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Abstract Although mobile health monitoring where
mobile sensors continuously gather, process, and update
sensor readings (e.g. vital signals) from patient’s sensors is
emerging, little effort has been investigated in an energy-
efficient management of sensor information gathering and
processing. Mobile health monitoring with the focus of
energy consumption may instead be holistically analyzed
and systematically designed as a global solution to opti-
mization subproblems. This paper presents an attempt to
decompose the very complex mobile health monitoring sys-
tem whose layer in the system corresponds to decomposed
subproblems, and interfaces between them are quanti-
fied as functions of the optimization variables in order to
orchestrate the subproblems. We propose a distributed and
energy-saving mobile health platform, called mHealthMon
where mobile users publish/access sensor data via a cloud
computing-based distributed P2P overlay network. The key
objective is to satisfy the mobile health monitoring appli-
cation’s quality of service requirements by modeling each
subsystem: mobile clients with medical sensors, wireless
network medium, and distributed cloud services. By simu-
lations based on experimental data, we present the proposed
system can achieve up to 10.1 times more energy-efficient
and 20.2 times faster compared to a standalone mobile
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health monitoring application, in various mobile health
monitoring scenarios applying a realistic mobility model.
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Introduction

Many successful health care applications based on mobile
computing and communication technologies have been pre-
sented in the literature. Lv et al. [1] utilizes wireless body
sensors and smart phones to monitor the wellbeing of the
elderly. The key enabler is a smartphone that automatically
alerts preassigned people who could be their family and
friends, and call the ambulance of the emergency center. As
an example of more sophisticated health monitoring sys-
tems, Chowdhury et al. proposed MediAlly, a middleware
for supporting energy-efficient, long-term remote health
monitoring, where sensor data is collected using physi-
ological sensors and transported back to the middleware
using a smartphone [4]. Smartphones with medical sen-
sors attached to patients can perform publish/access medical
sensor updates such as vital signals, measure personalized
estimates of impact and exposure, and share patient’s live
health information. mHealthMon is similar in a spirit of a
middleware-based system but it is fundamentally different
in terms of an energy-saving paradigm.

In ArchRock and SensorBase [17], sensor data from a
sensor network is aggregated at the local gateway and is
published to the front-end server through which users can
share the data. In SensorBase [17], back-end servers (called
republishers) further process sensor data to enable sensor
data searching. SensorMap [18] is a web portal service that
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provides mechanisms to archive and index data, process
queries, and aggregate and present results on geocentric
Web. mHealthMon differs from these approaches in that
it focuses on large-scale participatory sensing and facili-
tates location-sensitive information sharing via a scalable
structured P2P overlay that efficiently supports location-
sensitive data publish/retrieval. Similar to other works
such as GeoServ [16], mHealthMon is a two-tier mobile
health monitoring platform that exploits the P2P Internet
infrastructure.

The approaches from MAUI [5], CloneCloud [3],
Cloudlets [7], and Zhang et al. [23] seem promising because
their model incorporates a cost model for deciding best exe-
cution configuration, and they can be also adapted dynam-
ically according to real-time conditions. The approach in
[24] is similar to above, but it lacks of dynamic adapta-
tion of the computation between mobile devices and cloud
services. Prior work mostly focused on saving energy con-
sumption on mobile devices; in contrast, mHealthMon pro-
vides analytical cost models to optimize the entire energy
consumption including network and cloud at the same time.

Although many researcher have studied mobile health
monitoring, little attention has been paid in modeling the
system with the focus on energy saving. As depicted in
Fig. 1, the overall system model may include several sub-
systems: mobile terminals, multiple wireless network inter-
faces, and cloud services. Recent research efforts have
proposed several system architectures and its communica-
tion mechanism between a mobile and cloud side. However,
without having concrete models in the performance of appli-
cation and wireless communication medium, it is difficult
to quantify the cost of operations due to dynamic nature of
mobile health monitoring applications.

