{f_{i}=0\right\}$.
(a) The germ $\left(C_{0}, 0\right)$ is topologically equivalent to $\left(C_{1}, 0\right)$ if there exist neighborhoods U_{i} of 0 in \mathbb{C}^{2} and a homeomorphism

$$
\Phi: U_{0} \rightarrow U_{1}
$$

such that $\Phi\left(C_{0} \cap U_{0}\right)=C_{1} \cap U_{1}$.
(b) The germ $\left(C_{0}, 0\right)$ is analytically equivalent to $\left(C_{0}, 0\right)$ if the local rings $\mathcal{O}_{C_{0}, 0}$ and $\mathcal{O}_{C_{1}, 0}$ are isomorphic.

Using Exercise 9.2 .1 we deduce that the germs C_{i} are analytically equivalent if and only if there exist neighborhoods U_{i} of 0 in \mathbb{C}^{2} and a biholomorphic map $\Psi: U_{0} \rightarrow U_{1}$ such that

$$
\Psi\left(C_{0} \cap U_{0}\right)=C_{1} \cap U_{1} .
$$

Before we explain how to extract the relevant information (topological and/or analytic) we want to discuss some arithmetical invariants of Puiseux series. Fix an irreducible Weierstrass polynomial $f \in \mathbb{C}\{x\}[y]$ and Puiseux series expansion

$$
x=t^{N}, y(t)=\sum_{k>0} a_{k} t^{k}
$$

Define the set of exponents of f by

$$
E_{1}=E_{1}(f):=\left\{\frac{k}{N} ; \quad a_{k} \neq 0\right\} \subset \frac{1}{N} \mathbb{Z}_{>0}
$$

Let $\kappa_{1}:=\min E_{1} \backslash \mathbb{Z}$. We write

$$
\kappa_{1}:=\frac{n_{1}}{m_{1}}, \quad\left(m_{1}, n_{1}\right)=1 .
$$

We then define

$$
E_{2}=E_{1} \backslash\left\{\frac{q}{m_{1}} ; q \in \mathbb{Z}_{+}\right\}
$$

and, if $E_{2} \neq \emptyset$ we set $\kappa_{2}=\frac{r_{2}}{m_{1}}=\min E_{2}$,

$$
r_{2}=\frac{n_{2}}{m_{2}} \in \mathbb{Q}_{>0}, \quad m_{2}>1, \quad\left(n_{2}, m_{2}\right)=1 .
$$

If the pairs $\left(m_{1}, n_{1}\right), \cdots\left(m_{j}, n_{j}\right)$ have been selected then define

$$
E_{j+1}=E_{1} \backslash\left\{\frac{q}{m_{1} \cdots m_{j}} ; q \in \mathbb{Z}_{+}\right\} .
$$

If $E_{j+1}=\emptyset$ we stop, and if not, we set $\kappa_{j+1}=\min E_{j+1}$

$$
\kappa_{j+1}=r_{j+1} \cdot \frac{1}{m_{1} \cdots m_{j}}, \quad r_{j+1}=\frac{n_{j+1}}{m_{j+1}}, \quad m_{j+1}>1, \quad\left(n_{j+1}, m_{j+1}\right)=1 .
$$

The process stops in $g<\infty$ steps because $\left(m_{1} \cdots m_{j}\right) \mid N, \forall j$. The sequence

$$
\left\{\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right), \cdots,\left(m_{g}, n_{g}\right)\right\}
$$

called the sequence of Puiseux pairs of f. The integer $m_{1} \cdots m_{g}$ coincides with the polydromy of N of the Puiseux series expansion. Define the characteristic exponents of E_{1} by

$$
\begin{equation*}
k_{0}=k_{0}\left(E_{1}\right):=m_{1} \cdots m_{g}, \quad k_{j}=k_{j}\left(E_{1}\right):=k_{0} \cdot \kappa_{j}=n_{1} \cdots n_{j} m_{j+1} \cdots m_{g}, \quad j=1, \cdots g . \tag{11.3.1}
\end{equation*}
$$

The Puiseux series expansion can be obtained by applying Newton's algorithm so we can write

$$
y(x)=\sum_{k=1}^{L} c_{k} x^{r_{k}}, \quad L \in \mathbb{Z}_{+} \cup \infty, \quad c_{k} \in \mathbb{C}^{*}, \quad r_{k} \in \mathbb{Q}_{>0},
$$

where

$$
r_{k}=r_{k-1}+\frac{w_{2 k}}{w_{1 k}} \cdot \frac{1}{w_{11} \cdots w_{1(k-1)}}, \quad r_{k-1}=\frac{\alpha_{k-1}}{w_{11} \cdots w_{1(k-1)}}, \quad \operatorname{gcd}\left(w_{1 k}, w_{2 k}\right)=1 .
$$

There are only finitely many $w_{1 j}>1$. The Puiseux pairs are exactly the pairs $\left(w_{1 j}, n_{j}\right)$ such that $w_{1 j}>1$, where

$$
n_{j}=\alpha_{j-1} w_{11} \cdots w_{1(j-1)} w_{1 j}+w_{2 j} .
$$

We have the following classical result.
Theorem 11.3.11. Suppose $f_{i}(x, y), i=0,1$, are two irreducible Weierstrass polynomials in y. Set $C_{i}:=\left\{f_{i}=0\right\} \subset \mathbb{C}^{2}$. Then the germs $\left(C_{i}, 0\right)$ are topologically equivalent if and only if they have the same sequences of Puiseux pairs.

This theorem essentially says that if we want to extract all the topological information about the singularity we only need to perform the Newton algorithm until $w_{11} \cdots w_{1 m}=N$, where N is the poydromy order of the Puiseux expansion. If f is a Weierstrass y-polynomial, then $N=\operatorname{deg}_{y} f$.

We refer to [12] for a detailed, clear and convincing explanation of the geometric intuition behind this fact. We content ourselves with a simple example which we hope will shed some light on the topological information carried by the Puiseux pairs.

Example 11.3.12. (Links of singularities of plane curves.) Consider the singular plane curve

$$
C=\left\{(x, y) \in \mathbb{C}^{2} ; y^{2}=x^{3}\right\},
$$

It has a single Puiseux pair $(2,3)$. The link of the singularity at $(0,0)$ is by definition

$$
K_{C}=K_{C, r}:=C \cap \partial B_{r}
$$

where B_{r} is the sphere of radius r centered at the origin. We will see later in Chapter 12 that for all sufficiently small r the link is a compact, smooth one-dimensional submanifold of the 3 -sphere ∂B_{r}. In other words, K_{C} is a link, which has as many components as irreducible components of the germ of C at $(0,0)$. In our case the germ of C at the origin is irreducible so that K_{C} is a knot. Its isotopy type is independent of r and thus can be viewed as a topological invariant of the singularity.

To understand this knot consider the polydisk

$$
D_{r}^{2}=\left\{(x, y) \in \mathbb{C}^{2} ; \quad|x| \leq r^{2}, \quad|y| \leq r^{3}\right\} .
$$

Note that ∂D_{r}^{2} is homeomorphic to the 3 -sphere and it describes an explicit decomposition of the 3 -sphere as an union of two (linked) solid tori

$$
\begin{gathered}
\partial D_{r}^{2}=H_{x} \cup H_{y}=\left(\partial D_{r^{2}}^{x} \times \times D_{r^{3}}^{y}\right) \cup\left(D_{r^{2}}^{x} \times \partial D_{r^{3}}^{y}\right) \\
:=\left\{|x|=r^{2},|y| \leq r^{3}\right\} \cup\left\{|x| \leq r^{2},|y|=r^{3}\right\} .
\end{gathered}
$$

The core of $D_{r^{2}}^{x}$ is an unknot K_{0} situated in the plane $y=0$, parametrized by

$$
S^{1} \ni \zeta \mapsto(r \zeta, 0)
$$

One can show that the knot $C \cap \partial D_{r}$ is isotopic to $C \cap \partial B_{r}$. Moreover there is an embedding

$$
\phi:\{|z|=r\} \subset \mathbb{C}^{*} \rightarrow \partial B_{r}, \quad z \mapsto(x, y)=\left(z^{2}, z^{3}\right)
$$

whose image is precisely the link of the singularity. It lies on the torus

$$
T_{r}=\partial D_{r^{2}}^{x} \times \partial D_{r^{3}}^{y} .
$$

and carries the homology class

$$
2\left[\partial D_{r^{2}}^{x}\right]+3\left[\partial D_{r^{3}}^{y}\right] \in H_{1}\left(T_{r}, \mathbb{Z}\right)
$$

We say that it is a $(2,3)$-torus knot. It is isotopic to the trefoil knot depicted in Figure 12.1. Observe that this link is completely described by the Puiseux expansion corresponding to this singularity. More generally, the link of the singularity described by $y^{p}=x^{q}, \operatorname{gcd}(p, q)=$ 1 , is a (p, q)-torus knot.

Suppose now that we have a singularity with Puiseux series

$$
y=x^{3 / 2}+x^{7 / 4} .
$$

Then the Puiseux pairs are $(2,3),(2,7)$. To construct its link consider a polydisk

$$
D^{2}=\left\{(x, y) \in \mathbb{C}^{2} ; \quad|x| \leq r, \quad|y| \leq s\right\} .
$$

so that ∂D decomposes again into an union of solid tori

$$
\partial D^{2}=H_{x} \cup H_{y}, \quad H_{x}=\{|x|=r\} \times\{\mid y \leq s\}, \quad H_{y}=\{|x| \leq r\} \times\{|y|=s\} .
$$

We will use the Puiseux expansion to describe the link as an embedding $S^{1} \rightarrow H_{x}$. Consider the map

$$
\phi: S^{1}=\left\{|z|=r^{1 / 4}\right\} \rightarrow \mathbb{C}^{2}, \quad z \mapsto(x, y)=\left(z^{4}, z^{7}+z^{7}\right) .
$$

Observe that if $r^{3 / 2}+r^{7 / 4} \leq s$, then $\phi\left(S^{1}\right) \subset H_{x}$ and the image of ϕ is precisely the link of the singularity.

To understand the knot $\phi\left(S^{1}\right)$ we will adopt a successive approximations approach. Set

$$
\phi_{1}, \phi_{2}: S^{1} \rightarrow H_{x}, \quad \phi_{1}(z)=\left(z^{2}, z^{3}\right), \quad \phi_{2}(z)=\phi_{1}\left(z^{2}\right)+\left(0, z^{7}\right)=\phi(z) .
$$

The image of ϕ_{1} is a $(2,3)$-torus knot K_{1}. We see that for $r \ll 1$ we have $\left|\phi_{2}(z)-\phi_{1}\left(z^{2}\right)\right| \ll 1$ and the image of ϕ is a knot which winds around $K_{1} 2$ times in one direction and 7 times in the other direction. Here we need to be more specific abound the winding. This can be unambiguously defined using the cabling operations on framed knots.

A framing of a knot K is a homotopy class of nowhere vanishing sections $\vec{\nu}: K \rightarrow \nu_{K}$, where $\nu_{K} \rightarrow K$ is the normal bundle of the embedding $K \hookrightarrow S^{3}$. We can think of $\vec{\nu}$ as a vector field along K which is nowhere tangent to K. As we move around the knot the vector $\vec{\nu}$ describes a ribbon bounded on one side by the knot, and on the other side by the parallel translation of the knot $K \mapsto K+\vec{\nu}$ given by the vector field $\vec{\nu}$.

Alternatively, we can think of the translate $K+\vec{\nu}$ as lieing on the boundary of a tubular neighborhood U_{K} of the knot in S_{3}. Topologically, U_{K} is a solid torus and the cycles K and $K+\vec{\nu}$ carry the same homology class in $H_{1}\left(U_{K}, \mathbb{Z}\right)$. They define a generator of this infinite cyclic group. We denote it by λ_{K} and we call it the longitude of the framed knot.

The boundary ∂U_{K} of this tubular neighborhood carries a canonical 1-cycle called the meridian of the knot, μ_{K}. It is a generator of the kernel of the inclusion induced morphism

$$
i_{*}: H_{1}\left(\partial U_{K}, \mathbb{Z}\right) \rightarrow H_{1}\left(U_{K}, \mathbb{Z}\right)
$$

Since this kernel is an infinite cyclic group, it has two generators. Choosing one is equivalent to fixing an orientation. In this case, if we orient K, then the meridian is oriented by the right hand rule. Once we pick a framing $\vec{\nu}$ of a knot we have an integral basis of $H_{1}\left(\partial U_{K}, \mathbb{Z}\right),\left(\mu_{K}, \lambda_{K}\right)$. We thus have a third interpretation of a framing, that of a completion of μ_{K} to an integral basis of $H_{1}\left(\partial U_{K}, \mathbb{Z}\right)$. In particular, we see that each framing defines a homeomorphism

$$
U_{K} \rightarrow S^{1} \times D^{2}, \quad K \rightarrow S^{1} \times\{0\}, \quad \mu_{K} \mapsto\{1\} \times \partial D^{2}, \quad \lambda_{K} \mapsto S^{1} \times\{1\}
$$

This homeomorphism is unique up to an isotopy.
If $(K, \vec{\nu})$ is a framed knot then a (p, q)-cable of K is a knot disjoint from K, situated in a tubular neighborhood U_{K} of K, and which is homologous to $q\left[\mu_{K}\right]+p\left[\lambda_{K}\right]$ in $H_{1}\left(\partial U_{K}, \mathbb{Z}\right)$.

Each knot bounds a (Seifert) surface in S^{3}, and a tubular neighborhood of a knot inside this surface is a ribbon, and thus defines a framing, called the canonical framing. This is not the only way to define framings. Another method, particularly relevant in the study of singularities, goes as follows.

Suppose ($K_{0}, \vec{\nu}_{0}$) is a framed knot, so that we can identify a tubular neighborhood $U_{K_{0}}$ with $S^{1} \times D^{2}$. Denote by π the natural (radial) projection $S^{1} \times D^{2} \mapsto S^{1} \times\{0\}$. A cable of K_{0} is a knot K with the following properties.

- $K \subset U_{K_{0}}$ and $K \cap K_{0}=\emptyset$.
- The restriction $\pi: K \rightarrow K_{0}$ is a regular cover, of degree $k>0$.

Fix a thin tubular neighborhood U_{K} of K contained in $U_{K_{0}}=S^{1} \times D^{2}$. Then U_{K} intersects each slice $S_{t}=\{t\} \times D^{2}, t \in S^{1}$, in k-disjoint disks, $\Delta_{1}, \cdots, \Delta_{k}$, centered at $p_{1}(t), \cdots, p_{k}(t)$. Fix a vector $\mathbf{u} \in D^{2}$ and then parallel transport it at each of the points $p_{1}(t), \cdots, p_{k}(t), t \in S^{1}$ as in Figure 11.5. In this fashion we obtain a smooth vector field along K which is nowhere tangent to K. Its homotopy class is independent of the choice \mathbf{u}. In this fashion we have associated a framing to each cable of a framed knot. In $H_{1}\left(\partial U_{K_{0}}, \mathbb{Z}\right)$ we have an equality

$$
[K]=q\left[\mu_{K_{0}}\right]+k \lambda_{K_{0}} .
$$

We have thus shown that the cable of a framed knot is naturally framed itself.

Figure 11.5: A punctured slice
Suppose we are given two vectors $\vec{m}, \vec{n} \in \mathbb{Z}^{r}$ such that $\operatorname{gcd}\left(m_{i} . n_{i}\right)=1, \forall i=1, \cdots, r$. An iterated torus knot of type ($\vec{m} ; \vec{n}$) is a knot K such that there exist framed knots $K_{0}, \cdots, K_{r-1}, K_{r}=K$ with the following properties.

- K_{0} is the unknot with the obvious framing.
- K_{i} is the $\left(m_{i}, n_{i}\right)$-cable of K_{i-1} equipped with the framing described above.

If $(C, 0)$ is the germ at 0 of a planar (complex) curve, and its Puiseux pairs are $\left(m_{1}, n_{1}\right), \cdots,\left(m_{r}, n_{r}\right)$ then the link $C \cap B_{r}(0)$ is an iterated torus knot of the type

$$
\left(m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{r}\right) .
$$

In particular, for the singularity given by the Puiseux series $t \mapsto\left(t^{4}, t^{6}+t^{7}\right)$ the link is an iterated torus of type $(2,2 ; 3,7)$. The link of the singular germ $y^{5}=x^{3}$ is the $(3,5)$-torus knot depicted in Figure 11.6.

Figure 11.6: $A(3,5)$-torus knot generated with MAPLE.
The Puiseux expansion $(x(t), y(t))$ produces an embedding

$$
R_{f}:=\mathbb{C}\{x, y\} /(f) \rightarrow \mathbb{C}\{t\}
$$

We have a morphism of semigroups

$$
\operatorname{ord}_{t}:\left(\mathbb{C}\{t\}^{*}, \cdot\right) \rightarrow\left(\mathbb{Z}_{\geq 0},+\right)
$$

uniquely defined by

$$
\operatorname{ord}_{t}\left(t^{k}\right)=k, \operatorname{ord}_{t}(u)=0, \quad \forall u \in \mathbb{C}\{t\}, u(0) \neq 0
$$

The image of R_{f}^{*} in $\mathbb{Z}_{\geq 0}$ is a monoid $\mathcal{O}_{f} \subset\left(\mathbb{Z}_{\geq 0},+\right)$. Define the conductor

$$
\left.c(f):=\min \left\{n ; \quad n+\mathbb{Z}_{\geq 0} \subset \mathcal{O}_{f}\right)\right\} .
$$

\mathcal{O}_{f} is called the semigroup associated to the singularity of a plane curve.
Example 11.3.13. (a) Consider again the polynomial f Example 11.3.7. Then

$$
E_{1}=\left\{\frac{10}{3}, \frac{23}{3}\right\} \cup A
$$

where

$$
A \subset\left\{\frac{m}{3} ; m \geq 23\right\}
$$

Then $\kappa_{1}=\frac{10}{3}$ so that $\left(m_{1}, n_{1}\right)=(3,10)$,

$$
E_{2}=\left\{\frac{23}{3}\right\} \cup\left(A \backslash\left\{\frac{n}{3} ; n \in \mathbb{Z}_{+}\right\}\right)=\emptyset
$$

It is now clear that $k_{0}=3$ and $k_{1}=10 . \mathcal{O}_{f}$ contains the semigroup $\langle 3,10\rangle_{+}$generated by 3,10 and it happens that $A \subset\langle 3,10\rangle_{+}$. Hence

$$
\mathcal{O}_{f}=\{3,6,9,10,12,13,15,16,18,19,20,21,22,23, \cdots\}
$$

Hence $c(f)=18$.
(b) Consider the polynomial $f=y^{3}-x^{5}-x^{7}$ in Example 11.3.9. Then

$$
E_{1}(f)=\left\{\frac{5}{3}, \frac{11}{3}\right\} \cup A, \quad A \subset \frac{1}{3}\left(17+\mathbb{Z}_{+}\right) .
$$

Then $k_{0}=3, \kappa_{1}=\frac{5}{3}$ so that $\left(m_{1}, n_{1}\right)=(3,5)$ and $k_{1}=5$. The semigroup generated by 3 and 5 is

$$
\langle 3,5\rangle_{+}=\{3,5,6,8,9,10,11, \cdots\}
$$

This shows $\mathcal{O}_{f}=\langle 3,5\rangle_{+}$and $c(f)=8$.
Let us say a few words about analytical equivalence which is a rather subtle issue. More precisely we have the following result of Hironaka.

Theorem 11.3.14. Suppose we are given two irreducible germs of plane curves with Puiseux expansions

$$
C_{1}: \quad t \mapsto\left(t^{n_{1}}, \sum_{j \geq 1} a_{j} t^{j}\right), \quad C_{2}: \quad t \mapsto\left(t^{n_{2}}, \sum_{j \geq 1} b_{j} t^{j}\right) .
$$

Then the two germs are analytically equivalent if and only if

$$
n_{1}=n_{2}, \quad \delta\left(C_{1}, 0\right)=\delta\left(C_{2}, 0\right)=: \delta,
$$

and

$$
a_{j}=b_{j}, \quad \forall j=1, \cdots, 2 \delta .
$$

We see that the analytical type is determined by a discrete collection of invariants and a continuous family of invariants. Later in this chapter we will see that the Puiseux pairs determine the delta -invariant, and the semigroup \mathcal{O}_{f} as well. To see this we need a new technique for understanding singularities.

11.4 Very basic intersection theory

We interrupt a bit the flow of arguments to describe a very important concept in algebraic geometry, that of intersection number. We will consider only a very special case of this problem, namely the intersection problem for plane algebraic curves.

Suppose we have two irreducible holomorphic functions $f, g \in \mathbb{C}\{x, y\}$ defined on some open neighborhood U of the origin, such that $f(0,0)=g(0,0)=0$. In other words, the curves

$$
C_{f}:\{f=0\} \text { and } C_{g}:\{g=0\}
$$

intersect at $(0,0)$ (and possibly other points). We want to consider only the situation when $(0,0)$ is an isolated point of the intersection. This means, that there exists a ball B_{r} in \mathbb{C}^{2} centered at $(0,0)$ such that the origin is the only intersection point inside this ball. We can rephrase this as follows. Consider the holomorphic map

$$
F: U \subset \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad(x, y) \mapsto(f(x, y), g(x, y))
$$

Then $C_{f} \cap C_{g}=F^{-1}(0)$ and saying that $(0,0)$ is an isolated intersection point is equivalent to the fact that the origin is an isolated zero of F. Using Proposition 9.2.19 we deduce the following fact.
Proposition 11.4.1. The origin is an isolated intersection point if and only if

$$
\mu\left(C_{f} \cap C_{g}, 0\right):=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{x, y\} /(f, g)<\infty
$$

The integer $\mu\left(C_{f} \cap C_{g}, 0\right)$ is called the multiplicity of the intersection $C_{f} \cap C_{g}$ at the origin, or the local intersection number of the two curves at the origin. If C and D are two plane curves such that $C \cap D$ is a finite set we define the intersection number of C and D to be

$$
C \cdot D=\sum_{p \in C \cap D} \mu(C \cap D, p) .
$$

The intersection number generalizes in an obvious fashion to curves on smooth surfaces. To justify this terminology we consider a few examples.

If two distinct lines L_{1}, L_{2} intersect at the origin it is natural to consider their intersection number to be zero. By changing coordinates it suffices to assume L_{1} is the x-axis an L_{2} is the y-axis. Then

$$
\mathbb{C}\{x, y\} /(x, y)=\mathbb{C}
$$

so that $\mu\left(L_{1} \cap L_{2}, 0\right)=1$ which agrees with the geometric intuition.
Suppose that C_{f} and C_{g} intersect transversally at the origin, meaning that the covectors $d f(0,0)$ and $d g(0,0)$ are linearly independent over \mathbb{C}. In particular, the origin is a smooth point on each of the curves C_{g} and C_{f}. Then the inverse function theorem implies that we can find a holomorphic change of coordinates near the origin such that $f=x$ and $g=y$. (Geometrically, this means that the curves are very well approximated by their tangents at the origin.) In this case it is natural to say that the origin is a simple (multiplicity one) intersection point. This agrees with the above algebraic definition.

Let us look at more complicated situations. Suppose

$$
C_{f}: y=0, C_{g}: y=x^{2} .
$$

Thus C_{f} is the x axis, and C_{g} is a parabolla tangent to this axis at the origin. In this case we should consider the origin to be a multiplicity 2 intersection point. This choice has the following "dynamical" interpretation (see Figure 11.7).

To justify this choice consider the curve $C_{g, \varepsilon}$ given by $y=x^{2}-\varepsilon, 0<|\varepsilon| \ll 1$. It intersects the x axis at two points $P_{\varepsilon}^{ \pm}$which converge to the origin as $\varepsilon \rightarrow 0$.

This dynamical description is part of a more general principle called the conservation of numbers principle.

Figure 11.7: A dynamical computation of the intersection number

Theorem 11.4.2. There exist $\varepsilon>0$ and $r>0$ such that for any two functions $f_{\varepsilon}, g_{\varepsilon}$ holomorphic in a ball B_{r} of radius r centered at the origin of \mathbb{C}^{2} such that

$$
\sup _{p \in B_{r}}\left(\left|f(p)-f_{\varepsilon}(p)\right|+\left|g(p)-g_{\varepsilon}(p)\right|\right)<\varepsilon
$$

we have

$$
\mu\left(C_{f} \cap C_{g}, 0\right)=\sum_{p \in C_{f_{\varepsilon}} \cap C_{g_{\varepsilon} \cap B_{r}}} \mu\left(C_{f_{\varepsilon}} \cap C_{g_{\varepsilon}}, p\right) .
$$

We do not present here a proof of this result since we will spend the next two chapters discussing different proofs and generalizations of this result.

The intersection number is particularly relevant in the study of the monoid determined by an isolated singularity. More precisely, we have the following result.

Proposition 11.4.3 (Halphen-Zeuhten formula). Suppose $f, g \in \mathbb{C}\{0,0\}$ are two irreducible holomorphic functions defined on a neighborhood U of $0 \in \mathbb{C}^{2}$ such that f is a y-Weierstrass polynomial of degree n and the origin is an isolated point of the intersection $C_{f} \cap C_{g}$. Consider a Puiseux expansion of the germ $\left(C_{f}, 0\right)$,

$$
\pi: \quad t \mapsto(x, y)=\left(t^{n}, \chi(t)\right), \quad \chi(t) \in \mathbb{C}\{t\} .
$$

Then

$$
\mu\left(C_{f} \cap C_{g}, 0\right)=\operatorname{ord}_{t} \pi^{*}(g)=\operatorname{ord}_{t} g\left(t^{n}, \chi(t)\right) .
$$

Proof π is a resolution morphism

$$
\pi:\left(\tilde{C}_{f}, 0\right) \cong(\mathbb{C}, 0) \rightarrow C_{f}
$$

where \tilde{C}_{f} is a smooth curve. We have the commutative diagram

$$
\begin{aligned}
& \mathbb{C}\{t\} \cong \mathcal{O}_{\tilde{C}_{f, 0}, 0} \xrightarrow{\times \pi^{*}(g)} \mathcal{O}_{\tilde{C}_{f}, 0} \\
& \int_{\pi^{*}} \cong \mathbb{C}\{t\} \\
& \boldsymbol{O}_{C_{f}, 0} \xrightarrow{\pi^{*}} \\
& \mathcal{O}_{C_{f}, 0}
\end{aligned}
$$

Then

$$
\operatorname{ord}_{t} \pi^{*}(g)=\operatorname{dim}_{\mathbb{C}} \operatorname{coker}\left(\times \pi^{*}(g)\right), \quad \mu\left(C_{f} \cap C_{g}, 0\right)=\operatorname{dim}_{\mathbb{C}} \operatorname{coker}(\times g) .
$$

The equality dim $\operatorname{coker}(\times g)=\operatorname{dim} \operatorname{coker}\left(\times \pi^{*}(g)\right)$ follows from the following elementary linear algebra result.

Lemma 11.4.4. Suppose V is a vector space, $U \subset V$ is a subspace and $T: V \rightarrow V$ is a linear map such that $T(U) \subset U$. Then there exists a natural isomorphism coker $T \rightarrow$ coker $\left.T\right|_{U}$.

Proof of the lemma We think of $T: V \rightarrow V$ as defining a co-chain complex

$$
K_{V}: 0 \rightarrow V \xrightarrow{T} V \rightarrow 0 \rightarrow 0 \cdots
$$

Then $H^{0}\left(K_{V}\right)=\operatorname{ker} T=0$ (since f and g are irreducible), $H^{1}\left(K_{V}\right)=\operatorname{coker} T$. The condition $T(U) \subset U$ implies that

$$
K_{U}: \quad 0 \rightarrow U \xrightarrow{T} U \rightarrow 0 \rightarrow 0 \cdots
$$

is a subcomplex of K_{V}. Moreover the quotient complex is K_{V} / K_{U} is irreducible. The lemma now follows from the long exact sequence determined by

$$
0 \rightarrow K_{U} \rightarrow K_{V} \rightarrow K_{V} / K_{U} \rightarrow 0
$$

Proposition 11.4.3 has the following consequence.
Corollary 11.4.5. Suppose $f \in \mathbb{C}\{x, y\}$ is an irreducible Weierstrass y-polynomial such that $f(0,0)=0$. Then the monoid Γ_{f} determined by the germ $\left(C_{f}, 0\right)$ can be described as

$$
\mathcal{O}_{f}=\left\{\mu\left(C_{f} \cap C_{g}, 0\right) ; \quad g \in \mathbb{C}\{x, y\}, \quad g(0,0)=0, \quad g \notin(f)\right\} .
$$

Traditionally, the intersection numbers are defined in terms of resultants. We outline below this method since we will need it a bit later. For more details we refer to [12].

Recall (see [47, IV,$\S 8]$, or $[70, \S 27]$) that if f and g are polynomials in the variable y with coefficients in the commutative ring R then their resultant is a polynomial $\mathcal{R}_{f, g}$ in the coefficients of f and g with the property that $\mathcal{R}_{f, g} \equiv 0$ if and only if f and g have a nontrivial common divisor. More precisely, if

$$
f=\sum_{k=0}^{n} a_{k} y^{k}, \quad a_{n} \neq 0, \quad g=\sum_{j=1}^{m} b_{j} y^{j}, \quad b_{m} \neq 0
$$

then $\mathcal{R}_{f, g}$ is described by the determinant of the $(m+n) \times(m+n)$ matrix

$$
\left[\begin{array}{cccccccc}
a_{n} & a_{n-1} & \cdots & a_{0} & 0 & 0 & \cdots & \cdots \\
0 & a_{n} & \cdots & a_{1} & a_{0} & 0 & \cdots & \cdots \\
\vdots & \vdots \\
0 & \cdots & \cdots & a_{n} & a_{n-1} & \cdots & \cdots & a_{0} \\
b_{m} & b_{m-1} & \cdots & b_{0} & 0 & 0 & \cdots & \cdots \\
0 & b_{m} & \cdots & b_{1} & b_{0} & 0 & \cdots & \cdots \\
\vdots & \vdots \\
0 & \cdots & \cdots & 0 & b_{m} & b_{m-1} & \cdots & b_{0}
\end{array}\right]
$$

Suppose now that f, g are Weierstrass y-polynomials,

$$
f=\sum_{k=0}^{n} a_{k}(x) y^{k}, \quad a_{n}(0) \neq 0, \quad g=\sum_{j=1}^{m} b_{j}(x) y^{j}, \quad b_{m}(0) \neq 0,
$$

Their resultant of f and g is then a holomorphic function of x

$$
\mathcal{R}_{f, g} \in \mathbb{C}\{x\} .
$$

We then have the following result
Proposition 11.4.6. Let $C_{f}:=\{f=0\}, C_{g}:=\{g=0\}$. Then

$$
\mu\left(C_{f} \cap C_{g}, O\right)=\operatorname{ord}_{x} \mathcal{R}_{f, g}(x) .
$$

Exercise 11.4.1. Prove Proposition 11.4.6. (Hint: Use Halphen-Zheuten formula.)

11.5 Embedded resolutions and blow-ups

The link of an irreducible germ $(C, 0)$ of plane curve is a circle so its topology is not very interesting. However, the link is more than a circle. It is a circle together with an embedding in S^{3}. As explained above, the topological type of this embedding completely determines the topological type of the singularity. This suggests that the manner in which $(C, 0)$ sits inside $\left(\mathbb{C}^{2}, 0\right)$ carries nontrivial information. The resolution of singularities by Puiseux expansion produces a smooth curve \tilde{C} and a holomorphic map $\pi: \tilde{C} \rightarrow C$. Topologically, the smooth curve \tilde{C} is uninteresting. All the topological information is contained in the holomorphic map π. We want now to describe another method of resolving the singularity which produces an embedded resolution.

More precisely, an embedded resolution of the curve $C \hookrightarrow \mathbb{C}^{2}$ is a triplet (X, \tilde{C}, π) where X is a smooth complex surface, $\tilde{C} \subset X$ is a smooth curve, $\pi: X \rightarrow \mathbb{C}^{2}$ is a holomorphic map such that $\pi(\tilde{C})=C$, the induced map $\pi: \tilde{C} \rightarrow C$ is a resolution of C and the set $\pi^{-1}(0)$ is a curve in X with only mild singularities (nodes). We will produce embedded resolutions satisfying a bit more stringent conditions using the blowup construction in Chapter 3.

We recall that if M is a smooth complex surface and $p \in M$ then the blowup of M at p is a smooth complex surface \tilde{M}_{p} together with a holomorphic map $\beta=\beta_{p}: \tilde{M}_{p} \rightarrow M$ (called the blowdown map) such that

$$
\beta: \tilde{M}_{p} \backslash \beta^{-1}(p) \rightarrow M \backslash\{p\}
$$

is biholomorphic and there exists a neighborhood \tilde{U}_{p} of $E_{p}:=\beta^{-1}(p)$ in \tilde{M}_{p} biholomorphic to a neighborhood \tilde{V} of \mathbb{P}^{1} inside the total space of the tautological line bundle $\tau_{1} \rightarrow \mathbb{P}^{1}$ such that the diagram below is commutative.

where $U_{p}:=\beta\left(U_{p}\right)$ is a neighborhood of p in M and $V=\beta_{1}(\tilde{V})$ is a neighborhood of the origin in \mathbb{C}^{2}. This implies that we can find local coordinates z_{1}, z_{2} on $U_{p} \subset M$, and an open cover \tilde{U}_{p}

$$
\tilde{U}_{p}=\tilde{U}_{p}^{1} \cup \tilde{U}_{p}^{2}
$$

with the following properties.

- $z_{i}(p)=0, i=1,2$.
- There exists coordinates u_{1}, u_{2} on $\tilde{U}_{p}^{i}, i=1,2$ such that

$$
\tilde{U}_{p}^{i} \cap E_{p}=\left\{u_{i}=0\right\}
$$

- Along \tilde{U}_{p}^{1} the blowdown map β has the description

$$
\left(u_{1}, u_{2}\right) \mapsto\left(z_{1}, z_{2}\right)=\left(u_{1}, u_{1} u_{2}\right) .
$$

- Along \tilde{U}_{p}^{2} the blowdown map β has the description

$$
\left(u_{1}, u_{2}\right) \mapsto\left(z_{1}, z_{2}\right)=\left(u_{1} u_{2}, u_{2}\right)
$$

We will sometime denote the blowup of M at p by

$$
(M, p) \longrightarrow \tilde{M}
$$

The proper transform of C is the closure in \tilde{M} of $\beta^{-1}(C \backslash\{0\})$.
Example 11.5.1. Consider again the germ $f(x, y)=y^{3}-x^{5}-x^{7}$ we analyzed in Example 11.3.9. We blowup \mathbb{C}^{2} at the origin and we want to describe the proper transform of the curve C defined by $f=0$. Conside the blowup $\left(\mathbb{C}^{2}, O\right) \rightarrow M$, denote by \hat{C} the proper transform of C, and by U a neighborhood of the exceptional divisor E. We have an open cover of U by coordinate chartes

$$
U=U_{1} \cup U_{2}
$$

We denote by (u, v) the coordinates on U_{1} so that $x=u, y=u v, E \cap U_{1}=\{u=0\}$. Then we have

$$
\beta^{*} f(u, u v)=(u v)^{3}-u^{3}-u^{5}=u^{3}\left(v^{3}-1-u^{2}\right) .
$$

This shows that the part of \hat{C} in U_{1} intersects the exceptional divisor E in three points $P_{k}\left(u_{k}, v_{k}\right), k=0,1,2$ given by

$$
u_{k}=0, \quad v_{k}=\exp \left(\frac{2 \pi i k}{3}\right), \quad k=0,1,2 .
$$

Moreover

$$
\mu\left(\hat{C} \cap E, P_{k}\right)=1,
$$

and each of the points P_{k} are smooth points of the curve \hat{C} (see Figure 11.8).

Figure 11.8: Blowing up $y^{3}=x^{5}+x^{7}$
On the chart U_{2} we have

$$
\beta^{*} f(u v, v)=v^{3}-(u v)^{5}-(u v)^{7}=v^{3}\left(1-u^{5} v^{2}-u^{5} v^{4}\right)
$$

Clearly $\hat{C} \cap E \cap U_{2}=\emptyset$. This shows that

$$
\hat{C} \cdot E=3 .
$$

To explain some of the phenomena revealed in the above example we need to introduce a new notion.

Definition 11.5.2. Suppose C is a plane curve defined near $O=(0,0) \in \mathbb{C}^{2}$ by an equation $f(x, y)=0$, where $f \in \mathbb{C}\{x, y\}, f(0,0)=0$. The multiplicity of O on the curve C is the integer $e_{C}(O)$ defined by

$$
e_{C}(O)=\min _{k \geq 1}\left\{f_{k}(x, y) \neq 0\right\}
$$

where $f_{d}(x, y)$ denotes the degree d homogeneous part of f. The principal par $f_{e}(x, y)$, $e=e_{C}(O)$ decomposes into linear factors

$$
f_{e}=\prod_{j=1}^{e}\left(a_{j} x+b_{j} y\right)
$$

and the lines L_{j} described by $a_{j} x+b_{j} y=0$ are called the principal tangents of C at O.

Exercise 11.5.1. Prove that

$$
e_{C}(O)=\min _{D} \mu(C \cap D, O),
$$

where the minimum is taken over all the plane curves D such that O is an isolated point of the intersection $C \cap D$.

For example, the multiplicity of O on the curve $C:\left\{y^{3}=x^{5}+x^{7}\right\}$ is 3 . The multiplicity can be determined from Puiseux expansions.

Proposition 11.5.3. Suppose C is a plane curve such that the germ $(C, 0)$ is irreducible. If C admits near 0 the Puiseux expansion

$$
x=t^{n}, \quad y=a t^{m}+\cdots, \quad a \neq 0,
$$

then

$$
e_{C}(0)=\min (m, n) .
$$

Exercise 11.5.2. Prove Proposition 11.5.3.
The computation in Example 11.5.1 shows that

$$
e_{C}(O)=\hat{C} \cdot E .
$$

This is a special case of the following more general result
Proposition 11.5.4. Suppose C is a plane curve. Denote by \bar{C} the proper transform of C in the blowup at \mathbb{C}^{2} at 0 , and by E the exceptional divisor. Then

$$
e_{C}(0)=\bar{C} \cdot E=\sum_{p \in \hat{C} \cap E} \mu(\bar{C} \cap E, p) .
$$

Exercise 11.5.3. Prove Proposition 11.5.4.
The computations in Example 11.5 .1 show something more, namely that the proper transform of a plane curve is better behaved than the curve itself. The next results is a manifestation of this principle.

Proposition 11.5.5. Suppose $f \in \mathbb{C}\{x, y\}$ is a holomorphic function such that O is a point of multiplicity $m>0$ on the curve $C=\{f=0\}$. Then the proper transform of C intersects the exceptional divisor at precisely those points in \mathbb{P}^{1} corresponding to the principal tangents. In particular, the blowup separates distinct principal tangents.

To formulate our next batch of results we need to introduce some terminology.
Definition 11.5.6. (a) If \tilde{M}_{p} is the blow-up of the smooth complex surface M at the point p, then the exceptional divisor $E \hookrightarrow \tilde{M}_{p}$ is called the first infinitesimal neighborhood of p. (b) An iterated blowup of M is a a sequence of complex manifolds

$$
M_{0}, M_{1}, \cdots, M_{k}
$$

with the following properties

- $M=M_{0}$.
- M_{i} is the blowup of M_{i-1} at a point $p_{i-1}, i=1, \cdots, k-1$. We denote by E_{i} the exceptional divisor in M_{i}.
- $p_{i} \in E_{i}, \forall i=1, \cdots, k-1$.

We will denote the iterated blowups by

$$
\left.\left(M_{0}, p_{0}\right) \xrightarrow{ }\right)\left(M_{1}, p_{1}\right) \rightarrow \cdots \rightarrow\left(M_{k-1}, p_{k-1}\right) \rightarrow M_{k} .
$$

A point p_{k} which lies on the exceptional divisor of the last blowup is said to be situated in the k-th infinitesimal neighborhood of p_{0}.

Given a plane curve through $O \in \mathbb{C}^{2}$, and an iterated blowup

$$
\left(\mathbb{C}^{2}, O\right) \rightarrow\left(M_{1}, p_{1}\right) \rightarrow \cdots \rightarrow M_{k}
$$

we get a sequence of proper transforms $C_{(1)}=\hat{C}, C_{(j)}=\hat{C}_{(j-1)}, j=2, \cdots, k$. The points $C_{(j)} \cap E_{j}$ are called j-th order infinitesimal points of the germ (C, O). To minimize the notation, we will denote by E_{j} all the proper transforms of E_{j} in $M_{j+1}, M_{j+2}, \cdots, M_{k}$.

Suppose $f \in \mathbb{C}\{x, y\}$ is irreducible and O is a point on $f=0$ of multiplicity N. Then, after a linear change of coordinates we can assume that f is a Weierstrass polynomial in y such that $\operatorname{deg}_{y} f=N$.
Proposition 11.5.7. Suppose $f \in \mathbb{C}\{x, y\}$ is an irreducibe Weierstrass y-polynomial, and $\operatorname{deg}_{y} f=N=e_{C}(O), C=\{f=0\}$. Assume that near O the cuve C is tangent at O to the x-axis, so that it has the Puiseux expansion

$$
y=y(x)=\sum_{j \geq N} a_{j} x^{j / N} .
$$

Then the proper transform \bar{C} of C intersects the exceptional divisor at a single point p and the germ (\bar{C}, p) is irreducible. Moreover, with respect to the coordinates (u, v) near p defined by $u=x, v=y / x$ we have $p=\left(0, a_{N}\right)$ and the germ (\bar{C}, p) has the Puiseux expansion

$$
\begin{equation*}
v-a_{N}=\sum_{j>N} a_{j} u^{(j-N) / N} . \tag{11.5.1}
\end{equation*}
$$

Proof The fact that \bar{C} intersects the exceptional divisor at a single point is immediate: the germ (C, p) being irreducible has a unique principal tangent at p. The expansion (11.5.1) follows immediately from the equality $v=y / x$. The irreducibility follows from the Puiseux expansion (11.5.1).

Suppose now that $C \subset \mathbb{C}^{2}$ is a plane curve such that the germ (C, O) is irreducible. We can choose linear coordinates on \mathbb{C}^{2} such that near O the curve C has a Puiseux expansion

$$
x=t^{p} ; y=a t^{q}+\cdots, \quad p=e_{C}(O)<q .
$$

After 1-blowup the proper transform $C_{(1)}$ will intersect the exceptional divisor at a point p_{1} and the germ $\left(C_{(1)}, p_{1}\right)$ has a Puiseux expansion

$$
x=t^{p}, \quad y=a t^{q-p}+\cdots .
$$

In particular, we deduce

$$
e_{C_{(1)}}\left(p_{1}\right)=\min \{(q-p), p\} .
$$

If $q-p<p$ we conclude that the infinitesimal point p_{1} has strictly smaller multiplicity than O. In general, we have

$$
q=p m+r, \quad 0 \leq r<p
$$

Blowing up m times we deduce that $C_{(m)}$ intersects the m-th infinitesimal neighborhood of O at a point p_{m} and

$$
e_{C_{(m)}}\left(p_{m}\right)=r<p .
$$

We conclude that by performing an iterated blowup we can reduce the multiplicity. In particular, we can perform iterated blowups until some infinitesimal point of C has multiplicity one. We can thus conclude that there exists an iterated blowup with respect to which the proper transform of C is smooth.

We want to show there is a more organized way of doing this provided we require a few additional conditions. The next example will illustrate some things we would like to avoid.

Example 11.5.8. Consider the curve $y^{4}=x^{11}$. The singular point O has multiplicity 4 . By making the changes in coordinates

$$
x \rightarrow x, \quad y \rightarrow x y
$$

we deduce that the proper transform of C after the first blowup has the local description near the first order infinitesimal point $p_{1}=(0,0)$ given by

$$
x^{4}\left(y^{4}-x^{7}\right)=0 .
$$

The exceptional divisor E_{1} has the equation $x=0$ so the multiplicity of p_{1} is 4 . We blowup again, and using the same change in coordinates as above we deduce that the new exceptional divisor is described by $x=0$, and the second total transform of C takes the form

$$
x^{4}\left(y^{4}-x^{3}\right)=0 .
$$

Figure 11.9: Resolving $y^{4}=x^{11}$ by an iterated blowup.

Hence the second proper transform of C is given by

$$
C_{(2)}: \quad y^{4}-x^{3}=0 .
$$

The second order infinitesimal point p_{2} on C has coordinates $(0,0)$ so that it has multiplicity 3. To understand the proper transform of E_{1} we need to use the other change in coordinates

$$
x \rightarrow x y, \quad y \rightarrow y
$$

in which the exceptional divisor is described by $y=0$. In these coordinates proper transform of E_{1} is described by $x=0$ and intersects E_{2} at ∞. We can also see this in Figure 11.9. The curves $C_{(1)}$ and E_{1} have no principal tangents in common so a blowup will separate them.

We perform the change in coordinates $x \rightarrow x y, y \rightarrow y$ near p_{2}, i.e. we blow up for the third time at p_{2}. The exceptional divisor E_{3} is described by $y=0$, and the total transform of $C_{(2)}$ is given by $y^{3}\left(y-x^{3}\right)=0$ so that 3 rd proper transform of the curve C has the description

$$
C_{(3)}: \quad\left(y-x^{3}\right)=0
$$

near the third infinitesimal point $p_{3}=(0,0)$. The total transform of E_{2} is described by $x y=0$ so that the proper transform is given by $x=0$ and intersects E_{3} at p_{3} which is a nonsingular point of $C_{(3)}$.

Figure 11.9 describes various transformations as we perform the blowups. As we have mentioned, $C_{(3)}$ is already smooth but the situation is not optimal. More precisely, three different curves intersect on the third infinitesimal point p_{3}. It will be very convenient to avoid this situation. We can separate E_{3} and E_{2} by one blowup (see Figure 11.10).

Figure 11.10: Improving the resolution of $y^{4}=x^{11}$.
We perform the change in coordinates

$$
x \rightarrow x, \quad y \rightarrow x y .
$$

The exceptional divisor E_{4} is given by $x=0$, the proper transform of E_{3} is described by $y=0$, and $C_{(4)}$ is given by

$$
y=x^{2} .
$$

Still, the situation is not perfect because $C_{(4)}, E_{3}$ and E_{4} have a point in common, $p_{4} \mathrm{We}$ blowup at p_{4} using the change in coordinates

$$
x \rightarrow x, \quad y \rightarrow x y .
$$

E_{3} and E_{4} separate but now the proper transform $C_{(5)}$ goes through the intersection point of E_{5} and the (second order) proper transform of E_{3}. Moreover, near the fifth order infinitesimal point p_{5} the curve $C_{(5)}$ has the linear form. A final blowup will separate $C_{(5)}$, E_{3} and E_{5} (see Figure 11.10).

Motivated by the above example we introduce the following concept.
Definition 11.5.9. Let $(C, 0) \subset\left(\mathbb{C}^{2}, 0\right)$ be an irreducible germ of plane curve. An iterated blowup

$$
\left.\left(\mathbb{C}^{2}, 0\right) \longrightarrow\left(M_{1}, p_{1}\right) \longrightarrow \cdots \cdots\left(M_{n-1}, p_{n-1}\right) \xrightarrow{ }\right) \not M_{n}
$$

is called a standard resolution of $(C, 0)$ if either $(C, 0)$ is smooth and $n=0$ or for $k=$ $1, \cdots, n-1$ either
(a) $C_{(k)} \subset M_{k}$ has one singular point p_{k} or
(b) $C_{(k)}$ is smooth but the intersection with E_{k} at p_{k} is not transverse or
(c) $C_{(k)}$ is smooth, intersects E_{k} transversally at p_{k}, but does intersect (also at p_{k}) some other $E_{j}, j<k$, and
(d) C_{n} is smooth and intersects E_{n} transversally, and intersects no other E_{k}.

We denote by e_{k} the multiplicity of $C_{(k)}$ at p_{k},

$$
e_{k}=e_{C_{(k)}}\left(p_{k}\right)
$$

We also set $e_{0}:=e_{C}(O)$. The sequence $\left(e_{0}, e_{1}, \cdots, e_{n-1}\right)$ is called the multiplicity sequence of the resolution.

The multiplicity sequence is nonincreasing and the last term is equal to 1 . To simplify the description of a multiplicity sequence we will use the notation

$$
\left(a_{1}^{p_{1}}, \cdots, a_{k}^{p_{k}}\right):=(\underbrace{a_{1}, \cdots, a_{1}}_{p_{1}}, \underbrace{a_{1}, \cdots, a_{2}}_{p_{2}}, \cdots, \underbrace{a_{k}, \cdots a_{k}}_{p_{k}})), \quad a_{1}>\cdots>a_{k}=1 .
$$

One can show that the number p_{k} of times the multiplicity 1 appears in the sequence is equal to a_{k-1}, the smallest multiplicity >1. For this reason we can simplify the notation even more an write

$$
\left(a_{1}^{p_{1}}, \cdots, a_{k-1}^{p_{k-1}}\right)=\left(a_{1}^{p_{1}}, \cdots, a_{k-1}^{p_{k-1}}, 1^{a_{k-1}}\right), a_{1}>\cdots>a_{k-1}>1 .
$$

Arguing as in Example 11.5.8 one can prove that each irreducible germ of planar curve admits a standard resolution. In this example we have constructed a standard resolution of the germ $y^{4}=x^{11}$. The multiplicity sequence is $(4,4,3,1,1,1)=\left(4^{2}, 3,1^{3}\right)=\left(4^{2}, 3\right)$.

This example shows that the multiplicity sequence can be determined from the Puiseux series. In fact, the multiplicity sequence completely determines the topological type of a singularity. More precisely, we have the following result.

Theorem 11.5.10 (Enriques-Chisini). The Puiseux pairs are algorithmically determined by the multiplicity sequence, and conversely, the multiplicity sequence can be determined from the Puiseux series.

For a tedious but fairly straightforward proof of this result we refer to [12, Sec. 8.4, Them. 12] or [41, Thm. 5.3.12]. We include below the algorithm which determines the multiplicity sequence from the Puiseux pairs. Suppose the Puiseux pairs are

$$
\left(m_{1}, n_{1}\right), \cdots,\left(m_{g}, n_{g}\right)
$$

Form the characteristic exponents

$$
k_{0}=m_{1} \cdots m_{g}=N, \frac{k_{j}}{k_{0}}=\frac{n_{j}}{m_{j}} \cdot \frac{1}{m_{1} \cdots m_{j-1}} \Longleftrightarrow k_{j}=n_{j} \cdot m_{j+1} \cdots m_{g}
$$

Perform the sequence of Euclidean algorithms, $i=1, \cdots, g$ for χ_{1}^{i} and q_{1}^{i},

$$
\begin{aligned}
\chi_{1}^{i} & =\mu_{1}^{i} \cdot q_{1}^{i}+q_{2}^{i} \\
q_{1}^{i} & =\mu_{2}^{i} \cdot q_{2}^{i}+q_{3}^{i} \\
\vdots & \vdots \\
q_{\ell(i)-1}^{i} & =\mu_{\ell(i)}^{i} \cdot q_{\ell(i)}^{i}
\end{aligned}
$$

where $\chi_{1}^{1}=k_{1}, q_{1}^{1}=k_{0}=N$,

$$
\chi_{1}^{i}=k_{i}-k_{i-1}, \quad q_{1}^{i}=q_{\ell(i-1)}^{i-1}, \quad i=2, \cdots, g .
$$

Then in the multiplicity sequence the multiplicity q_{j}^{i} appears μ_{j}^{i} times, $i=1, \cdots, q, j=$ $1, \cdots \ell(i)$.

Example 11.5.11. (a) Consider the germ given by the Puiseux expansion

$$
y=x^{11 / 4}
$$

In this case there is only one Puiseux pair, $(4,11)$. The characteristic exponents are

$$
k_{0}=4, \quad k_{1}=11
$$

We have

$$
11=2 \cdot 4+3, \quad 4=1 \cdot 3+1, \quad 3=3 \cdot 1 .
$$

We conclude that the multiplicity sequence is $\left(4^{2}, 3,1^{3}\right)$ as seen before from the standard resolution.
(b) Consider the germ with Puiseux expansion

$$
y=x^{3 / 2}+x^{7 / 4} .
$$

Its Puiseux pairs are $(2,3),(2,7)$. Using the equality (11.3.1) we deduce that the characteristic exponents are

$$
k_{0}=4, \quad k_{1}=6, \quad k_{2}=21 .
$$

Then $\chi_{1}^{1}=k_{1}=6, q_{1}^{1}=4$,

$$
6=1 \cdot 4+2, \quad 4=2 \cdot 2 .
$$

Hence $\ell(1)=2, \chi_{1}^{2}=15, q_{1}^{2}=q_{2}^{1}=2$

$$
15=7 \cdot 2+1, \quad 2=2 \cdot 1
$$

We deduce $\ell(2)=3$. The multiplicity sequence is $\left(4,2^{9}, 1^{2}\right)$.

The standard resolution of an irreducible germ can be geometrically encoded by the resolution graph.. Suppose

$$
(C, 0) \rightarrow\left(M_{1}, p_{1}\right) \rightarrow \cdots \rightarrow\left(M_{n-1}, p_{n-1}\right) \rightarrow M_{n}
$$

is the standard resolution. Then the resolution graph has $n+1$ vertices, $1, \cdots, n, *$. Two vertices $i<j$ are connected if the divisors E_{i} and E_{j} intersect. Finally, we connect n and * since \hat{C} intersects E_{n}.

From Figure 11.10 we deduce that the resolution graph of the singularity $y^{4}=x^{11}$ is the one depicted in Figure 11.11. One can prove (see [12, 41]) that the resolution graph can be

Figure 11.11: The resolution graph of $y^{4}=x^{11}$.
algorithmically constructed from the multiplicity sequence, and conversely, the multiplicity sequence completely determines the resolution graph.

Example 11.5.12. Let us compute the resolution graph and the multiplicity sequence is a less obvious example. Consider the germ at $0 \in \mathbb{C}^{2}$ of the planar curve described by

$$
\left(y^{2}-x^{3}\right)^{2}-4 x^{5} y-x^{7}=0 .
$$

The singular point has multiplicity 4 . We blow up the point. Using the change in variables $x \rightarrow x, y \rightarrow x y$ we get as total transform

$$
\left(x^{2} y^{2}-x^{3}\right)^{2}-4 x^{6} y-x^{7}=x^{4}\left\{\left(y^{2}-x\right)^{2}-4 x^{2} y-x^{3}\right\}=0
$$

Thus the proper transform is defined by

$$
C_{(1)}: \quad\left(y^{2}-x\right)^{2}-4 x^{2} y-x^{3}=0 .
$$

It intersects the exceptional divisor $E_{1}=\{x=0\}$ at $p_{1}=(0,0)$ which has multiplicity 2 and principal tangent $x=0$. Blowing up p_{1} we obtain after the substitutions $x \rightarrow x y$, $y \rightarrow y$ that the second proper transform is described by

$$
C_{(2)}: \quad(y-x)^{2}-4 x^{2} y-x^{3} y=0
$$

This intersects the exceptional divisor $E_{2}=\{y=0\}$ at $p_{2}=(0,0)$ which has multiplicity 2. It has only one principal tangent $y=x$. The proper transform of E_{1} is given by $x=0$.

We next blowup p_{2}. We change the coordinates so that the principal tangent of $C_{(2)}$ becomes the new x axis. Thus we make the change in variables

$$
x \rightarrow x, \quad \rightarrow y+x .
$$

In these new coordinates we have

$$
C_{(2)}: y^{2}-4 x^{2} y-4 x^{3}-x^{3} y-x^{4}=0, \quad E_{2}:=\{y+x=0\}, \quad E_{1}=\{x=0\} .
$$

Using the substitutions $x \rightarrow x, y \rightarrow x y$ we deduce that the third proper transform is given by

$$
C_{(3)}: y^{2}-4 x y-4 x-x^{2} y-x^{2}=0, \quad E_{3}=\{x=0\} .
$$

$C_{(3)}$ intersects E_{3} at $p_{3}=(0,0)$ which is a point with multiplicity 1 and and principal tangent E_{3}.

Figure 11.12: Resolving the singularity of $\left(y^{2}-x^{3}\right)^{2}-4 x^{5} y-x^{7}=0$.
We blowup p_{3}. Using the change in variables $x \rightarrow x y, y \rightarrow y$ we deduce

$$
C_{(4)}: \quad y-4 x y-4 x-x^{2} y^{2}-x^{2} y=0, \quad E_{4}:=\{y=0\} .
$$

$C_{(4)}$ intersects E_{4} at $p_{4}=(0,0)$. This is a smooth point with tangent $y=4 x$. E_{3} also intersects E_{4} in p_{4}. We need a final blowup to separate E_{3} and E_{4}. In Figure 11.12 we have depicted this sequence of blowups. Figure 11.13 describes the resolution graph of this singularity. The multiplicity sequence of this singularity is

$$
\left(e_{0}, e_{1}, e_{2}, e_{3}, e_{4}\right)=(4,2,2,1,1)
$$

Figure 11.13: The resolution graph of $\left(y^{2}-x^{3}\right)^{2}-4 x^{5} y-x^{7}=0$.

Suppose $(C, 0) \hookrightarrow\left(\mathbb{C}^{2}, 0\right)$ is a germ of plane curve defined by the equation $f=0$. Assume for simplicity that it is irreducible. Consider the standard resolution

$$
(C, 0) \hookrightarrow\left(\mathbb{C}^{2}, 0\right) \xrightarrow{\pi_{1}^{-1}}\left(M_{1}, p_{1}\right) \xrightarrow{\pi_{2}^{-1}} \cdots \rightarrow\left(M_{n-1}, p_{n-1}\right) \xrightarrow{\pi_{n}^{-1}}\left(M, p_{n}\right) .
$$

We denote by E_{i} the exceptional divisor of the blowup $M_{i} \xrightarrow{\pi_{i}} M_{i-1}$ and we set

$$
\pi:=\pi_{1} \circ \cdots \circ \pi_{n}: M_{n} \rightarrow \mathbb{C}^{2} .
$$

The total transform of $(C, 0)$ is the divisor \hat{C} on M_{n} defined by the equation

$$
f \circ \pi=0 .
$$

We would like describe how one can compute the total transform of C. If we denote by \bar{C} the proper transform of C in the standard resolution then

$$
\hat{C}=\bar{C}+\sum_{i=1}^{n} m_{i} E_{i}
$$

where m_{i} is the order of vanishing of $f \circ \pi$ along E_{i}. Thus the total transform is uniquely determined by the integers m_{i}. We begin with an elementary yet fundamental fact.

Lemma 11.5.13. Suppose $(S, 0) \hookrightarrow\left(\mathbb{C}^{2}, 0\right)$ is a germ of curve. Denote by $\pi: M \rightarrow \mathbb{C}^{2}$ the blowup of \mathbb{C}^{2} at zero and by E the exceptional divisor. Then the total transform of C is the related to the proper transform via the equality

$$
\hat{S}=\bar{S}+e_{C}(0) E,
$$

where we recall that $e_{S}(0)$ denotes the multiplicity of S at 0 .

Proof It suffices to assume that $(C S, 0)$ is irreducible since we have the equalities

$$
\widehat{S_{1} \cup S_{2}}=\hat{S}_{1} \cup \hat{S}_{2}, \quad \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cup \bar{S}_{2}
$$

and

$$
e_{S_{1} \cup S_{2}}(0)=e_{S_{1}}(0)+e_{C S_{2}}(0) .
$$

Suppose then $(S, 0)$ is irreducible and described by the equation $f=0$. We decompose f into homogeneous components

$$
f=f_{e}+f_{e+1}+\cdots, e:=e_{C}(0) .
$$

Since the germ f is irreducible we deduce that f_{e} has the form $f_{e}=\ell^{e}$, where ℓ is a linear homogeneous polynomial in two variables x, y. Via a linear change in coordinates we can assume $\ell(x, y)=y$ so that

$$
f=y^{e}+f_{e+1}(x, y)+\cdots
$$

To find the total transform of $f=0$ we use the change in coordinates

$$
x \rightarrow x, \quad y \rightarrow x y,
$$

in which the exceptional divisor is given by $x=0$. Then

$$
f \circ \pi(x, y)=f(x, x y)=x^{e} y^{e}+f_{e+1}(x, x y)+\cdots=x^{e}\left(y^{e}+x f_{e+1}(1, y)+\cdots\right)
$$

from which we see that $f \circ \pi$ vanishes to order e along the exceptional divisor E.
We now return to our original problem. For $k=1, \cdots, n$ we set

$$
P_{k}:=\pi_{1} \circ \cdots \circ \pi_{k}: M_{k} \rightarrow \mathbb{C}_{0}^{2}, \quad f_{k}=f \circ P_{k}
$$

The closure of $P_{k}^{-1}(C \backslash 0)$ in M_{k} is the k-th proper transform of C and we will denote it by \bar{C}_{k}. The k-th total transform is the divisor \hat{C}_{k} on M_{k} defined by $f_{k}=0$. Using Lemma 11.5.13 we deduce that m_{i}, the order of vanishing of $f \circ \pi$ along E_{i} is given by

$$
m_{i}=e_{\hat{C}_{i}}\left(p_{i-1}\right)=: \hat{e}_{i} .
$$

We proceed to determine the integers \hat{e}_{i} by descending induction, in the process obtaining a linear recurrence relation between the orders of vanishing m_{i} and the multiplicities e_{i} of the points p_{i}.

For every $2 \leq k \leq n$ the exceptional divisor E_{k} intersects at most two proper transforms of exceptional divisors E_{j}. We denote them by $E_{j(k)}, E_{J(k)}, j(k) \leq J(k)$. Note that we always have the equality $J(k)=k-1$. Then

$$
\left(\hat{C}_{k-1}, p_{k}\right)=\left(\bar{C}_{k-1}, p_{k-1}\right) \cup\left(E_{j(k)}, p_{k-1}\right) \cup\left(E_{k-1}, p_{k}\right) .
$$

We set $e_{k}:=e_{\bar{C}_{k-1}}\left(p_{k-1}\right)$ and we deduce

$$
m_{k}=\hat{e}_{k}:=e_{k}+\left\{\begin{array}{cll}
m_{k-1} & \text { if } & j(k)=J(k)=k-1, k>1 \tag{11.5.2}\\
m_{k-1}+m_{j(k)} & \text { if } & j(k)<J(k)=k-1, k>1 \\
0 & \text { if } & k=1
\end{array} .\right.
$$

Consider the vectors

$$
\vec{e}:=\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right], \vec{m}:=\left[\begin{array}{c}
m_{1} \\
\vdots \\
m_{n}
\end{array}\right] .
$$

Observe that \vec{e} is precisely the multiplicity sequence. We will refer to \vec{m} as the (order of) vanishing sequence. Following $[14, \S 4.5]$ we introduce the lower triangular incidence matrix

$$
A=\left(a_{k j}\right)_{1 \leq k, j \leq n}, \quad a_{k j}=\left\{\begin{array}{lll}
1 & \text { if } & j \in\{j(k), J(k)\} \\
0 & \text { if } & j \notin\{j(k), J(k)\}
\end{array}\right.
$$

We can rewrite the equalities (11.5.2) succinctly as

$$
\begin{equation*}
\vec{e}=(\mathbb{1}-A) \vec{m} . \tag{11.5.3}
\end{equation*}
$$

Observe that since A is lower triangular it is nilpotent we have $\operatorname{det}(\mathbb{1}-A)=1$ so $\mathbb{1}-A \in$ $S L_{n}(\mathbb{Z})$, i.e. the above system has a unique integral solution

$$
\vec{m}=(\mathbb{1}-A)^{-1} \vec{e}=\sum_{j=0}^{n} A^{j} \vec{e} .
$$

The incidence matrix is easily obtained from the resolution graph where we remove the dotted edge. The numbers $j(k)$ and $J(k)$ can be constructed by descending induction. First let us introduce a notation.

$$
k \rightsquigarrow j \stackrel{\text { def }}{\Longleftrightarrow} j \in\{j(k), J(k)\} .
$$

We say that j is proximate to k. For $k=n$ we have $n \rightsquigarrow j$ if and only j is a neighbor of the n-th vertex. To find j such that $(n-1) \rightsquigarrow j$ we blow down E_{n}. The resolution graph then changes as follows.

Remove the edge(s) connecting the n-th vertex to its neighbors. If the n-th vertex has only one neighbor then we are done. If the n-th vertex has two neighbors, then after its removal we connect its neighbors by an edge. We obtain a new graph with one less vertex and $(n-1) \rightsquigarrow j$ if and only if j is a neighbor of $(n-1)$ in the new graph. Next, iterate this procedure and we conclude by setting $\{j(1), J(1)\}=\emptyset$.

Example 11.5.14. (a) Consider the situation in Example 11.5.8. In that case we have

$$
\vec{e}=\left[\begin{array}{l}
4 \\
4 \\
3 \\
1 \\
1 \\
1
\end{array}\right]
$$

Upon inspecting the resolution graph in Figure 11.11 (or better yet Figure 11.10) we deduce

$$
6 \rightsquigarrow 3,5, \quad 5 \rightsquigarrow 3,4, \quad 4 \rightsquigarrow 3,2, \quad 3 \rightsquigarrow 2, \quad 2 \rightsquigarrow 1 .
$$

From (11.5.3) we deduce the system

$$
\left\{\begin{array}{r}
m_{1}=4 \\
m_{2}-m_{1}=4 \\
m_{3}-m_{2}=3 \\
m_{4}-m_{3}-m_{2}=1 \\
m_{5}-m_{4}-m_{3}=1 \\
m_{6}-m_{5}-m_{3}=1
\end{array} \Longrightarrow \vec{m}=\left[\begin{array}{c}
4 \\
8 \\
11 \\
20 \\
32 \\
44
\end{array}\right]\right.
$$

(b)Consider the situation in Example 11.5.12. In that case we showed

$$
\vec{e}=\left[\begin{array}{l}
4 \\
2 \\
2 \\
1 \\
1
\end{array}\right]
$$

Upon investigating the resolution graph, or better yet Figure 11.12, we deduce

$$
5 \rightsquigarrow 4,3, \quad 4 \rightsquigarrow 3, \quad 3 \rightsquigarrow 1,2, \quad 2 \rightsquigarrow 1 .
$$

From (11.5.3) we deduce the system

$$
\left\{\begin{array}{rl}
m_{1} & =4 \\
m_{2}-m_{1} & =2 \\
m_{3}-m_{1}-m_{2} & =2 \\
m_{4}-m_{3} & =1 \\
m_{5}-m_{3}-m_{4} & =1
\end{array} \Longrightarrow \vec{m}=\left[\begin{array}{c}
4 \\
6 \\
12 \\
13 \\
26
\end{array}\right]\right.
$$

The matrix $P=\mathbb{1}-A$ is a complete topological invariant of the singularity and it is called the proximity matrix. We saw that this matrix together with the multiplicity sequence (e_{i}) completely determines the vanishing sequence \vec{m} and viceversa, the proximity matrix, together with the vanishing sequence determines the multiplicity sequence. We want to explain (without proof) how the proximity matrix alone, determines the multiplicity sequence \vec{e}.

Start again with the germ of curve $(C, 0) \subset\left(\mathbb{C}^{2}, 0\right)$. The germ is represented by a curve $\{P(x, y)=0\}$ defined in a tiny open ball B centered at 0 . Denote by $\pi: M \rightarrow \mathbb{C}^{2}$ a good resolution of the germ. Set $X=\pi^{-1}(B)$. X is a 4 -manifold with boundary $\partial B \cong S^{3}$. The components $\left\{E_{i}\right\}_{1 \leq i \leq n}$ of the exceptional divisor E form an integral basis of the second homology group $\Lambda:=H_{2}(X, \mathbb{Z})$ so we have a canonical isomorphism $\Lambda \cong \mathbb{Z}^{n}$. We assume that the components E_{i} are labelled as before, by the moment they first appear during the iterated blow-up process. This group is equipped with a nondegenerate intersection form

$$
Q: \Lambda \times \Lambda \rightarrow \mathbb{Z}, \quad(x, y) \mapsto x \cdot y
$$

It is negative definite and using the above isomorphism $\Lambda \cong \mathbb{Z}^{n}$ we have the equality

$$
Q=-P^{t} P
$$

If \vec{m} is the vanishing sequence we deduce from the equality of divisors

$$
(f \circ \pi)=\sum_{i} m_{i} E_{i}+(\bar{f})
$$

that

$$
\left(\sum_{i=1}^{n} m_{i}\left[E_{i}\right]\right) \cdot\left[E_{i}\right]=\left\{\begin{array}{rll}
0 & \text { if } & i<n \\
-1 & \text { if } & i=n
\end{array} .\right.
$$

If we denote by $\vec{c} \in \Lambda$ the vector

$$
\vec{c}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

so that the previous equality can be written as

$$
Q \cdot \vec{m}=-\vec{c} \Longleftrightarrow P^{t} P \vec{m}=\vec{c} \Longleftrightarrow P^{t} \vec{e}=\vec{c}
$$

Put it differently, the multiplicity sequence is the last column of the $\left(P^{t}\right)^{-1}$, or equivalently, the last row of P^{-1}. We claim that the last row of P^{-1} uniquely determines P. To see how, we need to use the equality

$$
\begin{equation*}
P^{-1}=\mathbb{1}+A+A^{2}+\cdots+A^{-n} \tag{11.5.4}
\end{equation*}
$$

and a bit of combinatorics.
The combinatorics comes in the guise of the proximity graph. It is an oriented graph with vertices E_{i} we have an edge (or arrow) starting at E_{k} and ending at E_{j} if and only if E_{j} is proximate to E_{k}, or in our notation $k \rightsquigarrow j$. We know that $k \rightsquigarrow(k-1)$ and from every vertex there are at most two outgoing edges. A branching vertex is a vertex with precisely two such outgoing edges. We will refer to the arrows $k \rightsquigarrow(k-1)$ as straight arrows. A jumping arrow is an arrow $k \rightsquigarrow j$ such that $k-j>1$. Its length is the integer $\delta(k)=k-j$.

To visualize a proximity graph we use the following simple procedure. Arrange the vertices E_{k} on a labels in decreasing order of their labels. Hence the rightmost vertex is 1, and the leftmost vertex is n. Then connect the vertices according to the proximity relation. The two top graphs depicted in Figure 11.14 are the proximity graphs corresponding to the resolution of $y^{4}=x^{11}$ and $\left(y^{2}-x^{3}\right)^{2}-4 x^{5} y-x^{7}=0$ with multiplicity sequences $\left(4,3^{2}, 1^{3}\right)$ and respectively $\left(4,2^{2}, 1^{2}\right)$.

If we denote by $X_{k j}$ the (k, j)-entry in the matrix P^{-1} we deduce from the equality (11.5.4) that $X_{k j}$ is the number of oriented paths connecting k to j in the proximity graph. In particular the entries $X_{n j}$ in the last row describe the number of oriented paths connecting the last vertex to the vertex j.

The proximity matrix is completely determined by the proximity graph and conversely the proximity graph is completely determined by the matrix P. As in Figure 11.14 we decorate the vertices $k<n$ with the integer e_{k} which is equal to the number of oriented paths form the vertex n to the vertex k. The decoration of the vertex n is 1 .

Figure 11.14: Proximity graphs.

The combinatorial problem we want to solve is the following. Suppose we erase the arrows of the proximity graph but we keep the decorations of the vertices. Using this numerical information reconstruct the arrows of the proximity graph. This decorated graph is uniquely determined by a few elementary properties. To formulate them, divide the set of vertices into strings of vertices, so that one string contains all the vertices with a given decoration. Next, color in red the first vertex in a string. We will refer to the other vertices as black.
\mathbf{P}_{0}. Two vertices are connected by at most one edge and any two consecutive vertices are connected by a unique (straight) arrow
\mathbf{P}_{1}. There are at most two outgoing edges originating at the same vertex of the graph.
\mathbf{P}_{2}. If k is a branching vertex and $k \rightsquigarrow j$ is a jumping arrow then for every vertex ℓ between k and j there is an arrow from ℓ to j.
\mathbf{P}_{3}. If $e_{k}=e_{k-1}$ then there is no jumping arrow ending at $k-1$. In particular, there is no jumping arrow ending at a black vertex.
\mathbf{P}_{4} Every red vertex has at least one incoming jumping arrow. The number of incoming jumping arrows is in fact one less than the length of the longest incoming jumping arrow.

To recover the proximity graph from the multiplicity sequence we proceed inductively, from red vertex to red vertex and describe the arrows that end at each of them. Suppose we have constructed the incoming arrows for the first $r-1$ red vertices and we want to describe the arrows that end at the r-th red vertex. Denote this r-th vertex by j.

According to property \mathbf{P}_{2}, the longest arrow which ends at j completely determines all the arrows ending at j. Suppose this longest arrow is $k \rightsquigarrow j$. Then, according to \mathbf{P}_{1}, no vertex between k and j is a previously produced branching vertex. This implies that there exists at most one red vertex strictly between k and j. The position of k is then determined
by the requirement that the number of paths from n to j, including the newly added arrows as well, is equal to e_{j}.

More precisely, if there is no red vertex between k and j then the corresponding number of paths is $e_{k} \cdot(k-j)$. If there is a red vertex ℓ between k and j, then necessarily ℓ is the red vertex which precedes the red vertex j and k is the vertex that precedes ℓ. The number of paths connecting n to the red vertex j is $e_{\ell} \cdot(\ell-j)+e_{k}$.

The last graph in Figure 11.14 describes the proximity graph of the multiplicity sequence $\left(100^{2}, 50^{4}, 25^{2}, 15,10,5^{2}, 1^{5}\right)$. For simplicity, we have not included the straight arrows and the decorations of the black vertices. As explained in [12, p. 517], this multiplicity sequence is obtained by resolving the plane curve germ which has the Puiseux series expansion

$$
y=x^{250 / 100}+x^{375 / 100}+x^{390 / 100}+x^{391 / 100} .
$$

Chapter 12

The link and the Milnor fibration of an isolated singularity

In this chapter we will enter deeper into the structure of an isolated singularity and we will introduce several very useful topological invariants.

12.1 The link of an isolated singularity

Suppose $f \in \mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}$ is a holomorphic function defined on an open neighborhood of 0 in \mathbb{C}^{n} such that $f(0)=0,0$ is a critical point of f of finite multiplicity, i.e.

$$
\mu:=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / \mathfrak{J}(f)<\infty
$$

where we recall that $\mathfrak{J}(f) \in \mathcal{O}_{n}$ denotes the Jacobian ideal of f, i.e. the ideal generated by the first order partial derivatives of f. According to Tougeron theorem we may as well assume that f is a polynomial of degree $\leq \mu+1$ in the variables z_{1}, \cdots, z_{n}.

The origin of \mathbb{C}^{n} is an isolated critical point of f and, according to the results in Chapter 10 , for every sufficiently small $r>0$ and every generic small vector $\vec{\varepsilon}=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right) \in \mathbb{C}^{n}$ the perturbation

$$
g=f+\frac{1}{2} \sum_{j} \varepsilon_{j} z_{j}^{2}: B_{r}:=\{|z| \leq r\} \rightarrow D_{\rho}:=\{|w| \leq \rho\}
$$

has exactly μ, nondegenerate critical points p_{1}, \cdots, p_{μ} and the same number of critical values, w_{1}, \cdots, w_{μ}, that is g is a Morse function. Moreover, the generic fiber $F_{g}=g^{-1}(w)$, $0<|w| \ll 1$ is a smooth manifold with boundary. We can now invoke the arguments in Chapter 7 (proof the Key Lemma) to conclude that if we set

$$
X_{g}:=g^{-1}\left(D_{\rho}\right) \cap B_{r}
$$

then $F_{g} \subset X_{g}$ and

$$
H_{k}\left(X_{g}, F_{g} ; \mathbb{Z}\right) \cong\left\{\begin{array}{cc}
0 & k \neq n \tag{12.1.1}\\
\mathbb{Z}^{\mu} & k=n
\end{array} .\right.
$$

We can actually produce a basis of $H_{n}\left(X_{g}, F_{g} ; \mathbb{Z}\right)$ by choosing a point \bullet on ∂D_{ρ} and joining it by non-intersecting paths u_{1}, \cdots, u_{μ} inside D_{ρ}, to the critical values w_{1}, \cdots, w_{μ}. Each critical point p_{j} generates a vanishing cycle Δ_{j} thought as a cycle in the fiber over \bullet. By letting this vanishing cycle collapse to the critical point p_{j} along the path u_{j} we obtain the thimble $T_{j} \in H_{n}\left(X_{g}, F_{g}\right)$. Clearly, the special form of g played no special role. Only the fact that g is a morsification of f is relevant. To proceed further we need the following consequence of Sard theorem.

Lemma 12.1.1. There exists $r_{0}>0$ such that, for all $r \in\left(0, r_{0}\right]$, the restriction of the function

$$
\nu: \mathbb{C}^{n} \rightarrow \mathbb{R}, \quad \vec{z} \mapsto|\vec{z}|^{2}
$$

to $f^{-1}(0) \cap\left(B_{r} \backslash 0\right)$ has no critical points.
If we set

$$
L_{r}(f):=f^{-1}(0) \cap \partial B_{r}=\nu^{-1}\left(r^{2}\right) \cap f^{-1}(0)
$$

we deduce that $L_{r}(f) \cong L_{r_{0}}(f)$. This diffeomorphism is given by the descending gradient flow of ν along $f^{-1}(0)$. For this reason we will set

$$
L_{f}:=L_{r}(f), \quad 0<r \ll 1 .
$$

This smooth manifold is called the link of the isolated singularity of f at 0 . It has codimension 2 in the sphere ∂B_{r} and thus is a manifold of dimension $(2 n-1)$. The function f defines a natural family of neighborhoods of $L_{r}(f) \hookrightarrow \partial B_{r}$,

$$
U_{r, c}(f):=\left\{\vec{z} \in \partial B_{r} ; \quad|f(\vec{z})| \leq c\right\}, \quad 0<\delta \ll 1 .
$$

$U_{r, c}$ could be regarded as a fattening of the link $L_{r}(f)$. We have the following result ([56, Thm. 2.10])

Theorem 12.1.2. For $0<r \ll 1$ the intersection of the singular fiber with the closed ball B_{r} is homeomorphic to a cone over the link of the singularity.

Example 12.1.3. (a) If $n=2$ and $f=f\left(z_{1}, z_{2}\right)$ then L_{f} is a one dimensional submanifold of the 3 -dimensional sphere ∂B_{r}, i.e a knot or a link in the 3 -sphere ∂B_{r}. The (knots) links obtained in this fashion are called algebraic knots (links). For example, if $f=z_{1}^{2}+z_{2}^{3}$, then L_{f} is the celebrated trefoil knot (see Figure 12.1). It also known as a torus (2,3)-knot. To visualize consider the line

$$
\ell_{2,3}=\{3 y=2 x\} \subset \mathbb{R}^{2}
$$

and project it onto the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. It goes 2 -times in one angular direction and 3 times the other.
(b) If $n=3$ and $f\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ then the link of f at zero is a 3-manifold. It is usually denoted by $\Sigma\left(a_{1}, a_{2}, a_{3}\right)$ and is referred to as a Brieskorn manifold. If the exponents a_{i} are pairwise coprime, then $\Sigma\left(a_{1}, a_{2}, a_{3}\right)$ is a homology sphere. For example $\Sigma(2,3,5)$ is known as the Poincaré sphere. It was the first example of 3 -manifold with the same homology as the 3 -sphere but not diffeomorphic to it.

Figure 12.1: Two equivalent diagrams for the trefoil knot

12.2 The Milnor fibration

Let us now return to the general situation. Since 0 is an isolated critical point, there exists $\varepsilon_{0}>0$ such that all the values $0<|w|<\varepsilon_{0}$ are regular values of f. Restriction of f to the sphere ∂B_{r} vanishes in the complement of the link $L_{r}(f) \subset \partial B_{r}$ and thus defines a smooth map

$$
\Theta=\Theta_{f, r}: \partial B_{r} \backslash L_{r}(f) \rightarrow S^{1}, \quad p \mapsto \frac{1}{|f(p)|} f(p) .
$$

We have the following important result.
Theorem 12.2.1 (Milnor fibration theorem. Part I). There exists $r_{0}=r_{0}(f)>0$ such that for all $r \in\left(0, r_{0}\right)$ the map $\Theta_{f, r}$ has no critical points and defines a fibration

$$
\Theta_{f, r}: \partial B_{r} \backslash L_{r}(f) \rightarrow S^{1}
$$

called the Milnor fibration. Its fiber is a real, $2 n-2$-dimensional manifold called the Milnor fiber. We will denote it by $\Phi_{r}(f)$.

Remark 12.2.2. Let $\langle\bullet, \bullet\rangle$ denote the Hermitian inner product on \mathbb{C}^{n}, conjugate linear in the second variable,

$$
\langle\vec{u}, \vec{v}\rangle=\sum_{j=1}^{n} u_{j} \bar{v}_{j} .
$$

We can think of \mathbb{C}^{n} as a real vector space as well. As such, it is equipped with a real inner product

$$
(\bullet, \bullet)=\operatorname{Re}\langle\bullet, \bullet\rangle .
$$

Any (complex) linear functional $L: \mathbb{C}^{n} \rightarrow \mathbb{C}$ has a Hermitian dual $L^{\dagger} \in \mathbb{C}^{n}$ uniquely determined by the requirement

$$
\left\langle v, L^{\dagger}\right\rangle=L(v), \quad \forall v \in \mathbb{C}^{n}
$$

The real part of L defines a (real) linear functional $\operatorname{Re} L: \mathbb{C}^{n} \rightarrow \mathbb{R}$. It has a dual $L^{b} \in \mathbb{C}^{n}$ with respect to the real metric uniquely defined by the condition

$$
\left(v, L^{b}\right)=\boldsymbol{\operatorname { R e }} L(v), \quad \forall v \in \mathbb{C}^{n}
$$

It is easy to see that $L^{b}=L^{\dagger}$.

Proof of the Milnor fibration theorem We follow closely [56, Chap. 4]. Define the gradient of a holomorphic function $h\left(z_{1}, \cdots, z_{n}\right)$ to be the dual of the differential $d f$ with respect to the canonical Hermitian metric on \mathbb{C}^{n}. More precisely

$$
\nabla h:=(d h)^{\dagger}=\left(\overline{\frac{\partial h}{\partial z_{1}}}, \cdots, \overline{\frac{\partial h}{\partial z_{n}}}\right) .
$$

By definition,

$$
d h(v)=\langle v, \nabla h\rangle, \quad \forall v \in \mathbb{C}^{n}
$$

Let us first explain how to recognize the critical points of Θ.
Lemma 12.2.3. The critical points of $\Theta_{f, r}$ are precisely those points $\vec{z} \in \partial B_{r} \backslash L_{r}(f)$ such that the complex vectors

$$
i \nabla \log f \text { and } \vec{z}
$$

are linearly dependent over \mathbb{R}.
Proof of Lemma 12.2.3 $\vec{z} \in \partial B_{r} \backslash L_{r}(f)$ is a critical point of f if and only if the differential $d \Theta$ vanishes along $T_{\vec{z}} \partial B_{r}$, i.e.

$$
d \Theta(v)=0, \quad \forall v \in \mathbb{C}^{n} \text { such that } \boldsymbol{\operatorname { R e }}\langle\vec{z}, v\rangle=0
$$

If we locally write

$$
f=|f| \exp (i \theta)
$$

then we can identify

$$
\Theta=\theta=-i(\log f-\log (|f|))
$$

Since $|f|^{2}=f \bar{f}$ we deduce

$$
d|f|=\frac{1}{2|f|}\left(d|f|^{2}\right)=\frac{1}{2|f|}(\bar{f} d f+f d \bar{f})
$$

and

$$
d \theta=-i(d \log f-d \log |f|)=-i\left(\frac{d f}{f}-\frac{d|f|}{|f|}\right)
$$

$$
=-i\left(\frac{d f}{f}-\frac{1}{2}\left(\frac{d f}{f}+\frac{d \bar{f}}{f}\right)\right)=\frac{1}{2}\left(-i \frac{d f}{f}+\overline{\left(-i \frac{d f}{f}\right)}\right)=-\boldsymbol{\operatorname { R e }}(\boldsymbol{i} d \log f) .
$$

Hence $d \Theta(v)=0$ for all $v \in \mathbb{C}^{n}$ such that $\operatorname{Re}\langle v, \vec{z}\rangle=0$ implies that $(\boldsymbol{i} d \log f)^{b}$, the dual of $\boldsymbol{\operatorname { R e }}(\boldsymbol{i d} d \log f)$ with respect to the real inner product on \mathbb{C}^{n} is colinear to \vec{z}. Lemma 12.2.3 is now a consequence of Remark 12.2.2.

To prove Milnor fibration theorem we first need to show that if $|\vec{z}|$ is sufficiently small then the vectors $i \nabla \log f$ and \vec{z} are linearly independent over \mathbb{R}. We will rely on the following technical result.

Lemma 12.2.4. Suppose $\vec{z}:[0, \varepsilon) \rightarrow \mathbb{C}^{n}$ is a real analytic path with $\vec{z}(0)=0$ such that for all $t>0 f(\vec{z}(t)) \neq 0$ and $\nabla \log f(\vec{z}(t))$ is a complex multiple of $\vec{z}(t)$

$$
\nabla \log f(\vec{z}(t))=\lambda(t) \vec{z}(t), \quad \lambda(t) \in \mathbb{C}^{*}
$$

Then

$$
\lim _{t \searrow 0} \frac{\lambda(t)}{|\lambda(t)|}=1 .
$$

Proof of Lemma 12.2.4 We have the Taylor expansions

$$
\begin{aligned}
\vec{z}(t) & =\sum_{\nu \geq \ell_{0}} \vec{z}_{\nu} t^{\nu}, \quad \vec{z}_{\ell_{0}} \neq 0 \\
f(\vec{z}(t) & =\sum_{\nu \geq m_{0}} a_{\nu} t^{\nu}, \quad a_{m_{0}} \neq 0
\end{aligned}
$$

and

$$
\nabla f(\vec{z}(t))=\sum_{\nu \geq n_{0}} \vec{u}_{\nu} t^{\nu}, \quad \vec{u}_{n_{0}} \neq 0 .
$$

The equality $\nabla \log f(\vec{z}(t))=\lambda(t) \vec{z}(t)$ is equivalent to

$$
\nabla f(\vec{z}(t))=\lambda(t) \vec{z}(t) \bar{f}(\vec{z}(t)) .
$$

Using the above Taylor expansions we get

$$
\sum_{\nu \geq n_{0}} \vec{u}_{\nu} t^{\nu}=\lambda(t) \cdot\left(\sum_{\nu \geq \ell_{0}} \vec{z}_{\nu} t^{\nu}\right) \cdot\left(\sum_{\mu \geq m_{0}} \bar{a}_{\mu} t^{\mu}\right)
$$

We deduce that $\lambda(t)$ has a Laurent expansion near $t=0$

$$
\lambda(t)=t^{r_{0}}\left(\sum_{k \geq 0} \lambda_{k} t^{k}\right),
$$

where

$$
r_{0}:=n_{0}-m_{0}-\ell_{0}, \quad \vec{u}_{n_{0}}=\lambda_{0} \bar{a}_{m_{0}} \vec{z}_{\ell_{0}} .
$$

Thus, as $t \searrow 0$ we have $\lambda \approx \lambda_{0} t^{r_{0}}$ and we need to show that λ_{0} is real and positive.

Using the identity

$$
\frac{d f}{d t}=\left\langle\frac{\vec{z}(t)}{d t}, \nabla f(\vec{z}(t))\right\rangle=\left\langle\frac{\vec{z}(t)}{d t}, \lambda(t) \vec{z}(t) \bar{f}(\vec{z}(t))\right\rangle
$$

we obtain

$$
\left(m_{0} a_{m_{0}} t^{m_{0}-1}+\cdots\right)=\left\langle\left(\ell_{0} \vec{z}_{0} t^{\ell_{0}-1}+\cdots\right),\left(\lambda_{0} \vec{z}_{\ell_{0}} \bar{a}_{m_{0}} t^{r_{0}+\ell_{0}+m_{0}}+\cdots\right)\right\rangle
$$

so that

$$
m_{0} a_{m_{0}}=\ell_{0}\left|\vec{z}_{0}\right|^{2} a_{m_{0}}
$$

This shows $\lambda_{0} \in(0, \infty)$ as claimed.

Lemma 12.2.5. There exists $\varepsilon_{0}>0$ such that for all $\vec{z} \in \mathbb{C}^{n} \backslash f^{-1}(0)$ with $|\vec{z}|<\varepsilon_{0}$ the vectors \vec{z} and $\nabla \log f(\vec{z})$ are either linearly independent over \mathbb{C} or

$$
\nabla \log f(\vec{z})=\lambda \vec{z},
$$

where the argument of the complex number $\lambda \in \mathbb{C}^{*}$ is in $(-\pi / 4, \pi / 4)$.
Proof of Lemma 12.2.5 Set

$$
z:=\left\{|\vec{z}| \in \mathbb{C}^{n} ; \quad \vec{z} \text { and } \nabla \log f(\vec{z}) \text { are linearly dependent over } \mathbb{C}\right\} .
$$

The above linear dependence condition can be expressed in terms of the 2×2 minors of the $2 \times n$ matrix obtained from the vectors \vec{z} and $\nabla \log f(\vec{z})=\frac{1}{f}(\nabla f)$. Thus z is a closed, real algebraic subset of \mathbb{C}^{n}.

A point $\vec{z} \in \mathbb{C}^{n} \backslash f^{-1}(0)$ belongs to z if and only if there exists $\lambda \in \mathbb{C}^{*}$ such that

$$
\nabla f(\vec{z})=\lambda \bar{f}(\vec{z}) \vec{z} .
$$

Taking the inner product with $\bar{f}(\vec{z}) \vec{z}$ we obtain

$$
\mu(\vec{z}):=\langle\nabla f(\vec{z}), \bar{f}(\vec{z}) \vec{z}\rangle=\lambda|\bar{f}(\vec{z})|^{2} .
$$

This shows that λ has the same argument as $\mu(\vec{z})$. Since

$$
|\arg (\zeta)|<\pi / 4 \Longleftrightarrow \boldsymbol{\operatorname { R e }}((1 \pm \boldsymbol{i}) \zeta)>0
$$

we set

$$
\Xi_{ \pm}:=\{\vec{z} ; \operatorname{Re}((1 \pm i) \mu(\vec{z}))<0\}, \quad \Xi:=\Xi_{+} \cup \Xi_{-} .
$$

Assume 0 is an accumulation point of $W:=Z \cap \Xi$ (or else there is nothing to prove). Set $W_{ \pm}:=z \cap \Xi_{ \pm}$.