The key contributions are summarized in the follow-
ing. We explicitly model the performance of mobile health
monitoring system – mobile clients with medical sensors,
wireless network medium, and cloud services – using two
aspects: computation and communication cost. We propose
a distributed optimized solution of complex mobile health
monitoring: program partitioning , network resource alloca-
tion, and network selection problem. We propose a location-
aware sensor data retrieval scheme called mHealthMon that
supports geographic range queries, and a location-aware
publish-subscribe scheme that enables energy-efficient mul-
ticast routing over a group of subscribed users. We prototype
energy-optimized mobile health monitoring applications to
prove the feasibility of our proposed techniques in vari-
ous sensing scenarios applying a realistic mobility model
utilizing parallel offloading.

Related work

Mobile health monitoring: Today, personal healthcare is
one of emerged areas of research. Rodriguez et al. [11] have
made a classification which divides the solutions into three
groups. The first group records signals and takes action
off-line. The second group has the feature that systems per-
form remote real-time processing. The last group provides
local real-time processing, with taking into account the level
of mobility. Our work belongs to the third category. Com-
pared with the group two, the third group performs the
local real-time monitoring in order to detect some anoma-
lies and send alert to a control center or a hospital. Wu et
al [12] proposes a wearable personal healthcare and emer-
gency aid system called WAITER. Ziyu et al. uses wireless

Fig. 1 A high-level overview of
smartphone-based mobile health
network architecture in a
heterogeneous wireless network
interfaces scenario
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body sensors and smartphones to monitor the wellbeing
of the elderly [1]. The key enabler is a smartphone that
automatically alerts preassigned people who could be the
old people’s family and friends, and call the ambulance of
the emergency center. The AMON system [8] for multi-
parameter (Sp02, pulse and temperature) monitoring, the
MoteCare system [9] for personalized health monitoring
and For The COSMOS middleware [10] is for ubiquitous
monitoring using ZigBee-based sensors. Chowdhury et al.
proposed MediAlly, a middleware for supporting energy-
efficient, long-term remote health monitoring, where sensor
data is collected using physiological sensors and transported
back to the middleware using a smartphone [4]. mHealth-
Mon is similar in a spirit of a middleware-based system
but it is fundamentally different in terms of an energy-
saving paradigm. Prognosis [13] is a physiological data
fusion model of wearable health-monitoring system for peo-
ple at risk which contains decision support system and
finite-state machine. It can estimate users’ health status and
offer corresponding alerts. Gay and Leijdekkers [14] have
developed one application that can monitor the wellbeing
of high risk cardiac patients using wireless sensors and
smartphones.

Althgouh forementioned work is well studied, most of
them relies on flat back-end systems which may not be
flexible and scalable when billions of mobile devices are
targetted. For instance, Samsung has been building its own
big data platform for storing and processing data collected
from all the products and applications such as mobile health
monitoring. It is not surprising that such a big IT company
targets 1 billion users. Therefore, mHealthMon provides
a way to utilize hierarchical GPS-tagged data structure to
build a scalable overlay on the cloud. Furthermore, no prior
work supports computational offloading. We step further
to support concurrent and parallel offloading to save more
energy and execution time in health monitoring and its data
processing.

System architecture

The main goal of mHealthMon is to provide a noble way
to maximize the benefits of parallel code offloading upon
the presence of multiple cloud machines. From a bottom up
approach, consider a mobile client/terminal/user in Fig. 2. A
mobile device hosts an application which may consume lots
of battery time and energy. To efficiently run the application
without draining its battery and at the same time saving its
execution time, we consider cloud services where some part
of application components can be offloaded possibly in a
parallel manner. Mobile clients and cloud services are con-
nected via several intermediate nodes such as WLAN gate-
ways, SGSN, GGSN, connectivity service network nodes,

and access service network nodes. The networked system
offers heterogeneous radio access technologies (RAT)s for
wireless communications between them. This means there
exist several routes from a source to a destination due to
multiple access medium.