The Curve Selection Lemma in real algebraic geometry ${ }^{1}$ implies that there exists a real analytic path $\vec{z}(t), 0 \leq t<\varepsilon$ such that $\vec{z}(0)=0$ and either $\vec{z}(t) \in W_{+}$for all $t>0$ or $\vec{z}(t) \in W_{-}$for all $t>0$. In either case we obtain a contradiction to Lemma 12.2.4 which implies that

$$
\lim _{t \searrow 0} \arg \mu(\vec{z}(t))=0
$$

while $|\arg \mu(\vec{z}(t))|>\pi / 4$.
This contradiction does not quite complete the proof of Lemma 12.2.5. It is possible that the set $Z \backslash f^{-1}(0)$ contains points \vec{z} arbitrarily close to 0 such that either $\mu(\vec{z})=0$ or $|\arg \mu(\vec{z})|=\pi / 4$. In this case we reach a contradiction to Lemma 12.2.4 using the Curve Selection Lemma for the open set in the algebraic variety

$$
\boldsymbol{\operatorname { R e }}((1+\boldsymbol{i}) \mu(\vec{z})) \boldsymbol{\operatorname { R e }}((1-\boldsymbol{i}) \mu(\vec{z}))=0
$$

defined by the polynomial inequality $|f(\vec{z})|^{2}>0$.
We have thus proved that

$$
\Theta_{f, r}: \partial B_{r} \backslash L_{r}(f) \rightarrow S^{1}, \quad \vec{z} \mapsto \frac{1}{|f(\vec{z})|} f(\vec{z})
$$

has no critical points.
We could not invoke Ehresmann fibration theorem because $\partial B_{r} \backslash L_{r}(f)$ is not compact. Extra work is needed.

Lemma 12.2.6. For all $r>0$ sufficiently small there exists a vector field \mathbf{v} tangent to $\partial B_{r} \backslash f^{-1}(0)$ such that

$$
\begin{equation*}
\zeta(z):=\langle\mathbf{v}(\vec{z}), i \nabla \log f(\vec{z})\rangle \neq 0 \text { and }|\arg \zeta(\vec{z})|<\pi / 4 . \tag{12.2.1}
\end{equation*}
$$

Proof The vector field will be constructed from local data using a partition of unity. Consider $\vec{z}_{0} \in \partial B_{r} \backslash f^{-1}(0)$. We distinguish two cases.
A. The vectors \vec{z}_{0} and $\nabla \log f\left(\vec{z}_{0}\right)$ are linearly independent over \mathbb{C}. In this case the linear system

$$
\left\{\begin{array}{cl}
\left\langle\mathbf{v}, \vec{z}_{0}\right\rangle & =0 \\
\left\langle\mathbf{v}, i \nabla \log f\left(\vec{z}_{0}\right)\right\rangle & =1
\end{array}\right.
$$

has a solution $\mathbf{v}=\mathbf{v}\left(\vec{z}_{0}\right)$. The first equation guarantees that $\boldsymbol{\operatorname { R e }}\left\langle\mathbf{v}, \vec{z}_{0}\right\rangle=0$ so that \mathbf{v} is tangent to ∂B_{r}.

[^9]B. $\nabla \log f\left(\vec{z}_{0}\right)=\lambda \vec{z}_{0}, \lambda \in \mathbb{C}$. In this case we set $\mathbf{v}\left(\vec{z}_{0}\right):=\boldsymbol{i} \vec{z}_{0}$. Clearly $\boldsymbol{R e}\left\langle v, \vec{z}_{0}\right\rangle=0$ and, according to Lemma 12.2.5, the complex number
$$
\left\langle\mathbf{v}, \boldsymbol{i} \nabla \log f\left(\vec{z}_{0}\right)\right\rangle=\left\langle\boldsymbol{i} \vec{z}_{0}, \boldsymbol{i} \nabla \log f\left(\vec{z}_{0}\right)\right\rangle=\bar{\lambda}\left|\vec{z}_{0}\right|^{2}
$$
has argument less than $\pi / 4$ in absolute value.
Extend $\mathbf{v}\left(\vec{z}_{0}\right)$ to a tangent vector field $\mathbf{u}_{\vec{z}_{0}}$ defined along a tiny neighborhood $U_{\vec{z}_{0}}$ of \vec{z}_{0} in $\partial B_{r} \backslash f^{-1}(0)$ and satisfying the (open) condition (12.2.1). Choose a partition of unity $\left(\eta_{k}\right) \subset C_{0}^{\infty}\left(\partial B_{r} \backslash f^{-1}(0)\right)$ subordinated to the cover $\left(U_{\vec{z}}\right)$ and set
$$
\mathbf{v}:=\sum_{k} \eta_{k} \mathbf{u}_{\vec{z}_{k}} .
$$

This vector field satisfies all the conditions listed in Lemma 12.2.6.
Normalize

$$
\mathbf{w}(\vec{z}):=\frac{1}{\operatorname{Re}\langle\mathbf{v}(\vec{z}), i \nabla \log f(\vec{z})\rangle} \mathbf{v}(\vec{z}) .
$$

The vector field satisfies two conditions.

- The real part of the inner product

$$
\begin{equation*}
\langle\mathbf{w}(\vec{z}), i \nabla \log f(\vec{z})\rangle \tag{12.2.2}
\end{equation*}
$$

is identically 1 .

- The imaginary part satisfies

$$
\begin{equation*}
|\operatorname{Re}\langle\mathbf{w}(\vec{z}), \nabla \log f(\vec{z})\rangle|<1 \tag{12.2.3}
\end{equation*}
$$

(This follows from the argument inequality (12.2.1).)
Lemma 12.2.7. Given any $\vec{z}_{0} \in \partial B_{r} \backslash f^{-1}(0)$ there exists a unique smooth path

$$
\gamma: \mathbb{R} \rightarrow \partial B_{r} \backslash f^{-1}(0)
$$

such that

$$
\gamma(0)=\vec{z}_{0}, \quad \frac{d \gamma}{d t}=\mathbf{w}(\gamma(t))
$$

In other words, all the integral curves of \mathbf{w} exist for all moments of time.
Proof Denote by γ the maximal integral curve of \mathbf{w} starting at \vec{z}_{0}. Denote its maximal existence domain by $\left(T_{-}, T_{+}\right)$. To show that $T_{ \pm}= \pm \infty$ we will argue by contradiction. Suppose $T_{+}<\infty$. This means that as $t \nearrow T_{+}$the point $\gamma(t)$ approaches the frontier of $\partial B_{r} \backslash f^{-1}(0)$,or better yet

$$
\begin{equation*}
|f(\gamma(t))| \searrow 0 \Longleftrightarrow \log |f(\gamma(t))| \searrow-\infty \Longleftrightarrow \boldsymbol{R e} \log f(\gamma(t)) \searrow-\infty . \tag{12.2.4}
\end{equation*}
$$

On the other hand,
so that

$$
\boldsymbol{\operatorname { R e }} \log f(\gamma(t))>\boldsymbol{\operatorname { R e }} \log f\left(\vec{z}_{0}\right)-t
$$

This contradicts the blow-up condition (12.2.4) and concludes the proof of Lemma 12.2.7.
Suppose $\gamma(t)$ is an integral curve of \mathbf{w}. We can write

$$
f(\gamma(t))=|f(\gamma(t))| \exp (\boldsymbol{i} \theta(t))
$$

and

$$
\frac{d \theta(t)}{d t}=\frac{1}{\boldsymbol{i}} \frac{d}{d t} \log f(\gamma(t))=\boldsymbol{\operatorname { R e }}\left\langle\frac{d \gamma}{d t}, i \nabla \log f(\gamma)\right\rangle \stackrel{(12.2 .2)}{=} 1
$$

Hence $\theta(t)=t+$ const and thus the path $\gamma(t)$ projects under Θ_{r} to a path which winds around the unit circle in the positive direction with unit velocity. Clearly the point $\gamma(t)$ depends smoothly on the initial condition $\vec{z}_{0}:=\gamma(0)$ and we will write this as

$$
\gamma(t)=H_{t}\left(\vec{z}_{0}\right) .
$$

H_{t} is a diffeomorphism of $\partial B_{r} \backslash f^{-1}(0)$ to itself, and mapping the fiber $\Theta_{r}^{-1}\left(e^{i \theta}\right)$ diffeomorphically onto $\Theta_{r}^{-1}\left(e^{i(\theta+t)}\right)$. This completes the proof of the Fibration Theorem.

Example 12.2.8. (Working example. Part I.) Consider the function $f(x, y)=y^{2}-x^{5}$. By resolving the singularity at $(0,0)$ we obtain a two dimensional manifold X (which is an iterated blowup of \mathbb{C}^{2} and a map $\hat{f}: X \rightarrow \mathbb{C}$ which satisfies all the above conditions. We want to determine all the relevant invariants.

By using the substitution $x \rightarrow x, y \rightarrow x y$ we see that

$$
f=\left(y^{2}-x^{5}\right) \rightarrow f_{1}=x^{2}\left(y^{2}-x^{3}\right)
$$

where the exceptional divisor E_{1} is given by $x=0 . f_{1}$ has order 2 along E_{1}. Next we make the substitution $x \rightarrow x, y \rightarrow x y$ to get

$$
f_{1} \rightarrow f_{2}=x^{4}\left(y^{2}-x\right)
$$

where the exceptional divisor E_{2} is given by $x=0 . f_{2}$ has order 4 along E_{2}. The substitution $x \mapsto x y, y \rightarrow y$ leads to

$$
f_{2} \rightarrow f_{3}=y^{5} x^{4}(y-x)
$$

where the exceptional divisor E_{3} is given by $y=0 . f_{3}$ has order 5 along E_{3} A final blowup $x \mapsto x, y \rightarrow x y$ leads to

$$
f_{3} \rightarrow \hat{f}=f_{4}=y^{5} x^{10}(y-1)
$$

where E_{4} is described by $x=0 . \hat{f}$ has order 10 along E_{4}. These transformations are depicted in Figure 12.2 where we have also kept track of the multiplicities of the exceptional divisor.

Figure 12.2: The resolution of singularity $y^{2}=x^{5}$

We denote by \hat{C} the proper transform of the germ $C=\left\{y^{2}-x^{5}=0\right\}$. In this case we can take $\nu=4$ and set

$$
D_{j}=E_{j}, \quad 1 \leq j \leq 4, \quad D_{0}=\hat{C} .
$$

Then $D_{J}=\emptyset$ if $|J| \geq 3$ and the only nonempty D_{J} with $|J|=2$ correspond to

$$
J=\{1,2\},\{2,4\},\{3,4\},\{0,4\} .
$$

In all these cases D_{J} consists of a single point.
Example 12.2.9. (Working Example. Part II.)Consider $n=2$ and $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$, is the resolution of $y^{2}-x^{5}$ we described in Example 12.2.8 (see Figure 12.3). Then $\nu=5$ with $D_{k}=E_{k}, 1 \leq k \leq 4, D_{5}=\hat{C}$. The simplicial complex \mathcal{K} is precisely the resolution graphs of the singularity depicted in Figure 12.4.

There are 4 crossings and near them f is equivalent to one of the monomials

$$
z_{1}^{2} z_{2}^{4}, \quad z_{1}^{4} z_{2}^{5}, \quad z_{1}^{5} z_{2}^{10}, \quad z_{1}^{10} z_{2}
$$

D_{1}^{\dagger} is a sphere E_{1} with one hole, D_{2}^{\dagger} is the sphere E_{2} with two holes, D_{3}^{\dagger} is the sphere E_{3} with one hole, D_{4}^{\dagger} is the sphere E_{4} with three holes, and D_{5}^{\dagger} is a disk with one hole. We can now reconstruct $S_{t}, 0<t \ll 1$. Consider small closed polydisks $\Delta_{1}, \cdots, \Delta_{4}$ centered

Figure 12.3: Dissecting the resolution of $y^{2}-x^{5}=0$.

Figure 12.4: The resolution graph of $y^{2}-x^{5}=0$.
at the crossing points as depicted in Figure 12.3. We begin by considering one by one each the five pieces $S_{I},|I|=1$.

- $k=1$. S_{1}^{\dagger} is a $m_{1}=2$-cover of D_{1}^{\dagger}. Thus S_{t}^{1} is a disjoint union of two disks.
- $k=2$. S_{2}^{\dagger} is a $m_{2}=4$-cover of the sphere with two holes D_{2}^{\dagger}. It thus consists of 1,2 or 4 distinct cylinders. It must consist of two cylinders to be attached inside Δ_{1} to the boundaries of the two disks which form S_{1}^{\dagger}.
- $k=3$. S_{t}^{3} is a $m_{3}=5$-cover of the sphere with one hole D_{3}^{\dagger}. It is thus the disjoint union of five disks.
- $k=4$. S_{4}^{\dagger} is a $m_{4}=10$-cover of the sphere E_{4} with three holes. Moreover its Euler characteristic is ten times the Euler characteristic of the twice punctured disk so that $\chi\left(S_{4}^{\dagger}\right)=-10$.
- $k=5 . S_{5}^{\dagger}$ is diffeomorphic to the disk \hat{C} with a hole around the intersection point with E_{4}. It is thus a disk.

There are four pieces $S_{I},|I|=2$, which we label by $C_{j}=S_{t} \cap \Delta_{j}, j=1, \cdots, 4 . C_{1}$ consists of $\operatorname{gcd}(2,4)=2$ cylinders. C_{2} consists of $\operatorname{gcd}(4,10)=2$ cylinders, C_{3} consists of one cylinder while C_{4} consists of $\operatorname{gcd}(10,5)=5$ cylinders. The boundary of S_{3}^{\dagger} consists of three parts. A part to be connected with the two cylinders forming C_{2}, a part to be glued

Figure 12.5: Reconstructing the Milnor fiber.
with the disk S_{t}^{5} and a part to be glued with the five cylinders forming C_{4}. We obtain the situation depicted in Figure 12.5. Observe that the genus of S_{t} is $2=\frac{(2-1)(5-1)}{2}$, that is half the Milnor number of the singularity $y^{2}-x^{5}=0$. This is not an accident.

As one can imagine, the situation in higher dimensions will be much more complicated. Even the determination of the multiplicities of the divisors D_{i} is much more involved. We will have more to say about this when we discus toric manifolds.

Exercise 12.2.1. Consider the an irreducible germ C of planar curve with an isolated singularity at $(0,0)$, denote by Γ_{C} its resolution graph and by $\mathbf{V}(C)$ the set of its vertices. To each $v \in \mathbf{V}(C)$ it corresponds a component of the exceptional divisor with multiplicity $m(v)$. Prove that the Euler characteristic of the Milnor fiber is given by the formula

$$
\sum_{v \in \mathbf{V}(C)} m(v) \cdot(2-\operatorname{deg}(v))
$$

We now return to the general situation. We want to explain how we can obtain infor-
mation about the monodromy. First, define a map

$$
\Phi: \mathcal{H} \rightarrow Q_{\nu}=\left\{\left(\rho_{0}, \cdots, \rho_{\nu}\right) \in \mathbb{R}_{+}^{\nu+1} ; \quad \sum_{i=0}^{\nu} \rho_{i}\right\}
$$

by setting

$$
\rho_{i}=\frac{1}{\nu+1}\left(1-m_{i} \log r_{i}\right) .
$$

Choose a partition of unity $\left(\phi_{i}\right)_{0 \leq i \leq \nu}$ of Q_{ν} subordinated to the open cover

$$
\bigcup_{i=0}^{\nu}\left\{\rho_{i}>0\right\}
$$

The functions $\tau_{i}=\phi_{i} \circ \Phi$ define a partition of unity of \mathcal{H} subordinated to the open cover $\bigcup_{i=0}^{\nu} N_{i}$.

Now we use the identifications $\mu_{I}: U_{I} \rightarrow N_{I}$. The bundle $\left.E_{I}\right|_{D_{I}}$ is equipped with a natural periodic \mathbb{R}-action described as follows. If

$$
x=\left(\oplus_{i \in I} v_{i}, p\right) \in E_{I, p}, \quad, v_{i} \in L_{i, p}, \quad p \in D_{i}, \quad t \in \mathbb{R}
$$

then

$$
\exp (\boldsymbol{i} t) \cdot x=\left(\oplus_{i \in I} \exp \left(\frac{2 \pi i t}{m_{i}}\right) v_{i}, p\right) \in E_{I, p}
$$

Now set $w(t)=\exp (2 \pi \boldsymbol{i t})$ and

$$
W^{k}=\bigcup_{|I| \geq k} N_{I}
$$

define

$$
F_{I, t}: \bar{S}_{I} \backslash W_{|I|+1} \rightarrow \bar{S}_{I, w(t)} \backslash W^{|I|+1}
$$

so that if $x=\mu_{I}\left(\oplus_{i \in I} v_{i}, p\right) \in S_{I}$

$$
\begin{equation*}
F_{I, t}(x)=\mu_{I}\left(\oplus_{i \in I} \exp \left(\frac{2 \pi i t \tau_{i}(x)}{m_{i}}\right) v_{i}, p\right) \in E_{I, p} . \tag{12.2.5}
\end{equation*}
$$

Let us observe that whenever $I \subset J$ we have

$$
F_{I, t}(x)=F_{J, t}(x)
$$

for every x in the overlap $\mathcal{O}_{I, J}=\left(\bar{S}_{I} \backslash W_{|I|+1}\right) \cap \bar{S}_{J}$. Indeed on the overlap we have $r_{k}=e$, $\forall k \in J \backslash I$ so that $\tau_{k}(x)=0$ for all $k \in J \backslash I$. This shows we have a well defined map

$$
F_{t}: X_{1} \rightarrow X_{w(t)}
$$

The geometric monodromy is the map F_{1}.

Example 12.2.10. (Working example. Part III.) We continue to look at the situation explained in Example 12.2.9. Each of the pieces S_{k}^{\dagger} is a cyclic cover of D_{k}^{\dagger} of degree m_{k}. In the interior of $S_{k} \dagger$ the action of F_{t} generates the action of the cyclic deck groups of these covers. We consider the two cases separately.

- $S_{1}^{\dagger}, m_{1}=2$. F_{1} flips the two connected components of S_{1}^{\dagger}.
- $S_{2}^{\dagger}, m_{2}=4$. F_{1} interchanges the two components of S_{2}^{\dagger} but its action in the interior is not trivial (see Figure 12.6).
- $S_{3}^{\dagger}, m_{3}=5$. F_{1} cyclically permutes the five components C_{1}, \cdots, C_{5} but the transition $C_{i} \rightarrow C_{i+1}$ is followed by a $2 \pi / 5$ rotation of the disk C_{i+1} (see Figure 12.6

Figure 12.6: The action of F_{1} on $S_{2}^{\dagger}, S_{3}^{\dagger}$ and S_{0}^{\dagger}.

- $S_{4}^{\dagger}, m_{4}=10 . S_{4}^{\dagger}$ is a 10 -fold cover of the twice punctured disk D_{4}^{\dagger} which has three boundary components which we label by $\gamma_{2}, \gamma_{3}, \gamma_{5}$ (see Figure 12.7). γ_{k} is covered by $S_{4}^{\dagger} \cap S_{k}^{\dagger}, k=2,3,5$. The fundamental group of this twice punctured disk is a free group on two generators γ_{2}, γ_{3}. We have a monodromy representation

$$
\phi: \pi_{1}\left(D_{4}^{\dagger}\right) \rightarrow \operatorname{Aut}\left(S_{4}^{\dagger} \xrightarrow{\lambda_{4}} D_{4}^{\dagger}\right) \cong \mathbb{Z} / 10 \mathbb{Z} .
$$

We identify this automorphism group with the group of 10 -th roots of 1 . Fix a primitive 10 -th root ζ of 1 . Since $S_{4}^{\dagger} \cap S_{2}^{\dagger}$ has two components we deduce

$$
\phi\left(\gamma_{2}\right)=\zeta^{5} .
$$

We conclude similarly that $\phi\left(\gamma_{3}\right)=\zeta^{2}$. Since $\gamma_{5}=\gamma_{3} \gamma_{2}$ we deduce $\phi\left(\gamma_{5}\right)=\zeta^{7}$) so that $\phi\left(\gamma_{5}\right)$ is a generator of the group of deck transformations of the covering λ_{4}. This also helps to explain the action of F_{1} on S_{5}^{\dagger} depicted at the bottom of Figure 12.6.

Figure 12.7: S_{4}^{\dagger} is a cyclic 10 -fold cover of the twice punctured disk D_{4}^{\dagger}.
The most complicated to understand is the action of the deck group of λ_{4}. To picture it geometrically it is convenient to remember that it is part of the general fiber of the map $f(x, y)=y^{2}-x^{5}$,

$$
X_{\varepsilon}:=\left\{(x, y) \in \mathbb{C}^{2}, \quad y^{2}-x^{5}=\varepsilon, \quad,|x|^{2}+|y|^{2} \leq 1\right\} .
$$

We already know its is a Riemann surface of genus 2 with one boundary component

$$
\partial X_{\varepsilon}=\left\{(x, y) \in X_{\varepsilon}, \quad|x|^{2}+|y|^{2}=1\right\}
$$

The boundary is a nontrivially embedded $S^{1} \hookrightarrow S^{3}$ and in fact it represents the (2,5)-torus knot (see Figure 12.8). There is a natural action of the cyclic group $C_{10}:=\mathbb{Z} / 10 \mathbb{Z}$ on X_{ε} given by

$$
\zeta \cdot(x, y)=\left(\zeta^{2} x, \zeta^{5} y\right)
$$

The points on the surface where $x=0$ or $y=0$ have nontrivial stabilizers. The hyperplane $x=0$ intersects the surface in two points given by

$$
y^{2}=\varepsilon .
$$

The stabilizers of these points are cyclic groups of order 5 . The hyperplane $y=0$ intersects the surface in 5 points given by

$$
x^{5}=\varepsilon .
$$

Figure 12.8: $A(2,5)$-torus knot and its spanning Seifert surface.

The stabilizers of these points are cyclic groups of order 2. Now remove small C_{10}-invariant disks centered at these points. The Riemann surface we obtained is equivariantly diffeomorphic to S_{4}^{\dagger}. To visualize it is convenient to think of X_{ε} as a Seifert surface of the (2,5)-torus knot. It can be obtained as follows (see [63] for an explanation).

Consider two regular 10-gons situated in two parallel horizontal planes in \mathbb{R}^{3} so that the vertical axis is a common axis of symmetry of both polygons. Assume the projections of their vertices on the $x y$-plane correspond to the 10 -th roots of 1 and the 180° rotation about the y-axis interchanges the two polygons. Label the edges of both of them with numbers from 1 to 10 so that the edges symmetric with respect to the $x y$-plane are labeled by identical numbers. We get five pairs of parallel edges (drawn in red in Figure 12.8) labeled by identical pairs of even numbers. To each such pair attach a band with a half-twist as depicted in Figure 12.8. Remove a small disk from the middle of each of the attached twisted bands and one disk around the center of each of the polygons. We get a Riemann surface with the desired equivariance properties.

Denote by $\mathbb{Z}\left[C_{10}\right]$ the integral group algebra of C_{10},

$$
\mathbb{Z}\left[C_{10}\right] \cong \mathbb{Z}[t] /\left(t^{10}-1\right)
$$

The Abelian group $G:=H_{1}\left(S_{4}^{\dagger}\right)$ has a natural $\mathbb{Z}\left[C_{10}\right]$-module structure. To describe it we
follow a very elegant approach we learned from Frank Connolly. Denote by M the algebra $\mathbb{Z}\left[C_{10}\right]$ as a module over itself. Also we denote by M_{0} the trivial $\mathbb{Z}\left[C_{10}\right]$-module \mathbb{Z}.

First recall that G is the abelianization of $\pi_{1}\left(S_{4}^{\dagger}\right) . S_{4}^{\dagger}$ is a 10 -fold cover of the twice punctured disk D_{4}^{\dagger} and thus $\pi_{1}\left(S_{4}^{\dagger}\right)$ is the kernel of the morphism

$$
\phi: \pi_{1}\left(D_{4}^{\dagger}\right) \rightarrow C_{10}, \quad \gamma_{2} \mapsto \zeta^{5}, \quad \gamma_{3} \mapsto \zeta^{2} .
$$

$\pi_{1}\left(D_{4}^{\dagger}\right)$ is a free group of rank 2 generated by γ_{2} and γ_{3}. We want to pick a different set of generators

$$
x=\gamma_{2} \gamma_{3}, \quad y=\gamma_{2} x^{5} .
$$

They have the property that $\phi(y)=1$ and $\phi(x)$ is the generator $\rho=\zeta^{7}$ of C_{10}. Then $K:=\operatorname{ker} \phi$ is a free group of rank $\operatorname{rank}_{\mathbb{Z}} H_{1}\left(S_{4}^{\dagger}\right)=11$. As generators of K we can pick

$$
a=x^{10}, b_{j}=x^{j} y x^{10-j}, \quad j=0, \cdots, 9 .
$$

From the short exact sequence

$$
1 \hookrightarrow K=\left\langle a ; b_{j}, \quad j=0, \cdots, 9\right\rangle \hookrightarrow \pi_{1}\left(D_{4}^{\dagger}\right)=\langle x, y\rangle \rightarrow C_{10} \rightarrow 1 .
$$

we deduce that C_{10} acts on K by conjugation. For every $k \in K$ we denote by $[k]$ its image in the abelianization $K /[K, K]=G$. Observe that

$$
\rho \cdot[a]=\left[x \cdot x^{10} \cdot x^{-1}\right]=[a],
$$

and

$$
\rho \cdot\left[b_{j}\right]=\left[x \cdot x^{j} y x^{10-j} x^{-1}\right]=b_{j+1}, \quad \forall j=0, \cdots, 8 .
$$

Finally

$$
\rho \cdot b_{9}=\left[x^{10} y\right]=\left[x^{10} y x^{10} x^{-10}\right]=[a]+\left[b_{0}\right]-[a]=\left[b_{0}\right] .
$$

This shows that G is isomorphic as a $\mathbb{Z}\left[C_{10}\right]$-module to $M_{0} \oplus M$.

Liviu I. Nicolaescu

Chapter 13

The Milnor fiber and local monodromy

We continue to use the notations in the previous chapter.

13.1 The Milnor fiber

We want to first show that the function

$$
|f|: \partial B_{r} \backslash f^{-1}(0) \rightarrow \mathbb{R}
$$

has no critical values accumulating to zero. In fact, a much more precise statement is true. For each angle $\theta \in[-\pi, \pi]$ we denote by $\Phi_{r}(\theta)=\Phi_{r}(f, \theta)$ the fiber of $\Theta_{f, r}$ over $e^{i \theta}$. We recall that

$$
U_{r, c}(f)=\{|f|<c\} \cap \partial B_{r}
$$

is a tubular neighborhood of the link $L_{r}(f)=f^{-1}(0) \cap \partial B_{r}$.
Proposition 13.1.1. Fix an angle $\theta \in[-\pi, \pi]$. There exists $r_{0}>0$ with the following property. For every $0<r<r_{0}$ there exists $c=c(r)>0$ such that

$$
\Phi_{r, c}(\theta):=\Phi_{r}(\theta) \cap\{|f|>c\}=\Phi_{r}(f) \backslash U_{r, c}(f)
$$

is diffeomorphic to the Milnor fiber.
Proof We will prove a slightly stronger result namely that for every sufficiently small r there exists $c=c(r, \theta)>0$ such that the function $|f|: \Phi_{r}(f, \theta) \rightarrow \mathbb{R}_{+}$has no critical values $<c(r)$. Then the diffeomorphism in the proposition is given by the gradient flow of $|f|$.

We first need a criterion to recognize the critical points of $|f|$, or which is the same, the critical points of $\log |f|$.

Lemma 13.1.2. Fix an angle $\theta \in[-\pi, \pi]$. The critical points of $\log |f|$ along the Milnor fiber $\Phi_{r}(\theta)$ are those points \vec{z} such that $\nabla \log f(\vec{z})$ is a complex multiple of \vec{z}.

Proof Set $h(\vec{z}):=\log |f(\vec{z})|=\operatorname{Re} \log f(z)$. Observe that for every vector $\vec{v} \in \mathbb{C}^{n}$ we have

$$
d h(\vec{v})=\operatorname{Re}\langle\vec{v}, \nabla \log f(\vec{z})\rangle .
$$

Thus \vec{z} is critical for h restricted to the Milnor fiber if and only if $\nabla \log f(\vec{z})$ is orthogonal to the tangent space $T_{\vec{z}} \Phi$ of $\Phi_{r}(\theta)$ at \vec{z}. The fiber is described as the intersection of two hypersurfaces

$$
\{|\vec{z}|=r\} \cap \Theta_{f, r}^{-1}(\theta)
$$

so that the orthogonal complement is of $T_{\vec{z}} \Phi$ in \mathbb{C}^{n} is spanned (over \mathbb{R}) by $\nabla|\vec{z}|^{2}$ and $\nabla \Theta_{r}=i \nabla \log f(z)$. Thus \vec{z} is a critical point if and only if there exists a linear relation between the vectors $\vec{z}, \nabla \log f(z)$ and $i \nabla \log f(\vec{z})$. This proves Lemma 13.1.2.

As in the previous chapter, set

$$
z:=\{\vec{z} \text { and } \nabla \log f(\vec{z}) \text { are linearly dependent over } \mathbb{C}\}, z_{\theta}:=z \cap \Phi_{r}(\theta) .
$$

Both Z and Z_{θ} are real algebraic varieties and we have to show that $Z \cap f^{-1}(0)$ contains no accumulation points of z_{θ}. We argue by contradiction. If $\vec{z}_{0} \in z \cap f^{-1}(0)$ is an accumulation point of z_{θ} then there would exist a real analytic path $\vec{z}:[0, \varepsilon) \rightarrow z$ such that $\vec{z}(0)=\vec{z}_{0}$ and $\vec{z}(t) \in z_{\theta}, \forall t>0$. Clearly $\log |f(\vec{z})|$ is constant along this path so that $|f(z)|$ is constant as well. This constant can only be $\left|f\left(\vec{z}_{0}\right)\right|=0$ which is clearly impossible: $|f|>0$ on $\Phi_{r}(\theta)$. This concludes the proof of Proposition 13.1.1.

The Milnor fiber can be given a simpler description, which will show that it is equipped with a natural complex (even Stein) structure.

Proposition 13.1.3. Consider a very small complex number $c=|c| e^{i \theta} \neq 0$. The intersection of the hypersurface $f^{-1}(c)$ with the small open ball B_{r},

$$
M_{r}(f)=M_{r, c}(f):=f^{-1}(c) \cap B_{r}
$$

is diffeomorphic to the portion $\Phi_{r,|c|}(\theta) \subset \Phi_{r}(\theta)$ of the Milnor fiber.
Proof Using the same local patching argument as in the proof of Lemma 2.6 of Lecture 11 we can find a vector field $\mathbf{v}(\vec{z})$ on $\bar{B}_{r} \backslash f^{-1}(0)$ so that the Hermitian inner product

$$
\begin{equation*}
\langle\mathbf{v}(\vec{z}), \nabla \log f(\vec{z})\rangle \in \mathbb{R}_{+}, \quad \forall \vec{z} \in \bar{B}_{r} \backslash f^{-1}(0) \tag{13.1.1}
\end{equation*}
$$

and the inner product

$$
\begin{equation*}
\operatorname{Re}\langle\mathbf{v}(\vec{z}), \vec{z}\rangle>0 \tag{13.1.2}
\end{equation*}
$$

has positive real parts. Now consider the flow determined by this vector field,

$$
\frac{d \vec{z}}{d t}=\mathbf{v}(\vec{z})
$$

on $\bar{B}_{r} \backslash f^{-1}(0)$. The condition

$$
\left\langle\frac{d \vec{z}}{d t}, \nabla \log f(\vec{z})\right\rangle \in \mathbb{R}_{+}
$$

shows that the argument of $f(\vec{z}(t))$ is constant and that $|f(\vec{z})|$ is monotone increasing function of t. The condition

$$
2 \operatorname{Re}\left\langle\frac{d \vec{z}}{d t}, \vec{z}(t)\right\rangle=\frac{d|\vec{z}(t)|^{2}}{d t}>0
$$

guarantees that $t \mapsto|\vec{z}(t)|$ is strictly increasing.
Thus, starting at any point \vec{z} of $\bar{B}_{r} \backslash f^{-1}(0)$ and following the flow line starting at \vec{z} we travel away from the origin, in a direction increasing $|f|$, until we reach a point $\vec{\zeta}$ on $\partial B_{r} \backslash f^{-1}(0)$ such that

$$
\arg f(\vec{z})=\arg (\vec{\zeta})
$$

The correspondence

$$
\vec{z} \mapsto \vec{\zeta}
$$

provides the diffeomorphism $f^{-1}(c) \cap B_{r} \mapsto \Phi_{r,|c|}(\arg c)$ claimed in the proposition.

Definition 13.1.4. Fix a sufficiently small number $\varepsilon>0$. A ($\varepsilon-$) Milnor vector field for f is a vector field on $B_{\rho_{0}}$ which
(a) satisfies (13.1.1) on $B_{\rho_{0}}$ and
(b) both conditions (13.1.1) and (13.1.2) on $B_{\rho_{0}} \cap\{|f|>\varepsilon\}$.

The above proof shows that f admits Milnor vector fields.
Corollary 13.1.5. ([56, Milnor]) For sufficiently small $c>0$ the fibration

$$
B_{r} \cap f^{-1}\left(\partial D_{c}\right) \rightarrow \partial D_{c}:=\left\{c e^{i \theta} ;|\theta| \leq \pi\right\}, \quad \vec{z} \mapsto f(\vec{z})
$$

is diffeomorphic to the Milnor fibration

$$
\partial B_{r} \backslash f^{-1}\left(D_{c}\right) \rightarrow S^{1}, \quad \vec{z} \mapsto \frac{1}{|f(\vec{z})|} f(\vec{z}) .
$$

We thus see that the Milnor fibration is a fibration over S^{1} with fibers manifolds with boundary. Such a fibration is classified by a gluing diffeomorphism

$$
\Gamma_{f}: \Phi_{r}(f) \rightarrow \Phi_{r}(f) .
$$

Theorem 13.1.6. (Milnor fibration theorem. Part II) Suppose $f \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ is a polynomial such that $0 \in \mathbb{C}^{n}$ is an isolated singularity of the hypersurface

$$
Z_{f}:=f^{-1}(0) \subset \mathbb{C}^{n}
$$

i.e. $f(0)=0, d f(0)=0$. Denote by μ the Milnor number of this singularity. Then there exist $\rho_{0}>0, \varepsilon_{0}>0$ and $\delta_{0}>0$ with the following properties.
(a) f has no critical values $0<|w|<\varepsilon_{0}$ and every morsification g of f such that

$$
\sup _{\vec{z} \in B_{\rho_{0}}}|f(\vec{z})-g(\vec{z})|<\delta_{0}
$$

has exactly μ critical points $p_{1}, \cdots, p_{\mu} \in B_{\rho_{0}}(0) \subset \mathbb{C}^{n}$ and exactly μ critical values $w_{j}=$ $f\left(p_{j}\right),\left|w_{j}\right|<\varepsilon_{0}$.
(b) For every $0<\varepsilon<\varepsilon_{0}$ and $0<r<\rho_{0}$ the fibrations

$$
f: f^{-1}\left(\partial D_{\varepsilon}\right) \cap \bar{B}_{r} \rightarrow \partial D_{\varepsilon}, \quad \Theta_{f, r}: \partial B_{r} \backslash f^{-1}\left(D_{\varepsilon}\right) \rightarrow S^{1}
$$

are isomorphic.
(c) If $w \in D_{\varepsilon} \backslash\{0\}$ is a regular value of g then the Milnor fiber $M_{r, w}(g)=g^{-1}(w) \cap B_{r}$ of g is diffeomorphic to $M_{r}(f)$
(d) The Milnor number $\mu=\mu(f, 0)$ is equal to the middle Betti number of the Milnor fiber. More precisely,

$$
H_{k}\left(M_{r}(f), \mathbb{Z}\right) \cong\left\{\begin{array}{cc}
\mathbb{Z}^{\mu} & k=n-1\left(=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M_{r}(f)\right) \tag{13.1.3}\\
0 & k \neq n-1
\end{array}\right.
$$

Proof Part (a) is essentially the content of Chapter 10.
(b) The isomorphism

$$
f: f^{-1}\left(\partial D_{\varepsilon}\right) \cap \bar{B}_{r} \rightarrow \partial D_{\varepsilon} \Longleftrightarrow \Theta_{f, r}: \partial B_{r} \backslash f^{-1}\left(D_{\varepsilon}\right) \rightarrow S^{1}
$$

follows from Corollary 13.1.5.
(c) This follows from the fact that g approximates f very well and thus the regular fibers of g ought to approximate well the regular fibers of f.
(d) To prove this define as in the beginning of Chapter 11

$$
X_{r}(g):=g^{-1}\left(\bar{D}_{\varepsilon}\right) \cap \bar{B}_{r}, \quad X_{g}:=X_{\rho_{0}}(g), \quad M_{g}:=M_{\rho_{0}}(g) .
$$

Then

$$
H_{k}\left(X_{g}, M_{g} ; \mathbb{Z}\right) \cong\left\{\begin{array}{cc}
0 & k \neq n \tag{13.1.4}\\
\mathbb{Z}^{\mu} & k=n
\end{array} .\right.
$$

Next, observe the following fact.
Lemma 13.1.7. The manifold with corners X_{g} is contractible.
Sketch of proof The idea of proof is quite simple. Since g is very close to f we deduce that $X_{r}(g)$ is homotopic to $X_{r}(f)$ for all $r \leq \rho_{0}$. Next, using the backwards flow of a Milnor vector field $\mathbf{v}(\vec{z})$ of f, we observe that $X_{\rho_{0}}(f)$ is homotopic to $X_{r}(f)$ so that

$$
X_{\rho_{0}}(g) \simeq X_{r}(g), \quad \forall r<\rho_{0} .
$$

We can choose $r>0$ sufficiently small so that g has at most one critical point in B_{r} and, in case it exists it is the origin and is nondegenerate. By choosing B_{r} even smaller we can use Morse lemma to change the coordinates so that g is a polynomial of degree ≤ 2. The contractibility of $X_{r}(g)$ now follows from the local analysis involved in the Picard-Lefschetz formula (see Chapter 7).

The equality (13.1.3) now follows from (13.1.4), the contractibility of X_{g} and the long exact sequence of the pair $\left(X_{g}, M_{g}\right)$.

13.2 The local monodromy, the variation operator and the Seifert form of an isolated singularity

The above results show that the Milnor fibration, is a fibration in manifolds with boundary $M_{r}(f)$ classified by a gluing map Γ_{f}. The total space of the boundary fibration is the intersection of the hypersurface. This extends to a fibration

$$
Y_{c}:=\{|f|=c\}
$$

with the sphere ∂B_{r}. The Milnor fibration is then simply described by the map f. Because $\left.|f|\right|_{\partial B_{r}}$ does not have critical values accumulating at zero we deduce that this fibration extends to a fibration over a small disk

$$
\Theta_{f, r}:=\{|\vec{z}|=r ; \quad|f(\vec{z})| \leq c\}\left(=U_{r, c}(f) \cap \partial B_{r}\right) \rightarrow\{|w| \leq c\}, \quad \vec{z} \mapsto f(\vec{z})
$$

Thus the fibration $f: Y_{c} \rightarrow\{|w|=c\}$ is trivializable

$$
\left.U_{r, c}(f) \cap \partial B_{r} \cong\{|w| \leq c\} \times L_{(} f\right)
$$

so that the restriction of Γ_{f} is homotopic to the identity. For simplicity we assume

$$
\left.\Gamma_{f}\right|_{\partial M_{r}(f)} \equiv \mathbf{1} .
$$

Definition 13.2.1. The local monodromy of the isolated singularity of f at 0 is the automorphism

$$
\left(\Gamma_{f}\right)_{*}: H_{n-1}\left(M_{r}(f), \mathbb{Z}\right) \rightarrow H_{n-1}\left(M_{r}(f), \mathbb{Z}\right)
$$

induced by the gluing map Γ_{f}. Whenever no confusion is possible, we will write Γ_{f} instead of $\left(\Gamma_{f}\right)_{*}$.

Suppose $\mathbf{z} \in H_{n-1}\left(M_{r}(f), \partial M_{r}(f) ; \mathbb{Z}\right.$ is a relative cycle. Since Γ_{f} acts as $\mathbf{1}$ on $\partial M_{r}(f)$ we deduce that

$$
\partial\left(\mathbf{1}-\Gamma_{f}\right) \mathbf{z}=0
$$

so that $z-\Gamma_{f} \mathbf{z} \in H_{n-1}\left(M_{r}(f) ; \mathbb{Z}\right)$. The morphism

$$
H_{n-1}\left(M_{r}(f), \partial M_{r}(f) ; \mathbb{Z}\right) \mapsto H_{n-1}\left(M_{r} ; \mathbb{Z}\right), \quad \mathbf{z} \mapsto \mathbf{z}-\Gamma_{f} \mathbf{z}
$$

is called the variation operator of the singularity and is denoted by var_{f}. We see that the Picard-Lefschetz formula is nothing but an explicit description of the variation operator of the simplest type of singularity.

Before we proceed further we need to discuss one useful topological invariant, namely, the linking number. (For more details we refer to the classical [49].)

Suppose \mathbf{a} and \mathbf{b} are $(n-1)$-dimensional cycles inside the $(2 n-1)$-sphere ∂B_{r}. (When $n=1$ we will assume the cycles are also homotopic to zero.) We can then choose a n-chain \mathbf{A} bounding \mathbf{a}. The intersection number $\mathbf{A} \cdot \mathbf{b}$ is independent of the choice of \mathbf{A}. The resulting integer is called the linking number of \mathbf{a} and \mathbf{b} and is denoted by $\mathbf{l k}(\mathbf{a}, \mathbf{b})$.

The computation of the linking number can be alternatively carried as follows. Choose two n-chains \mathbf{A} and \mathbf{B} bounding a and \mathbf{b}, which, except their boundaries, lie entirely inside B_{r}. We then have

$$
\operatorname{lk}(\mathbf{a}, \mathbf{b})=(-1)^{n} \mathbf{A} \cdot \mathbf{B} .
$$

In particular, we deduce

$$
\operatorname{lk}(\mathbf{a}, \mathbf{b})=(-1)^{n} \operatorname{lk}(\mathbf{b}, \mathbf{a})
$$

To prove the first equality is suffices to choose the chains \mathbf{A} and \mathbf{B} in a clever way. Choose B as the cone over b centered at 0

$$
\mathbf{B}=\{t \vec{z} ; \quad \vec{z} \in \mathbf{b}, \quad t \in[0,1]\} .
$$

Next, choose a chain $\mathbf{A}_{0} \subset \partial B_{r}$ bounding a and then define

$$
\mathbf{A}=\left\{\frac{1}{2} \vec{z} ; \quad \vec{z} \in \mathbf{A}_{0}\right\} \cup\left\{t \vec{z} ; \quad \vec{z} \in \mathbf{a}, \quad t \in\left[\frac{1}{2}, 1\right]\right\}
$$

(see Figure 13.1.)

Figure 13.1: Linking numbers
Fix a sufficiently small number $\varepsilon>0$ and set for simplicity

$$
\Phi_{r}(\theta):=\Theta_{f, r}\left(e^{i t}\right) \cap\{|f| \geq \varepsilon\}, \quad T:=\{|f| \leq \varepsilon\} \cap \partial B_{r} .
$$

Consider a family of diffeomorphisms of

$$
Y_{t}: \Phi_{r}(0) \rightarrow \Phi_{r}(2 \pi t), \quad t \in[0,1]
$$

which lifts the homotopy $t \mapsto \exp (2 \pi i t), Y_{0} \equiv \mathbf{1}$ and agrees with a fixed trivialization of the boundary fibration. Observe two things.

- Y_{1} can be identified with Γ_{f}.
- If $\mathbf{a}, \mathbf{b} \in H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right)$ then $Y_{1 / 2} \in \Phi_{r}(\pi)$ and thus the cycles a and $Y_{1 / 2} \mathbf{b}$ in ∂B_{r} are disjoint.

Definition 13.2.2. The Seifert form of the singularity f is the bilinear form L_{f} on $H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right)$ defined by the formula

$$
L_{f}(\mathbf{a}, \mathbf{b})=\operatorname{lk}\left(\mathbf{a}, Y_{1 / 2} \mathbf{b}\right) .
$$

Proposition 13.2.3. Consider two cycles $\mathbf{a} \in H_{n-1}\left(\Phi_{r}(0), \partial \Phi_{r}(0) ; \mathbb{Z}\right)$ and $\mathbf{b} \in H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right)$. Then

$$
L_{f}\left(\operatorname{var}_{f}(a), b\right)=\mathbf{a} \cdot \mathbf{b}
$$

where the dot denotes the intersection number of $(n-1)$-cycles inside the $(2 n-2)$-manifold $\Phi_{r}(0)$.

$1 / 2$
Figure 13.2: The variation operator
Proof Consider the map

$$
Y:[0,1] \times \mathbf{a} \rightarrow \partial B_{r}, \quad(t, \vec{z}) \mapsto Y_{t}(\vec{z}) .
$$

The image of Y is an n-chain $C \subset \partial B_{r}$ whose boundary consists of two parts: the variation of \mathbf{a}

$$
\operatorname{var}_{f}(\mathbf{a})=Y_{1} \mathbf{a}-\mathbf{a},
$$

which lies inside $\Phi_{r}(0)$, and the cylinder $Y([0,1] \times \partial \mathbf{a})$, which lies entirely inside on ∂T (see Figure 13.2). We have a natural identification

$$
\partial T \cong\{|w| \leq \varepsilon\} \times L_{r}(f)
$$

obtained by fixing a trivialization of the boundary of the Milnor fibration. Note that $Y_{t}(\partial \mathbf{a})$ corresponds via this identification to the cycle $\left\{\varepsilon e^{2 \pi i t}\right\} \times \partial \mathbf{a}$. Now flow this cycle along the radii to the t-independent cycle $\{0\} \times \partial \mathbf{a}$.

We thus have extended the cylinder $Y([0,1] \times \mathbf{a})$ to a chain \mathbf{A} in ∂B_{r} whose boundary represents $\operatorname{var}_{f}(\mathbf{a}) \subset \Phi_{r}(0)$. The intersection of the chain \mathbf{A} with $Y_{1 / 2} \mathbf{b}$ is the same as the intersection of the cycles $Y_{1 / 2} \mathbf{a}$ and $Y_{1 / 2} \mathbf{b}$ in the fiber $\Phi_{r}(\pi)$. Hence

$$
L_{f}\left(\operatorname{var}_{f}(\mathbf{a}, \mathbf{b})\right)=\left(Y_{1 / 2}(\mathbf{a}) \cdot Y_{1 / 2} \mathbf{b}\right)_{\Phi_{r}(\pi)}=(\mathbf{a} \cdot \mathbf{b})_{\Phi_{r}(0)} .
$$

Proposition 13.2.4. The Seifert form is nondegenerate, i.e. it induces an isomorphism from $H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right)$ to its dual.
Proof The Alexander duality theorem (see [49]) asserts that the linking pairing

$$
\mathbf{l k}: H_{n-1}\left(\Phi_{r}(0), \mathbb{Z}\right) \times H_{n-1}\left(\partial B_{r} \backslash \Phi_{r}(0) ; \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

is a duality, (i.e. nondegenerate). A bit of soul searching shows that the middle fiber $\Phi_{r}(\pi)$ is a deformation retract of $\partial B_{r} \backslash \Phi_{r}(0)$. Consequently, we have an isomorphism

$$
H_{n-1}\left(\partial B_{r} \backslash \Phi_{r}(0) ; \mathbb{Z}\right) \cong H_{n-1}\left(\Phi_{r}(\pi) ; \mathbb{Z}\right)
$$

The proposition now follows from the fact that $Y_{1 / 2}$ induces an isomorphism

$$
H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right) \rightarrow H_{n-1}\left(\Phi_{r}(\pi) ; \mathbb{Z}\right)
$$

By Poincaré-Lefschetz duality, the intersection pairing

$$
H_{n-1}\left(\Phi_{r}(0), \partial \Phi_{r}(0) ; \mathbb{Z}\right) \times H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

is nondegenerate. Proposition 13.2.3, 13.2.4 have the following remarkable consequence.
Corollary 13.2.5. The variation operator of the singularity f is an isomorphism of homology groups

$$
H_{n-1}\left(\Phi_{r}(0), \partial \Phi_{r}(0) ; \mathbb{Z}\right) \rightarrow H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right)
$$

Moreover

$$
\begin{equation*}
L_{f}(a, b)=\left(\operatorname{var}_{f}^{-1} \mathbf{a}\right) \cdot \mathbf{b}, \quad \forall \mathbf{a}, \mathbf{b} \in H_{n-1}\left(\Phi_{r}(0)\right) . \tag{13.2.1}
\end{equation*}
$$

Corollary 13.2.6. For $\mathbf{a}, \mathbf{b} \in H_{n-1}\left(\Phi_{r}(0) ; \mathbb{Z}\right)$

$$
\mathbf{a} \cdot \mathbf{b}=-L_{f}(\mathbf{a}, \mathbf{b})+(-1)^{n} L_{f}(\mathbf{b}, \mathbf{a})
$$

Proof Observe first that

$$
\begin{equation*}
\operatorname{var}_{f} \mathbf{a} \cdot \operatorname{var}_{f} \mathbf{b}+\mathbf{a} \cdot \operatorname{var}_{f} \mathbf{b}+\operatorname{var}_{f} \mathbf{a} \cdot \mathbf{b}=0 \tag{13.2.2}
\end{equation*}
$$

If we set $\mathbf{a}_{0}:=\operatorname{var}_{f} \mathbf{a}, \mathbf{b}_{0}:=\operatorname{var}_{f} \mathbf{b}$ we deduce

$$
\mathbf{a}_{0} \cdot \mathbf{b}_{0}=-\mathbf{v a r}_{f}^{-1} \mathbf{a}_{0} \cdot \mathbf{b}_{0}-\mathbf{a}_{0} \cdot \mathbf{v a r}_{f}^{-1} \mathbf{b}_{0} \stackrel{(13.2 .1)}{=}-L_{f}\left(\mathbf{a}_{0}, \mathbf{b}_{0}\right)+(-1)^{n} L_{f}\left(\mathbf{b}_{0}, \mathbf{a}_{0}\right)
$$

13.3 Picard-Lefschetz formula revisited

We want to outline a computation the variation operator of the simplest singularity,

$$
f=z_{1}^{2}+\cdots+z_{n}^{2}
$$

The answer is the Picard-Lefschetz formula discussed in great detail in Chapter 7 using a more artificial method.

The Milnor fibration of this quadratic singularity is given by the formula

$$
\partial B_{r} \backslash\left\{\sum_{j} z_{j}^{2}=0\right\} \ni \vec{z} \mapsto \frac{1}{\left|\sum_{j} z_{j}^{2}\right|} \sum_{j} z_{j}^{2} .
$$

The vanishing cycle corresponds in the fiber $\Phi_{r}(0)$ to the cycle Δ defined by the equations

$$
\sum_{j} z_{j}^{2}=1, \quad \operatorname{Im} z_{j}=0
$$

We have

$$
\operatorname{var}^{-1} \Delta \cdot \Delta=\operatorname{lk}\left(\Delta, Y_{1 / 2} \Delta\right)=L(\Delta, \Delta)=(-1)^{n} \mathbf{A} \cdot \mathbf{B}
$$

where \mathbf{A} and \mathbf{B} are cycles in B_{r} with boundaries Δ and respectively $Y_{1 / 2} \Delta$. To calculate the linking number $\operatorname{lk}\left(\Delta, Y_{1 / 2} \Delta\right)$ it is possible to use the family of diffeomorphisms

$$
\Psi_{t}: \Phi_{r}(0) \rightarrow \Phi_{r}(2 \pi t), \quad\left(z_{1}, \cdots, z_{n}\right) \mapsto\left(e^{\pi i t} z_{1}, \cdots, e^{\pi i t} z_{n}\right) .
$$

The reason is very simple. $\Psi_{1 / 2} \Delta$ and $Y_{1 / 2} \Delta$ are homologous inside the Milnor fiber $\Phi_{r}(1 / 2)$ so that they have the same linking number with Δ.

The cycle $\Psi_{1 / 2} \Delta$ is determined by the equations

$$
\sum_{j} z_{j}^{2}=-1, \quad \boldsymbol{\operatorname { R e }} z_{j}=0
$$

We can take as \mathbf{A} and \mathbf{B} the chains determined by the equation $\mathbf{I m} z_{j}$ and respectively $\operatorname{Re} z_{j}=0$. Their intersection is ± 1 with the sign which can be determined following the rules in Chapter 7.

Chapter 14

The monodromy theorem

The Picard-Lefschetz formula explains the topological implications of a nondegenerate critical point of a holomorphic function. In this chapter we want to approach the general case and try to understand the monodromy of such a critical point. The description will be in terms of a resolution of that singularity. Our presentation is greatly inspired from the work of H . Clemens [17, 18, 19] and N. A'Campo, [1].

14.1 Functions with ordinary singularities

Suppose $P \in \mathbb{C}\left[z_{0}, z_{1}, \cdots, z_{n}\right]$ is a polynomial in $n+1$-variables such that the origin $0 \in \mathbb{C}^{n+1}$ is an isolated critical point. Set $Z_{0}=\{P=0\} \subset \mathbb{C}^{n+1}$. A famous result of H. Hironaka [37] (see the nice presentations [5] in [35] for very readable accounts of this deep theorem) implies that P admits a good embedded resolution of singularities. This means that there exists an open polydisk

$$
\begin{equation*}
\mathbb{D}_{r}:=\left\{\vec{z} \in \mathbb{C}^{n+1} ; \quad 0<\left|z_{k}\right|<r \ll 1, \quad k=0, \cdots, n\right\}, \tag{14.1.1}
\end{equation*}
$$

a closed analytic subset $E \subset \mathbb{D}_{r}$ such that $Z_{0} \cap Z_{0}=\{0\}$, a $n+1$-dimensional complex manifold X, and a proper map $\pi: X \rightarrow \mathbb{D}_{r}$ with the following properties.

- The restriction of π to $X \backslash\left\{\pi^{-1}(E)\right\}$ is a biholomorphism onto $\mathbb{D}_{r} \backslash E . \pi^{-1}(E)$ is called the exceptional locus.
- The divisor $X_{0}=\{P \circ \pi=0\}$ is normal crossings divisor,, i.e. ,for every point $p \in X_{0}$ we can find local coordinates $\left(x_{0}, \cdots, x_{n}\right)$ in a neighborhood U_{p} of p in X and nonnegative integers ν_{0}, \cdots, ν_{n} such that

$$
\left.P \circ \pi\right|_{U_{p}}=x_{0}^{\nu_{0}} \cdots x_{n}^{\nu_{n}} .
$$

- Define the proper transform of Z_{0} as the closure \hat{Z}_{0} of $\pi^{-1}\left(Z_{0} \backslash E\right)$ in X. Then \hat{Z}_{0} is a smooth divisor.

The composition $f:=P \circ \pi: X \rightarrow \mathbb{C}$ is now a holomorphic function on the complex manifold X such that the fiber $f^{-1}(0)$ has better controlled singularities. Note that for any $t \in \mathbb{C}, 0<|t| \ll 1$ the fibers $f^{-1}(t)$ and $P^{-1}(t)$ are diffeomorphic. As $t \rightarrow 0$ the Milnor fiber "collapses" onto the singular fiber $f^{-1}(0)$ and thus we can expect that this singular
fiber carries a considerable amount of information about the generic nearby fibers. This is the type of problem we intend to address in this chapter.

Suppose X is an (open) complex manifold of complex dimension $n+1, \Delta$ is an open disk in \mathbb{C} centered at 0 , and $f: X \rightarrow \Delta$ with the following properties.

- $0 \in \Delta$ is the unique critical value of f. Set $X_{t}:=f^{-1}(t)$.
- Consider the decomposition $X_{0}=\bigcup_{j=0}^{s} D_{j}$ with the following property. For $j>0$ the component D_{j} is a smooth and irreducible hypersurface, while D_{0} coincides with the proper transform \hat{Z}_{0}. It has as many irreducible components as the germ at 0 of $f^{-1}(0)$. Since π is proper we deduce that for $j>0$ the component D_{j} must be compact.

For any set $S \subset X$ we define

$$
I_{S}:=\left\{i ; \quad D_{i} \cap S \neq \emptyset\right\} .
$$

For simplicity we set $I_{x}=I_{\{x\}}, \forall x \in X$.

- For any subset $I \subset \overline{0, s}:=\{0,1, \cdots, s\}$ the divisors $\left\{D_{i}\right\}_{i \in I}$ intersect transversely. We set

$$
D_{I}:=\bigcap_{i \in I} D_{i}, \quad X_{0}^{(k)}=\bigcup_{|I|>k} D_{I} .
$$

Note that D_{I} is either empty, or it is a codimension $|I|$ complex submanifold of X. We obtain a filtration of X_{0} by closed subsets

$$
\begin{equation*}
X_{0}=X_{0}^{(0)} \supset X_{0}^{(1)} \supset \cdots \supset X_{0}^{(n)} \tag{14.1.2}
\end{equation*}
$$

For any point $p \in X_{0}^{(k)} \backslash X_{0}^{(k+1)}, p \in D_{i_{1}} \cap \cdots D_{i_{k}}$ there exists an open coordinate neighborhood $U_{p} \subset X$ and local coordinates $\left(u_{1}, \cdots, u_{n+1}\right)$ and positive integers m_{1}, \cdots, m_{k} such that $u_{i}(p)=0, \forall 1 \leq i \leq n+1$ and

$$
\left.f\right|_{U_{p}}=u_{1}^{m_{1}} \cdots u_{k}^{m_{k}}, \quad D_{i_{j}} \cap U_{p}=\left\{u_{j}=0\right\} .
$$

For $0<r \ll 1$ we set

$$
Y_{r}:=\{p \in X ;|f(p)|<r\}=\bigcup_{|t|<r} X_{t}, \quad \partial Y_{r}:=\{p \in X ;|f(p)|=r\} .
$$

We would like to explicitly construct a continuous map

$$
\boldsymbol{c}: \partial Y_{r} \rightarrow X_{0}
$$

and an explicit homeomorphism $\mu: X_{r} \rightarrow X_{r}$ representing the monodromy of the fibration

$$
\{|f|=r\} \xrightarrow{f}\{|t|=r\}
$$

such that the diagram below is commutative

The cohomological information about μ will be obtained by analyzing the Leray spectral sequence of the collapsing map \boldsymbol{c}. The map \boldsymbol{c} is often referred to as the Clemens collapse map. We will use a few basic facts about subanalytic sets which we survey below. For more details we refer to [4, 38], [42, Chap. VIII].

Suppose X is a real analytic manifold. A subset $S \subset X$ is called subanalytic at $x \in X$ if there exists an open neighborhood U of $x \in X$, compact manifolds $Y_{i}, Z_{i}, 1 \leq i \leq N$ and morphisms

$$
f_{i}: Y_{i} \rightarrow X, \quad g_{i}: Z_{i} \rightarrow X
$$

such that

$$
S \cap U=U \cap \bigcup_{i=1}^{n} f_{i}\left(Y_{i}\right) \backslash g_{i}\left(Z_{i}\right)
$$

If S is analytic at each point $x \in X$, one says that Z is subanalytic in X.
The subanalytic sets behave nicely with respect to the set theoretic operations. We list below some of the most useful properties.

- If $S \subset X$ is subanalytic then so is its closure, its interior, its complement and any of its connected components. Moreover the collection of connected components is locally finite ${ }^{1}$.
- The union and the intersection of two subanalytic sets is subanalytic.
- Suppose $f: X \rightarrow Y$ is a morphism. If $S \subset Y$ is subanalytic then $f^{-1}(S)$ is subanalytic. If f is proper and $T \subset X$ is subanalytic then so is its image $f(T) \subset Y$.
- Every close subanalytic subset $S \subset Y$ is the image of a manifold X via a proper morphism $f: X \rightarrow Y$.
- (Triangulation theorem) If $X=\bigsqcup_{\alpha \in A} X_{\alpha}$ is a locally finite partition of X by subanalytic subsets then there exists a simplicial complex \mathbf{S} and a homeomorphism $\mathbb{\pi}:|\mathbf{S}| \rightarrow X$ with the following properties.
(i) For every simplex σ of \mathbf{S} the image $\mathbb{t}(\operatorname{int}|\sigma|)$ is a subanalytic submanifold of X.
(ii) The image of the interior of any simplex $|\sigma|$ via đ is entirely contained in a single stratum X_{α}.
The pair (\mathbf{S}, \mathbb{t}) is called a subanalytic triangulation subordinated to the subanalytic partition $\bigsqcup_{\alpha \in A} X_{\alpha}$. In the sequel we will omit $\mathbb{4}$ from notations.
- Every subanalytic set is Whitney stratifiable. The local triviality of Whitney stratification implies that every compact subanalytic set is locally contractible and thus an ENR.

14.2 The collapse map

To construct the collapse map we begin by constructing a more explicit homotopic model of ∂Y_{r} following the very elegant approach in [1]. First, we slightly redefine X. We would like to regard it as a compact manifold with boundary and we set

$$
\begin{equation*}
X=\pi^{-1}\left(\overline{\mathbb{D}_{r / 2}}\right) \tag{14.2.1}
\end{equation*}
$$

[^10]In particular, the Milnor fiber will be a compact manifold with boundary. Let

$$
\Sigma=\left\{I \subset \overline{0, s} ; \quad D_{I} \neq \emptyset\right\} .
$$

Consider the Euclidean space \mathbb{R}^{s+1} with standard basis $e_{0}, e_{1}, \cdots, e_{s}$. We think of Σ as a simplicial complex embedded in \mathbb{R}^{s+1} with vertices e_{0}, \cdots, e_{s} and a k-face Δ_{I} spanned by $\left\{e_{i}: \quad i \in I\right\}$, for each subset $I \subset \overline{0, s}$ such that $|I|=k+1$ and $D_{I} \neq \emptyset$.

Remark 14.2.1. If $n=1$ so that f is a polynomial in two complex variables z_{0}, z_{1} we can identify the simplicial complex Σ with the resolution graph described in Chapter 11.

Consider the subanalytic set

$$
\hat{X}_{0}=\bigcup_{I \in \Sigma} D_{I} \times \Delta_{I} \subset X \times \mathbb{R}^{s+1}
$$

Observe that we have a natural projection

$$
\rho: \hat{X}_{0} \rightarrow X_{0}
$$

induced by the natural projection $X \times \mathbb{R}^{s+1} \rightarrow X$. For $x \in X_{0}$ we define

$$
I_{x}:=\left\{i=0,1, \cdots, s ; x \in D_{i}\right\}
$$

and set

$$
\Delta_{x}:=\Delta_{I_{x}}, \omega(x):=\left|I_{x}\right|=\operatorname{dim} \Delta_{x}+1, \quad \omega_{f}:=\sup _{x \in X_{0}} \omega(x)
$$

ω_{f} is the largest number of the divisors $\left(D_{i}\right)_{0 \leq i \leq s}$ that have a point in common. In particular

$$
\omega_{f} \leq \min (n+1, s+1)
$$

Observe that

$$
\rho^{-1}(x)=\{x\} \times \Delta_{x}
$$

We denote the points in Δ_{x} by vectors

$$
\vec{w}=\left(w_{i}\right)_{i \in I} \in[0,1]^{I_{x}}, \quad \sum_{i \in I_{x}} w_{i}=1
$$

Note that a point $\hat{x} \in \hat{X}_{0}$ can be described as a pair

$$
\hat{x}=(x, \vec{w}), \quad x=\rho(\hat{x}), \quad \vec{w} \in \Delta_{x} .
$$

Example 14.2.2. Let us visualize the above constructions over the reals when $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $f(x, y)=x y, X_{0}=\{f=0\}$. Then \hat{X}_{0} is depicted in Figure 14.1.

Figure 14.1: Resolving a real normal crossings divisor

Denote by T_{i} a tubular neighborhood of $D_{i} \hookrightarrow X . \partial T_{i}$ is the total space of a circle bundle $\pi_{i}: \partial T_{i} \rightarrow D_{i}$. Denote by $\beta_{i}: Z_{i} \longrightarrow X$ the real oriented blow-up of X along D_{i}. This is rigorously defined as follows. Fix a Riemann metric g on X. If T_{i} is sufficiently small the function

$$
d_{i}: X \rightarrow \mathbb{R}, \quad d_{i}(x):=\operatorname{dist}_{g}\left(x, D_{i}\right)^{2}
$$

is smooth on T_{i}. Denote by $\beta: S_{1} X \rightarrow X$ the unit sphere bundle of $T X$. We have a section of $S_{1} X$ over $T_{i} \backslash D_{i}$ defined by

$$
\nu_{i}(x)=\frac{1}{\left|\nabla^{g} d_{i}\right|} \nabla^{g} d_{i} .
$$

We denote by \hat{T}_{i} the closure in $\left.S_{1} X\right|_{T_{i}}$ of the graph of the section ν_{i}. We have a natural projection

$$
\beta_{i}: \hat{T}_{i} \rightarrow T_{i}
$$

which is a diffeomorphism away from D_{i}. Then

$$
Z_{i}:=\left(\hat{T}_{i} \sqcup X\right) / \approx, \quad \hat{t} \approx x \Longleftrightarrow \beta_{i}(\hat{t})=x, \quad x \in T_{i} \backslash D_{i} .
$$

Z_{i} is a smooth manifold with boundary

$$
N_{i}=\partial Z_{i} \cong-\partial T_{i} .
$$

A point $\nu \in N_{i}$ can be described as an equivalence class of real analytic paths

$$
\nu:[0,1] \rightarrow X
$$

such that $\nu(0) \in D_{i}$ and $\dot{\nu}(0) \notin T_{p(0)} D_{i}$. Two such paths $\nu_{0}(t)$ and $\nu_{1}(t)$ will be considered equivalent if

$$
\nu_{0}(0)=\nu_{1}(0)=p_{0} \text { and } \exists a_{0}, a_{1} \in(0, \infty): a_{0} \dot{\nu}_{0}(0)-a_{1} \dot{\nu}_{1}(0) \in T_{p_{0}} D_{i} .
$$

Let $\beta: Z \rightarrow X$ denote the fiber product of the blowups $\beta_{i}: \hat{Z}_{i} \rightarrow X$ over $X . Z$ is a smooth manifold with corners and β is a diffeomorphism outside X_{0}. The boundary

$$
\partial Z:=\beta^{-1}\left(X_{0}\right)=: N .
$$

is a manifold with corners. N is homeomorphic to the boundary of any small regular neighborhood of $X_{0} \hookrightarrow X$.

Example 14.2.3. To visualize $\beta: N \rightarrow X_{0}$ we analyze a simple situation where $X_{0} \subset \mathbb{C}^{3}$ is given by the equation

$$
f\left(z_{1}, z_{2}, z_{3}\right)=z_{1} z_{2} z_{3}=0 .
$$

We can topologically identify N with the real hypersurface

$$
|f|=1
$$

Consider the descending gradient flow $\Psi_{t}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ of the function

$$
d:=|f|^{2} .
$$

Set

$$
z_{k}=r_{k} e^{i \theta_{k}}
$$

Then the descending gradient flow is described by the system of o.d.e.'s

$$
\dot{r}_{k}=-\frac{2 f}{r_{k}}, \quad \dot{\theta}_{k}=0, \quad k=1,2,3 .
$$

We deduce that for any $j, k=1,2,3$ we have

$$
\frac{d r_{j}^{2}}{d t}=\frac{d r_{k}^{2}}{d t}=-4 f \Longrightarrow \frac{d}{d t}\left(r_{j}^{2}-r_{k}^{2}\right)=0 \Longrightarrow r_{j}^{2}-r_{k}^{2}=\text { const. }
$$

We can now identify β the asymptotic limit map

$$
\pi_{\infty}:\{|f|=1\} \rightarrow X_{0}=\{|f|=0\}, \quad\{|f|=1\} \ni \vec{z} \longmapsto \lim _{t \rightarrow \infty} \Psi_{t} \vec{z}
$$

If $\vec{z}=\left(z_{1}, z_{2}, z_{3}\right) \in\{|f|=1\}$ then $\vec{\zeta}=\pi_{\infty}(\vec{z})$ is the unique point on X_{0} satisfying the conditions

$$
\left|\zeta_{j}\right|^{2}-\left|\zeta_{k}\right|^{2}=\left|z_{j}\right|^{2}-\left|z_{k}\right|^{2}, \quad \forall j, k=1,2,3
$$

and if $\zeta_{j} \neq 0$

$$
\arg \zeta_{j}=\arg z_{j}
$$

For example if $0<r_{1}<r_{2}<r_{3}$ and $r_{1} r_{2} r_{3}=1$ then

$$
\pi_{\infty}\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}, r_{3} e^{i \theta_{3}}\right)=\left(0, \rho_{2} e^{i \theta_{2}}, \rho_{3} e^{i \theta_{3}}\right), \quad \rho_{k}^{2}=r_{k}^{2}-r_{1}^{2} .
$$

If $0<r_{1}=r_{2}<r_{3}$ then

$$
\pi_{\infty}\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}, r_{3} e^{i \theta_{3}}\right)=\left(0,0, \rho_{3} e^{i \theta_{3}}\right) .
$$

One can visualize this map as follows. Consider the one-dimensional foliation of $\mathbb{C}^{3} \backslash X_{0}$ defined by the equations

$$
r_{1}^{2}-r_{j}^{2}=\text { const }, \quad \theta_{k}=\text { const. }, \quad j=2,3, \quad k=1,2,3
$$

Through every point $\vec{z} \in\{|f|=1\}$ passes a single curve $C_{\vec{z}}$ of this foliation. Then $\pi_{\infty}(\vec{z})$ is the intersection of X_{0} with the closure of $C_{\vec{z}}$ in \mathbb{C}^{3}. In Figure 14.2 we depicted the two-dimensional real counterpart of this construction.

Figure 14.2: Visualizing β.

Define \hat{N} as the fiber product over X_{0} of the maps $\rho: \hat{X}_{0}$ and $\beta: N \rightarrow X_{0}$. We obtain a Cartesian diagram

The composition

$$
c=\rho \circ \hat{\beta}=\beta \circ \hat{\rho}
$$

will be the collapse map. We now proceed to the construction of a more transparent homotopic model for the monodromy.

Consider the real oriented blowup $\hat{\Delta} \rightarrow \Delta$ of center $0 \in \mathbb{C}$ of the unit disk $\Delta \subset \mathbb{C}$. We have a diffeomorphism

$$
\hat{\Delta} \cong[0,1] \times S^{1}
$$

and a blow-up map

$$
\pi_{\Delta}: \hat{\Delta} \rightarrow \Delta, \quad[0,1] \times S^{1} \ni(r, \theta) \longmapsto r e^{i \theta} .
$$

We now form the diagram

where the map \check{f} is defined by

$$
\check{f}=\pi_{\Delta}^{-1} \circ f \circ \beta: Z \backslash N \rightarrow \hat{\Delta} \backslash \pi_{\Delta}^{-1}(0), \quad p \longmapsto\left(|f(p)|, \frac{f(p)}{|f(p)|}\right) .
$$

The map \check{f} extends by continuity to a map

$$
\check{f}: Z \rightarrow \hat{\Delta} .
$$

We denote by Θ_{f} the restriction of \check{f} to N so that

$$
\Theta_{f}: N \rightarrow \pi_{\Delta}^{-1}(0) \cong S^{1} .
$$

We have a commutative diagram

For every $i=0,1, \cdots, s$ the blowup projection $\beta_{i}: N_{i}=\partial Z_{i} \rightarrow D_{i}$ defines a principal S^{1}-bundle

$$
\beta_{i}: N_{i} \rightarrow D_{i} .
$$

As such it is equipped with a natural S^{1}-action and in particular with a \mathbb{R}-action

$$
\Psi: \mathbb{R} \times N_{i} \rightarrow N_{i}
$$

which for simplicity we denote by

$$
\left(t, \nu_{i}\right) \stackrel{\Psi}{\rightleftarrows} t+\nu_{i} .
$$

Now define

$$
\Gamma^{i}: \mathbb{R} \times N_{i} \rightarrow N_{i}, \quad(t, \nu) \longmapsto \Gamma^{i}\left(t, \nu_{i}\right):=\frac{t}{m_{i}}+\nu_{i},
$$

where $m_{i} \in \mathbb{Z}_{>0}$ is the multiplicity of f along D_{i}. The flows Γ^{i} define a flow on the part \dot{N} which projects via β to the smooth part $\dot{X}_{0}=X_{0}^{(1)} \backslash X_{0}^{(2)}$ of X_{0}. Since $\hat{N} \xrightarrow{\hat{\rho}} N$ is a homeomorphism above \dot{N} we can regard \dot{N} as a subset of \hat{N} as well. This flow does not extend to N but it extends to a flow on \hat{N}.

Let $x \in X_{0}$. We have natural identifications

$$
\beta^{-1}(x) \cong \prod_{i \in I} \beta_{i}^{-1}(x), \quad \rho^{-1}(x)=\Delta_{x} .
$$

so that

$$
c^{-1}(x) \cong \rho^{-1}(x) \times \beta^{-1}(x) \cong \Delta_{x} \times \prod_{i \in I} \beta_{i}^{-1}(x) .
$$

Given

$$
\hat{\nu}=\left(w_{i}, \nu_{i}\right)_{i \in I_{x}} \in c^{-1}(x) \cong \Delta_{x} \times \prod_{i \in I} \beta_{i}^{-1}(x)
$$

we define

$$
\Gamma_{t}(\hat{\nu})=\left(w_{i}, \Gamma^{i}\left(w_{i} t, \nu_{i}\right)\right)_{i \in I_{x}}=\left(w_{i}, \frac{w_{i} t}{m_{i}}+\nu_{i}\right)_{i \in I_{x}} \in c^{-1}(x) .
$$

Denote by Ξ_{t} the obvious \mathbb{R}-action on S^{1}. For every $t \in \mathbb{R}$ we have the following commutative diagrams

We set

$$
\begin{equation*}
\hat{F}:=\left\{\hat{\nu} \in \hat{N} ; \quad \hat{\Theta}_{f}(\hat{\nu})=1 \in S^{1}\right\} . \tag{14.2.2}
\end{equation*}
$$

We deduce from the above commutative diagrams that $\Gamma_{2 \pi}$ induces a continuous map

$$
\mu: \hat{F} \rightarrow \hat{F}
$$

such that $c \circ \mu=c$. This will be our homotopic representative for the geometric monodromy. Let us prove this claim. We begin by showing that F is homotopic to the Milnor fiber of f.

Lemma 14.2.4. The map

$$
\check{f}: Z \rightarrow \hat{\Delta}
$$

is a locally trivial fibration.
Proof Since \check{f} is proper (due to the definition (14.2.1)) and the fibers are subanalytic and thus Whitney stratifiable, will use the local criterion in [66, Cor. 6.14] for recognizing a locally trivial fibration. More precisely, we have to show that \check{f} is locally a projection, i.e. for every $p \in Z$ we can find a neighborhood V and a homeomorphism

$$
h: V \rightarrow S \times \check{f}(V), \quad S=\text { topological space }
$$

such that the diagram below is commutative.

This is clearly the case for $p \in Z \backslash N$ since on that part \check{f} is a submersion. For $p \in N$ we will use the special description of f in local coordinates. Let

$$
x:=\beta(p) \in X_{0}, \quad I_{x}=\left\{i_{0}, i_{1}, \cdots, i_{k}\right\} .
$$

We can then find holomorphic coordinates $u_{0}, u_{1} \cdots, u_{n}$ in a neighborhood U of $x \in X$ such that

$$
\left.f\right|_{U}=u_{0}^{m_{i_{0}}} \cdots u_{k}^{m_{i_{k}}}, \quad u_{j}(x)=0, \quad \forall j=0,1, \cdots, n
$$

Set $u_{j}=r_{j} e^{i \theta_{j}}$. Near $p \in N$ we have coordinates

$$
\left(u_{j}\right)_{j>k}, \quad\left(r_{i}, \theta_{i}\right)_{i \leq k} \in[0,1] \times S^{1} .
$$

In these coordinate N is described by $\prod_{i=0}^{k} r_{i}=0$. Near p the map \check{f} has the local description

$$
\check{f}\left(r_{j}, \theta_{j}\right)=\left(\prod_{j=0}^{k} r_{j}^{m_{i_{j}}}, \sum_{j=0}^{k} m_{i_{j}} \theta_{j}\right) \in[0,1] \times S^{1} .
$$

We can now check that this map is a projection in a neighborhood of p.
We deduce that $\Theta_{f}: N \rightarrow S^{1}$ is isomorphic to the Milnor fibration. The composition

$$
\widehat{\Theta}_{f}: \hat{N} \xrightarrow{\hat{\rho}} N \xrightarrow{\Theta_{f}} S^{1}
$$

is a homotopy fibration (it has the homotopy lifting property) isomorphic to the Milnor fibration. We deduce that $\hat{F}=\left\{\widehat{\Theta}_{f}=1 \in S^{1}\right\}$ is homotopic ${ }^{2}$ to the Milnor fiber and that indeed μ is homotopic to the geometric monodromy.

Consider the collapse map

$$
c: \hat{F} \hookrightarrow \hat{N} \xrightarrow{\hat{\beta}} \hat{X}_{0} \xrightarrow{\rho} X_{0} .
$$

Denote by $\mathbb{C}=S \mathbb{C}$ the constant sheaf with stalk \mathbb{C} on the topological space S. The Leray spectral sequence of the collapse map c (see [28, II. $\S 4.17]$) converges to $H^{\bullet}(F, \mathbb{C})$ and its E_{2}-term is

$$
E_{2}^{p, q}=H^{p}\left(X_{0}, R^{q} c_{*} \underline{\mathbb{C}}\right)
$$

where $R^{q} c_{*} \mathbb{C}$ is the sheaf associated to the presheaf

$$
X_{0} \supset U \longmapsto H^{q}\left(c^{-1}(U) \cap \hat{F}, \mathbb{C}\right) .
$$

Moreover,

$$
\left(R^{q} c_{*} \underline{\mathbb{C}}_{\hat{F}}\right)_{x} \cong H^{q}\left(c^{-1}(x) \cap \hat{F}, \underline{\mathbb{C}}\right), \quad \forall x \in X_{0}
$$

Let us describe the structure of $\hat{F}_{x}:=c^{-1}(x) \cap \hat{F}$. Assume $I_{x}=\left\{i_{0}, \cdots, i_{k}\right\}$.
As in the proof of Lemma 14.2.4 we can then find holomorphic coordinates $u_{0}, u_{1} \cdots, u_{n}$ in a neighborhood U of $x \in X$ such that

$$
\left.f\right|_{U}=u_{0}^{m_{i_{0}}} \cdots u_{k}^{m_{i_{k}}}, \quad u_{j}(x)=0, \quad \forall j=0,1, \cdots, n
$$

Set $u_{j}=r_{j} e^{i \theta_{j}}$,

$$
d_{x}:=\operatorname{gcd}\left(m_{i_{0}}, \cdots, m_{i_{k}}\right), \quad m_{x}=\operatorname{lcm}\left(m_{i_{0}}, \cdots, m_{i_{k}}\right)
$$

Using the diagram (14.2.2) we deduce

$$
\hat{F}_{x} \cong \Delta_{x} \times\left\{p \in \beta^{-1}(x) ; \quad \Theta_{f}(p)=1 \in S^{1},\right\} .
$$

The fiber $\beta^{-1}(x)$ is a $(k+1)$-dimensional torus with angular coordinates $\left(\theta_{i}\right)_{0 \leq i \leq k}$. Along this torus the map Θ_{f} has the description

$$
\left(\theta_{0}, \cdots, \theta_{k}\right) \longmapsto \sum_{j=0}^{k} m_{i_{j}} \theta_{j} \quad \bmod 2 \pi \mathbb{Z} \in S^{1}
$$

[^11]We deduce that $\left\{\Theta_{f}=1 \in S^{1}\right\} \cap \beta^{-1}(x)$ is a disjoint union of d_{x} tori of dimension k,

$$
\mathbb{T}(x, \ell)=\left\{\left(\theta_{i}\right) \in(\mathbb{R} / 2 \pi Z)^{k+1} ; \quad \sum_{j=0}^{k} m_{i_{j}} \theta_{j} \in 2 \pi \ell+2 \pi d_{x} \mathbb{Z}\right\}, \quad \ell=1, \cdots, d_{x}
$$

Hence

$$
\hat{F}_{x} \cong \bigcup_{\ell=1}^{d_{x}} \Delta_{x} \times \mathbb{T}(x, \ell)
$$

In particular we deduce

$$
\begin{equation*}
H^{q}\left(\hat{F}_{x}, \mathbb{C}\right)=0, \quad \forall q>k \Longrightarrow H^{q}\left(\hat{F}_{x}, \underline{\mathbb{C}}\right)=0, \quad \forall q>\operatorname{dim} \Sigma \tag{14.2.3}
\end{equation*}
$$

Let

$$
q=\left(\vec{w},\left(\theta_{i}\right)\right) \in \hat{F}_{x} .
$$

For every integer m we have

$$
\mu^{m}(q)=\left(\vec{w}, \theta_{i}+\frac{2 w_{i} m \pi}{m_{i}}\right) \in \hat{F}_{x} .
$$

In particular if we set $\mu_{x}:=\left.\mu\right|_{\hat{F}_{x}}$ we deduce

$$
\mu_{x}^{m_{x}}(q) \in \Delta_{x} \times \mathbb{T}(x, \ell)
$$

Moreover, the induced morphism $\left(\mu_{x}^{*}\right)^{m_{x}}$ acts trivially on $H^{\bullet}\left(\Delta_{x} \times \mathbb{T}(x, \ell), \underline{\mathbb{C}}\right)$.
Now, let

$$
m=\operatorname{lcm}\left(m_{0}, \cdots, m_{s}\right)
$$

We deduce that for every $x \in X_{0}$ we have

$$
\left(\mu_{x}^{*}\right)^{m}=\mathbb{1}_{H \bullet\left(\hat{F}_{x}, \mathbb{C}\right)} .
$$

Now we need to describe an explicit procedure of obtaining the Leray spectral sequence of the map $c: \hat{F} \rightarrow X_{0}$.

First, let $0 \rightarrow \mathbb{C} \rightsquigarrow \mathcal{G}^{\bullet}$ denote the Godement resolution of the sheaf \mathbb{C}. Each of the sheaves \mathcal{G}^{\bullet} is a constant sheaf on \hat{F} and in particular for every μ-invariant open set $V \subset \hat{F}$ we have an induced morphism of complexes

$$
\mu^{*}:\left(\mathcal{G}^{\bullet}(V), d\right) \rightarrow\left(\mathcal{G}^{\bullet}(V), d\right) .
$$

In particular we can regard $\left(\mathcal{G}^{\bullet}(V), d\right)$ as a $\mathbb{C}[v]$-module, where the action of the formal variable v is given by μ^{*}. For every open set $U \subset X_{0}$ the open set $c^{-1}(U) \subset \hat{F}$ is μ invariant and we deduce that we can regard the complex $c_{*} \mathcal{G} \bullet$ as a complex of $\mathbb{C}[v]$-modules. Since the Godement resolution is flabby we deduce that the sheaves of $\mathbb{C}[v]$-modules $c_{*} G^{\bullet}$ are flabby. In particular, they determine a flabby resolution of the sheaf of $\mathbb{C}[v]$-modules $c_{*} \mathbb{C}$. The cohomology groups of \hat{F} with coefficients in \mathbb{C} are the hypercohomology groups of the complex of $\mathbb{C}[v]$-modules $c_{*} \mathcal{G}^{\bullet}$. The Leray spectral sequence is precisely the hypercohomology spectral sequence (see [13] or [27, III.7] for more details).

The upshot of this algebraic digression is that we can find a filtered complex of $\mathbb{C}[v]$ modules such that the corresponding spectral sequence converges to the $\mathbb{C}[v]$-module $H^{\bullet}(\hat{F}, \mathbb{C})$ and whose E^{2}-term is described by the $\mathbb{C}[v]$-modules

$$
E_{2}^{p, q}=H^{p}\left(X_{0}, R^{q} c_{*} \hat{F} \mathbb{C}\right)
$$

From the above topological considerations we deduce that the action of v^{m} on $R^{q} c_{*} \hat{F} \mathbb{C}$ is given by the identity. Additionally, the equality (14.2.3) implies that

$$
E_{2}^{p, q}=0, \quad \forall q>\operatorname{dim} \Sigma
$$

Hence we conclude that there exists a decreasing filtration of $\mathbb{C}[v]$-modules

$$
H^{\bullet}(\hat{F}, \underline{\mathbb{C}})=E^{0} \supset \cdots \supset E^{\operatorname{dim} \Sigma} \supset E^{\operatorname{dim} \Sigma+1}=0
$$

such that on each of the $\mathbb{C}[v]$-modules E^{r} / E^{r+1} we have $v^{m}=1$.
Consider now the linear operator $L=v^{m}-1: E^{0} \rightarrow E^{0}$. We deduce that each of the subspaces E^{r} is L-invariant and moreover

$$
L\left(E^{r} / E^{r+1}\right)=0 \Longleftrightarrow L\left(E^{r}\right) \subset E^{r+1} .
$$

In particular, we deduce that

$$
L^{\omega_{f}}=L^{\operatorname{dim} \Sigma+1}=0,
$$

i.e. the Jordan cells of L have dimension at most ω_{f}. We have thus proved the following result.

Theorem 14.2.5 (The monodromy theorem). Let

$$
m=\operatorname{lcm}\left(m_{0}, \cdots, m_{s}\right)
$$

and ω_{f} denote the largest number of the divisors $D_{0}, D_{1}, \cdots, D_{s}$ that have nontrivial overlap. Then

$$
\left(\left(\mu^{*}\right)^{m}-1\right)^{\omega_{f}}=1
$$

14.3 A'Campo's Formulæ

The setup described above can be used to produce a formula of Norbert A'Campo [1] for the Euler characteristic of the Milnor fiber in terms of the multipicities m_{i} and the Euler characteristic of the divisors D_{i}. Before we present this formula we need a brief digression in the world of sheaves.

Suppose X is a locally compact space and $S \hookrightarrow X$ is a closed subset. For every sheaf \mathcal{F} of \mathbb{C}-vector spaces on X we denote by \mathcal{F}_{S} the sheaf defined by the presheaf

$$
X \supset U \longmapsto \mathcal{F}_{S}=\mathcal{F}(S \cap U)
$$

If we denote by $\mathcal{F}_{S}(x)$ the stalk of \mathcal{F}_{S} at $x \in X$ then

$$
\mathcal{F}_{S}(x) \cong\left\{\begin{array}{cll}
\mathcal{F}(x) & \text { if } & x \in S \\
0 & \text { if } & x \notin S
\end{array}\right.
$$

Note that we have a natural morphism of sheaves $\mathcal{F} \longrightarrow \mathcal{F}_{S}$. This is an epi-morphism and we set

$$
\mathcal{F}_{X \backslash S}:=\operatorname{ker}\left(\mathcal{F} \rightarrow \mathcal{F}_{S}\right) .
$$

Thus, we have a short exact sequence of sheaves

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{X \backslash S} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{S} \rightarrow 0 \tag{14.3.1}
\end{equation*}
$$

Recall that a family of supports on X is a collection Φ of closed subsets of X satisfying the following conditions.

- Any finite union of sets in Φ is a set in Φ.
- Any closed subset of a set in Φ is a set in Φ.
- Every set in Φ admits a neighborhood which is a set in Φ.

For example the collection of all the compact subsets of X or the collection of all closed subsets of X are families of supports. For every family of supports on X, every sheaf of \mathbb{C}-vector spaces \mathcal{F}, and every open set $U \subset \in X$ we set

$$
\Gamma_{\Phi}(U, \mathcal{F})=\{s \in \Gamma(U, \mathcal{F}) ; \quad \operatorname{supp} s \in \Phi\} .
$$

Γ_{Φ} is a left exact functor from the Abelian category $\mathbf{S h}_{\mathbb{C}}(X)$ of sheaves of \mathbb{C}-vector spaces on X to the Abelian category Vect $_{\mathbb{C}}$ of \mathbb{C}-vector spaces. The right derived functors of Γ_{Φ} are denoted by H_{Φ}^{\bullet}. When Φ is the collection of all closed (resp. compact) subsets of X we will write $H^{\bullet}(X,-)\left(\right.$ resp. $\left.H_{c}^{\bullet}(X,-)\right)$.

If $A \subset X$ is locally closed and Φ is a family of supports on X then we set

$$
\Phi \mid A:=\{S \subset A ; S \in \Phi\} .
$$

If S is a closed subset of $X, \mathcal{F} \in \mathbf{S h}_{\mathbb{C}}(X)$ and Φ is a family of supports on X we have an isomorphism [28, II.4.10]

$$
H_{\Phi \mid S}^{\bullet}\left(S,\left.\mathcal{F}\right|_{S}\right) \cong H_{\Phi}^{\bullet}\left(X, \mathcal{F}_{S}\right), \quad H_{\Phi \mid X \backslash S}^{\bullet}\left(X \backslash S,\left.\mathcal{F}\right|_{X \backslash S}\right) \cong H_{\Phi}^{\bullet}\left(X, \mathcal{F}_{X \backslash S}\right)
$$

In particular, we deduce

$$
\begin{gathered}
H_{c}^{\bullet}\left(S,\left.\mathcal{F}\right|_{S}\right) \cong H_{c}^{\bullet}\left(X, \mathcal{F}_{S}\right), H^{\bullet}\left(S,\left.\mathcal{F}\right|_{S}\right) \cong H^{\bullet}\left(X, \mathcal{F}_{S}\right), \\
H_{c}^{\bullet}\left(X \backslash S,\left.\mathcal{F}\right|_{X \backslash S}\right) \cong H_{\Phi}^{\bullet}\left(X, \mathcal{F}_{S}\right) .
\end{gathered}
$$

In particular, if X is compact and $\mathcal{F}=\underline{\mathbb{C}}=x \mathbb{C}$ is the constant sheaf with stalk \mathbb{C} on X we deduce

$$
\begin{equation*}
H^{\bullet}(S, \mathbb{C}) \cong H^{\bullet}\left(X, \mathbb{C}_{S}\right), \quad H_{c}^{\bullet}(X \backslash S, \mathbb{C}) \cong H^{\bullet}\left(X, \mathbb{C}_{S}\right) \tag{14.3.2}
\end{equation*}
$$

If S and $X \backslash S$ are locally contractible then (see [11, III $\S 1]$ or [67, Chap. 6§9]) then the groups $H^{\bullet}(S, \mathbb{C})\left(\right.$ resp. $\left.H_{c}^{\bullet}(X \backslash S, \mathbb{C})\right)$ coincide with the usual singular cohomology groups with complex coefficients (and resp. compact supports). Using this fact we deduce from the short exact sequence (14.3.1) that if X is a compact subanalytic set and S is a closed subset we have

$$
\begin{equation*}
\chi(X)=\chi(S)+\chi_{c}(X \backslash S) \tag{14.3.3}
\end{equation*}
$$

where χ_{c} denotes the Euler characteristic of the compactly supported cohomology. Using the above identity we deduce that if X is a compact subanalytic set and

$$
X=X^{(0)} \supset X^{(1)} \supset \cdots \supset X^{(k)} \supset X^{(k+1)}=\emptyset
$$

is a decreasing filtration by closed subanalytic sets then we deduce

$$
\begin{equation*}
\chi(X)=\chi_{c}(X)=\chi_{c}\left(X^{(0)} \backslash X^{(1)}\right)+\chi_{c}\left(X^{(1)} \backslash X^{(2)}\right)+\cdots+\chi_{c}\left(X^{(k)} \backslash X^{(k+1)}\right) \tag{14.3.4}
\end{equation*}
$$

We apply these considerations to the homotopy Milnor fiber \hat{F} and a carefully chosen decreasing filtration by closed subanalytic subsets.

Consider again the Clemens collapse map $c: \hat{F} \rightarrow X_{0}$. Recall the decreasing filtration by closed sets (14.1.2)

$$
X_{0}=X_{0}^{(0)} \supset X_{0}^{(1)} \supset \cdots \supset X_{0}^{(n)}
$$

where

$$
X_{0}^{(j)}=\bigcup_{|I|>j} D_{I}
$$

This shows that $X_{0}^{(j)}$ is a closed subanalytic subset of X_{0}. We will refer to $X_{0}^{(1)}$ as the crossing locus since it consists of the points $x \in X_{0}$ which belong to at least two of the divisors D_{i}. We will denote it by $\operatorname{cr}\left(X_{0}\right)$. Now set

$$
\hat{F}^{(j)}:=c^{-1}\left(X_{0}^{(j)}\right) .
$$

Since c is an analytic map the sets $\hat{F}^{(j)}$ are subanalytic. The equality (14.3.4) implies

$$
\chi(F)=\sum_{j=0}^{n} \chi_{c}\left(\hat{F}^{(j)} \backslash \hat{F}^{(j+1)}\right) .
$$

The restriction of the collapse map c to $\hat{F}^{(j)} \backslash \hat{F}^{(j+1)}$ is a locally trivial fibration over $X_{0}^{(j)} \backslash X_{0}^{(j+1)}$ with fiber over x of the form

$$
\hat{F}_{x} \cong \Delta_{j} \times \text { union of } d_{x} \text { tori of dimension } j .
$$

We deduce that

$$
\chi_{c}\left(\hat{F}_{x}\right)=\chi\left(\hat{F}_{x}\right)=0, \quad \forall x \in \operatorname{cr}\left(X_{0}\right) .
$$

From the Leray spectral sequence with compact supports (see [22, §2.3] or [28, II.§4.17]) we deduce that for every locally trivial fibration of $E N R$ spaces

$$
S \hookrightarrow E \rightarrow B
$$

with compact fiber S and connected base B we have

$$
\chi_{c}(E)=\chi(S) \cdot \chi_{c}(B)
$$

In particular we deduce

$$
\chi_{c}\left(\hat{F}^{(j)} \backslash \hat{F}^{(j+1)}\right)=0, \quad \forall j \geq 2
$$

so that

$$
\chi(\hat{F})=\chi_{c}(\underbrace{F^{(0)} \backslash \hat{F}^{(1)}}_{:=s}) .
$$

For every $i=0,1, \cdots, s$ we set

$$
\left.\dot{D}_{i}:=D_{i} \backslash \operatorname{cr}\left(X_{0}\right), \quad \mathcal{S}_{i}=c^{-1}\left(\dot{D}_{i}\right) \cap \mathcal{S}\right) .
$$

\mathcal{S}_{i} is a $m_{i}: 1$ cover of \dot{D}_{i} and thus it is an open subset of \mathcal{S}. Since $\mathcal{S}_{i} \cap \mathcal{S}_{j}=\emptyset$ for $i \neq j$ we deduce

$$
\chi_{c}(\hat{F})=\chi_{c}(\mathcal{S})=\sum_{i=0}^{s} \chi_{c}\left(\mathcal{S}_{i}\right)=\sum_{i=0}^{s} m_{i} \chi_{c}\left(\dot{D}_{i}\right) .
$$

If $i>0, \dot{D}_{i}$ is a noncompact manifold without boundary and so by Poincaré duality we deduce

$$
\chi_{c}\left(D_{i}\right)=\chi\left(D_{i}\right) .
$$

On the other hand, \dot{D}_{0} is homeomorphic to $f^{-1}(0) \backslash 0$. Hence

$$
\chi_{c}\left(\dot{D}_{0}\right)=\chi_{c}\left(f^{-1}(0) \backslash 0\right)=\chi_{c}\left(f^{-1}(0)\right)-\chi(\text { point }) .
$$

The singular fiber $f^{-1}(0)$ is contractible since according to Theorem 12.1.2 it is homeomorphic to the cone over the link of the singularity. We deduce

$$
\chi_{c}\left(\dot{D}_{0}\right)=0
$$

Putting together the above facts we deduce the following result.
Theorem 14.3.1 (A'Campo). Let

$$
\dot{D}_{i}:=D_{i} \backslash \operatorname{cr}\left(X_{0}\right) .
$$

Then

$$
\chi(F)=\sum_{i=1}^{s} m_{i} \chi\left(\dot{D}_{i}\right) .
$$

Example 14.3.2. Consider the plane curve germs

$$
\left(C_{1}, 0\right): \quad\left(f_{1}=y^{4}-x^{11}=0,0\right), \quad\left(C_{2}, 0\right): \quad\left(f_{2}=\left(y^{2}-x^{3}\right)^{2}-4 x^{5} y-x^{7}=0,0\right)
$$

The singular fiber in the resolution of C_{1} is depicted in Figure 14.3(a) and the resolution graph of C_{2} is depicted in Figure 14.3(b).

In either case each of the compact divisors is a complex projective line $\mathbb{C P}^{1} \cong S^{2}$. For each vertex $i \neq *$ of either of these graphs the corresponding punctured divisor \dot{D}_{i} is the the sphere S^{2} punctured in as many points as the degree of the vertex i in the resolution graph. In particular we deduce that the vertices of degree 2 do not contribute anything to the Euler characteristic of the Euler fiber. For the first curve we have

$$
\chi_{1}=\chi\left(f_{1}=\varepsilon\right)=m_{1}+m_{3}-m_{6}=1-\mu_{1}, \quad \mu_{1}=\text { Milnor number of }\left(f_{1}, 0\right),
$$

Figure 14.3: The resolutions graphs of C_{1} and C_{2}
while for the second curve we have

$$
\chi_{2}=\chi\left(f_{2}=\varepsilon\right)=m_{1}+m_{2}+m_{4}-m_{3}-m_{5}=1-\mu_{2}, \quad \mu_{2}=\text { Milnor number of }\left(f_{2}, 0\right) .
$$

The multiplicities m_{i} for these germs were determined in Example 11.5.14 and we deduce

$$
\chi_{1}=4+11-44=-29 \Longrightarrow \mu_{1}=30, \quad \chi_{2}=4+6+13-12-26=-15 \Longrightarrow \mu_{2}=16 .
$$

These results are in perfect agreement with our earlier computations.

Chapter 15

Toric resolutions

We have seen that a detailed knowledge of an embedded resolution of a polynomial leads to a wealth of topological information about the singularity. Finding a resolution of the singularity is never a simple task. In this chapter we describe a simple yet generic situation when such a resolution can be characterized fairly explicitly in terms of some very basic arithmetic invariant of the polynomial, its Newton diagram. This technique which relies on toric varieties was pioneered by Khovanski and Varchenko and leads to very surprising information on the Milnor number and the monodromy of an isolated singularity of a complex polynomial.

15.1 Affine toric varieties

A toric variety is a complex variety X together with an open and dense embedding $\left(\mathbb{C}^{*}\right)^{n} \hookrightarrow$ X such that the natural action of $\mathbb{T}^{n}=\left(\mathbb{C}^{*}\right)^{n}$ on itself extends to an action on X. Note that this implies $\operatorname{dim}_{\mathbb{C}} X=n$.

This very efficient definition hides the rich structure underlying a toric variety. To describe the general procedure of producing toric varieties we need to introduce some notations. Consider first the lattice X of characters

$$
x:=\operatorname{Hom}\left(\mathbb{T}^{n}, \mathbb{C}^{*}\right) .
$$

If we chose coordinates $\vec{z}=z_{1}, z_{2}, \cdots, z_{n}$ on \mathbb{T}^{n} then a character χ is uniquely determined by a vector $\vec{\nu}=\left(\chi_{1}, \cdots, \chi_{n}\right) \in \mathbb{Z}^{n}$ via the equality

$$
\chi(\vec{z})=z_{1}^{\chi_{1}} \cdots z_{n}^{\chi_{n}}=: \vec{z}^{\chi} .
$$

We have a tautological morphism $\mathbb{T}^{n} \rightarrow \operatorname{Hom}\left(X, \mathbb{C}^{*}\right)$ which associates to $\vec{z} \in \mathbb{T}^{n}$ the morphism

$$
X \ni \chi \mapsto \vec{z}^{\chi} \in \mathbb{C}^{*} .
$$

By Pontryagin duality this tautological morphism is an isomorphism.
Another important invariant associated to \mathbb{T}^{n} is the lattice of weights $\mathcal{W}:=\operatorname{Hom}\left(\mathbb{C}^{*}, \mathbb{T}^{n}\right)$. We have a natural pairing

$$
X \times \mathcal{W} \rightarrow \mathbb{Z} \cong \operatorname{Hom}\left(\mathbb{C}^{*}, \mathbb{C}^{*}\right), \quad x \times \mathcal{W} \ni(\chi, \varphi) \mapsto\langle\chi, \varphi\rangle=\chi \circ \varphi: \mathbb{C}^{*} \xrightarrow{\varphi} \mathbb{T}^{n} \xrightarrow{\chi} \mathbb{C}^{*} .
$$

This is a perfect pairing, i.e. the induced map $X \rightarrow \operatorname{Hom}(\mathcal{W}, \mathbb{Z})$ is an isomorphism.
To work with toric varieties we need turn the above constructions up-side-down. We start with a lattice \mathcal{W} we set $\mathcal{X}=\mathcal{W}^{v}:=\operatorname{Hom}_{\mathbb{Z}}(\mathcal{W}, \mathbb{Z})$ and we form the torus

$$
\mathbb{T}_{\mathcal{W}}:=\operatorname{Hom}\left(X, \mathbb{C}^{*}\right)
$$

Thus \mathcal{X} will be the lattice of characters of $\mathbb{T}_{\mathcal{W}}$ while \mathcal{W} will be the lattice of weights. When choosing bases in \mathcal{W} and \mathcal{X} we will think of the weights (i.e. vectors in \mathcal{W}) as column vectors while the characters (i.e. the vectors in $\mathcal{X}=\mathcal{W}^{\vee}$) as row vectors. We will denote by

$$
\langle\bullet, \bullet\rangle: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{Z}, \quad(\chi, \vec{w}) \mapsto\langle\chi, \vec{w}\rangle
$$

the natural pairing.
Any $\vec{w} \in \mathcal{W}$ defines a morphism $t^{\vec{w}}: \mathbb{C}^{*} \rightarrow \mathbb{T}_{\mathcal{W}}$ as follows. First, use the identification

$$
\mathbb{C}^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, \mathbb{C}^{*}\right)
$$

For every $t \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{C}^{*}\right)$ we define $t^{\vec{w}} \in \operatorname{Hom}\left(X, \mathbb{C}^{*}\right) \cong \mathbb{T}_{\mathcal{W}}$ by the composition

$$
t^{\vec{w}}: X \xrightarrow{\vec{w}} \mathbb{Z} \xrightarrow{t} \mathbb{C}^{*} .
$$

If we use choose a \mathbb{Z}-basis ($\vec{e}^{1}, \cdots, \vec{e}^{n}$) of the lattice of characters X we obtain local coordinates $\vec{z}=\left(z_{1}, \cdots, z_{n}\right)$ on $\mathbb{T}_{\mathcal{W}}$ defined by

$$
z_{k}(\varphi)=\varphi\left(e^{k}\right), \quad \forall \varphi \in \operatorname{Hom}\left(X, \mathbb{C}^{*}\right)
$$

If ($\vec{e}_{1}, \cdots, \vec{e}_{n}$) denotes the dual basis of the lattice of weights \mathcal{W} and t denotes the local coordinate on \mathbb{C}^{*}, then we can identify $\vec{w} \in \mathcal{W}$ with the column vector

$$
\vec{w}=\left[\begin{array}{c}
w^{1} \\
\vdots \\
w^{n}
\end{array}\right]=\sum_{i} w^{i} \vec{e}_{i} \in \mathbb{Z}^{n} \cong \mathcal{W}, \text { then } t^{\vec{w}}=\left[\begin{array}{c}
t^{w^{1}} \\
\vdots \\
t^{w^{n}}
\end{array}\right] \in\left(\mathbb{C}^{*}\right)^{n} \cong \mathbb{T}_{\mathcal{W}}
$$

The composition $\mathbb{C}^{*} \xrightarrow{t^{\vec{w}}} \mathbb{T}_{\mathcal{W}} \xrightarrow{\chi} \mathbb{C}^{*}$ takes the simple form $t \mapsto t^{\langle\chi, \vec{w}\rangle}$.
Example 15.1.1 (Affine algebraic toric varieties). We will use the well known correspondence between affine varieties and finitely generated \mathbb{C}-algebras. This correspondence associates to each affine variety X the ring $\mathbb{C}[X]$ of regular functions on X. Conversely, to every finitely generated \mathbb{C}-algebra R we associate the variety $X=\operatorname{Spec}_{\text {max }}(R)$ whose points are identified with the maximal ideals of R. A left action of a torus \mathbb{T}^{n} on X induces a right action by pullback on $\mathbb{C}[X]$. Thus, to construct an affine toric variety we need to produce a finitely generated \mathbb{C}-algebra of dimension n together with an action of \mathbb{T}^{n} on it.

Consider a n-dimensional lattice X with dual $\mathcal{W}=X^{\vee}$ and form the complex torus $\mathbb{T}_{\mathcal{W}}=\operatorname{Hom}\left(X, \mathbb{C}^{*}\right)$. Suppose $S \subset X$ is a finitely generated semigroup, $0 \in S$. We denote by $\mathbb{C}[S]$ the group algebra of S consisting of polynomials

$$
P=\sum_{\chi \in S} c_{\chi} T^{\chi}, \quad T^{\chi} \cdot T^{\chi^{\prime}}=T^{\chi+\chi^{\prime}}
$$

If we choose a \mathbb{Z}-basis of \mathcal{X} we get coordinates \vec{z} on $\mathbb{T}_{\mathcal{W}}$ and we can identify $\mathbb{C}[S]$ with a subalgebra of the ring of Laurent polynomials $\mathbb{C}\left[z_{1}, z_{1}^{-1}, \cdots, z_{n}, z_{n}^{-1}\right]$. In particular we deduce that $\mathbb{C}[S]$ is an affine domain. We denote by X_{S} the associated affine variety.

To find its dimension it suffices to find the dimension of one of its Zariski open sets. Denote by x_{S} the sublattice of X spanned by S. Let $d=\operatorname{dim}_{\mathbb{Q}} x_{S} \otimes \mathbb{Q}$. The group algebra $\mathbb{C}\left[x_{S}\right]$ is isomorphic to the ring of Laurent polynomials $\mathbb{C}\left[\zeta_{1}, \zeta_{1}^{-1}, \cdots, \zeta_{d}, \zeta_{d}^{-1}\right]$ and in particular it has dimension d.

On the other hand, if we denote by $\chi_{1}, \cdots, \chi_{g}$ the generators of S then we deduce that $\mathbb{C}\left[X_{S}\right]$ can be regarded as the ring of regular functions on the open set

$$
D\left(T^{\chi_{1}}\right) \cap \cdots \cap D\left(T^{\chi_{g}}\right)=\left\{p \in X_{S} ; \quad T^{\chi_{k}}(p) \neq 0, \quad \forall k=1, \cdots, g\right\} .
$$

The (closed) points of the affine variety X_{S} can be identified with the maximal ideals of $\mathbb{C}[S]$, i.e. with the morphisms of \mathbb{C}-algebras

$$
p: \mathbb{C}[S] \rightarrow \mathbb{C}, \quad \mathbb{C}[S] \ni f \mapsto f(p)
$$

Note that the induced map

$$
(S,+) \ni \chi \mapsto T^{\chi}(p) \in(\mathbb{C}, \cdot)
$$

is a morphism of semigroups. Conversely, every morphism of semigroups

$$
\mu:(S,+) \rightarrow(\mathbb{C}, \cdot), \quad \chi \mapsto \mu^{\chi}
$$

defines a morphism of \mathbb{C}-algebras $\mathbb{C}[S] \rightarrow \mathbb{C}$ by the rule

$$
\sum_{\chi \in S} a_{\chi} T^{\chi} \longmapsto \sum_{\chi \in S} a_{\chi} \mu^{\chi}
$$

Note that $\mathbb{T}_{\mathcal{W}}=\operatorname{Hom}\left(\mathcal{W}^{v}, \mathbb{C}^{*}\right)$ acts on X_{S} by the rule

$$
\mathbb{T}_{\mathcal{W}} \times X_{S} \ni(\vec{z}, \mu) \mapsto \vec{z} \mu, \quad(\vec{z} \mu)^{\chi}=\vec{z}^{\chi} \cdot \mu^{\chi}
$$

If we denote by μ_{S} the point (semigroup morphism) defined by

$$
\mu_{S}^{\chi}=1, \quad \forall \chi \in S
$$

Consider for example the monoid $S \subset\left(\mathbb{Z}_{\geq 0},+\right)$ generated by 2,3 . Then

$$
\mathbb{C}[S]=\sum_{s \in S} a_{s} t^{s}
$$

If we set $x=t^{2}, y=t^{3}$ we deduce $\mathbb{C}[S] \cong \mathbb{C}[x, y] /\left(x^{3}-y^{2}\right)$. Note that $\mathbb{C}[S]$ is not normal.
The morphisms of semigroups $S \rightarrow \mathbb{C}$ are parametrized by pairs of complex numbers (x, y) such that

$$
x^{3}=y^{2} .
$$

To such a pair of numbers we associate the semigroup morphism

$$
2 m+3 n \longmapsto x^{m} y^{n}
$$

Note that if $2 m^{\prime}+3 n^{\prime}=2 m+3 n$ then

$$
\frac{m^{\prime}-m}{3}=\frac{n-n^{\prime}}{2}=k \in \mathbb{Z}
$$

Hence

$$
m^{\prime}=m+3 k, \quad n^{\prime}=n-2 k, \quad x^{m^{\prime}} y^{n^{\prime}}=x^{m} y^{n}\left(x^{3} y^{-2}\right)^{k}=x^{m} y^{n} .
$$

In the sequel we would like to work exclusively with normal toric varieties. We describe below a characterization of the normal affine toric varieties.

For every submonoid of a lattice \mathcal{X} we denote by X_{S} the sublattice spanned by S and by C_{S} the convex hull of S in $\mathcal{X} \otimes \mathbb{R}$. Set

$$
\tilde{S}=C_{S} \cap \mathcal{W}_{S}
$$

For a proof of the following result we refer to [39, 43].
Theorem 15.1.2 (Hochster). Suppose S is a finitely generated submonoid of the lattice X. The normalization of the ring $\mathbb{C}[S]$ is the ring $\mathbb{C}[\tilde{S}]$.

Definition 15.1.3. A submonoid S of a lattice X is called normal if it is finitely generated and $\tilde{S}=S$.

Exercise 15.1.1. Suppose S is a finitely generated submonoid of the lattice X. Prove that S is normal if and only if it is saturated, i.e. if $n \vec{\lambda} \in S$ for some $\vec{\lambda} \in \mathcal{W}$ and $n \in \mathbb{Z}_{>0}$ then $\vec{\lambda} \in S$.

Definition 15.1.4. Suppose X is a lattice. A convex cone $C \subset X \otimes \mathbb{R}$ is called rational polyhedral if there exist $\vec{w}_{1}, \cdots, \vec{w}_{N} \in X^{\vee}$ such that

$$
C=\left\{\vec{\lambda} \in \mathcal{W} \otimes \mathbb{R} ; \quad\left\langle\vec{w}_{j}, \vec{\lambda}\right\rangle \geq 0, \quad j=1, \cdots, N\right\}
$$

Proposition 15.1.5. Suppose \mathcal{X} is a lattice. A submonoid $S \subset X$ is normal if and only if it is a rational polyhedral monoid, i.e. there exists a rational polyhedral cone $C \subset X_{S} \otimes \mathbb{R}$ such that

$$
S=X_{S} \cap C
$$

Exercise 15.1.2. Prove the above proposition.

Remark 15.1.6 (A short trip in convex geometry). Let us recall some notion of convex geometry. Suppose V is a finite dimensional real vector space. We denote by V^{*} is dual. A hyperplane H in V is a codimension one affine subspace. It can be described as a level set of a linear functional $\omega \in V^{*}$. A (closed) half-space is a region in V described by a linear inequality

$$
\{\omega \geq c\}=\{v \in V ; \quad\langle\omega, v\rangle \geq c\}, \quad\left(\omega \in V^{*}\right)
$$

A convex polyhedral cone (c.p. cone for brevity) is a convex set described as a finite intersection of half-spaces containing the origin. Every c.p. cone is finitely generated i.e. there exists a finite set of vectors $F \subset C$ such that

$$
C=\left\{\sum_{\vec{v} \in F} t_{\vec{v}} \vec{v} ; \quad t_{\vec{v}} \geq 0, \quad \forall \vec{v} \in F\right\}
$$

For every set $A \subset V$ we denote by $\operatorname{Lin}(A)$ the linear span of A. For every c.p. cone C we set

$$
\operatorname{dim} C=\operatorname{dim} \operatorname{Lin}(C) .
$$

A c.p. cone is called simplicial if it is generated by $\operatorname{dim} C$-vectors. For every c.p. cone C we define its relative interior (denoted by $\operatorname{relint}(C)$) to be the interior of C with respect to the topology induced from $\operatorname{Lin}(C)$.

A supporting hyperplane of a set $A \subset V$ is a hyperplane $\{\omega=c\}$ with the property

$$
A \cap\{\omega=c\} \neq \emptyset, \quad A \subset\{\omega \geq c\} .
$$

We will refer to $\{\omega \geq c\}$ as a supporting half-space. The Hahn-Banach separation theorem implies that every closed convex set is equal to the intersection of all its supporting halfspaces.

For every convex cone $C \subset V$ we define its polar to be the set

$$
C^{v}=\left\{\omega \in V^{*} ; C \subset\{\omega \geq 0\}\right\} .
$$

We set

$$
C^{\perp}:=\left\{\omega \in V^{*} ; C \subset\{\omega=0\}\right\} .
$$

If we identify V with its bidual $V^{* *}$ we have the equality

$$
C=\left(C^{\vee}\right)^{\vee} .
$$

We also have the following relationships

$$
\begin{equation*}
\left(C_{1} \cap C_{2}\right)^{\vee}=C_{1}^{\vee}+C_{2}^{\vee}, \quad\left(C_{1}+C_{2}\right)^{\vee}=C_{1}^{\vee} \cap C_{2}^{\vee} \tag{15.1.1}
\end{equation*}
$$

All the above equalities follow from the Hahn-Banach separation theorem.
Farkas theorem states that the polar of a c.p. cone is a c.p. cone.
A face of a c.p. cone C is a c.p. cone obtained by intersecting C with a supporting hyperplane. We will use the notation $C^{\prime} \preceq C$ to indicate that C^{\prime} is a face of the c.p. cone C. Every c.p. cone C has a unique minimal face which is a linear subspace. It is usually called the cospan of C and denoted by cospan (C). A facet is a face of dimension $\operatorname{dim} C-1$.

The c.p. cone is said to have an apex if the minimal face is zero dimensional, i.e. it is the origin.

We denote by $\mathcal{F}(C)$ the set of faces of C. The correspondence

$$
\mathcal{F}(C) \ni F \mapsto F^{\perp} \cap C^{\vee}
$$

defines an order reversing bijection $\Xi_{C}: \mathcal{F}(C) \rightarrow \mathcal{F}\left(C^{\vee}\right)$. Its inverse is $\Xi_{C^{v}}$.

Suppose $S \hookrightarrow S^{\prime}$ are two normal submonoids of the lattice \mathcal{X} defined by the convex rational polyhedral cones $C \subset C^{\prime}$. We obtain an inclusion

$$
\mathbb{C}[S] \hookrightarrow \mathbb{C}\left[S^{\prime}\right]
$$

and thus a morphism of affine varieties $X_{S^{\prime}} \rightarrow X_{S}$. This morphism is $\mathbb{T}_{x v}$-equivariant, $\mathbb{T}_{x^{v}}=\operatorname{Hom}\left(X, \mathbb{C}^{*}\right)$.

Example 15.1.7. Suppose $S^{\prime} \subset \mathbb{Z}^{2}$ is the monoid

$$
S^{\prime}=\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}
$$

and $S \subset S^{\prime}$ is the monoid corresponding to the cone C spanned by the vectors $B=(2,1)$ and $C=(1,2)$ (see Figure 15.1).

Figure 15.1: Two normal submonoids in \mathbb{Z}^{2}.
Then S is generated by the vectors $A=(1,1), B$ and C and satisfy a unique relation

$$
3 A=B+C .
$$

We deduce that X_{S} is the hypersurface in the affine space \mathbb{C}^{3} with coordinates (a, b, c) described by the equation

$$
a^{3}=b c
$$

$X_{S^{\prime}}$ is the affine plane \mathbb{C}^{2} with coordinates (x, y) and the map $X_{S^{\prime}} \rightarrow X_{S}$ is described by

$$
(x, y) \stackrel{\Phi}{\longmapsto}(a, b, c)=\left(x y, x^{2} y, x y^{2}\right) .
$$

Note that the map Φ is not one-to-one. More precisely

$$
\Phi^{-1}(0,0,0)=\{x y=0\}=x-\text { axis } \cup y \text { - axis. }
$$

Proposition 15.1.8. Suppose $S \subset \hat{S} \subset \mathcal{X}$ are two normal monoids such that $X_{S}=X_{\hat{S}}=X$. The following statements are equivalent.
(a) The induced map

$$
\Phi: \hat{X}=X_{\hat{S}} \rightarrow X_{S}=X
$$

is an open embedding.
(b) There exists $u \in S \backslash 0$ such that

$$
\hat{S}=\mathbb{Z}_{\geq 0} \cdot(-u)+S=\mathbb{Z} \cdot u+S
$$

Proof $(\mathrm{a}) \Rightarrow(\mathrm{b})$. For every point $\hat{\mu} \in \hat{X}$, i.e. a morphism of semigroups

$$
\hat{\mu}:(\hat{S},+) \rightarrow(\mathbb{C}, \cdot),
$$

we define its support to be

$$
\operatorname{supp} \hat{\mu}:=\left\{\chi \in \hat{S} ; \quad \hat{\mu}^{\chi}=0\right\} .
$$

Note first that $\operatorname{supp} \hat{\mu}$ is a saturated sub-monoid of \hat{S}. Moreover, it has the propriety that

$$
\chi_{1}+\chi_{2} \in \operatorname{supp} \hat{\mu}, \quad \chi_{1}, \chi_{2} \in \hat{S} \Longrightarrow \chi_{1}, \chi_{2} \in \operatorname{supp} \hat{\mu}
$$

We deduce $\operatorname{supp} \mu$ must be a face of the cone $\hat{C}=C_{\hat{S}}$. Conversely for every face \hat{F} of \hat{C} we can find a canonical point $\mu_{\hat{F}}$ such that $\operatorname{supp} \mu_{\hat{F}}=\hat{F}$. More precisely

$$
\mu_{\hat{F}}^{\chi}=\left\{\begin{array}{lll}
1 & \text { if } & \chi \in \hat{F} \\
0 & \text { if } & \chi \notin \hat{F}
\end{array}\right.
$$

We set $C=C_{S}$. Observe that for every face \hat{F} of $\hat{C}, \hat{F} \cap C$ is a face of C and we have

$$
\Phi\left(\mu_{\hat{F}}\right)=\mu_{\hat{F} \cap C} \in X
$$

In particular, we deduce that if \hat{F}_{1} and \hat{F}_{2} are distinct faces of \hat{C} then $\hat{F}_{1} \cap C$ and $\hat{F}_{2} \cap C$ are distinct faces of C. Denote by $\hat{F}_{\text {min }}$ the unique minimal face (cospan) of \hat{C}. Observe that

$$
\hat{F}_{\min }=\operatorname{Lin}\left(\hat{F}_{\min }\right)
$$

We want to show that

$$
\begin{equation*}
\operatorname{Lin}\left(\hat{F}_{\text {min }} \cap C\right)=\operatorname{Lin}\left(\hat{F}_{\text {min }}\right)=\hat{F}_{\text {min }} . \tag{15.1.2}
\end{equation*}
$$

We argue by contradiction. Suppose there exists

$$
\chi_{0} \in \mathcal{X} \cap\left(\hat{F}_{\min } \backslash \operatorname{Lin}\left(\hat{F}_{\min } \cap C\right)\right)
$$

Fix $t_{0} \in \mathbb{C}^{*} \backslash\{1\}$ and denote by $G \subset \mathcal{X} \cap \hat{F}_{\text {min }}$ the Abelian group generated by $\hat{F}_{\text {min }} \cap C$ and χ_{0}. Consider $\zeta \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ defined by

$$
\left.\zeta\right|_{\hat{F}_{\min } \cap C}=1, \quad \zeta^{\chi_{0}}=t^{0} .
$$

Since \mathbb{C}^{*} is an injective \mathbb{Z}-module we can extend ζ to a morphism $\zeta: X \cap \hat{F}_{\text {min }} \rightarrow \mathbb{C}^{*}$. Define a morphism of semigroups $\tilde{\zeta}: \hat{S} \rightarrow(\mathbb{C}, \cdot)$ by setting

$$
\tilde{\zeta}(\chi)=\left\{\begin{array}{rll}
\zeta^{\chi} & \text { if } & \chi \in \hat{F}_{\min } \\
0 & \text { if } & \chi \in \hat{S} \backslash \hat{F}_{\min }
\end{array}\right.
$$

Observe that

$$
\tilde{\zeta} \neq \mu_{\hat{F}_{m i n}}, \quad \Phi(\tilde{\zeta})=\left.\tilde{\zeta}\right|_{S}=\mu_{\hat{F}_{m i n}} \mid S=\Phi\left(\mu_{F_{m i n}}\right) .
$$

This contradiction proves (15.1.2).
Since the correspondence $\hat{F} \mapsto \hat{F} \cap C$ is order preserving we deduce from (15.1.2) and the equality $\operatorname{dim} X_{S}=\operatorname{dim} X_{\hat{S}}$ that

$$
\operatorname{dim} \hat{F}=\operatorname{dim} \hat{F} \cap C, \text { for all faces } \hat{F} \text { of } \hat{C}
$$

In other words, every face of \hat{C} contains a unique face of C of the same dimension.
We claim that

$$
\hat{C}=\hat{F}_{\min }+C
$$

The inclusion $\hat{F}_{\text {min }}+C \subset \hat{C}$ is obvious. If $\hat{C} \backslash\left(\hat{F}_{\min }+C\right) \neq \emptyset$ then we would be able to find a face \hat{F} of \hat{C} with the property

$$
\hat{F} \supsetneq \hat{F}_{\text {min }}, \quad \hat{F} \cap C=\hat{F}_{\text {min }}
$$

which contradicts the injectivity of Φ.
Observe now that

$$
\hat{F}_{\min }+C=\mathbb{R}_{\geq 0} \cdot(-u)+C, \quad \forall u \in\left(\hat{F}_{\min } \cap C\right) \backslash 0
$$

In particular, if we choose $u \in S \cap \hat{F}_{\text {min }}$ we deduce

$$
\hat{S} \supset \mathbb{Z}_{\geq 0}(-u)+S=\mathbb{Z} u+S
$$

Conversely, let $\hat{\chi} \in \hat{S}$. Then there exist $a, b \in \mathbb{Q} \geq 0$ and $\chi \in S$ such that

$$
\hat{\chi}=-a u+b \chi
$$

Hence for any integer $n>a$ we have

$$
\hat{\chi}+n u \in \mathcal{X} \cap C=S \Longrightarrow \hat{\chi} \in \mathbb{Z} \cdot u+S
$$

To prove the reverse implication observe that in this case we have

$$
\mathbb{C}[\hat{S}]=\mathbb{C}\left[S, u^{-1}\right]
$$

so that the variety \hat{X} is the principal open set $D\left(T^{u}\right)=\left\{p \in X ; \quad T^{u}(p) \neq 0\right\}$.
We would like to understand the orbit structure of an affine toric variety. Consider a n dimensional lattice \mathcal{W} with dual $\mathcal{X}=\mathcal{W}^{v}$. Fix a n-dimensional rational c.p. cone $C \subset \mathcal{X} \otimes \mathbb{R}$. We set $S=X \cap C, X=X_{S}, \mathbb{T}_{\mathcal{W}}=\operatorname{Hom}\left(X, \mathbb{C}^{*}\right)$. As we have seen in the proof of Proposition 15.1.8 every face F of C determines a canonical point μ_{F} on X defined by

$$
T^{\chi}\left(\mu_{F}\right)=\left\{\begin{array}{lll}
1 & \text { if } & \chi \in F \\
0 & \text { if } & \chi \in S \backslash F
\end{array} .\right.
$$

 x / X_{F} and $\mathcal{W} / \mathcal{W}_{F}$ are free Abelian groups

$$
x_{F} \cong\left(\mathcal{W} / \mathcal{W}_{F}\right)^{v}, \quad\left(X / X_{F}\right) \cong\left(\mathcal{W}_{F}\right)^{\vee}
$$

and we have a split short exact sequence

$$
\begin{equation*}
0 \rightarrow x_{F} \rightarrow x \rightarrow x / x_{F} \rightarrow 0 \tag{15.1.3}
\end{equation*}
$$

Dualizing we get a split short exact sequence

$$
\begin{equation*}
1 \rightarrow \mathbb{T}_{\mathcal{W}_{F}} \rightarrow \mathbb{T}_{\mathcal{W}} \rightarrow \mathbb{T}_{\mathcal{W} / \mathcal{W}_{F}} \rightarrow 1 \tag{15.1.4}
\end{equation*}
$$

The torus $\mathbb{T}_{\mathcal{W}_{F}}$ is the stabilizer of μ_{F} and we deduce that the orbit $\left[\mu_{F}\right]$ is biholomorphic to $\mathbb{T}_{\mathcal{W} / \mathcal{W}_{F}}$. In particular

$$
\operatorname{dim}_{\mathbb{C}}\left[\mu_{F}\right]=\operatorname{dim}_{\mathbb{R}} \operatorname{Lin} F .
$$

Note that a splitting of (15.1.3) defines a holomorphic splitting of (15.1.4). For every face F we fix once and for all a holomorphic splitting

$$
\begin{equation*}
s_{F} \in \operatorname{Hom}\left(\mathbb{T}_{\mathcal{W} / \mathcal{W}_{F}}, \mathbb{T}_{\mathcal{W}}\right) \tag{15.1.5}
\end{equation*}
$$

Proposition 15.1.9.

$$
X=\bigcup_{F \prec C}\left[\mu_{F}\right]
$$

Proof We only have to establish the inclusion " \subset ". Consider a point $\mu \in X$. We can identify it with a semigroup morphism

$$
\mu:(S,+) \rightarrow(\mathbb{C}, \cdot)
$$

Its support $\operatorname{supp} \mu=\{\chi \in S ; \mu(\chi) \neq 0\}$ is a face F of C. We will prove that $\mu \in\left[\mu_{F}\right]$.
Let $X_{F}=X \cap \operatorname{Lin} F$. The semigroup morphism

$$
\mu: S \cap F \rightarrow\left(\mathbb{C}^{*}, \cdot\right)
$$

extends to a group morphism $\mu: X_{F} \rightarrow \mathbb{C}^{*}$. Using the injectivity of \mathbb{C}^{*} as a \mathbb{Z}-module we can extend this group morphism to a group morphism

$$
\vec{z} \in \operatorname{Hom}\left(X, \mathbb{C}^{*}\right)=\mathbb{T}_{\mathcal{W}}
$$

Then $\mu=\vec{z} \cdot \mu_{F}$.
To complete the picture of the $\mathbb{T}_{\mathcal{W}}$-action we need to understand how the various orbits fit together, i.e. we need to understand their closures (in the usual topology). We have the following result.

Proposition 15.1.10.

$$
\mu \in \overline{\left[\mu_{F^{\prime}}\right]} \Longleftrightarrow \exists F \prec F^{\prime}: \quad \mu \in\left[\mu_{F}\right] .
$$

Proof We begin by proving the implication \Rightarrow. Using the Curve Selection Lemma we deduce that there exists a holomorphic curve

$$
\gamma: \mathbb{D} \rightarrow X, \quad \gamma(0)=\mu, \quad \gamma\left(\mathbb{D}^{*}\right) \subset\left[\mu_{F^{\prime}}\right]=\mathbb{T}_{\mathcal{W} / \mathcal{W}_{F^{\prime}}}
$$

Using the splitting $s_{F^{\prime}}$ we obtain a holomorphic map

$$
\vec{\zeta}: \mathbb{D}^{*} \rightarrow \mathbb{T}_{\mathcal{W}}
$$

such that $\vec{\zeta}(t) \cdot \mu_{F^{\prime}}=\gamma(t)$ and

$$
\lim _{t \rightarrow 0} \vec{\zeta}(t) \cdot \mu_{F^{\prime}}=\mu .
$$

We deduce that for every $\chi \in F^{\prime}$ the limit

$$
\lim _{t \rightarrow 0} \vec{\zeta}(t)^{\chi}=\lim _{t \rightarrow 0} T^{\chi}\left(\vec{\zeta}(t) \cdot \mu_{F^{\prime}}\right)
$$

exists and it is finite. For every $\chi \in S \cap F^{\prime}$ we denote by $\omega(\chi) \in \mathbb{Z}_{\geq 0}$ the order of vanishing at 0 of the function

$$
t \mapsto T^{\chi}\left(\vec{\zeta}(t) \cdot \mu_{F^{\prime}}\right)
$$

Note that $\omega\left(\chi+\chi^{\prime}\right)=\omega(\chi)+\omega\left(\chi^{\prime}\right)$. We extend ω to a linear functional

$$
\omega \in \operatorname{Hom}\left(X_{F}, \mathbb{Z}\right) \cong \mathcal{W}_{F} \hookrightarrow \mathcal{W}
$$

Thus we can assume that ω is the restriction of a weight $\vec{w} \in \mathcal{W}$, i.e.

$$
\omega(\chi)=\langle\chi, \vec{w}\rangle, \quad \forall \chi \in S \cap F^{\prime} .
$$

Since $\left.\vec{w}\right|_{F^{\prime}} \geq 0$ we deduce that $\{\vec{w}=0\}$ is a supporting hyperplane of F^{\prime}. In particular $F=\{\vec{w}=0\} \cap F^{\prime}$ is a face of F^{\prime}. It is now clear that

$$
\mu=\lim _{t \rightarrow 0} \vec{\zeta}(t) \cdot \mu_{F^{\prime}} \in\left[\mu_{F}\right], \quad F \prec F^{\prime} .
$$

The opposite implication follows by observing that

$$
F \prec F^{\prime} \Longrightarrow \mu_{F} \in \overline{\left[\mu_{F^{\prime}}\right]} .
$$

To see this choose a supporting hyperplane $\{\vec{w}=0\}$ of F^{\prime} such that $F=\{\vec{w}=0\} \cap F^{\prime}$. The weight defines a one-parameter subgroup $t^{\vec{w}}: \mathbb{C}^{*} \rightarrow \mathbb{T}_{\mathcal{W}}$ and

$$
\mu_{F}=\lim _{t \rightarrow 0} t^{\vec{w}} \cdot \mu_{F^{\prime}} .
$$

We want to investigate the nature of the singularities of an affine toric variety. Suppose X is a n-dimensional lattice and $C \subset V=X \otimes \mathbb{R}$ is a rational c.p. cone of the same dimension as X. Set $S=C \cap X$. Denote by $F_{\min }$ its minimal face. It is a linear subspace of V and we set

$$
d_{\min }=\operatorname{dim} F_{\min }, \quad \mathcal{W}_{\min }=\mathcal{W} \cap F_{\min }, \quad V_{\text {red }}:=V / F_{\min }
$$

The quotient $X / X_{\min }$ is a lattice in $V_{\text {red }}$ which we denote by $X_{\text {red }}$ We denote by π the natural projection $V \rightarrow V_{\text {red }}$ and we set

$$
C_{r e d}=\pi(C), \quad S_{r e d}=C_{r e d} \cap \mathcal{W}_{\text {red }} .
$$

Then $C_{\text {red }}$ is a rational c.p. cone with an apex. The projection π induces a surjective morphism of \mathbb{C}-algebras $\mathbb{C}[S] \rightarrow \mathbb{C}\left[S_{\text {red }}\right]$ and thus a closed embedding

$$
X_{\text {red }}=X_{S_{\text {red }}} \hookrightarrow X=X_{S}
$$

The short exact sequence

$$
0 \rightarrow X_{\min } \rightarrow x \rightarrow X_{\text {red }} \rightarrow 0
$$

is split since $X_{\text {red }}$ is a free Abelian group. By choosing a splitting of the above sequence we obtain an isomorphism

$$
\mathbb{C}[S] \cong \mathbb{C}\left[S_{r e d}\right] \otimes \mathbb{C}\left[X_{\text {min }}\right] \Longrightarrow X \cong X_{\text {red }} \times \mathbb{T}^{d_{m i n}}
$$

This shows that all the singularities of X are due to singularities of $X_{\text {red }}$. Thus to understand the singularities of an affine toric variety it suffices to consider only the case when $C=C_{\text {red }}$, i.e. C has an apex. In this case one can show (see [20, §3.3] or $[26, \S 2.1]$) the following.

Proposition 15.1.11. $X_{\text {red }}$ is nonsingular if and only if there exists a \mathbb{Z}-basis $\left\{e_{i}\right\}_{i \in I}$ of \mathcal{W} which generates $S_{\text {red }}$.

In general the structure of the singularities can be quite complicated. For now we content ourselves with a simple but very suggestive example.

Example 15.1.12 (Toric quotient singularities). Consider two lattices $i: \mathcal{W} \hookrightarrow \mathcal{W}_{0}$ such that $H:=\mathcal{W} / \mathcal{W}_{0}$ is a finite Abelian group. Set

$$
X_{0}=\operatorname{Hom}\left(\mathcal{W}_{0}, \mathbb{Z}\right), \quad X=\operatorname{Hom}(\mathcal{W}, \mathbb{Z})
$$

Observe that the dual map $i^{\vee}: X_{0} \rightarrow X$ is an injection. Fix a \mathbb{Z}-basis $\left\{e^{1}, \cdots, e^{n} ; n=\right.$ $\operatorname{dim} X\}$ of X, denote by $\left\{e_{1}, \cdots, e_{n}\right\}$ the dual basis of \mathcal{W}, denote by $C \subset X \otimes \mathbb{R}=X_{0} \otimes \mathbb{R}$ the cone spanned by these vectors and then set

$$
S=C \cap X, \quad S_{0}=C \cap X_{0}, \quad X=X_{S}, \quad X_{0}=X_{S_{0}}
$$

Note that $\mathbb{C}[S] \cong \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ is a finite extension of the \mathbb{C}-algebra $\mathbb{C}\left[S_{0}\right]$ and thus we have a finite map

$$
\mathbb{C}^{n} \cong X \rightarrow X_{0}
$$

We would like to understand explicitly this map.
We denote by \hat{H} the Pontryagin dual of $H, \hat{H}:=\operatorname{Hom}\left(H, \mathbb{C}^{*}\right)$. Note that every $u \in$ $X=\operatorname{Hom}(\mathcal{W}, \mathbb{Z})$ extends uniquely to a \mathbb{Z}-linear map $\hat{u}: \mathcal{W}_{0} \rightarrow \mathbb{Q}$ such that $\hat{u}(\mathcal{W}) \subset \mathbb{Z}$. We obtain in this fashion a character

$$
\chi_{u}: \mathcal{W}_{0} / \mathcal{W} \rightarrow \mathbb{C}^{*}, \quad \vec{w} \mapsto \exp (2 \pi i\langle\hat{u}, \vec{w}\rangle)
$$

Note that when $u \in X_{0} \subset X$ then $\chi_{u} \equiv 1$. The correspondence $X \ni u \mapsto \chi_{u} \in \hat{H}$ thus descends to a morphism $X / X_{0} \rightarrow \hat{H}$ which can be easily seen to be an isomorphism. We can rephrase this as a nondegenerate pairing

$$
q: \mathcal{X} / \mathcal{X}_{0} \times \mathcal{W}_{0} / \mathcal{W} \rightarrow \mathbb{C}^{*}
$$

By dualizing the short exact sequence $0 \rightarrow X_{0} \rightarrow X \rightarrow \hat{H} \rightarrow 0$ we obtain the short exact sequence

$$
1 \rightarrow H \rightarrow \mathbb{T}_{\mathcal{W}} \rightarrow \mathbb{T}_{\mathcal{W}_{0}} \rightarrow 1
$$

from which we deduce that

$$
\begin{equation*}
\vec{z}^{\chi}=1, \forall \vec{z} \in H \subset \mathbb{T}_{\mathcal{W}} \Longleftrightarrow \chi \in X_{0} . \tag{15.1.6}
\end{equation*}
$$

Since H is a subgroup of $\mathbb{T}_{\mathcal{W}}$ it acts in a natural fashion on X. We want to prove that the image of $\mathbb{C}\left[S_{0}\right]$ in $\mathbb{C}[S]$ coincides with the subring $\mathbb{C}[S]^{H}$ of H-invariant elements of $\mathbb{C}[S]$. Let

$$
f=\sum_{\chi \in S} a_{\chi} T^{\chi} \in \mathbb{C}[S] .
$$

Then f is H-invariant if and only if

$$
a_{\chi}=\vec{\zeta}^{\chi} a_{\chi}, \quad \forall \vec{\zeta} \in H, \quad \forall \chi
$$

Using (15.1.6) we deduce that $\sum_{\chi \in S} a_{\chi} T^{\chi}$ is H-invariant iff $\chi \in X_{0}$ when $a_{\chi} \neq 0$ and thus

$$
\mathbb{C}\left[S_{0}\right] \cong \mathbb{C}[S]^{H}
$$

Hence $X_{0} \cong \mathbb{C}^{n} / H$.

15.2 Toric varieties associated to fans

Consider a n-dimensional lattice \mathcal{W}. We will regard it as the lattice of weights of the complex torus

$$
\mathbb{T}_{\mathcal{W}}=\operatorname{Hom}\left(X, \mathbb{C}^{*}\right), \quad X=\mathcal{W}^{v}
$$

x is therefore the lattice of characters of $\mathbb{T}_{\mathcal{W}}$. Set

$$
\mathcal{W}_{\mathbb{R}}=\mathcal{W} \otimes \mathbb{R}, \quad x_{\mathbb{R}}=X \otimes \mathbb{R}
$$

We will identify $\mathcal{X}_{\mathbb{R}}^{*}$ with $\mathcal{W}_{\mathbb{R}}$ and $\mathcal{W}_{\mathbb{R}}^{*}$ with $\mathcal{X}_{\mathbb{R}}$.

A fan (or a \mathcal{W}-fan) is a finite collection \mathcal{E} of c.p. cones in $\mathcal{W}_{\mathbb{R}}$ satisfying the following conditions.

- Each cone in \mathcal{E} is rational with respect to \mathcal{W}.
- Every cone in \mathcal{E} has an apex.
- If σ is a cone in \mathcal{E} and τ is a face of σ then τ is also in \mathcal{E}.
- If $\sigma, \sigma^{\prime} \in \mathcal{E}$ then $\sigma \cap \sigma^{\prime} \prec \sigma, \sigma^{\prime}$.

We will sometime refer to the cones of a fan as its faces. The subset of \mathcal{E} consisting of its k-dimensional faces is denoted by $\mathcal{E}^{(k)}$. For every cone $\sigma \in \mathcal{E}$ we denote by $\partial_{k} \sigma$ the collection of its k-dimensional faces. We define the support $|\mathcal{E}| \subset \mathcal{W}_{\mathbb{R}}$ of the fan \mathcal{E} to be the union of all the cones (faces) in \mathcal{E}. For a cone $\sigma \in \mathcal{E}$ we set

$$
S_{\sigma}:=\sigma^{\vee} \cap X, \quad X_{\sigma}:=X_{S_{\sigma}} .
$$

Observe that if $\tau \prec \sigma$ then $S_{\tau} \supset S_{\sigma}$ and we have a map

$$
I_{\sigma \tau}: X_{\tau} \rightarrow X_{\sigma}
$$

Clearly we have

$$
I_{\sigma \varphi}=I_{\sigma \tau} \circ I_{\tau \varphi}, \quad \forall \varphi \prec \tau \prec \sigma .
$$

We obtain in this fashion an inductive family $\left\{X_{\sigma}\right\}_{\sigma \in \mathcal{E}}$ of affine toric varieties. The toric variety associated to the fan \mathcal{E} will be the inductive limit of this family. We will denote it by $X(\varepsilon)$.

To prove that this inductive limit exists as a topological space we need to investigate the maps

$$
I_{\sigma \tau}: X_{\tau} \rightarrow X_{\sigma}, \quad \tau \prec \sigma .
$$

Equivalently, we need to investigate the inclusion

$$
\sigma^{\vee} \cap x \hookrightarrow \tau^{\vee} \cap x
$$

Observe that there exists $\chi_{0} \in\left(\right.$ relint $\left.\sigma^{\vee}\right) \cap \mathcal{X}$ such that

$$
\tau=\sigma \cap\left\{\left\langle\bullet, \chi_{0}\right\rangle=0\right\}
$$

Then

$$
\tau^{\vee}=\sigma^{\vee}+\left\{\left\langle\bullet, \chi_{0}\right\rangle=0\right\}^{\vee}=\sigma^{\vee}+\mathbb{R} \chi_{0}=\sigma^{\vee}+\mathbb{R}_{\geq 0}\left(-\chi_{0}\right)
$$

We deduce that

$$
\tau^{\vee} \cap \mathcal{X}=\sigma^{\vee} \cap X+\mathbb{Z}_{\geq 0}\left(-\chi_{0}\right)
$$

As we have seen in Proposition 15.1.8 this means that X_{τ} can be identified with the principal open set

$$
\left\{T^{\chi_{0}} \neq 0\right\} \subset X_{\sigma}
$$

so that the map $I_{\sigma \tau}$ is a $\mathbb{T}_{\mathcal{W}}$-equivariant open embedding. Thus we can identify X_{τ} with an open subset of X_{σ}. The inductive limit is then

$$
X=\left(\bigsqcup_{\sigma \in \mathcal{E}} X_{\sigma}\right) / \sim,
$$

where

$$
X_{\tau} \ni p \sim q \in X_{\sigma} \Longleftrightarrow \exists \varphi \in \mathcal{E}, \quad \exists r \in X_{\varphi}: \quad \varphi \prec \tau, \sigma, \quad p=I_{\tau \varphi}(r), \quad q=I_{\sigma \varphi}(r)
$$

Equip X with the quotient topology. We have natural embeddings $I_{\sigma}: X_{\sigma} \hookrightarrow X$. A set $U \subset X$ is open if and only if $I_{\sigma}^{-1}(U)$ is open in X_{σ} (with respect to the Euclidean topology.

In general a gluing construction can produce very bad spaces. Take for example the space X obtained by gluing two copies of the line \mathbb{C} along \mathbb{C}^{*} using the identity map $\mathbb{1}_{\mathbb{C}^{*}}$. Equivalently, X is the inductive limit of the family

$$
X_{0}=\mathbb{C}^{*}, \quad X_{1}=X_{2}=\mathbb{C},
$$

where the injection $X_{0} \rightarrow X_{i}$ is the canonical inclusion $\mathbb{C}^{*} \hookrightarrow \mathbb{C}$. The origin in $0 \in X_{i}$ defines a point $x_{i} \in X$. We have $x_{1} \neq x_{2}$ but these two points cannot be separated by open neighborhoods. We want to show that this kind of pathology does not occur in the inductive limits constructed with the aide of fans.

Lemma 15.2.1. (a) For every $\sigma, \tau \in \mathcal{E}$ the image of the diagonal inclusion

$$
\Delta_{\sigma \tau}: X_{\sigma \cap \tau} \rightarrow X_{\sigma} \times X_{\tau}, \quad x \mapsto\left(I_{\sigma, \sigma \cap \tau}(x), I_{\tau, \sigma \cap \tau}(x)\right.
$$

is closed with respect to the product Euclidean topology on $X_{\sigma} \times X_{\tau}$.
(b) X is a Hausdorff space.

Proof (a) We will prove a stronger result, namely that the image of $\Delta_{\sigma \tau}$ is Zariski closed ${ }^{1}$ in $X_{\sigma} \times X_{\tau}$. This is equivalent to showing that the induced morphism between the algebras of regular functions

$$
\Phi: \mathbb{C}\left[X_{\sigma}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[S_{\tau}\right] \rightarrow \mathbb{C}\left[S_{\sigma \cap \tau}\right]
$$

is surjective. Let us first describe this morphism. We have

$$
\mathbb{C}\left[X_{\sigma}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[S_{\tau}\right]=\left\{\sum_{(\chi, \lambda) \in\left(\sigma^{\vee} \times \tau^{v}\right) \cap(x \times x)} a_{\chi \lambda} U^{\chi} S^{\lambda} ; \quad a_{\chi \lambda} \neq 0 \text { for only finitely many }(\chi, \lambda)\right\} .
$$

The morphism Φ is given by

$$
\sum_{(\chi, \lambda) \in\left(\sigma^{\vee} \times \tau^{\vee}\right) \cap(X \times X)} a_{\chi \lambda} U^{\chi} S^{\lambda} \longmapsto \sum_{(\chi, \lambda) \in\left(\sigma^{\vee} \times \tau^{\vee}\right) \cap(X \times X)} a_{\chi \lambda} T^{\chi+\lambda}
$$

Using (15.1.1) we deduce $(\sigma \cap \tau)^{\vee}=\sigma^{\vee}+\tau^{\vee}$ which implies immediately that Φ is surjective. (b) It suffices to prove that the diagonal $\Delta_{X} \subset X \times X$ is closed with respect to the product topology on $X \times X$. Let $\left(x_{1}, x_{2}\right) \in X \times X \backslash \Delta_{X}$, i.e. $x_{1} \neq x_{2}$. Then there exist $\sigma_{i} \in \mathcal{E}$ and $y_{i} \in X_{\sigma_{i}}$ such that $x_{i}=I_{\sigma_{i}}\left(y_{i}\right)$. Using (a) we can find open neighborhoods U_{i} of $y_{i} \in X_{\sigma_{i}}$ such that $U_{1} \times U_{2}$ does not intersect the image of the diagonal map

$$
\Delta_{\sigma_{1} \sigma_{2}}: X_{\sigma_{1} \cap \sigma_{2}} \rightarrow X_{\sigma_{1}} \times X_{\sigma_{2}}
$$

[^12]Then $I_{\sigma_{1}}\left(U_{1}\right) \times I_{\sigma_{2}}\left(U_{2}\right) \subset X \times X$ does not intersect the diagonal Δ_{X}, i.e.

$$
x_{i} \in I_{\sigma_{i}}\left(U_{i}\right) \text { and } I_{\sigma_{1}}\left(U_{1}\right) \cap I_{\sigma_{2}}\left(U_{2}\right)=\emptyset .
$$

The structural sheaves on X_{σ} can be glued together to a sheaf \mathcal{O}_{X} on X and the resulting ringed space $\left(X, \vartheta_{X}\right)$ is a complex analytic variety which we denote by $X(\varepsilon)$. From Proposition 15.1 .11 we deduce that $X(\varepsilon)$ is smooth if and only if every cone σ in the fan \mathcal{E} is generated by a finite collection weights which is part of a \mathbb{Z}-basis of \mathcal{W}. Motivated by this we will say that a cone $\sigma \subset \mathcal{W}_{\mathbb{R}}$ is regular simplicial if it is generated by a part of a \mathbb{Z}-basis of \mathcal{W}. If all the cones in \mathcal{E} are regular simplicial (resp. simplicial) we say that \mathcal{E} is regular simplicial (resp. simplicial)

Let us describe the orbit structure on $X(\mathcal{E})$. For every $\sigma \in \mathcal{E}$ and for every face $\tau \prec \sigma$ we obtain a face $\sigma^{\vee} \cap \tau^{\perp}$ of σ^{\vee} and thus a point

$$
x_{\sigma \tau}:=\mu_{\sigma^{\vee} \cap \tau^{\prime}} \perp X_{\sigma} .
$$

More precisely, $x_{\sigma \tau}$ is defined by the semigroup morphism

$$
x_{\sigma \tau}: \sigma^{\vee} \cap \mathcal{W} \rightarrow(\mathbb{C}, \cdot), \quad x_{\sigma \tau}^{\chi}=\left\{\begin{array}{lll}
1 & \text { if } & \chi \in \sigma^{\vee} \cap \tau^{\perp} \\
0 & \text { if } & \chi \in \sigma^{\vee} \backslash \tau^{\perp} .
\end{array}\right.
$$

The face $\sigma_{\text {min }}^{\vee}=\sigma^{\vee} \cap \sigma^{\perp}$ is the minimal face (cospan) of σ^{\vee} and we set

$$
x_{\sigma}=x_{\sigma \sigma}=\mu_{\sigma_{\text {min }}^{v}} .
$$

It is now easy to check that

$$
I_{\sigma \tau} x_{\tau}=x_{\sigma \tau}, \quad I_{\sigma \tau} x_{\tau \varphi}=I_{\sigma \tau} I_{\tau \varphi} x_{\varphi}=x_{\sigma \varphi}
$$

We obtain a collection of distinguished points $\left\{x_{\sigma} ; \sigma \in \mathcal{E}\right\} \subset X$. We denote by \mathcal{O}_{σ} the $\mathbb{T}_{\mathcal{W}}$-orbit of x_{σ} and by $\overline{\mathcal{O}}_{\sigma}$ its closure in $X(\mathcal{E})$. Observe that

$$
\operatorname{dim} \mathcal{O}_{\sigma}=\operatorname{dim} \mathcal{W}-\operatorname{dim} \sigma
$$

If $\tau \prec \sigma$ then $\sigma^{\vee} \cap \sigma^{\perp} \prec \sigma^{\vee} \cap \tau^{\perp}$ so that

$$
\mathcal{O}_{\sigma} \subset \overline{\mathcal{O}}_{\tau}
$$

Thus the incidence relation between the $\mathbb{T}_{\mathcal{W}}$ orbits determines the incidence relation between the cones in the fan \mathcal{E}. The minimal cone in \mathcal{E}, is the origin 0 . We deduce that the orbit of x_{0} is open and dense in X and in particular X is a toric variety. Note that we have the following equalities

$$
\begin{equation*}
\overline{\mathcal{O}}_{\sigma}=\bigcup_{\tau \succ \sigma} \mathcal{O}_{\tau}, \quad X_{\sigma}=\bigcup_{\tau \prec \sigma} \mathcal{O}_{\tau} . \tag{15.2.1}
\end{equation*}
$$

We can now explain the roles of the cones in the fan. Let $\sigma \in \mathcal{E}$ and $\vec{w} \in \operatorname{relint} \sigma$. We obtain a one parameter subgroup $t^{\vec{w}}$ of $\mathbb{T}_{\mathcal{W}}$. Observe that

$$
t^{\vec{w}} \cdot x_{0}=t^{\vec{w}} \cdot x_{\sigma 0} \in X_{\sigma}, \quad \forall t \in \mathbb{C}^{*}
$$

More precisely $t^{\vec{w}} \cdot x_{0}$ has "coordinates"

$$
T^{\chi}\left(t^{\vec{w}} \cdot x_{0}\right)=t^{\langle\chi, \vec{w}\rangle}, \quad \forall \chi \in \sigma^{\vee} \cap x .
$$

Observe that $\langle\chi, \vec{w}\rangle \geq 0, \forall \chi \in \sigma^{\vee} \cap X$ and we conclude

$$
\lim _{t \rightarrow 0} t^{\vec{w}} \cdot x_{0}=x_{\sigma}
$$

Reversing this argument we deduce the following result.
Proposition 15.2.2.

$$
\vec{w} \in \operatorname{relint} \sigma \Longleftrightarrow \lim _{t \rightarrow 0} t^{\vec{w}} \cdot x_{\sigma 0}=x_{\sigma}
$$

Similarly, if $\tau \prec \sigma$ and $\vec{w} \in$ relint σ then

$$
\lim _{t \rightarrow 0} t^{\vec{w}} \cdot x_{\tau}=x_{\sigma} .
$$

Example 15.2.3 (The star of a face). Suppose \mathcal{E} is a fan in $\mathcal{W}_{\mathbb{R}}=\mathcal{W} \otimes \mathbb{R}$ and σ is a face of \mathcal{E}. The star of σ in \mathcal{E} is the collection of all the cones in \mathcal{E} which contain σ as a face. We will denote it by $\mathbf{S t}(\sigma)$ or $\mathbf{S t}(\sigma, \varepsilon)$. The equality (15.2.1) can be rephrased as

$$
\overline{\mathcal{O}}_{\sigma}=\bigcup_{\tau \in \operatorname{St}(\sigma)} \mathcal{O}_{\tau} .
$$

$\overline{\mathcal{O}}_{\sigma}$ is a toric variety and we want to describe explicitly a fan \mathcal{E}_{σ} such that

$$
\overline{\mathcal{O}}_{\sigma}=X\left(\mathcal{E}_{\sigma}\right) .
$$

Consider the lattice

$$
X_{\sigma}=\sigma^{\perp} \cap x .
$$

Then

$$
X_{\sigma}^{\vee} \cong \mathcal{W} / \mathcal{W}_{\sigma}, \quad \mathcal{W}_{\sigma}:=(\mathcal{W} \cap \operatorname{Lin} \sigma)
$$

We set $V=\mathcal{W}_{\mathbb{R}}, V_{\sigma}=V / \operatorname{Lin} \sigma$ and we denote by π_{σ} the natural projection

$$
\pi_{\sigma}: V \rightarrow V_{\sigma} .
$$

Note that

$$
V_{\sigma}=\operatorname{Hom}\left(X_{\sigma}, \mathbb{R}\right) \cong X_{\sigma}^{\vee} \otimes \mathbb{R}
$$

For $\tau \succ \sigma$ we set $\tau_{\sigma}:=\pi_{\sigma}(\tau) \subset V_{\sigma}$. Then

$$
\tau_{\sigma}^{\vee}=\tau^{\vee} \cap \sigma^{\perp}
$$

Note that τ_{σ}^{v} is a face of τ^{\vee}. The collection $\left\{\tau_{\sigma} ; \tau \in \mathbf{S t}(\sigma)\right\}$ is a fan in V_{σ} which we denote by \mathcal{E}_{σ}. For every $\tau \in \mathbf{S t}(\sigma)$ we have a natural closed embedding

$$
\Psi_{\tau}: X_{\tau_{\sigma}} \rightarrow X_{\tau}
$$

defined by the surjective morphism of \mathbb{C}-algebras

$$
\begin{aligned}
\mathbb{C}\left[\tau^{\vee} \cap X\right] & \rightarrow \mathbb{C}\left[\tau_{\sigma}^{\vee} \cap X_{\sigma}\right]=\mathbb{C}\left[\tau^{\vee} \cap \sigma^{\perp} \cap X\right] \\
T^{\chi} \longmapsto & \left\{\begin{array}{rll}
T^{\chi} & \text { if } & \chi \in \tau_{\sigma}^{\vee} \\
0 & \text { if } & \chi \in \sigma^{\vee} \backslash \tau_{\sigma}^{\vee}
\end{array}\right.
\end{aligned}
$$

Observe that

$$
\Psi_{\tau}\left(x_{\tau_{\sigma}}\right)=x_{\tau \sigma}, \quad \Psi_{\tau}\left(\mathcal{O}_{\tau_{\sigma}}\right)=\mathcal{O}_{\tau}
$$

The maps Ψ_{τ} fit together to a closed embedding

$$
X\left(\mathcal{E}_{\sigma}\right) \hookrightarrow X(\mathcal{E})
$$

whose image is precisely $\overline{\mathcal{O}}_{\sigma}$.
For every $\tau \in \mathbf{S t}(\sigma)$ the intersection $\overline{\mathcal{O}}_{\sigma} \cap X_{\tau}$ is a subvariety described by the ideal $\mathcal{J}_{\tau \sigma}$ generated by the monomials

$$
\left\{T^{\chi} ; \quad \chi \in\left(\tau^{\vee} \backslash \tau_{\sigma}^{v}\right) \cap X\right\} .
$$

Note that

$$
\chi \in \tau^{v} \backslash \tau_{\sigma}^{v} \Longleftrightarrow\langle\chi, \vec{u}\rangle \geq 0, \quad \forall \vec{u} \in \tau, \quad\langle\chi, \vec{v}\rangle>0, \quad \forall \vec{v} \in \operatorname{relint} \sigma .
$$

Exercise 15.2.1. Suppose \mathcal{E} is a \mathcal{W}-fan, $\sigma \in \mathcal{E}$ and $\vec{w} \in \mathcal{W}$. Then $\lim _{t \rightarrow 0} t^{\vec{w}} \cdot x_{\sigma}$ exists if and only if \vec{w} belongs to one of the cones in $\operatorname{St}(\sigma)$.

Suppose we are given a morphism of lattices $\Phi: \mathcal{W}_{0} \rightarrow \mathcal{W}_{1}$. We obtain a morphism

$$
\Phi^{\vee}: x_{1} \rightarrow x_{0}, \quad x_{i}=\mathcal{W}_{i}^{\vee}
$$

and a holomorphic morphism

$$
\Phi_{c}: \mathbb{T}_{\mathcal{W}_{0}} \rightarrow \mathbb{T}_{\mathcal{W}_{1}} .
$$

We say that Φ defines a morphism between fans \mathcal{E}_{i} in $\mathcal{W}_{i}, i=0,1$ if for every cone $\sigma_{0} \in \mathcal{E}_{0}$ there exists a cone $\sigma_{1} \in \mathcal{E}_{1}$ such that

$$
\Phi\left(\sigma_{0}\right) \subset \sigma_{1} .
$$

We obtain a morphism of monoids

$$
\Phi^{\vee}: \sigma_{1}^{\vee} \cap X_{1} \rightarrow \sigma_{0}^{\vee} \cap X_{0}
$$

and thus a morphism of affine varieties

$$
X_{\sigma_{0}} \xrightarrow{\Phi_{\sigma_{0}}} X_{\sigma_{1}} \hookrightarrow X\left(\mathcal{E}_{1}\right) .
$$

The morphism $\Phi_{\sigma_{0}}$ is independent of the choice of $\sigma_{1} \supset \Phi\left(\sigma_{0}\right)$. Moreover, for every $\tau_{0} \prec \sigma_{0}$ we have a commutative diagram

From the universality property of the inductive limit we deduce that Φ induces a map

$$
\Phi: X\left(\varepsilon_{0}\right) \rightarrow X\left(\varepsilon_{1}\right)
$$

For a proof of the following fact we refer to $[26, \S 2.4]$.
Proposition 15.2.4. The map $\Phi: X\left(\mathcal{E}_{0}\right) \rightarrow X\left(\mathcal{E}_{1}\right)$ is proper if and only if

$$
\left|\mathcal{E}_{0}\right|=\Phi^{-1}\left(\left|\mathcal{E}_{1}\right|\right)
$$

Corollary 15.2.5. $X(\mathcal{E})$ is compact if and only if $|\mathcal{E}|=\mathcal{W} \otimes \mathbb{R}$.
A subdvision of a \mathcal{W}-fan \mathcal{E} is a \mathcal{W}-fan \mathcal{E}^{\prime} such that every cone in \mathcal{E} is a union of cones in \mathcal{E}^{\prime}, i.e.

$$
\sigma=\sum_{\sigma^{\prime} \in \mathcal{\varepsilon}^{\prime}, \sigma^{\prime} \subset \sigma} \sigma^{\prime}, \quad \forall \sigma \in \mathcal{E}
$$

The induced map $X\left(\varepsilon^{\prime}\right) \rightarrow X(\varepsilon)$ is birational because it is proper and maps the open dense orbit of $X\left(\mathcal{E}^{\prime}\right)$ biholomorphically onto the open dense orbit of $X(\mathcal{E})$. For a proof of the following result we refer to [25, VI.8].

Theorem 15.2.6. Any \mathcal{W}-fan \mathcal{E} admits regular simplicial subdivisions \mathcal{E}^{\prime}. For such a subdivision the associated variety $X\left(\mathcal{E}^{\prime}\right)$ is smooth and the induced birational map

$$
X\left(\mathcal{E}^{\prime}\right) \rightarrow X(\mathcal{E})
$$

is a resolution of the singularities of $X(\mathcal{E})$.

Example 15.2.7. Suppose \mathcal{W}_{0} is a n-dimensional lattice. We set as usual $\mathcal{X}_{0}=\mathcal{W}_{0}^{v}$. Fix n linearly independent primitive weights $\vec{w}_{1}, \cdots, \vec{w}_{n} \in \mathcal{W}_{0}$, denote by $\mathcal{W} \subset \mathcal{W}_{0}$ the finite index sublattice spanned by these vectors and by σ the simplicial cone spanned by these vectors. We denote by \mathcal{E} the fan determined by σ and its faces. We would like to determine the structure of $X(\mathcal{E})$.

We can regard the ordered collection $\left(\vec{w}_{1}, \cdots, \vec{w}_{n}\right)$ as defining a one-to-one linear map

$$
W: \mathbb{Z}^{n} \rightarrow \mathcal{W}_{0}, \quad \vec{\delta}_{i} \mapsto \vec{w}_{i}
$$

where $\left(\vec{\delta}_{1}, \cdots, \vec{\delta}_{n}\right)$ is the canonical basis of \mathbb{Z}^{n} and $\left(\vec{\delta}^{1}, \cdots, \overrightarrow{\delta^{n}}\right)$ the dual basis in $\left(\mathbb{Z}^{n}\right)^{v}$. We obtain by duality linear maps

$$
W^{\vee}: x_{0} \rightarrow\left(\mathbb{Z}^{n}\right)^{\vee}, \quad W^{*}: x_{0} \otimes \mathbb{R} \rightarrow\left(\mathbb{Z}^{n}\right)^{\vee} \otimes \mathbb{R}
$$

We denote by $\mathbb{R}_{+}^{n} \subset\left(\mathbb{Z}^{n}\right)^{\vee} \otimes \mathbb{R}$ the canonical positive orthant, i.e. the c.p. cone spanned by $\left(\delta^{i}\right)$. Then

$$
\sigma^{\vee}=\left(W^{*}\right)^{-1} \mathbb{R}_{+}^{n}, \quad S_{\sigma}=\sigma^{\vee} \cap X_{0}
$$

To obtain a concrete description we need to fix a \mathbb{Z}-basis $\left(\vec{e}_{1}, \cdots, \vec{e}_{n}\right)$ of \mathcal{W}_{0}. We denote by $\left(\vec{e}^{1}, \cdots, \vec{e}^{n}\right)$ the dual basis of X_{0}. Using these bases we can view the weights \vec{w}_{i} as column vectors

$$
\vec{w}_{i}=\sum_{j} w_{i}^{j} \vec{e}_{j}=\left[\begin{array}{c}
w_{i}^{1} \\
\vdots \\
w_{i}^{n}
\end{array}\right]
$$

The linear operator W is then described by the matrix (also denoted by W) which has \vec{w}_{i} as its columns. This weight matrix determines the (row) vectors $\vec{\chi}^{j} \in X_{0} \otimes \mathbb{Q}$ via the equalities

$$
\left\langle\vec{\chi}^{j}, \vec{w}_{i}\right\rangle=\delta_{i}^{j} .
$$

In other words the collection $\left\{\vec{\chi}^{j}\right\}_{1 \leq j \leq n}$ is the dual \mathbb{Q}-basis of $\left\{\vec{w}_{i}\right\}$. The vectors $\vec{\chi}^{j}$ are described by the rows of the matrix W^{-1}.

Denote by $x \subset x_{0} \otimes \mathbb{Q}$ the lattice spanned by the vectors $\vec{\chi}^{j}$. Note that $X \cong \mathcal{W}^{\vee}$ and $x_{0} \subset X$. We denote by $X_{\mathbb{R}}^{+}$the cone in $X \otimes \mathbb{R}$ spanned by $\vec{\chi}^{j}$ and we set $X^{+}=X \cap X_{\mathbb{R}}^{+}$. We deduce

$$
\sigma^{\vee}=X_{\mathbb{R}}^{+}, \quad S_{\sigma}=X_{0} \cap X_{\mathbb{R}}^{+}
$$

The toric affine variety X_{X+} defined by the \mathbb{C}-algebra $\mathbb{C}\left[X^{+}\right]$is isomorphic to \mathbb{C}^{n}. The basis $\vec{\chi}^{j}$ of X defines coordinates $\left(z_{1}, \cdots, z_{n}\right)$ on $X_{x_{+}}$. Moreover the torus $\mathbb{T}_{\mathcal{W}}$ is identified with the torus

$$
\left\{z_{1} \cdots z_{n} \neq 0\right\} \subset X_{x+}
$$

As explained in Example 15.1.12 the variety X_{σ} is the quotient of X_{X+} with respect to the natural action of $H=\mathcal{W}_{0} / \mathcal{W}$. We want to describe this action explicitly in terms of the matrix W. The group H has the presentation

$$
H=\left\langle\vec{e}_{1}, \cdots, \vec{e}_{n} \mid \quad \vec{w}_{i}=\sum_{j} w_{i}^{j} \vec{e}_{j}=0, \quad i=1, \cdots, n\right\rangle .
$$

The action of H on X_{x+} is induced from the action of $\mathbb{T}_{\mathcal{W}}$ on X_{x+} via the natural inclusion $H \hookrightarrow \operatorname{Hom}\left(X, \mathbb{C}^{*}\right)=\mathbb{T}_{\mathcal{W}}$ given by

$$
\vec{e}_{i} \mapsto \zeta_{i} \in \operatorname{Hom}\left(X, \mathbb{C}^{*}\right), \quad \zeta_{i}^{\chi}=\exp \left(2 \pi i\left\langle\chi, \vec{e}_{i}\right\rangle\right), \quad \forall \chi \in X
$$

If we use the coordinates $\vec{z}=\left(z_{1}, \cdots, z_{n}\right)$ on $\mathbb{T}_{\mathcal{W}}$, where for every $\varphi \in \operatorname{Hom}\left(X, \mathbb{C}^{*}\right)$ we have

$$
z_{k}(\varphi)=\varphi\left(\vec{\chi}^{k}\right)
$$

then the coordinates of $\zeta_{i} \in \mathbb{T}_{\mathcal{W}}$ are

$$
z_{k}\left(\zeta_{i}\right)=\zeta_{i}\left(\vec{\chi}^{k}\right)=\exp \left(2 \pi i\left\langle\vec{\chi}^{k}, e_{i}\right\rangle\right) .
$$

Note that $\left\langle\vec{\chi}^{k}, \vec{e}_{i}\right\rangle$ is the i-th coordinate of the vector $\vec{\chi}^{k} \in X_{0} \otimes \mathbb{Q}$ with respect to the dual basis (\vec{e}^{i}) of X_{0}. Hence

$$
\vec{e}_{i} \mapsto\left[\begin{array}{c}
\exp \left(2 \pi \boldsymbol{i}\left\langle\vec{\chi}^{1}, \vec{e}_{i}\right\rangle\right) \\
\vdots \\
\vdots \\
\exp \left(2 \pi \boldsymbol{i}\left\langle\vec{\chi}^{n}, \vec{e}_{i}\right\rangle\right.
\end{array}\right] \in\left(\mathbb{C}^{*}\right)^{n}
$$

Note that the column vector

$$
\left[\begin{array}{c}
\left\langle\vec{\chi}^{1}, \vec{e}_{i}\right\rangle \\
\vdots \\
\vdots \\
\left\langle\vec{\chi}^{n}, \vec{e}_{i}\right\rangle
\end{array}\right]
$$

is precisely the i-th column of W^{-1}. This fact can be given the symbolic description

$$
\vec{e}_{k} \longmapsto \exp \left(2 \pi i \times k \text {-th column of } W^{-1}\right) .
$$

Example 15.2.8. Suppose \mathcal{W}_{0} is the standard n-dimensional lattice \mathbb{Z}^{n} and \mathcal{E} is a regular simplicial \mathcal{W}_{0}-fan such that all its maximal (with respect to inclusion) cones are n dimensional. We denote by $\mathcal{E}^{(n)}$ this collection of maximal cones. For every cone $\sigma \in \mathcal{E}$ we denote by $\partial_{1} \sigma$ the set of its 1 -dimensional faces. For $\rho \in \partial_{1} \sigma$ we denote by \vec{w}_{ρ} the primitive vector on $\rho \cap \mathcal{W}$. Every cone $\sigma \in \mathcal{E}^{(n)}$ the collection

$$
\left\{\vec{w}_{\rho} ; \quad \rho \in \partial_{1} \sigma\right\}
$$

is a basis of \mathcal{W}_{0}. This defines an isomorphism

$$
W_{\sigma}: \mathbb{Z}^{\partial_{1} \sigma} \rightarrow \mathcal{W}_{0}
$$

Fix a labelling $\partial_{1} \sigma \xrightarrow{\sim}\{1,2, \cdots, n\}$ so that we can write

$$
\left\{\vec{w}_{\rho} ; \quad \rho \in \partial_{1} \sigma\right\}=\left\{\vec{w}(\sigma)_{1}, \cdots, \vec{w}(\sigma)_{n}\right\} .
$$

Denote by $\left(\vec{\delta}_{1}, \cdots, \vec{\delta}_{n}\right)$ the standard basis of \mathcal{W}_{0}. We think of $\vec{w}(\sigma)_{i}$ as column vectors and we can identify W_{σ} as before with the matrix whose columns are $\vec{w}(\sigma)_{i}$,

$$
W_{\sigma}=\left[w(\sigma)_{i}^{j}\right]_{1 \leq i, j \leq n} .
$$

Note that $W_{\sigma} \in \mathrm{GL}_{n}(\mathbb{Z})$. Set as usual $\mathcal{X}_{0}=\mathcal{W}_{0}^{\vee} \cong \mathbb{Z}^{n}$. We introduce an order relation on \mathbb{R}^{n},

$$
\vec{x} \geq \vec{y} \Longleftrightarrow x_{i} \geq y_{i}, \quad \forall j .
$$

The positive orthant \mathbb{R}_{+}^{n} is then described by the inequality $\vec{x} \geq \overrightarrow{0}$. By duality we obtain a linear map

$$
W_{\sigma}^{*}: X_{0} \otimes \mathbb{R} \rightarrow\left(\mathbb{R}^{n}\right)^{\vee} \cong \mathbb{R}^{n}, \quad \chi \mapsto \chi \cdot W_{\sigma}=\left(\left\langle\chi, \vec{w}(\sigma)_{1}\right\rangle, \cdots,\left\langle\chi, \vec{w}(\sigma)_{n}\right\rangle\right) .
$$

Above, we think of χ as a row vector. Then

$$
S_{\sigma}=\left\{\chi \in X_{0} ; \quad \chi \cdot W_{\sigma} \geq 0\right\}=\left(\left(W_{\sigma}^{*}\right)^{-1} \mathbb{R}_{+}^{n}\right) \cap X_{0} .
$$

Denote by $\left(\vec{\delta}^{i}\right)$ the canonical basis of X_{0}. We obtain an isomorphism $\Psi_{\sigma}: X_{\sigma} \rightarrow \mathbb{C}^{n}$ described by the map

$$
\mathbb{C}\left[X_{0}^{+}\right] \rightarrow \mathbb{C}\left[S_{\sigma}\right], \quad T^{\vec{\delta}^{i}} \mapsto s_{i}=T^{\vec{\delta}^{i} \cdot W_{\sigma}^{-1}} \in \mathbb{C}\left[S_{\sigma}\right], \quad i=1, \cdots, n .
$$

The functions s_{i} define coordinates on X_{σ}. The last equality is best understood if we introduce the formal column vectors

$$
\log \vec{s}=\left[\begin{array}{c}
\log s_{1} \\
\vdots \\
\log s_{n}
\end{array}\right], \quad \log \vec{z}=\left[\begin{array}{c}
\log z_{1} \\
\vdots \\
\log z_{n}
\end{array}\right], \quad z_{i}=T^{\vec{\delta}^{i}}
$$

The isomorphism Ψ_{σ} can be formally described as

$$
\log \vec{z}=W_{\sigma} \log \vec{s} \Longleftrightarrow z_{j}=\prod_{k=1}^{n} s_{k}^{w_{k}^{j}} .
$$

If $\tau \in \mathcal{E}^{(n)}$ is another maximal cone in \mathcal{E} then we have another isomorphism $\Psi_{\tau}: X_{\tau} \rightarrow \mathbb{C}^{n}$ described by

$$
t_{i}=T^{\vec{\delta}^{i} \cdot W_{\tau}^{-1}} \in \mathbb{C}\left[S_{\tau}\right], \quad i=1, \cdots, n \Longleftrightarrow \log \vec{t}=W_{\tau}^{-1} \cdot \log \vec{T} .
$$

We deduce

$$
\log \vec{t}=W_{\tau}^{-1} \cdot W_{\sigma} \cdot \log \vec{s} \Longleftrightarrow t_{i}=\vec{s}^{\vec{\delta}^{i} \cdot} \cdot W_{\tau}^{-1} W_{\sigma} .
$$

Note that $\vec{\delta}^{i} \cdot W_{\tau}^{-1} W_{\sigma}$ is the i-th row on $W_{\tau}^{-1} W_{\sigma}$.
The columns of $W_{\tau}^{-1} \cdot W_{\sigma}$ have a simple meaning. The j-th column consists of the coordinates of $\vec{w}(\sigma)_{j}$ with respect to the \mathbb{Z}-basis $\left(\vec{w}(\tau)_{i}\right)_{1 \leq i \leq n}$.

The smooth affine varieties $X_{\sigma}, \sigma \in \mathcal{E}^{(n)}$ form an open cover of $X(\mathcal{E})$ and the isomorphisms Ψ_{σ} define local charts while the equalities

$$
t_{i}=\vec{s}^{\overrightarrow{s^{i}} W_{\tau}^{-1} W_{\sigma}}, \quad i=1, \cdots, n
$$

describe the transition from the σ-chart to the τ-chart. We see that in this case a fan provides a combinatorial way of describing an atlas for the smooth manifold $X(\sigma)$. Also notice that the transition maps are given by monomials.

We can describe the action of the torus $\mathbb{T}_{\mathcal{W}_{0}} \cong\left(\mathbb{C}^{*}\right)^{n}$ in the local coordinates \vec{s} on X_{σ}. If

$$
\vec{z} \in \operatorname{Hom}\left(X_{0}, \mathbb{C}^{*}\right), \chi \mapsto \vec{z}^{\chi}
$$

then

$$
\vec{z} \cdot\left(s_{1}, \cdots, s_{n}\right)=\left(\vec{z}^{\boldsymbol{z}^{1}} \cdot W_{\sigma}^{-1} s_{1}, \cdots, \vec{z}^{\vec{\delta}^{n}} \cdot W_{\sigma}^{-1} \cdot s_{n}\right) .
$$

In other words, the action of the torus $\mathbb{T}_{\mathcal{W}_{0}}$ is described by the rows of W_{σ}^{-1}, the inverse of the weight matrix.

Suppose $\omega \in \mathcal{W}_{0}$ is an arbitrary weight vector. We denote by t^{ω} the one parameter subgroup of $\mathbb{T}^{\mathcal{W}}$ it defines. We would like describe its action using the coordinates \vec{s} on X_{σ}. From the equality $t^{\omega} \cdot T^{\chi}=t^{\langle\chi, \omega\rangle} T^{\chi}$ we deduce

$$
t^{\omega} \cdot\left(s_{1}, \cdots, s_{n}\right)=\left(t^{\left\langle\bar{\delta}^{1} \cdot W_{\sigma}^{-1}, \omega\right\rangle} s_{1}, \cdots, t^{\left\langle\vec{\delta}^{n} \cdot W_{\sigma}^{-1}, \omega\right\rangle} s_{n}\right)
$$

Observe that the numbers $\left\langle\vec{\delta}^{i} \cdot W_{\sigma}^{-1}, \omega\right\rangle$ are the coordinates of ω with respect to the basis of \mathcal{W} defined by the columns of W_{σ}.

Consider for example the lattice $\mathcal{W}_{0}=\mathbb{Z}^{2}$ with standard basis $\left\{\vec{\delta}_{1}, \vec{\delta}_{2}\right\}$. Denote by \mathcal{E} the \mathcal{W}_{0}-fan consisting of the cones σ, τ and all their faces, where σ is spanned by $\vec{\delta}_{1}$ and $\vec{\delta}_{1}+\vec{\delta}_{2}$, and τ is spanned by $\vec{\delta}_{1}+\vec{\delta}_{2}$ and $\vec{\delta}_{2}$. Set $X=X(\mathcal{E})$. Then

$$
W_{\sigma}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad W_{\tau}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Using the equalities

$$
\vec{\delta}_{1}=1 \cdot\left(\vec{\delta}_{1}+\vec{\delta}_{2}\right)-1 \cdot \vec{\delta}_{2}, \quad \vec{\delta}_{1}+\vec{\delta}_{2}=1 \cdot\left(\vec{\delta}_{1}+\vec{\delta}_{2}\right)-0 \cdot \vec{\delta}_{2}
$$

we deduce

$$
W_{\tau}^{-1} \cdot W_{\sigma}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right] .
$$

The transition maps are given by

$$
t_{1}=s_{1} s_{2}, \quad t_{2}=s_{1}^{-1}
$$

Using the computations in Example 3.1.2 we deduce that the manifold thus obtained is the blow-up of the plane with coordinates (x, y) at the origin. The blow-down map is described by

$$
\left\{x=s_{2}, \quad y=s_{1} x=s_{1} s_{2}\right\}, \quad\left\{x=t_{1} t_{2}, \quad y=t_{1}\right\} .
$$

The exceptional divisor is the closure of the orbit \mathcal{O}_{τ}.
The action of the torus $\mathbb{T}^{2}=\left(\mathbb{C}^{*}\right)^{2}$ on X_{1} is described by the rows of

$$
W_{1}^{-1}=\left[\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right] .
$$

More precisely

$$
(u, v) \cdot\left(s_{1}, t_{1}\right)=\left(v^{-1} s_{1}, u v t_{1}\right), \quad \forall(u, v) \in\left(\mathbb{C}^{*}\right)^{2} .
$$

More generally, the blowup of \mathbb{C}^{n} at the origin is described by the simplicial fan consisting of all the cones generated by subfamilies of

$$
\left\{\vec{\delta}_{1}, \cdots, \vec{\delta}_{n}, \vec{\delta}\right\} \subset \mathbb{Z}^{n}
$$

where $\vec{\delta}_{i}$ denotes the canonical basis of \mathbb{Z}^{n} and $\vec{\delta}=\vec{\delta}_{1}+\cdots+\vec{\delta}_{n}$.

Example 15.2.9. Let us consider a simple 3-dimensional fan \mathcal{E} consisting of two 3-dimensional cones and their faces. More precisely, denote by $\left(\vec{\delta}_{i}\right)_{1 \leq i \leq 3}$ the canonical integral basis of $\mathcal{W}=\mathbb{Z}^{3}$, and set $\vec{e}=\vec{\delta}_{1}+\vec{\delta}_{2}$. The cones are

$$
\sigma_{1}=\operatorname{span}\left(\vec{\delta}_{1}, \vec{e}, \vec{\delta}_{3}\right), \quad \sigma_{2}=\operatorname{span}\left(\vec{e}, \vec{\delta}_{2}, \vec{\delta}_{3}\right)
$$

As in the previous example we obtain two weight matrices corresponding to the two coordinate charts $X_{i}=X_{\sigma_{i}}$. They are

$$
W_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad W_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The change in coordinates $X_{1}->X_{2}$ is given by the matrix $W_{21}=W_{2}^{-1} W_{1}$ which expresses the columns of W_{1} in terms of the columns of W_{2}. We have

$$
\vec{\delta}_{1}=\vec{e}-\vec{\delta}_{2}, \vec{\delta}_{2}=\vec{\delta}_{2}, \quad \vec{\delta}_{3}=\vec{\delta}_{3}
$$

so that

$$
W_{21}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If we denote by $\left(s_{i}, t_{i}, u_{i}\right)$ the coordinates on X_{i} we have the transition law

$$
\left\{\begin{aligned}
s_{2} & =s_{1} \\
t_{2} & =s_{1}^{-1} t_{1} \\
u_{2} & =u_{1}
\end{aligned}\right.
$$

Note that \mathcal{E} can be described as the product of two fans: the one dimensional fan $\mathcal{E}_{3} \subset$ $\operatorname{Lin}\left(\vec{\delta}_{3}\right)$ generated by $\vec{\delta}_{3}$ and the two-dimensional fan ε_{12} in $\operatorname{Lin}\left(\vec{\delta}_{1}, \vec{\delta}_{2}\right)$ generated by $\left(\vec{\delta}_{1}, \vec{e}, \vec{\delta}_{2}\right)$. One can check immediately that

$$
X(\mathcal{E}) \cong X\left(\varepsilon_{3}\right) \times X\left(\varepsilon_{12}\right) \cong \mathbb{C} \times \hat{\mathbb{C}}_{0}^{2}
$$

where $\hat{\mathbb{C}}_{0}^{2}$ denote the blow-up of \mathbb{C}^{2} at the origin, or equivalently, the total space of the tautological line bundle over $\mathbb{C P}^{1}$.

Denote by ε_{0} the fan consisting of the cone spanned by ($\left.\vec{\delta}_{1}, \vec{\delta}_{2}, \vec{\delta}_{3}\right)$ and its faces. Its associated toric manifold is $X_{0} \cong \mathbb{C}^{3}$. The fan \mathcal{E} is a subdivision of \mathcal{E}_{0} so we have an equivariant holomorphic map

$$
\pi: X \rightarrow \mathbb{C}^{3}
$$

In the above coordinates it is given by

$$
\left\{\begin{array}{l}
z_{1}=s_{1} t_{1} \\
z_{2}=t_{1} \\
z_{3}=u_{1}
\end{array}, \quad,\left\{\begin{array}{l}
z_{1}=s_{2} \\
z_{2}=s_{2} t_{2} \\
z_{3}=u_{2}
\end{array}\right.\right.
$$

X is precisely is the blowup of \mathbb{C}^{3} along the subvariety $\left\{z_{1}=0\right\} \cap\left\{z_{2}=0\right\}$.

Example 15.2.10. Let $\mathcal{W}_{0}=\mathbb{Z}^{2} \cong X_{0}=\mathcal{W}_{0}^{\vee}$ and consider the \mathcal{W}_{0}-fan \mathcal{E} depicted in on the top of Figure 15.2. It consists of the origin O of \mathcal{W}_{0} and the cones

$$
\sigma_{1}=\angle(A O C), \quad \sigma_{2}=\angle(C O B), \quad \tau=\mathbb{R}_{\geq 0} \overrightarrow{O C}, \quad \tau_{1}=\mathbb{R}_{\geq 0} \overrightarrow{O A}, \quad \tau_{2}=\mathbb{R}_{\geq 0} \overrightarrow{O C}
$$

The bottom half of Figure 15.2 depicts the dual picture in X_{0} and we have

$$
\sigma_{1}^{\vee}=\angle\left(A^{\prime} O C_{1}\right), \quad \sigma_{2}^{\vee}=\angle\left(B^{\prime} O C_{2}\right)
$$

More precisely

$$
\begin{aligned}
\sigma_{1}^{v} & =\left\{\chi=\left(\chi_{1}, \chi_{2}\right) \in \mathbb{Z}^{2} ; \quad \chi_{1} \geq 0, \quad 3 \chi_{1}+4 \chi_{2} \geq 0\right\} \\
\sigma_{2}^{v} & =\left\{\chi=\left(\chi_{1}, \chi_{2}\right) \in \mathbb{Z}^{2} ; \quad \chi_{2} \geq 0, \quad 3 \chi_{1}+4 \chi_{2} \geq 0\right\}
\end{aligned}
$$

Figure 15.2: A 2-dimensional fan and its polar.
The generators of $\sigma_{1}^{\vee} \cap X_{0}$ are depicted in blue in Figure 15.2 and are

$$
\vec{e}_{1}=(0,1), \quad \vec{e}_{2}=(1,0), \quad \vec{e}_{3}=(2,-1), \quad \vec{e}_{4}=(3,-2), \quad \vec{e}_{5}=C_{1}=(4,-3)
$$

They satisfy the relations

$$
2 \vec{e}_{i}=\vec{e}_{i-1}+\vec{e}_{i+1} .
$$

Thus $X_{\sigma_{1}}$ is the affine variety described by the \mathbb{C}-algebra

$$
\mathbb{C}\left[x_{1}, \cdots, x_{5}\right] /\left(x_{i}^{2}-x_{i-1} x_{i+1}, \quad i=2,3,4\right)
$$

Note that it is a complete intersection. We can provide an alternate description using the considerations in Example 15.2.7. Set for simplicity

$$
\vec{w}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \in \mathcal{W}_{0}, \quad \vec{w}_{2}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \in \mathcal{W}_{0} .
$$

Let $\vec{f}_{1}, \overrightarrow{f_{2}} \in X_{0} \otimes \mathbb{Q}$ such that

$$
\left\langle\vec{f}_{j}, \vec{w}_{i}\right\rangle=\delta_{i j} .
$$

If we think of \vec{f}_{j} as row vectors then \vec{f}_{1}, \vec{f}_{2} are the rows of the matrix

$$
W^{-1}=\left[\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right]^{-1}=\frac{1}{4}\left[\begin{array}{rr}
4 & -3 \\
0 & 1
\end{array}\right] .
$$

Hence

$$
\overrightarrow{f_{1}}=\frac{1}{4} \vec{e}_{5}, \quad \overrightarrow{f_{2}}=\frac{1}{4} \vec{e}_{1} .
$$

Denote by $X \subset X_{0} \otimes \mathbb{Q}$ the lattice spanned by \vec{f}_{1}, \vec{f}_{2}. Then $\mathcal{W}=X^{\vee}$ can be identified with the sublattice of \mathcal{W}_{0} spanned by \vec{w}_{1} and \vec{w}_{2}. The group $H=\mathcal{W}_{0} / \mathcal{W}$ and it has the presentation

$$
H=\left\langle g_{1}, g_{2} \mid g_{1}^{1}=1, \quad g_{1}^{3} g_{2}^{4}=1\right\rangle=\left\langle g \mid \quad g^{4}=1\right\rangle
$$

Set

$$
\rho=\exp \left(\frac{2 \pi \boldsymbol{i}}{4}\right)=\boldsymbol{i} .
$$

The group H embeds in the torus

$$
\mathbb{T}_{\mathcal{W}}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ; \quad z_{1} z_{2} \neq 0\right\}
$$

via the map

$$
g \mapsto\left(\rho^{-3}, \rho\right)=(\rho, \rho) .
$$

The group H acts on \mathbb{C}^{2} by

$$
g\left(z_{1}, z_{2}\right)=\left(\rho z_{1}, \rho z_{2}\right)
$$

Topologically, $X_{\sigma_{1}}$ is a cone over the lens space $L(4,1)$.
Using the identities

$$
\vec{e}_{5}=4 \vec{f}_{1}, \quad \vec{e}_{1}=4 \vec{f}_{2}, \vec{e}_{2}=\vec{f}_{1}+3 f_{2}, \quad \vec{e}_{3}=2 \vec{f}_{1}+2 \vec{f}_{2}, \quad \vec{e}_{4}=3 \vec{f}_{1}+\vec{f}_{2}
$$

we deduce that the subring $\mathbb{C}\left[z_{1}, z_{2}\right]^{H}$ is generated by the monomials

$$
E_{1}=z_{2}^{4}, \quad E_{2}=z_{1} z_{2}^{3}, \quad E_{3}=z_{1}^{2} z_{2}^{2}, \quad E_{4}=z_{1}^{3} z_{2}, \quad E_{5}=z_{1}^{4}
$$

and we obtain as expected

$$
\mathbb{C}\left[z_{1}, z_{2}\right]^{H} \cong \mathbb{C}\left[E_{1}, \cdots, E_{5}\right] /\left(E_{i}^{2}-E_{i-1} E_{i+1}, \quad i=2,3,4\right) .
$$

The point $x_{\sigma_{1}}$ is the H-orbit of $(0,0) \in \mathbb{C}^{2}$.

Arguing in a similar fashion we deduce that $X_{\sigma_{2}}$ is the quotient of \mathbb{C}^{2} modulo the action of $G=\mathbb{Z} / 3$ described by

$$
\zeta \cdot\left(z_{1}, z_{2}\right)=\left(\zeta z_{1}, \zeta^{2} z_{2}\right), \quad \zeta=e^{\frac{2 \pi i}{3}} .
$$

As generators of the ring of invariants $\mathbb{C}\left[s_{1}, s_{2}\right]^{G}$ we can pick

$$
Y_{1}=s_{1}^{3}, \quad Y_{2}=s_{1} s_{2}, \quad Y_{3}=s_{2}^{3}
$$

satisfying the unique relation

$$
Y_{2}^{3}=Y_{1} Y_{3}
$$

Equivalently, we observe that the semigroup $\sigma_{2}^{v} \cap X_{0}$ is generated by

$$
\vec{h}_{1}=(1,0), \quad \vec{h}_{2}=(-1,1), \quad \vec{h}_{3}=(-4,3) .
$$

The vectors \vec{h}_{2} and \vec{h}_{3} are depicted in green in the bottom half of Figure 15.2. Observe that

$$
\vec{h}_{1}+\vec{h}_{3}=3 \vec{h}_{2}
$$

so that $X_{\sigma_{2}}$ can be identified with the A_{2}-hypersurface

$$
\left\{y_{2}^{3}=y_{1} y_{3}\right\} \subset \mathbb{C}^{3}
$$

The point $x_{\sigma_{2}}$ has coordinates $y_{i}=0$.
The affine variety X_{τ} is isomorphic to $\mathbb{C} \times \mathbb{C}^{*}$. Observing that

$$
\tau^{\vee}=\sigma_{1}^{\vee}+\mathbb{R}_{\geq 0}\left(-\vec{e}_{5}\right)
$$

we deduce that X_{τ} embeds in $X_{\sigma_{1}}$ as the principal open set $x_{5} \neq 0$.
The monoid $\tau^{\vee} \cap X_{0}$ is generated by

$$
\vec{e}_{5}=(4,-3),-\vec{e}_{5}, \quad \vec{e}_{4}=(3,-2)
$$

Correspondingly we get two coordinates t_{1} (corresponding to \vec{e}_{5}) and t_{2} (corresponding to $\left.\vec{e}_{4}\right)$. The distinguished point x_{τ} has coordinates $t_{1}=1$ and $t_{2}=0$. If we use the canonical coordinates $\vec{\zeta}=\left(\zeta_{1}, \zeta_{2}\right)$ on the torus $\mathbb{T}_{\mathcal{W}_{0}}$ induced by the canonical basis of \mathcal{W}_{0} then the action of $\mathbb{T}_{\mathcal{W}_{0}}$ on X_{τ} is defined by

$$
\vec{\zeta} \cdot\left(t_{1}, t_{2}\right)=\left(\zeta_{1}^{4} \zeta_{2}^{-3} t_{1}, \zeta_{1}^{3} \zeta_{2}^{-2} t_{2}\right)
$$

Using the relations

$$
x_{i-1}=x_{i}^{2} x_{i+1}^{-1}
$$

we deduce that the open embedding $I_{\sigma_{1} \tau}: X_{\tau} \hookrightarrow X_{\sigma_{1}}$ is described in coordinates as

$$
x_{5}=t_{1}, \quad x_{4}=t_{2}, \quad x_{3}=t_{2}^{2} t_{1}^{-1}, \quad x_{2}=x_{3}^{2} x_{4}^{-1}=t_{2}^{3} t_{1}^{-2}, \quad x_{1}=x_{2}^{2} x_{3}^{-1}=t_{2}^{4} t_{1}^{-3} .
$$

In particular we deduce that the image of the orbit \mathcal{O}_{τ} in X_{σ} is $\left(\mathbb{C}^{*} \times 0\right) / H \subset \mathbb{C}^{2} / H=X_{\sigma_{1}}$. As $t_{1} \rightarrow 0$ the point $I_{\sigma_{1} \tau}\left(t_{1}, 0\right)$ approaches the origin of \mathbb{C}^{2} / H.

Similarly, X_{τ} embeds in $X_{\sigma_{2}}$ as the principal open set $\left\{y_{3} \neq 0\right\}$. Using the same coordinates t_{1}, t_{2} on X_{τ} and the equality $\vec{h}_{2}=-\vec{e}_{5}+\vec{e}_{4}$ we deduce that the embedding $I_{\sigma_{2} \tau}: X_{\tau} \hookrightarrow X_{\sigma_{2}}$ is described in coordinates by

$$
y_{3}=t_{1}^{-1}, y_{2}=t_{2} t_{1}^{-1}, \quad y_{1}=x_{2}=t_{2}^{3} t_{1}^{-2}
$$

The image of the orbit \mathcal{O}_{τ} in $X_{\sigma_{2}}=\mathbb{C}^{2} / G$ is $\left(0 \times \mathbb{C}^{*}\right) / G$. As $t_{1} \rightarrow \infty$, the point $I_{\sigma_{2} \tau}\left(t_{1}, 0\right)$ approaches the origin of \mathbb{C}^{2} / G.

Observe that our fan \mathcal{E} is a subdivision of the fan $\hat{\mathcal{E}}$ consisting of the cone

$$
\sigma_{0}=\left\{(x, y) \in \mathbb{R}^{2} \cong \mathcal{W}_{0} \otimes \mathbb{R} ; \quad x, y \geq 0\right\}
$$

and all of its faces. In particular we have a $\mathbb{T}_{\mathcal{W}_{0}}$-equivariant map

$$
\Phi: X(\mathcal{E}) \rightarrow X(\hat{\varepsilon})
$$

which we would like to describe. Since

$$
X(\mathcal{E})=X_{\sigma_{1}} \cup X_{\sigma_{2}}
$$

it suffices to understand the restrictions $\left.\Phi\right|_{X_{\sigma_{i}}}, i=1,2$.
The inclusion $\sigma_{1} \subset \sigma_{0}$ induces an inclusion $\sigma_{0}^{\vee} \subset \sigma_{1}^{\vee}$ and thus a map

$$
\mathbb{C}\left[\sigma_{0}^{\vee} \cap x_{0}\right] \rightarrow \mathbb{C}\left[\sigma_{1}^{\vee} \cap x_{0}\right]
$$

The semigroup $\sigma_{0}^{\vee} \cap X_{0}$ is freely generated by

$$
\vec{v}_{1}=(1,0)=\vec{e}_{4}, \quad \vec{v}_{2}=(0,1)=\vec{e}_{5} .
$$

The vectors v_{1}, v_{2} define coordinates z_{1}, z_{2} on $X_{\sigma_{0}}$ and the map $X_{\sigma_{1}} \rightarrow X_{\sigma_{0}}$ is given by

$$
\vec{x}=\left(x_{1}, \cdots, x_{5}\right) \longmapsto \vec{z}=\vec{z}(\vec{x}), \quad z_{1}=x_{2}, \quad z_{2}=x_{1} .
$$

Note that the preimage Z_{1} of $(0,0)$ in $X_{\sigma_{1}}$ via Ψ is described by

$$
x_{2}=x_{3}=x_{4}=x_{5}=0
$$

and it coincides with the image in $X_{\sigma_{1}}$ of the second coordinate axis in \mathbb{C}^{2} via the identification

$$
X_{\sigma_{1}} \cong \mathbb{C}^{2} / H
$$

This preimage intersects the open set X_{τ} precisely along the orbit \mathcal{O}_{τ}.
Arguing in a similar fashion we deduce that the map $X_{\sigma_{2}} \rightarrow X_{\sigma_{0}}$ is defined by

$$
z_{1}=y_{1}, \quad z_{2}=y_{2}
$$

The preimage Z_{2} of $(0,0)$ in $X_{\sigma_{2}}$ is given by $y_{1}=y_{2}=0$. It intersects X_{τ} as expected along the orbit \mathcal{O}_{τ} and we deduce

$$
\Psi^{-1}(0,0)=\overline{\mathcal{O}}_{\tau} \cong \mathbb{C P}^{1}
$$

15.3 The toric variety determined by the Newton diagram of a polynomial

Suppose $f \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ is a polynomial in n-complex variables such that $f(0)=0$ and $0 \in \mathbb{C}^{n}$ is an isolated critical point of f. Denote by \mathcal{X} the lattice \mathbb{Z}^{n}, by $\left(\vec{\delta}^{i}\right)$ the canonical basis of \mathcal{X}, and by $\left(\vec{\delta}_{j}\right)$ the dual basis of $\mathcal{W}=X^{\vee}=\operatorname{Hom}(X, \mathbb{Z})$. We set

$$
\begin{gathered}
\mathcal{X}_{\mathbb{R}}=X \otimes \mathbb{R} \cong \mathbb{R}^{n}, \quad \mathcal{W}_{\mathbb{R}}=\mathcal{W} \otimes \mathbb{R} \\
X_{\mathbb{R}}^{+}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in X_{\mathbb{R}} ; x_{i} \geq 0, \quad \forall i=1, \cdots, n\right\}, \quad X^{+}=X \cap X_{\mathbb{R}}^{+} \\
\mathcal{W}_{\mathbb{R}}^{+}=\left\{\left(t^{1}, \cdots, t^{n}\right) \in \mathcal{W}_{\mathbb{R}} ; t^{i} \geq 0, \quad \forall i\right\} .
\end{gathered}
$$

The polynomial f is described as a sum

$$
f=\sum_{\vec{\alpha} \in X^{+}} a_{\vec{\alpha}} \vec{z}^{\vec{\alpha}} .
$$

We set

$$
\operatorname{supp}(f)=\left\{\vec{\alpha} \in X^{+} ; \quad a_{\vec{\alpha}} \neq 0\right\} .
$$

In the sequel we will assume that f is convenient, that is its support intersects all the coordinate axes of \mathcal{X}. In other words, for every $i=1, \cdots, n$ there exists $m_{i} \in \mathbb{Z}>0$ and $a_{i} \in \mathbb{C}^{*}$ such that $a_{i} z_{i}^{m_{i}}$ is a monomial of f.

The (local) Newton polyhedron of f, denoted by Γ_{f}^{+}, is the convex hull of the union of affine cones

$$
\bigcup_{\vec{\alpha} \in \operatorname{supp}(f)}\left(\vec{\alpha}+X_{\mathbb{R}}^{+}\right)
$$

The Newton polyhedron is the intersection of finitely many supporting half-spaces of the type

$$
\left\{\vec{x} \in \mathcal{X}_{\mathbb{R}} ;\langle\vec{x}, \vec{w}\rangle \geq r\right\}, \vec{w} \in \mathcal{W}, \quad r \in \mathbb{Q} .
$$

A face of the Newton polyhedron is the intersection of a supporting hyperplane and the polyhedron. Faces are of two types: compact and non-compact. Since the polynomial is convenient all the noncompact faces are contained in some coordinate plane. The Newton diagram of f is the union of all compact faces. We will denote the Newton diagram of f by $\Gamma=\Gamma(f)$. The top half of Figure 15.3 depicts the Newton polyhedron of a polynomial in two variables x, y of the form

$$
\begin{equation*}
f=a x^{5}+b x^{3} y+c x y^{2}+d y^{5}+\text { higher degree monomials inside the Newton polyhedron. } \tag{15.3.1}
\end{equation*}
$$

The Newton diagram is depicted in red while the noncompact faces are drawn in green.
For every compact face Δ of the Newton diagram Γ we set

$$
f_{\Delta}:=\sum_{\vec{\alpha} \in \Delta} a_{\vec{\alpha}} \vec{z}^{\vec{\alpha}} .
$$

The Newton diagram of f determines a \mathcal{W}-fan \mathcal{E}_{Γ} called the conormal fan of Γ. It is constructed as follows.

Figure 15.3: A Newton diagram and its conormal fan.

To every face Δ of Γ_{f}^{+}we associate its conormal cone $C_{\Delta} \subset \mathcal{W}_{\mathbb{R}}^{+}$consisting of weights $\vec{w} \in \mathcal{W}_{\mathbb{R}}^{+}$conormal to Δ. This means that Δ is contained in a hyperplane determined by \vec{w} and the Newton polyhedron is contained in the upper half-space determined by that hyperplane. In other words \vec{w} defines a supporting hyperplane for the Newton polyhedron which contains the face Δ. More formally

$$
C_{\Delta} \Gamma=\left\{\vec{w} \in \mathcal{W}_{\mathbb{R}}^{+} ; \quad \exists t \in \mathbb{R}: \Delta \subset\{\langle\bullet, \vec{w}\rangle=t\}, \quad \Gamma_{f}^{+} \subset\{\langle\bullet, \vec{w}\rangle \geq t\}\right\} .
$$

\mathcal{E}_{Γ} consists of all the cones C_{Δ}, where Δ is a face of the Newton diagram. The toric variety associated to f is the toric variety determined by the fan \mathcal{E}_{Γ}.

Note that every face Δ of the Newton diagram determines a natural function on $C_{\Delta} \Gamma$ called Δ-mass, denoted by \mathbf{m}_{Δ} and defined by

$$
\mathbf{m}_{\Delta}: C_{\Delta} \rightarrow[0, \infty), \mathbf{m}_{\Delta}(\vec{w})=\langle\chi, \vec{w}\rangle \text { for some (any) } \chi \in \Delta .
$$

For every face Δ of Γ, and every $\vec{w} \in C_{\Delta} \Gamma \cap X$ the polynomial f_{Δ} is \vec{w}-homogeneous, i.e.

$$
\exists p \in \mathbb{Z}_{\geq 0}: f_{\Delta}\left(t^{\vec{w}} \cdot \vec{z}\right)=t^{p} f_{\Delta}(\vec{z}), \quad \forall \vec{z} \in \mathbb{C}^{n}, \quad t \in \mathbb{C}^{*} .
$$

The exponent p is called the \vec{w}-degree of f_{Δ}. It is equal to $\mathbf{m}_{\Delta}(\vec{w})$.
The mass functions \mathbf{m}_{Δ} determine a mass function

$$
\mathbf{m}=\mathbf{m}_{f}:\left|\mathcal{E}_{\Gamma}\right| \rightarrow[0, \infty), \quad \mathbf{m}(\vec{w})=\mathbf{m}_{\Delta}(\vec{w}), \quad \forall \vec{w} \in C_{\Delta} \Gamma \in \mathcal{E}_{\Gamma} .
$$

Equivalently

$$
\mathbf{m}(\vec{w})=\inf \left\{\langle\chi, \vec{w}\rangle ; \quad \chi \in \Gamma_{f}^{+}\right\} .
$$

The mass function \mathbf{m} is completely determined by the vertices of the Newton diagram. More precisely

$$
\mathbf{m}(\vec{w})=\min \left\{\langle v, \vec{w}\rangle ; \quad v \text { is a vertex of } \Gamma_{f}^{+}\right\} .
$$

Example 15.3.1. Consider the fan $\hat{\mathcal{E}}$ depicted in Figure 15.4. It consists of five regular simplicial two-dimensional cones $\sigma_{1}, \cdots, \sigma_{5}$ and their faces. This fan is a regular simplicial subdivision of the conormal fan depicted in Figure 15.4. It support is the positive quadrant of \mathbb{R}^{2} and thus we have a birational map

$$
\pi: X(\hat{\mathcal{E}}) \rightarrow \mathbb{C}^{2}
$$

We would like to understand the smooth manifold $X(\mathcal{E})$, the projection π and the pullback $f \circ \pi$ of a generic polynomial $f \in \mathbb{C}[x, y]$ described the equality (15.3.1).

Figure 15.4: A regular simplicial resolution of a conormal fan.
Let us first describe the structure of $X=X(\hat{\varepsilon})$. We use the strategy outlined in Example 15.2.8. Set $X_{i}=X_{\sigma_{i}}, X_{i j}=X_{i} \cap X_{j}$ etc. Each X_{i} defines a coordinate chart on X. To understand these charts we need to find the weight matrices W_{i} corresponding to the cones σ_{i}. We have

$$
W_{1}=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad W_{2}=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right], \quad W_{3}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], \quad W_{4}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad W_{5}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] .
$$

The coordinate transition $X_{i} \rightarrow X_{j}$ is described by the matrix $W_{j i}:=W_{j}^{-1} W_{i}$. If we set $T_{i}=W_{i+1, i}=W_{i+1}^{-1} W_{i}$ we deduce

$$
W_{j i}=T_{j-1} \cdots T_{i}, \quad \forall 1 \leq i<j \leq 5
$$

We identify each W_{i} with a basis of \mathbb{Z}^{2}. We deduce that T_{i} describes the coordinates of the vectors in W_{i} with respect to the basis W_{i+1}. Using the identities

$$
\vec{e}_{1}=\vec{e}_{2}-\vec{e}_{3}, \quad \vec{e}_{2}=2 \vec{e}_{3}-\vec{e}_{4}, \quad \vec{e}_{3}=3 \vec{e}_{4}-\vec{e}_{5}, \quad \vec{e}_{4}=\vec{e}_{5}-\vec{e}_{6}
$$

we deduce

$$
T_{1}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right], \quad T_{2}=\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right], \quad T_{3}=\left[\begin{array}{rr}
3 & 1 \\
-1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right] .
$$

To describe the coordinate transitions $X_{i} \rightarrow X_{i+1}$ we use the following convention.

- (u, v) are the coordinates on X_{i+1} and (s, t) are the coordinates on X_{i}.

The transition rules are

$$
\begin{aligned}
& (s, t) \stackrel{T_{1}}{\longmapsto}(u, v)=\left(s t, s^{-1}\right), \quad(s, t) \stackrel{T_{2}}{\longmapsto}(u, v)=\left(s^{2} t, s^{-1}\right), \\
& (s, t) \stackrel{T_{3}}{\longmapsto}(u, v)=\left(s^{3} t, s^{-1}\right), \quad(s, t) \stackrel{T_{4}}{\longleftrightarrow}(u, v)=\left(s t, s^{-1}\right) .
\end{aligned}
$$

Set

$$
Y_{i}:=X_{i} \cup_{X_{i, i+1}} X_{i+1}=\mathbb{C}^{2} \cup_{T_{i}} \mathbb{C}^{2} .
$$

Using the computations in Example 3.1.2 we deduce ${ }^{2}$ that Y_{i} is the total space of a line bundle over $\mathbb{C P}^{1}$. If we denote by τ the tautological line bundle over $\mathbb{C P}^{1}$ and by \mathcal{T}^{k} the total space of $\tau^{\otimes k}$ we deduce

$$
Y_{1} \cong Y_{4} \cong \mathcal{T}^{1}, \quad Y_{2} \cong \mathcal{T}^{2}, \quad Y_{3} \cong \mathcal{T}^{3}
$$

The zero sections of the above line bundles can be visualized by the closure of the orbits corresponding to the 1-dimensional faces of the fan. In our case these are the rays generated by the vectors $\vec{e}_{2}, \cdots, \vec{e}_{5}$. We denote these orbits by $\mathcal{O}_{2}, \cdots, \mathcal{O}_{5}$. Observe that

$$
\mathcal{O}_{i+1} \subset X_{i} \cap X_{i+1} .
$$

In X_{i} the orbit \mathcal{O}_{i+1} is described by the equation $t=0$ while the orbit \mathcal{O}_{i} is described by $s=0$.

Denote by π_{i} the restriction of $\pi: X \rightarrow \mathbb{C}^{2}$ to X_{i}. If we denote by (x, y) the coordinates on \mathbb{C}^{2} and by (s, t) the coordinates on X_{i} then Π_{i} can be described symbolically

$$
\left[\begin{array}{l}
\log x \\
\log y
\end{array}\right]=W_{i} \cdot\left[\begin{array}{l}
\log s \\
\log t
\end{array}\right] .
$$

We deduce the following equalities

$$
\begin{gathered}
(s, t) \stackrel{\pi_{1}}{\longrightarrow}(x, y)=\left(s t^{3}, t\right), \quad(s, t) \stackrel{\pi_{2}}{\longmapsto}(x, y)=\left(s^{3} t^{2}, s t\right) \\
(s, t) \stackrel{\pi_{3}}{\longrightarrow}(x, y)=\left(s^{2} t, s t\right), \quad(s, t) \stackrel{\pi_{4}}{\longleftrightarrow}(x, y)=\left(s t, s t^{2}\right) \\
(s, t) \stackrel{\pi_{4}}{\longleftrightarrow}(x, y)=\left(s, s^{2} t\right) .
\end{gathered}
$$

Hence if we let $f=a x^{5}+b x^{3} y+c x y^{2}+d y^{5}$ we deduce

$$
f \circ \pi_{1}=a\left(s t^{3}\right)^{5}+b\left(s t^{3}\right)^{3} t+c\left(s t^{3}\right) t^{2}+d t^{5}=t^{5} \underbrace{\left(a s^{5} t^{10}+b s^{3} t^{4}+c s+d\right)}_{=: f_{1}}
$$

[^13]\[

$$
\begin{gathered}
f \circ \pi_{2}=a\left(s^{3} t^{2}\right)^{5}+b\left(s^{3} t^{2}\right)^{3} s t+c\left(s^{3} t^{2}\right)(s t)^{2}+d(s t)^{5}=s^{5} t^{4} \underbrace{\left(a s^{10} t^{4}+b s^{5} t^{3}+c+d t\right)}_{=: f_{2}}, \\
f \circ \pi_{3}=a\left(s^{2} t\right)^{5}+b\left(s^{2} t\right)^{3} s t+c\left(s^{2} t\right)(s t)^{2}+d(s t)^{5}=s^{4} t^{3} \underbrace{\left(a s^{6} t^{2}+b s^{3} t+c+d s t^{2}\right)}_{=: f_{3}} \\
f \circ \pi_{4}=a(s t)^{5}+b(s t)^{3}\left(s t^{2}\right)+c(s t)\left(s t^{2}\right)^{2}+d\left(s t^{2}\right)^{5}=s^{3} t^{5} \underbrace{\left(a s^{2}+b s^{2}+c+d s^{2} t^{5}\right)}_{=: f_{4}} \\
f \circ \pi_{5}=a s^{5}+b s^{3}\left(s^{2} t\right)+c s\left(s^{2} t\right)^{2}+d\left(s^{2} t\right)^{5}=s^{5} \underbrace{\left(a+b t+c t^{2}+d s^{5} t^{5}\right)}_{=: f_{5}} .
\end{gathered}
$$
\]

From the above descriptions we can read the multiplicity m_{i} of $f \circ \pi$ along $\overline{\mathcal{O}}_{i}, i=2, \cdots, 5$. We have

$$
m_{2}=5, \quad m_{3}=4, \quad m_{4}=3, \quad m_{5}:=5 .
$$

Note that for generic a, b, c, d, the strict transforms $C_{i}:=\left\{f_{i}=0\right\}, i=1, \cdots, 5$, intersect the divisors $\overline{\mathcal{O}}_{j}$ transversally.

Denote by \mathcal{E}_{0} the fan described by the positive orthant

$$
\mathcal{W}_{\mathbb{R}}^{+}=\left\{\left(t^{1}, \cdots, t^{n}\right) \in \mathcal{W}_{\mathbb{R}} ; t^{i} \geq 0\right\}
$$

and all of its faces. Suppose $f \in \mathbb{C}\left[X^{+}\right]$is a convenient polynomial. We denote by ε_{f} its associated conormal fan and set $X_{f}=X\left(\varepsilon_{f}\right) . \varepsilon_{f}$ is a subdivision of ε_{0}.

Consider a regular simplicial subdivision $\hat{\mathcal{E}}$ of $\mathcal{\varepsilon}_{f}$. Set $\hat{X}=X(\hat{\mathcal{E}})$. We want to investigate the resulting birational map

$$
\pi: \hat{X} \rightarrow X\left(\mathcal{E}_{0}\right)=\mathbb{C}^{n}
$$

For each cone $\sigma \in \hat{\varepsilon}$ and each nonnegative integer k we denote by $\partial_{k} \sigma$ the finite set consisting of its k-dimensional faces. As we have shown in Example 15.2 .8 every top dimensional cone $\sigma \in \hat{\mathcal{E}}$ determines an open set $\hat{X}_{\sigma} \subset \hat{X}$ and an isomorphism

$$
\Psi_{\sigma}: \hat{X}_{\sigma} \rightarrow \mathbb{C}^{\partial_{1} \sigma}
$$

which we interpret as defining coordinates $\vec{y}=\vec{y}(\sigma)=\left(y_{\rho}\right)_{\rho \in \partial_{1} \sigma}$ on \hat{X}_{σ}. Denote by π_{σ} the restriction of π to \hat{X}_{σ}.

Using the primitive lattice vectors along the 1-dimensional faces of σ we obtain an isomorphism

$$
W=W(\sigma): \mathbb{Z}^{\partial_{1} \sigma} \rightarrow \mathcal{W} \cong \mathbb{Z}^{n}
$$

For every $\rho \in \partial_{1} \sigma$, the ρ-th column of W, denoted by \vec{w}_{ρ}, consists of the coordinates of the primitive vector in $\mathcal{W} \cap \rho$. We denote by \vec{w}^{i} the i-th row of W. Using the coordinates $\vec{y}(\sigma)$ we can describe π_{σ} as

$$
z_{i}=\vec{y}^{\overrightarrow{0^{i}}}=\prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{w_{\rho}^{i}}, \quad 1 \leq i \leq n
$$

Next observe that

$$
f\left(\pi_{\sigma}(\vec{y})\right)=\sum_{\chi \in \operatorname{supp} f} a_{\chi} \vec{z}^{\chi}=\sum_{\chi \in \operatorname{supp} f} a_{\chi} \prod_{i=1}^{n}\left(\prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{w_{\rho}^{i}}\right)^{\chi_{i}}=\sum_{\chi \in \operatorname{supp} f} a_{\chi} \prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{\left\langle\chi, \vec{w}_{\rho}\right\rangle}
$$

Since $\hat{\varepsilon}$ is a subdivision of ε_{f} and σ is top dimensional we can find a vertex χ_{σ} of the Newton diagram $\Gamma(f)$ such that for any $\rho \in \partial_{1} \sigma$ the weight \vec{w}_{ρ} is conormal to $\chi_{\sigma}, \vec{w}_{\rho} \in C_{\chi_{\sigma}} \Gamma_{f}$. We deduce that for every ρ we have

$$
\left\langle\chi, \vec{w}_{\rho}\right\rangle \geq \mathbf{m}\left(\vec{w}_{\rho}\right), \quad \forall \chi \in \operatorname{supp} f
$$

with equality if $\chi=\chi_{\sigma}$. Moreover since the vectors $\left\{\vec{w}_{\rho} ; \rho \in \partial_{1} \sigma\right\}$ form a basis of $\mathcal{W}_{\mathbb{R}}$ we deduce that

$$
\chi=\chi_{\sigma} \Longleftrightarrow\left\langle\chi, \vec{w}_{\rho}\right\rangle=\mathbf{m}\left(\vec{w}_{\rho}\right), \quad \forall \rho \in \partial_{1} \sigma
$$

Hence

$$
\hat{f}_{\sigma}=f\left(\pi_{\sigma}(\vec{y})\right)=\prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{\mathrm{m}\left(\vec{w}_{\rho}\right)} \cdot \underbrace{\sum_{\chi \in \operatorname{supp} f} a_{\chi} \prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{\left(\chi, \vec{w}_{\rho}\right)-\mathbf{m}\left(\vec{w}_{\rho}\right)}}_{=: \bar{f}_{\sigma}}, \quad \bar{f}_{\sigma}(0)=a_{\chi_{\sigma}} \neq 0
$$

We deduce that the order of vanishing of $f \circ \pi$ along the component of the exceptional divisor described by $y_{\rho}=0$ is precisely $\mathbf{m}\left(\vec{w}_{\rho}\right)$.

The hypersurface $\left\{\bar{f}_{\sigma}=0\right\}$ describes the proper transform in the coordinate chart \hat{X}_{σ} of the hypersurface $Z_{f}=\{f=0\}$ with respect to the birational map $\pi: \hat{X} \rightarrow \mathbb{C}^{n}$. To ease the notational burden we will write \bar{f} instead of \bar{f}_{σ}, when no confusion is possible. We would like to understand the intersection of this strict transform with the exceptional divisor. It is now time to introduce an important nondegeneracy condition.

Definition 15.3.2. The polynomial f is called Newton nondegenerate if for every face Δ of the Newton diagram Γ_{f} the polynomials

$$
z_{i} \frac{\partial f_{\Delta}}{\partial z_{i}}, \quad i=1,2, \cdots, n
$$

have no common zero in $\left\{z_{1} \cdots z_{n} \neq 0\right\}$.

Note that for every face $\tau \prec \sigma$ of the top dimensional cone $\sigma \in \mathcal{E}$ the orbit \mathcal{O}_{τ} is described in the chart \hat{X}_{σ} by the equation

$$
\prod_{\rho \in \partial_{1} \tau} y_{\rho}=0, \prod_{\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau} y_{\gamma} \neq 0 .
$$

Note that since $\bar{f}_{\sigma}(0) \neq 0$, the strict transform $\{\bar{f}=0\}$ does not contain the fixed point x_{σ}.
Lemma 15.3.3. If f is Newton nondegenerate then for every face $\tau \supsetneqq \sigma$ the strict transform $\{\bar{f}=0\}$ intersects the orbit \mathcal{O}_{τ} transversally.

Proof It suffices to show that the differential forms

$$
d \bar{f}, \quad\left\{d y_{\rho} ; \quad \rho \in \partial_{1} \tau\right\}
$$

are linearly independent along $\mathcal{O}_{\tau} \cap\{\bar{f}=0\}$. Equivalently, this means that for every point $y \in \mathcal{O}_{\tau} \cap\{\bar{f}=0\}$ there exists $\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau$ such that

$$
\frac{\partial \bar{f}}{\partial y_{\gamma}}(y) \neq 0 .
$$

The intersection of the hyperplanes

$$
\left\{\chi \in X_{\mathbb{R}} ;\left\langle\chi, \vec{w}_{\rho}\right\rangle=\mathbf{m}\left(\vec{w}_{\rho}\right)\right\}, \quad \rho \in \partial_{1} \tau
$$

is a face Δ_{τ} of the Newton diagram which contains χ_{σ}. Then

$$
\left.\bar{f}\right|_{O_{\tau}}=\sum_{\chi \in \Delta_{\tau}} a_{\chi} \prod_{\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau} y_{\gamma}^{\left\langle\chi-\chi_{\sigma}, \vec{w}_{\gamma}\right\rangle}
$$

This is precisely the strict transform $\bar{f}_{\Delta_{\tau}}$ of the quasihomogeneous polynomial $f_{\Delta_{\tau}}$. For simplicity we set $\Delta=\Delta_{\tau}$.

Consider the one parameter groups

$$
t^{\vec{\delta}_{i}} \cdot\left(z_{1}, \cdots, z_{n}\right)=\left(t^{\delta_{i}^{1}} z_{1}, \cdots, t^{\delta_{i}^{n}} z_{n}\right)
$$

Then for any polynomial g we have

$$
\mathcal{D}_{i} g:=\left.\frac{d}{d t}\right|_{t=1} g\left(t^{\vec{\delta}_{i}} \vec{z}\right)=z_{i} \frac{\partial g}{\partial z_{i}} .
$$

For a general one parameter subgroup $t^{\vec{w}}$ we have

$$
\mathcal{D}_{\vec{w}}:=\left.\frac{d}{d t}\right|_{t=1} g\left(t^{\vec{w}} \vec{z}\right)=\sum_{i} w^{i} \mathcal{D}_{i} g=:\langle\mathcal{D} g, \vec{w}\rangle .
$$

For every $\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau$ and we have

$$
\frac{\partial}{\partial y_{\gamma}} \bar{f}_{\Delta}=\frac{1}{y_{\gamma}} \mathcal{D}_{\gamma} \bar{f}_{\Delta} .
$$

Hence, it suffices to prove that for every $y \in \mathcal{O}_{\tau} \cap\left\{\bar{f}_{\Delta}=0\right\}$ there exists $\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau$ such that

$$
\mathcal{D}_{\gamma} \bar{f}_{\Delta}(y) \neq 0
$$

Consider the embedding $\Phi_{\tau}: \mathcal{O}_{\tau} \rightarrow \mathbb{C}^{n}$ described by

$$
z_{i}=\vec{\zeta}^{w^{i}}=\prod_{\rho \in \partial_{1} \sigma} \zeta_{\rho}^{w_{\rho}^{i}},
$$

where

$$
\vec{\zeta}=\left(\vec{\zeta}_{\gamma}\right)_{\gamma \in \partial_{1} \sigma}, \quad \vec{\zeta}_{\gamma}=\left\{\begin{array}{rll}
y_{\gamma} & \text { if } \quad \gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau \\
1 & \text { if } & \gamma \in \partial_{1} \tau
\end{array} .\right.
$$

We freely regard $\vec{\zeta}$ as coordinates on \mathcal{O}_{τ}. Then we have

$$
\Phi_{\tau}^{*}\left(f_{\Delta}\right)=\left.\vec{\zeta}^{\vec{m}} \cdot \bar{f}_{\Delta}\right|_{O_{\tau}}, \quad \overrightarrow{\zeta^{m}}=\prod_{\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau} \zeta_{\gamma}^{\mathbf{m}\left(\vec{w}_{\gamma}\right)} .
$$

and for every $\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau$ the action of the one parameter subgroup $t^{\delta_{\gamma}}$ on \mathcal{O}_{τ} is transported by Φ_{τ} to the action of the one parameter subgroup $t^{\vec{w}_{\gamma}}$ on \mathbb{C}^{n}, that is

$$
\Phi_{\tau}^{*} \mathcal{D}_{\vec{w}_{\gamma}}=\mathcal{D}_{\gamma} \Phi_{\tau}^{*}
$$

Hence

$$
\Phi_{\tau}^{*}\left(\mathcal{D}_{\vec{w}_{\gamma}} f_{\Delta}\right)=\mathcal{D}_{\gamma}\left(\Phi_{\tau}^{*} f_{\Delta}\right)=\left(\mathcal{D}_{\gamma} \vec{\zeta}^{\vec{m}}\right) \bar{f}_{\Delta}+\vec{\zeta}^{\vec{m}}\left(\mathcal{D}_{\gamma} \bar{f}_{\Delta} \mid \mathcal{O}_{\tau}\right) .
$$

Thus along $\mathcal{O}_{\tau} \cap\left\{\bar{f}_{\Delta}=0\right\}$ we have

$$
\begin{equation*}
\Phi_{\tau}^{*}\left(\mathcal{D}_{\vec{w}_{\gamma}} f_{\Delta}\right)=\vec{\zeta}^{\vec{m}}\left(\left.\mathcal{D}_{\gamma} \bar{f}_{\Delta}\right|_{O_{\tau}}\right), \quad \forall \gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau \tag{15.3.2}
\end{equation*}
$$

For every $\rho \in \partial_{1} \tau$ the polynomial f_{Δ} is \vec{w}_{ρ}-homogeneous and thus we have the Euler identities

$$
\mathcal{D}_{\vec{w}_{\rho}} f_{\Delta}=\left\langle\mathcal{D} f, \vec{w}_{\rho}\right\rangle=\mathbf{m}\left(\vec{w}_{\rho}\right) f, \quad \forall \rho \in \partial_{1} \tau
$$

Suppose $\vec{\zeta} \in \mathcal{O}_{\tau} \cap\{\bar{f}=0\}$ and $\vec{z}=\Phi_{\tau}(\vec{\zeta})$. Then $f_{\Delta}(\vec{z})=0$ and $\prod z_{i} \neq 0$. Thus at \vec{z} we have

$$
\begin{equation*}
\mathcal{D}_{\vec{w}_{\rho}} f_{\Delta}(\vec{z})=0, \quad \forall \rho \in \partial_{1} \tau \tag{15.3.3}
\end{equation*}
$$

The collection of weights $\left\{\vec{w}_{\rho} ; \rho \in \partial_{1} \sigma\right\}$ is a \mathbb{Z}-basis of \mathcal{W} so that the derivatives $\mathcal{D}_{i} f_{\Delta}(\vec{z})$, $i=1, \cdots, n$ are uniquely and linearly determined by the derivatives $\mathcal{D}_{\vec{w}_{\rho}} f_{\Delta}(\vec{z})$. According to the Newton nondegeneracy condition at least one of the $\mathcal{D}_{i} f_{\Delta}(\vec{z})$ is nonzero, so that at least one of $\gamma \in \partial_{1} \sigma$ such that $\mathcal{D}_{\vec{w}_{\gamma}} f_{\Delta}(\vec{z}) \neq 0$. The equality (15.3.3) implies that $\gamma \in \partial_{1} \sigma \backslash \partial_{1} \tau$ while the identity (15.3.2) implies

$$
\mathcal{D}_{\gamma} \bar{f}_{\Delta}(\vec{\zeta}) \neq 0
$$

This concludes the proof Lemma 15.3.3.
Using the definition of a good embedded resolution on page 179 we deduce the following result.

Proposition 15.3.4. Suppose f is a convenient Newton nondegenerate polynomial in n variables. The holomorphic map determined by a regular simplicial subdvision $\hat{\mathcal{E}}_{f}$ of the conormal fan \mathcal{E}_{f} associated to f is a good embedded resolution of f.

Denote by π the toric birational map $X(\hat{\varepsilon}) \rightarrow X(\mathcal{\varepsilon})$ in the above proposition. We would like to better understand the structure of its exceptional divisor $D=\pi^{-1}(0)$ and the structure of the total transform $\hat{Z}_{f}=\{f \circ \pi=0\}$.

As before, for every top dimensional cone σ of $\hat{\varepsilon}_{f}$ we obtain a coordinate chart π_{σ} : $\hat{X}_{\sigma} \rightarrow \mathbb{C}^{n}$, and coordinates $\left(y_{\rho}\right)_{\tau \in \partial_{1} \sigma}$. For each $\rho \in \partial_{1} \tau$ we denote by \vec{w}_{ρ} the primitive
vector on $\rho \cap \mathcal{W}$. In this coordinate chart the exceptional divisor $\left\{\pi_{\sigma}=0\right\}$ is described by the system of monomial equations

$$
\prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{w_{\rho}^{i}}, \forall i=1, \cdots, n
$$

We can be much more specific about the nature of this divisor by taking advantage the special nature of the fan ε_{f}, as the conormal fan of a local Newton polyhedron. Again, we denote by \mathcal{E}_{0} the fan consisting of the cone $\mathcal{W}_{\mathbb{R}}^{+}$and all of its faces. We will refer to it as the coordinate fan. We will refer to the faces of the coordinate fan as coordinate faces.

For every set $I \subset\{1,2, \cdots, n\}$, we denote \bar{I} its complement $\{1, \cdots, n\} \backslash I$ and we set

$$
\begin{aligned}
& X_{I}^{+}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{X}_{\mathbb{R}}^{+} ; \quad x_{j}=0, \quad \forall j \in I\right\}, \\
& \mathcal{W}_{I}^{+}=\left\{\left(t^{1}, \cdots, t^{n}\right) \in \mathcal{W}_{\mathbb{R}}^{+} ; t^{k}=0, \quad \forall k \in \bar{I}\right\} .
\end{aligned}
$$

Note that the correspondence $I \mapsto X_{I}^{+}$is decreasing, while the correspondence $F \mapsto \mathcal{W}_{F}^{+}$is increasing.

Every top dimensional cone σ of $\hat{\mathcal{E}}_{f}$ is contained in a top dimensional cone $\tilde{\sigma}$ of \mathcal{E}_{f} which is the conormal cone of a vertex $\chi(\sigma)=\left(\chi(\sigma)_{1}, \cdots \chi(\sigma)_{n}\right)$ of the Newton diagram

$$
\tilde{\sigma}=C_{\chi(\sigma)} .
$$

For every lattice point $\chi \in \mathcal{X}$ we set

$$
I_{\chi}:=\left\{i ; \quad \chi_{i}=0\right\} .
$$

For example, in Figure 15.5 we have

$$
I_{A}=\{1,2\}, \quad I_{B}=\{1\} .
$$

Set for simplicity $I_{\sigma}=I_{\chi(\sigma)}$. Using the definition of Γ_{f}^{+}as the convex hull of $\operatorname{supp}(f)+$ X^{+}we deduce that $\mathcal{W}_{I_{\sigma}}^{+}$is a face of the conormal cone $C_{\chi(\sigma)}$. In fact $\mathcal{W}_{I_{\sigma}}^{+}$contains any coordinated face which is also a face of $C_{\chi(\sigma)}$. Note that the mass of any $\vec{w} \in \mathcal{W}_{I_{\sigma}}^{+}$is zero.

Definition 15.3.5. A face σ of a fan \mathcal{F} in \mathcal{W} is called massless if $\mathbf{m}_{f}(\vec{w})=0$ for all $\vec{w} \in \sigma$.

Note that if σ is a cone of \mathcal{E}_{f} and $\mathbf{m}_{f}(\vec{w})=0$ for some $\vec{w} \in \operatorname{relint} \sigma$ then $\mathbf{m}_{f}(\vec{w})=0$ for all $\vec{w} \in \sigma$, i.e. σ is massless. We see that any massless face of \mathcal{E} is a coordinate face and $\mathcal{W}_{I_{\sigma}}^{+}$is the maximal massless face of $C_{\chi(\sigma)}$. Conversely, every coordinate face of positive codimension is a massless face of \mathcal{E}_{f}.

In Figure 15.5 we identified $X=\mathcal{W}$ using the canonical Euclidean metric on \mathbb{R}^{3}. The coordinate fan is depicted with dotted lines. The conormal cone of A has the quadrant $O 12$ as a maximal massless face, while the conormal cone of B has the ray $O 1$ as a maximal massless face.

Figure 15.5: A 3-dimensional Newton polyhedron.

Definition 15.3.6. A fan $\tilde{\varepsilon}$ in \mathcal{W}^{+}is called f-convenient if the following conditions hold.
(a) $\tilde{\varepsilon}$ is a subdivison of the conormal fan.
(b) If σ is a cone of $\tilde{\varepsilon}$ and $\mathbf{m}_{f}(\vec{w})=0$ for some $\vec{w} \in \operatorname{relint} \sigma$ then σ is massless.
(c) Every massless face of $\tilde{\varepsilon}$ is a coordinate face.
(d) Every coordinate face is a massless face of $\tilde{\varepsilon}$.

The above discussion shows that the conormal fan \mathcal{E}_{f} is f-convenient.
The conormal $\mathcal{E}=\mathcal{E}_{f}$ fan has another remarkable property. To formulate it we need some additional notation.

Consider a massless face $\varphi=\mathcal{W}_{I}^{+}$of $\mathcal{E}, I \subset\{1, \cdots, n\}$. If we denote by \mathcal{W}_{I} the sublattice spanned by $\mathcal{W} \cap \mathcal{W}_{I}^{+}$we deduce that \mathcal{W}_{I} is a primitive sublattice and moreover, we have a natural identification

$$
\mathcal{W}_{\bar{I}} \cong \mathcal{W} / \mathcal{W}_{I}
$$

The star of the face \mathcal{W}_{I}^{+}in \mathcal{E} is a $\operatorname{fan} \operatorname{St}\left(\mathcal{W}_{I}, \mathcal{E}\right)$ in $\mathcal{W} / \mathcal{W}_{I}$. Recall that

$$
f=\sum_{\chi \in \operatorname{supp} f} a_{\chi} \vec{z}^{\chi} .
$$

We set

$$
f_{I}=\sum_{\chi \in X_{I}^{+}} a_{\chi} \bar{z}^{\chi}=\left.f\left(z_{1}, \cdots, z_{n}\right)\right|_{\left\{z_{i}=0, i \in I\right\}} .
$$

We can identify the dual lattice $X_{I}^{\vee}=\operatorname{Hom}\left(X_{I}, \mathbb{Z}\right)$ with the quotient lattice $\mathcal{W} / \mathcal{W}_{I} \cong \mathcal{W}_{\bar{I}}$. We denote by $\Gamma_{I}^{+}(f)$ the Newton polyhedron of f_{I}. The fan $\mathcal{E}=\mathcal{E}_{f}$ has the reproducing property meaning the following.

- For every massless face $\varphi=\mathcal{W}_{I}^{+}$of \mathcal{E} the fan $\operatorname{St}\left(\mathcal{W}_{I}^{+}, \mathcal{\varepsilon}\right)$ in $\mathcal{W} / \mathcal{W}_{I}$ is a f_{I}-convenient subdivision of the conormal fan $\mathcal{E}_{f_{I}}$.
- If φ is massless, $\varphi \prec \sigma, \vec{w} \in \sigma \cap \mathcal{W}$ is a weight and if we denote by $[\vec{w}]_{I}$ or $[\vec{w}]_{\varphi}$ its image in $\mathcal{W} / \mathcal{W}_{I}$ then we have the equality

$$
\mathbf{m}_{\Gamma}(\vec{w})=\mathbf{m}_{\Gamma_{I}}\left([\vec{w}]_{I}\right) .
$$

Definition 15.3.7. A fan \mathcal{E} in \mathcal{W} is called f-perfect, if it is a regular simplicial subdivision of ε_{f} which is f-convenient, reproducing and all the stars $\mathbf{S t}\left(\mathcal{W}_{I}^{+}, \mathcal{E}\right)$ are regular simplicial.

One can show that we can find f-perfect fans.
Denote by $\left\{\vec{\delta}^{1}, \cdots, \vec{\delta}^{n}\right\}$ the canonical basis of X and by $\left\{\vec{\delta}_{1}, \cdots, \vec{\delta}_{n}\right\}$ the dual basis of \mathcal{W}. Suppose $\hat{\mathcal{E}}$ is a f-perfect subdivision of \mathcal{E}_{f}, σ is a top dimensional cone and $\pi_{\sigma}: \hat{X}_{\sigma} \rightarrow$ \mathbb{C}^{n} is the associated coordinated chart. Denote by \vec{w}_{ρ} the primitive vectors along the 1 dimensional faces of σ and by σ^{0} the maximal massless face of $\sigma . \sigma^{0}$ has the form $\mathcal{W}_{I_{\sigma}}^{+}$for some $I_{\sigma} \subset\{1, \cdots, n\}$. The collection $\left(\vec{w}_{\rho}\right)_{\rho \in \partial_{1} \sigma}$ is a \mathbb{Z}-basis of \mathcal{W}. The primitive vectors \vec{w}_{ρ} corresponding to the 1 -dimensional faces of σ^{0} are precisely $\vec{\delta}_{i}, i \in I_{\sigma}$. For the other vectors we have $\vec{w}_{\rho} \in \operatorname{Int} \mathcal{W}_{\mathbb{R}}^{+}$, i.e.

$$
\vec{w}_{\rho}=\sum_{i=1}^{n} w_{\rho}^{i} \vec{\delta}_{i}, w_{\rho}^{i}>0 .
$$

It follows that in this chart the exceptional divisor is described by the equation

$$
\prod_{\rho \in \partial_{1} \sigma \backslash \partial_{1} \sigma^{0}} y_{\rho}=0
$$

The total transform of f is given by

$$
\begin{equation*}
\hat{f}_{\sigma}=f \circ \pi_{\sigma}=\left(\prod_{\rho \in \partial_{1} \sigma} y_{\rho}^{\mathrm{m}\left(\vec{w}_{\rho}\right)}\right) \cdot \bar{f}_{\sigma}=\left(\prod_{\rho \in \partial_{1} \sigma \backslash \partial_{1} \sigma^{0}} y_{\rho}^{\mathrm{m}\left(\vec{w}_{\rho}\right)}\right) \cdot \bar{f}_{\sigma} . \tag{15.3.4}
\end{equation*}
$$

15.4 The zeta-function of the Newton diagram

To define the zeta function of a Newton diagram we need to make a small detour and discuss about volumes.

Suppose X is a n dimensional lattice and set $V=X \otimes \mathbb{R}$. Set $\operatorname{det} V:=\mathcal{W}^{n} V$. A density on V is a function

$$
\rho: \operatorname{det} V \rightarrow \mathbb{R}_{+}
$$

with the property that $\rho(t \omega)=|t| \rho(\omega)$. A density defines in a standard fashion a Lebesgue measure $d \rho$ on V and thus a Lebesgue integral. The lattice X induces a density ρx on V characterized by the condition

$$
\rho_{X}\left(e_{1} \wedge \cdots \wedge e_{n}\right)=1, \text { for any basis } e_{1}, \cdots, e_{n} \text { of } X
$$

Suppose now that V is also equipped with an Euclidean metric g. This defines a measure $\left|d v_{g}\right|$ and we have the equality

$$
\begin{equation*}
\left|d v_{g}\right|=\omega_{x} d \rho_{x} \tag{15.4.1}
\end{equation*}
$$

where ω_{x} is the Euclidean volume of a paralelipiped spanned by the vectors in a basis of \mathcal{X}.
Suppose $\vec{w} \in \operatorname{Hom}(X, \mathbb{Z})$ is a primitive linear function, i.e. it defines a surjection $X \rightarrow \mathbb{Z}$. Then ker \vec{w} is a sublattice in X and we have the split exact sequence

$$
0 \rightarrow \operatorname{ker} \vec{w} \rightarrow X \rightarrow \mathbb{Z} \rightarrow 0
$$

We then have a density on $\operatorname{ker} \vec{w} \otimes \mathbb{R}$ induced by the lattice $\operatorname{ker} \vec{w}$. We denote the corresponding measure by $d \rho_{\operatorname{ker}} \vec{w}$. We obtain by parallel transport a measure in all the level sets of \vec{w} which we denote by the same symbol. From the above (split) short exact sequence we obtain an infinitesimal Fubini identity

$$
\begin{equation*}
d \rho_{X}=d \rho_{\mathrm{ker}} \vec{w} \otimes|d \vec{w}| . \tag{15.4.2}
\end{equation*}
$$

On the other hand, the Euclidean metric g induces a metric g_{w} on $(\operatorname{ker} \vec{w}) \otimes \mathbb{R}$. If we denote by $|\vec{w}|$ the Euclidean length of \vec{w} we obtain another Fubini identity

$$
\left|d v_{g}\right|=\left|d v_{g_{w}}\right| \otimes \frac{|d \vec{w}|}{|\vec{w}|} .
$$

We can choose an integral basis $\left(e_{1}, \cdots, e_{n}\right)$ of X such that $\left(e_{1}, \cdots, e_{n-1}\right)$ is an integral basis of ker \vec{w} and $\vec{w}\left(e_{n}\right)=1$. Then $\left|d v_{g_{w}}\right|\left(e_{1} \wedge \cdots \wedge e_{n-1}\right)=\omega_{\text {ker }} \vec{w}$ and we deduce

$$
\omega_{\operatorname{ker}} \vec{w}=|\vec{w}| \omega_{x} .
$$

For a region $R \subset \mathcal{X}$ we set

$$
\operatorname{vol} x(R):=\int_{R} d \rho x
$$

and for a region S contained in a level set of $\vec{w}=c$ we set

$$
\operatorname{vol}_{x / \vec{w}}(S)=\int_{S} d \rho_{\operatorname{ker} \vec{w}} \text {. }
$$

Consider again the standard fan \mathcal{E}_{0} consisting of the positive orthant $\xi_{0}:=\mathcal{W}_{\mathbb{R}}^{+}$and all of its faces. $\partial_{k} \xi_{0}$ will denote the set of its k-dimensional faces. For every $\varphi \in \partial_{k} \xi_{0}$ we denote by X_{φ} the sub-lattice $X_{\varphi}=\operatorname{Lin}_{\mathbb{Z}}(\varphi \cap X)$ and by Γ_{φ} the intersection of the Newton diagram Γ_{f} with $X_{\varphi} \otimes \mathbb{R}$. Note that X_{φ} is a primitive sub-lattice and we have a split exact sequence of lattices

$$
0 \rightarrow x_{\varphi} \rightarrow x \rightarrow x / x_{\varphi} \rightarrow 0
$$

For every face $F \in \Gamma_{f}$ there exists a primitive vector $\vec{w}_{F} \in \mathcal{W}_{\varphi}:=\operatorname{Hom}\left(X_{\varphi}, \mathbb{Z}\right)$ and a non-negative integer m_{F} such that

$$
F=\left\{\chi \in X_{\varphi} \cap \Gamma_{f}^{+} ; \quad\left\langle\chi, \vec{w}_{F}\right\rangle=m_{F}\right\} .
$$

The weight \vec{w}_{F} and the multiplicity m_{F} are uniquely determined by F if $\operatorname{dim} F=k-1$. We set

$$
v_{F}:=\left\{\begin{array}{rll}
(k-1)!\cdot \operatorname{vol}_{X_{\varphi} / \vec{w}_{F}}(F) & \text { if } & \operatorname{dim} F=k-1 \\
0 & \text { if } & \operatorname{dim} F<k-1
\end{array}\right.
$$

and we define

$$
z_{k}^{\Gamma}(s)=\prod_{\varphi \in \partial_{k} \xi_{0}} \prod_{F \in \Gamma_{\varphi}}\left(1-s^{m_{F}}\right)^{v_{F}}, \quad \hat{z}_{k}^{\Gamma}(s)=\prod_{\varphi \in \partial_{k} \xi_{0}} \prod_{F \in \Gamma_{\varphi}}\left(s^{m_{F}}-1\right)^{v_{F}}
$$

For every face $F \in \Gamma_{\varphi}$ we denote by $(0 F)$ the "pyramid" with apex 0 and base F. Using the Fubini identity (15.4.2) we obtain the equality

$$
m_{F} \cdot v_{F}=k!\cdot \operatorname{vol} x_{\varphi}(0 F)
$$

Now define

$$
\begin{gathered}
z^{\Gamma}(s)=\prod_{k=1}^{n}\left(z_{k}^{\Gamma}(s)\right)^{(-1)^{k-1}}=\frac{\prod_{i \geq 0} z_{1+2 i}^{\Gamma}(s)}{\prod_{i \geq 1} z_{2 i}^{\Gamma}(s)}, \\
\chi^{\Gamma}=\operatorname{deg}_{s} z^{\Gamma}(s)=\sum_{k=1}^{n}(-1)^{k-1} \operatorname{deg} z_{k}^{\Gamma}(s)=\sum_{F \in \Gamma_{f}}(-1)^{\operatorname{dim} F} m_{F} v_{F} .
\end{gathered}
$$

15.5 Varchenko' Theorem

Suppose $f \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ is a Newton nondegenerate, convenient polynomial with an isolated critical point at the origin. We will use the following notations.

- $\Gamma=\Gamma_{f}^{+}$denotes the Newton polyhedron of f.
- $Z_{f}=\{f=0\}$ is the singular fiber of f and $\tilde{Z}_{f}=\{f=\varepsilon\}$ is the Milnor fiber of f.
- $\hat{Z}_{f}=\{f \circ \pi=0\}$ is the total transform of f with respect to a good embedded resolution $\pi: X \rightarrow \mathbb{C}^{n}$. Under the same assumption we denote by \bar{f} the strict transform of f, we set $\bar{Z}_{f}:=\{\bar{f}=0\}$ and we denote by E_{f} the exceptional divisor

$$
E_{f}=\hat{Z}_{f} \backslash \bar{Z}_{f}=\hat{Z}_{f} \cap\{\bar{f} \neq 0\} .
$$

- χ_{f} is the Euler characteristic of the Milnor fiber of f.
- For any fan \mathcal{E} and any nonnegative integer we denote by $\mathcal{E}^{(k)}$ the set of the k-dimensional faces of \mathcal{E}.

Theorem 15.5.1 (A.Varchenko).

$$
\begin{equation*}
\chi_{f}=\chi^{\Gamma}=\sum_{F \in \Gamma_{f}}(-1)^{\operatorname{dim} F}(\operatorname{dim} F+1)!\operatorname{vol}(0 F), \tag{15.5.1}
\end{equation*}
$$

where $\operatorname{vol}(0, F)$ denotes the volume of the pyramid with vertex 0 and base F and the summation is carried over the faces of the Newton diagram which are maximal amongst the faces contained in a coordinate cones.

Example 15.5.2. Before we present a proof its best to illustrate this theorem on an example. Consider the polynomial f in (15.3.1) with Newton polyhedron depicted in Figure 15.6 .

Figure 15.6: A two-dimensional example.

In the two dimensional coordinate cone there are two maximal faces of dimension one of the Newton diagram, the segments AB and BC. We have

$$
\operatorname{vol}(O A B)=\frac{5}{2}, \quad \operatorname{vol}(O B C)=5
$$

Observe that 2 ! $\operatorname{vol}(O A B)$ is equal to the two dimensional volume of the parallelogram spanned by $O A$ and $O B$.

In the one dimensional coordinate cones there are two maximal faces of dimension zero, the vertices A and C. We have

$$
\operatorname{vol}(O A)=5, \quad \operatorname{vol}(O C)=5 .
$$

The Euler characteristic of the Milnor fiber of f is then

$$
\chi_{f}=5+5-2 \cdot \frac{5}{2}-2 \cdot 5=-5 .
$$

The Milnor number is $\mu(f, 0)=1-\chi_{f}=6$.
Proof of Varchenko's theorem We follow the original strategy in [69]. To compute χ_{f} we will use the A'Campo formula in Theorem 14.3.1. Fix a f-perfect subdivision $\hat{\varepsilon}$ of the conormal fan \mathcal{E}_{f}. For every face $\tau \in \hat{\mathcal{E}}$ we denote by τ^{0} the maximal massless face of τ. τ^{0} corresponds to a coordinate face $\mathcal{W}_{I_{\tau}}^{+}$. For every massless face \mathcal{W}_{I}^{+}we denote by $\hat{\varepsilon}_{I}$ the (regular) fan $\mathbf{S t}\left(\mathcal{W}_{I}^{+}, \mathcal{E}\right)$ in $\mathcal{W} / \mathcal{W}_{I}$.

The projection $\pi: \hat{X} \rightarrow \mathbb{C}^{n}$ is a good embedded resolution of f. Set as usual $\hat{f}=f \circ \pi$. For every positive integer m we denote by Z_{m} the subset of the exceptional divisor E_{f} with the property that $p \in Z_{m}$ if and only if there exist holomorphic functions h, u defined in a neighborhood of p such that

$$
h(p)=0, \quad u(p) \cdot d h(p) \neq 0,\left.\quad \hat{f}\right|_{U}=h^{m} \cdot u .
$$

The A'Campo formula can be rephrased as

$$
\chi_{f}=\sum_{m} m \cdot \chi\left(Z_{m}\right)
$$

The manifold \hat{X} decomposes as a disjoint union of $\mathbb{T}_{\mathcal{W} \text {-orbits }}$

$$
\hat{X}=\bigcup_{\tau \in \hat{\mathcal{E}}} \mathcal{O}_{\tau} .
$$

Then (see [26, p. 141-141] for a proof)

$$
\chi\left(Z_{m}\right)=\sum_{\tau} \chi\left(Z_{m} \cap \mathcal{O}_{\tau}\right) .
$$

Hence

$$
\begin{equation*}
\chi_{f}=\sum_{M, \tau} m \cdot \chi\left(Z_{m} \cap \mathcal{O}_{\tau}\right) . \tag{15.5.2}
\end{equation*}
$$

We need to understand the structure of $Z_{m} \cap \mathcal{O}_{\tau}$.
Fix a face τ of $\hat{\mathcal{E}}$ and a top dimensional face σ such that $\tau \prec \sigma$. From (15.2.1) we deduce that $\mathcal{O}_{\tau} \subset \hat{X}_{\sigma}$. Moreover, if we denote by $\left(y_{\rho}\right)_{\rho \in \partial_{1} \sigma}$ the coordinates on the chart \hat{X}_{σ} then we obtain the following description of \mathcal{O}_{τ}

$$
y_{\rho}=0, \quad \forall \rho \in \partial_{1} \tau, \prod_{r \in \partial_{1} \sigma \backslash \partial_{1} \tau} y_{r} \neq 0 .
$$

τ so that in \hat{X}_{σ} we have the equality

$$
\hat{f}_{\sigma}=\prod_{\rho \in \partial_{1} \sigma \backslash \partial_{1} \sigma^{0}} y_{\rho}^{\mathbf{m}\left(\vec{w}_{\rho}\right)} \bar{f}_{\sigma} .
$$

Note that

$$
p \in Z_{m} \cap \mathcal{O}_{\tau} \text { if and only if } y_{\rho}(p)=0, \quad \forall \rho \in \partial_{1} \tau, \quad \bar{f}_{\sigma}(p) \neq 0
$$

and there exists a unique $\rho=\rho_{p} \in \partial_{1} \sigma \backslash \partial_{1} \sigma^{0}$ such that $y_{\rho}(p)=0$ and $\mathbf{m}\left(\vec{w}_{\rho}\right)=m$. We can identify ρ_{p} with a 1-dimensional cone in the fan $\mathbf{S t}\left(\tau^{0}, \hat{\varepsilon}\right)$. We are now ready to rephrase (15.5.2) in a more computationally friendly form.

Let $I \subset\{1,2, \cdots, n\}=: C_{n}$. For every 1-dimensional face ρ of the fan $\hat{\varepsilon}_{I}=\mathbf{S t}\left(\mathcal{W}_{I}^{+}, \hat{\varepsilon}\right)$ we denote by $m(I, \rho)$ the Γ_{I}-mass of the the unique primite weight $\vec{w}_{I, \rho}$ along ρ. The face ρ determines a $\mathbb{T}_{\mathcal{W} / \mathcal{W}_{I}}$-orbit $\mathcal{O}_{I, \rho}$ and we denote by $\chi(I, \rho)$ the Euler characteristic of $\mathcal{O}_{I, \rho} \cap\left\{\bar{f}_{I}=0\right\}$. Then

$$
\chi\left(\mathcal{O}_{I, \rho} \backslash\left\{\bar{f}_{I}=0\right\}\right)=\chi\left(\mathcal{O}_{I, \rho}\right)-\chi\left(\left\{\bar{f}_{I}=0\right\}\right)=-\chi(I, \rho) .
$$

The A'Campo formula can now be rewritten as

$$
\chi_{f}=-\sum_{I \subset C_{n}} \sum_{\rho \in \hat{\varepsilon}_{I}^{(1)}} m(I, \rho) \chi(I, \rho)
$$

Note that in the above sum the massless faces $\rho \in \hat{\varepsilon}_{I}$ do not contribute anything. Varchenko's formula (15.5.1) is now an immediate consequence following key result whose proof is presented in the next chapter.

Lemma 15.5.3 (Koushnirenko). Suppose $I \subset C_{n},|I|:=n-k$ and ρ is a one-dimensional face of $\hat{\mathcal{E}}_{I}$ which lies in the interior of $\left(\mathcal{W} / \mathcal{W}_{I}\right) \otimes \mathbb{R}$. Denote by $F_{I, \rho}$ the face of the Newton diagram $\Gamma_{I} \subset X_{I}$ defined by the supporting hyperplane

$$
\left\langle\chi, \vec{w}_{I, \rho}\right\rangle=m(I, \rho) .
$$

Then

$$
\chi(I, \rho)=(-1)^{k} v_{F_{I, \rho}}=(-1)^{k} \cdot(k-1)!\cdot\left\{\begin{array}{rll}
0 & \text { if } & \operatorname{dim} F_{I, \rho}<(k-1) \\
\operatorname{vol}_{x_{I} / \vec{w}_{I, \rho}} F_{I, \rho} & \text { if } & \operatorname{dim} F_{I, \rho}=k-1
\end{array} .\right.
$$

Chapter 16

Cohomology of toric varieties

We would like to enter deeper into the structure of a toric variety. This will require considerably more mathematical background in algebraic geometry.

Chapter 17

Newton nondegenerate polynomials in two and three variables

We would like to investigate in greater detail the toric techniques in the case of polynomials in three complex variables.

17.1 Regular simplicial resolutions of 3-dimensional fans

Suppose L is the 3 -dimensional lattice \mathbb{Z}^{3}. We set $L^{+}=\mathbb{Z}_{\geq 0}^{3}, \Lambda=\operatorname{Hom}(L, \mathbb{Z})$ and \mathcal{E} is a fan in Λ such that

$$
|\mathcal{E}|=\Lambda^{+}:=\left\{\vec{w} \in \Lambda ; \quad\langle\chi, \vec{w}\rangle \geq 0, \quad \forall \chi \in L^{+}\right\} .
$$

We would like to describe an algorithm for producing a regular simplicial resolution of \mathcal{E}.
First a some terminology. For a collection of vectors $W \subset \Lambda$ we denote by $\mathbb{Z}\langle W\rangle$ the sublattice of Λ spanned by W. We denote by $\mathbb{Z}\langle W\rangle^{+}$the supset of $\mathbb{Z}\langle W\rangle$ consisting of linear integral combinations of vectors in W with non-negative coefficients. We set

$$
\Lambda_{W}:=\Lambda \cap \mathbb{Q}\langle W\rangle, \quad \Lambda_{W}^{+}=\mathbb{Q}\langle W\rangle^{+} \text {so that } \mathbb{Z}\langle W\rangle \subset \Lambda_{W}, \quad \mathbb{Z}\langle W\rangle^{+} \subset \Lambda_{W}^{+} .
$$

We define $\operatorname{det} W$ to be the order of the torsion part of the Abelian group $\Lambda / \mathbb{Z}\langle W\rangle$. The collection W is called primitive if it is linearly independent over \mathbb{Z} and $\operatorname{det} W=1$. Note that any primitive family W can be extended to an integral basis of Λ.

Bibliography

[1] N. A'Campo: La fonction zêta d'une monodromie, Comment. Math. Helvetici, 50(1975), 233-248.
[2] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko: Singularities of Differentiable Maps. Vol.I, Monographs in Math., vol. 82, Birkhäuser, 1985.
[3] D. N. Bernshtein: The number of roots of a system of equations, Funkt. Analiz i Ego Prilozhenia, 9, no. 3(1975), 1-4.
[4] E. Bierstone, P.D. Milman: Semi-analytic and subanalytic sets, , Publ. I.H.E.S., 67(1988), 5-42.
[5] E. Bierstone, P.D. Milman: Uniformization of analytic spaces, J. Amer. Math. Soc., 2(1989), 801-836.
[6] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko: Singularities of Differentiable Maps. Vol.II, Monographs in Math., vol. 83, Birkhäuser, 1987.
[7] C. Banică, O. Stănăşilă: Algebraic Methods in the Global Theory of Complex Spaces, John Wiley, 1976.
[8] R.Bott, L.Tu: Differential Forms in Algebraic Topology, Springer-Verlag, 1982.
[9] N. Bourbaki: Commutative Algebra. Chapters 1-7, Springer Verlag, 1989.
[10] G.E. Bredon: Topology and Geometry, Graduate Texts in Math., vol. 139, Springer-Verlag, 1993.
[11] G. Bredon: Sheaf Theory, 2nd Edition, Graduate Texts in Mathematics, vol. 170, Springer Verlag, 1997.
[12] E. Brieskorn, H. Knörrer, Plane Algebraic Curves, Birkhäuser, 1986.
[13] H. Cartan, S. Eilenberg: Homological Algebra, Princeton Landmarks in Mathematics, Princeton University Press, 1999.
[14] E. Cassas-Alvero: Singularities of Plane curves, London Math. Soc. Lect. Series, vol. 276, Cambridge University Press, 2000.
[15] S.S. Chern: Complex Manifolds Without Potential Theory, Springer Verlag, 1968, 1995.
[16] E. M. Chirka: Complex Analytic Sets, Kluwer Academic Publishers, 1989.
[17] H. Clemens: Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc., 136(1969), 93-108.
[18] H. Clemens: Degeneration of Kähler manifolds, Duke Math. J., 44(1977), 215290.
[19] H. Clemens, P.A. Griffiths, T.F. Jambois, A.L. Mayer: Seminar of the degenerations of algebraic varieties, Institute for Advanced Studies, Princeton, Fall Term, 1969-1970.
[20] V.I. Danilov: The geometry of Toric varieties, Russian Math. Surveys, 33:2(1978), 97-154.
[21] J.P. Demailly: Complex Analytic and Differential Geometry, notes available at
http://www-fourier.ujf-grenoble.fr/~demailly/lectures.html m.
[22] A. Dimca: Sheaves in Topology, Universitext, Springer Verlag, 2004.
[23] Ch. Ehresmann: Sur l'espaces fibrés différentiables, C.R. Acad. Sci. Paris, 224(1947), 1611-1612.
[24] D. Eisenbud: Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Math, vol. 150, Springer Verlag, 1995.
[25] G. Ewald: Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Math., vol. 168, Springer Verlag, 1996.
[26] W. Fulton: Introduction to Toric Varieties, Princeton University Press, vol. 131, 1993.
[27] S.I. Gelfand, Yu.I. Manin: Methods of Homological Algebra, Springer Verlag, 203.
[28] R. Godement: Topologie Algébrique et Théorie des faisceaux, Hermann 1958.
[29] H. Grauert, R. Remmert: Komlexe Räume, Math. Ann., 136(1958), 245-318.
[30] P.A. Griffiths: Introduction to Algebraic Curves, Translations of Math. Monographs, vol. 76, Amer. Math. Soc., 1986.
[31] P.A. Griffiths, J. Harris: Principles of Algebraic Geometry, John Wiley\& Sons, 1978.
[32] R.C. Gunning, H. Rossi: Analaytic Functions of Several Variables, Prentice Hall, 1965.
[33] H.A. Hamm, Lé Dung Tráng: Un théoréme de Zariski du type de Lefschetz, Ann. Sci. Éc. Norm. Sup., 4^{e} série, 6(1973), 317-366.
[34] R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer Verlag, 1977.
[35] H. Hauser: The Hironaka theorem on resolution of singularities. (Or: A proof we always wanted to understand), Bull. A.M.S., 40(2003), 323-403.
[36] A. Hatcher: Algebraic Topology, electronic manuscript available at http://www.math.cornell.edu/~hatcher/.
[37] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteritic zero.I,II. Ann. of Math., 79(1974), 109-203, 205-326.
[38] H. Hironaka: Subanalytic sets, in the volume: Number Theory, Algebraic Geometry and Commutative algebra. In honor of Yasuo Akizuki, Kinokuniya Publications, 1973, p.453-493.
[39] M. Hochster: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials and polytopes, Ann. of Math., 96(1972), 318-337.
[40] S. Hussein-Zade: The monodromy groups of isolated singularities of hypersurfaces, Russian Math. Surveys, 32:2(1977), 23-69.
[41] T. de Jong, G. Pfister: Local Analytic Geometry, Advanced Lectures in Mathematics, Vieweg, 2000.
[42] M. Kashiwara, P. Schapira: Sheaves on Manifolds, Gründlehren der mathematischen Wissenschaften, vol. 292, Springer Verlag, 1990.
[43] G.Kempf, F. Knudsen, D. Mumford, B. Saint-Donat: Toroidal Embeddings, Lecture Notes in Mathematics, vol. 339, Springer Verlag, 1973.
[44] F. Kirwan: Complex Algebraic Curves, London Math. Soc. Student Texts, vol. 23,1992.
[45] A.G. Koushnirenko: Polyèdres de Newton et nombres de Milnor, Invent. Math. 32(1976), 1-31.
[46] K. Lamotke: The topology of complex projective varieties after S. Lefschetz, Topology, 20(1981), 15-51.
[47] S. Lang: Algebra, 3rd Edition, Addisson-Wesley, 1993.
[48] S. Lefschetz: L'Analysis Situs et la Géométrie Algébrique, Gauthier Villars, Paris, 1924.
[49] S. Lefschetz: Algebraic Topology, Amer. Math. Soc., Colloquim Publications, vol. 27, 1942.
[50] E.J.N. Looijenga: Isolated Singular Points on Complete Intersections, London Math. Soc. Lect. Note Series, vol. 77, Cambridge University Press, 1984.
[51] H. Matsumura: Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, 2000.
[52] J. McCleary: A User's Guide to Spectral Sequences, 2nd Edition, Cambridge Studies in Advanced Mathematics, vol. 58, 2001.
[53] W. Messing: Short sketch of Deligne's proof of the Hard Lefschetz Theorem Proc. Symp. Pure Math., 29(1975), 563-580.
[54] J.W. Milnor: Morse Theory, Princeton University Press, 1963.
[55] J.W. Milnor: Topology from the Differential Point of View, Princeton Landmarks in Mathematics, Princeton University Press, 1997.
[56] J.W. Milnor: Singular Points of Complex Hypersurfaces, Ann. Math. Studies, 51, Princeton Univ. Press, 1968.
[57] J.W. Milnor: On polylogarithms, Hurwitz zeta functions, and the Kubert identities, L'Enseignment Mathématique, 29(1983), 281-322.
[58] R. Miranda: Algebraic Curves and Riemann Surfaces, Graduate Studies in Mathematics, vol. 5, Amer. Math. Soc., 1995.
[59] D. Mumford: Algebraic Geometry I. Complex Projective Varieties, Classics in Mathemematics, Springer Verlag, 1995.
[60] R. Narasimhan: Introduction to the Theory of Analytic Spaces, Lecture Notes in Mathematics, vol. 25, Springer Verlag, 1966. (QA 320.N218 1966)
[61] P. Orlik: The multiplicity of a holomorphic map at an isolated critical point, p. 405-475 in the volume Real and Complex singularities, Oslo 1976, Sitjthof \& Noordhoff International Publishers, 1977. (QA 331 .N66 1976)
[62] R. Remmert: Local theory of complex spaces,in the volume Several Complex Variables VII, Encyclopedia of Mathematics Sciences, vol. 74, p.7-97, SpringerVerlag, 1994. (QA 331.7 .K6813 1994)
[63] D. Rolfsen: Knots and Links, Math. Lect. Series, Publish and Perish, 2nd Edition, 1990.
[64] J.P. Serre: Faisceaux algébriques cohérents, Ann. of Math., 61(1955), 197-278.
[65] I. R. Shafarevich: Basic Algebraic Geometry I,II, 2nd Edition, Springer-Verlag, 1994.
[66] L. Siebenmann: Deformation of homeomorphims on stratified sets, Comment. Math. Helv., 47(1972), 123-163.
[67] E. H. Spanier: Algebraic Topology, McGraw Hill, 1966.
[68] B. Teissier: The hunting of invariants in the geometry of discriminants, p. 565-679 in the volume Real and Complex singularities, Oslo 1976, Sitjthof \& Noordhoff International Publishers, 1977. (QA 331 .N66 1976)
[69] A. Varchenko: Zeta-Function of monodromy and Newton's diagram, Invent. Math. 37(1976), 253-262.
[70] B.L. van der Waerden: Algebra, vol. 1,2, F.Ungar Publishing Co., New York, 1949.
[71] O. Zariski, P. Samuel: Commutative Algebra, Graduate Texts in Mathematics, vols. 28,29, Springer Verlag, 1975.

Index

$C \cdot D, 128$
$C_{S}, 198$
$E(1), 26$
$H_{\Phi}^{\bullet}, 191$
$I_{F}, 72$
$P D_{M}, 32$
$Q_{F}, 72$
$V(\mathcal{J}), 101$
[D], 20
$\Gamma_{f}^{+}, 222$
$\mathcal{O}_{M}(L), 16$
$\mathcal{O}_{f}, 126$
$\mathcal{O}_{n, p}, 69$
$\Sigma\left(a_{1}, a_{2}, a_{3}\right), 152$
Spec, 92
$\mathbf{S t}(\sigma), 210$
$\boldsymbol{S t}(\sigma, \mathcal{E})), 210$
$\chi_{S}, 198$
$\Xi_{C}, 200$
$\check{\mathbb{P}}^{N}, 5$
$\delta(C, 0), 111$
$\mathcal{E}^{(k)}, 207$
$\mu\left(C_{f} \cap C_{g}, 0\right), 128$
$\mu\left(F, p_{0}\right), 72$
$\mu(f, 0), 9$
$\operatorname{ord}_{t}, 126,129$
$\mathcal{P}_{d, N}, 4$
$\partial_{k} \sigma, 207$
relint $C, 199$
$\operatorname{Sh}(X), 77$
Hom, 78
$\mathbb{C}_{M}, 19$
W-fan, 207
$e_{C}(O), 133$
$f_{\Delta}, 222$
$i^{!}, 42$
$i_{!}, 39$
$j_{k}(f), 87$
$\mathbb{C}\left\{z_{1}, \cdots, z_{n}\right\}, 69$
$\mathbb{P}(d, N), 4,25$
$\mathbb{P}^{N}, 3,17,66$
$\operatorname{var}_{\gamma}, 62$
$\mathfrak{m}_{n}, 69$
$\operatorname{Pic}(M), 19$
$\operatorname{vol} x, 233$
$\operatorname{vol}_{X / \vec{w}}, 233$
var, 56
algebra analytic, 71
finite morphism, 71
morphism, 71
quasi-finite morphism, 71
analytic set, 76
ape, 200
Betti number, 44, 45, 171
blowup, 21, 131
iterated, 135
branched cover, 10
c.p. cone, 199
face, 199
character, 195
characteristic exponents, 122, 140
Clemens collapse map, 181
cocycle condition, 16
complex space, 93
holomorphic map, 93
conductor, 126
convex cone
polar, 199
polyhedral, 199
rational polyhedral, 198
simplicial, 199
cospan, 199
critical point, 2, 13, 169
isolated, $86,87,108$
Jacobian ideal, 151
Jacobian ideal of, 73
Milnor number of, 9, 73, 86, 171
multiplicity of, 9
nondegenerate, 3, 12
critical value, 2
crossing locus, 192
curve
class of, 6
complex, 5, 10, 22
cubic, 7
pencil, 26
degree of, 6
plane, 105, 108, 111, 123, 128
cusp, 106
cycle
effective, 44
invariant, 39
primitive, 44
vanishing, $39,50,63,177$ thimble of, 50, 61
dimension, 81
discriminant
locus, 67, 82
divisor, 19, 25, 65, 143
effective, 20
exceptional, 21
normal crossings, 179
principal, 19
dual of
curve, 6
line bundle, 18
projective space, 5

ENR, 32, 181
equivalence
analytical, 121
topological, 121, 122
Euler characteristic, 10, 161
exceptional
locus, 179
face, see c.p. cone
massless, 230
facet, 199
fan, 115, 207
conormal, 222
morphism, 211
regular simplicial, 209
simplicial, 209
support of, 207
fiber-first convention, 32, 54
fibration, 31, 67
homotopy lifting property, 47, 188
Lefschetz, 33
five lemma, 39
formula
genus, 12, 29, 36
global Picard-Lefschetz, 63
Halphen-Zeuthen, 129
Picard-Lefschetz, 172, 173, 177
global, 62
global, 68
local, 56
germ, 69, 78
analytic, 77
irreducible, 77
reducible, 77
dimension of, 81
equivalent, see equivalence
gluing cocycle, see line bundle
Grassmannian, 65
Hessian, 2
Hodge theory, 42
homology equation, 88
Hopf surface, 44
hyperplane, 5
hypersurface, 5
ideal
maximal, 102
prime, 102
infinitesimal
neighborhood, 135
point, 135
integral
domain, 106, 108
element, 109
intersection form, 40, 64
intersection number, 128
isomorphism
adjunction, 79, 80
Jacobian ideal, see critical point
jet, 87
Key Lemma, 34, 36, 38, 47, 63
knot, 123
algebraic, 152
cable, 124
cabling of, 124
framed, 124
iterated torus, 125
longitude of, 124
meridian of, 124
trefoil, 152
Koszul relations, 99
Kronecker pairing, 40, 55
Lefschetz decomposition, 45
lemma
curve selection, 157, 204
Gauss, 76
Hadamard, 70
Morse, 48, 86, 172
Nakayama, 70
line bundle
associated to a divisor, 20
base of, 15
dual of, 18
holomorphic, 15
hyperplane, 20
local trivialization, 16
morphism of, 19
natural projection of, 15
section of, 16
tautological, 17, 20
tensor product, 18
total space of, 15
trivial, 15
linear system, 25
base locus of, 25, 33
linking number, 173
manifold algebraic, 4, 33
modification of, 25
Brieskorn, 152
complex, 1
blowup of, 21, 29
orientation, 2
map
blowdown, 18, 21, 132
degree of, 10, 13
holomorphic, 2, 5, 80
finite, 80
ideal of, 72
local algebra of, 72
multiplicity of, 72
regular point of, 2
regular value of, 2
critical value of, 2
Morse, 3, 27, 36, 47
variation, 54, 55
holomorphic
critical point of, 2
map
holomorphic
infinitesimally finite, 72
Milnor
fiber, 153, 169, 188
fibration, 153
number, 9, 73, 86, 194
module
flat, 102
free, 103
monodromy, 53, 63, 67, 187, 188
group, 63
local, 50, 53, 173
geometric, 163
group, 62
monoid, 108
asymptotically complete, 108
normal, 198
rational polyhedral, 198
saturated, 198
morsification, 152, 171
multiplicity sequence, 139
Newton
diagram, 222
conormal fan, 222
local polyhedron, 222
nondegenerate, 227
Newton polygon, 112
convenient, 114
face, 114
degree of, 116
weight of, 116
height, 114
width, 114
node, 105
normalization, 108, 111
pencil, 25
Lefschetz, 27, 33, 67
monodromy group, 62
monodromy of, 61
Poincaré
dual, 39
duality, 32, 40, 68, 193
sphere, 152
Poincaré-Lefschetz duality, 55, 176
polydromy order, 113
Pontryagin duality, 195
presheaf, 77
stalk, 78
principal tangent, 134, 137
principal tangents, 134, 136
projection, 5, 13
axis of, 27
center of, 5
screen of, 27
projective space, 3
proper transform, 21, 132, 136, 143
proximity, 146
proximity graph, 147
Puiseux
expansion, 112, 113, 126, 129, 135
pairs, 122, 125, 127
series, 113, 117, 123, 125
Puiseux-Laurent series, 112
rational cone, 115
regular point, 2
regular value, 2
resolution, 111
embedded, 131
standard, 139
resolution graph, 141, 182
resultant, 130
ring, 69
factorial, 75
flat morphism, 102
ideal
radical of, 85
ideal of, 69
integrally closed, 109
local, 69, 70
localization, 92
Noetherian, 75
spectrum of, 92
ring normalization of, 109
ringed space, 91
local, 92
morphism of, 92
ringed spaces
morphism
flat, 103
sheaf, 77
coherent, 93
finite type, 93
ideal, 80
morphism, 77
image, 79
kernel of, 79
quotient, 79
relationally finite, 93
structural, 80, 92
singularity
delta invariant, 111, 127
isolated, 86, 151, 171
link of, 123, 152, 193
resolution of, 111, 129
Seifert form of, 175
variation operator of, 173
space
complex, 93
locally contractible, 32
spectral sequence
Leray, 181, 188
standard fiber, 31
subanalytic set, 181,187
sublattice, 198
submanifold, 4
submersion, 31, 51
supports
family of, 191
theorem
A'Campo, 193, 235
Alexander duality, 176
analytical Nullstellensatz, 85, 86, 101 Zariski topology, 92
Chow, 5
Ehresmann fibration, 31, 35, 37, 47, 51, 157
Enriques-Chisini, 139
excision, 32, 37, 48
Farkas, 199
general Weierstrass, 72
Grauert direct image, 102
Hahn-Banach, 199
Hilbert basis, 76
Hodge-Lefschetz, 20
implicit function, 4, 75
Künneth, 33
Krull intersection, 84
Lefschetz
hard, 42, 44, 63
hypersurface section, $37,39,43$
local parametrization, 81
Milnor fibration, 153, 171
monodromy, 190
Noether normalization, 81
Oka, 98
Oka-Cartan, 100
Riemann-Hurwitz, 11, 36
Sard, 4, 152
Tougeron, 9, 48, 87, 151
universal coefficients, 40
Varchenko, 234
weak Lefschetz, 40, 41, 64

Weierstrass division, 73
Weierstrass preparation, 69, 74, 75, 98
Zariski, 65
thimble, see cycle
total transform, 143
transporter ideal, 97
vanishing sequence, 145
Veronese embedding, 27
Weierstrass
polynomial, $74,83,98,109,113$, 117, 122, 130
Whitney stratifiable, 181, 187

[^0]: ${ }^{1}$ The algebraic topology known at the time Lefschetz created his theory would suffice. On the other hand, after reading parts of [48] I was left with the distinct feeling that Lefschetz' study of algebraic varieties lead to new results in algebraic topology designed to serve his goals.

[^1]: ${ }^{1}$ A space is called locally contractible if every points admits a fundamental system of contractible neighborhoods.

[^2]: ${ }^{1}$ This sign is different from the one in [6] due to our use of the fiber-first convention. This affects the appearance of the Picard-Lefschetz formulæ. The fiber-first convention is employed in [46] as well.

[^3]: ${ }^{2} \pitchfork=$ transverse intersection

[^4]: ${ }^{1} \mathrm{~A}$ continuous map with such a property is called an étale map. Étale maps resemble in many respects covering maps.

[^5]: ${ }^{2}$ The converse, i.e. that any such branched cover has a natural structure of analytic set is also true but it requires a bit more work, [29].

[^6]: ${ }^{3}$ We refer to [2, Sec. 5.5] for a very elegant proof of this fact not relying on Nullstellensatz.

[^7]: ${ }^{4}$ This is the only place where the assumption $\varphi \in \mathfrak{m}^{\mu+2}$ is needed. The rest of the proof uses only the milder condition $\varphi \in \mathfrak{m}^{\mu+1}$.

[^8]: ${ }^{1}$ An additive monoid is a commutative semigroup $(S,+)$ with 0 , satisfying the cancelation law, $a+x=$ $b+x \Longleftrightarrow a=b$.

[^9]: ${ }^{1}$ Curve Selection Lemma: Suppose $V \subset \mathbb{R}^{m}$ is a real algebraic set and $U \subset \mathbb{R}^{m}$ is described by finitely many inequalities,

 $$
 U=\left\{x \in \mathbb{R}^{m} ; g_{1}(z)>0, \cdots, g_{k}(x)>0\right\}
 $$

 where g_{i} are real polynomials. If 0 is an accumulation point of $U \cap V$ then we can reach o following a real analytic path. This means there exists a real analytic curve $p:[0,1) \rightarrow \mathbb{R}^{n}$ such that $p(0)=0$ and $p(t) \in U \cap V$ for all $t>0$.

[^10]: ${ }^{1}$ A family of subsets of a topological space is called locally finite if every point of the space has a neighborhood which intersects only finitely many sets of the family.

[^11]: ${ }^{2} F$ is in fact simple homotopic to the Milnor fiber.

[^12]: ${ }^{1}$ We want to point out that the Zariski topology on $X_{\sigma} \times X_{\tau}$ is not the product of the Zariski topologies on X_{σ} and X_{τ}.

[^13]: ${ }^{2}$ Be aware that the coordinates (s, t) in Example 3.1.2 are the coordinates (t, s) in the present example.