Issues in the system design are follows. From a mobile
client’s perspective, there are two main considerations. First,
a program offloading decision must be made based on
analytic cost models (see section “Cloud-based Distributed
Health Sensing System”) before a mobile application is
launched in a static setting. In a dynamic setting, the
offloading decision can be reconfigured based on periodic
profiling operating conditions (e.g. network data rate) even
when the application is running. Second, one of wireless
network technologies must be chosen before it transfers
data required for offloading program pieces. From a net-
work operator’s perspective, efficient and fair resource
(bandwidth) allocation must be made upon mobile clients’
arrival to maximize the overall throughput of networked
systems.

From a mobile client, an offloading decision can be
made based on two key factors: computation cost and
communication cost of a given mobile application. The
computation cost is incurred when a mobile client launches
an application on its mobile side, resulting in consum-
ing energy for CPU, I/O, and other hardware resources.
On the other hand, we consider the communication cost
as an additional cost when some part of the application
is offloaded. Thus, the communication cost can be evalu-
ated to be acceptable only when the mobile client benefits
from its offloaded computation in terms of time and energy
saving.

Figure 2 presents a component-based view of the system
architecture which consists of mobile terminal, wireless
networks, and cloud services. The key to success in this
design is to quantify the cost of offloading mobile applica-
tions. In program performance predictor, we predict the cost
of computation for a given basic functional block (BFB).
In this work, we define a BFB as a method or function in
a program. The main challenge is the estimate varies when
the input data fed to BFB changes. To overcome this issue,
we model the performance of BFB with different data set
using a regression theory based on a small set of profiling
samples on a target machine such as mobile clients and
cloud machines.

Cloud-based distributed health sensing system

Our prior work, GeoServ [16] mainly focuses on how
to store in and retrieve sensor data from external storage
systems, where the location-awareness is the main consid-
eration on its data management over an overlay-based P2P
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Fig. 2 An overview of
mHealthMon software
architecture

routing. Thus, GeoServ is a general purpose urban sensing
P2P storage with no consideration of performance mod-
eling, energy saving and optimization, and computation
offloading.

As an ongoing effort of building urban sensing appli-
cations, we propose mHealthMon, a model-based “energy-
efficient” system of sensor information sharing and compu-
tation offloading in urban environments. Unlike GeoServ,
mHealthMon focuses on the performance/energy modeling
and computational offloading by formulating cost functions
(computation and communication cost). It also provides a
way to optimize program execution time and energy for a
given mobile application since the battery constraint is one
of the biggest challenges in mobile phones. We adopted
GeoServ as a “server-side” sensor data and computing
resource management scheme which can be nicely inte-
grated in our performance and energy optimization frame-
work. Another contribution to mHealthMon is to formu-
late “mobile-side” several optimization formulations, which
was never considered in GeoServ: a program partition-
ing program, network resource allocation problem, network
selection problem. Therefore, mHealthMon much looks like
a modern mobile cloud computing platform, focusing on
enabling performance- and energy-efficient urban sensing
applications.

System model

Going back to the network architecture of smartphone-
based mobile health monitoring in Fig. 1, we start this
section by studying the current status of urban sensing
applications. The cost model of urban sensing falls in two
fold. As analyzed in prior section, the cost of sensor data
retrieval is a major issue in a cloud-based distributed sensor
storage. Other important is the cost of offloading incurred
by computational outsourcing from mobile to cloud. Sev-
eral researchers have identified the fundamental challenges
in urban sensing due to severe resource constraints and
dynamic changes in operating conditions. There are two

types of sensing applications: offline and online applica-
tions. The two dominating factors to distinguish the two are
the cost of communication and that of computation. The
former acts as fat mobile client that perform all the com-
putation locally, while the latter splits its computation into
local and remote parts, thus may incur additional commu-
nication cost to transfer necessary its binary and necessary
data, however save the total amount of local computation.
We apply a regression theory in modeling computation of
mobile applications based on empirical measurement data.
To model heterogeneous air interfaces such as WLAN, cel-
lular network, and WiMAX, we apply a state-of-the-art
mathematical network model based on empirical system
parameters [21].

Computation model

We define a software program as a set of basic functional
blocks (BFB)s, where a basic functional block corresponds
to a single method or function in a program. Each BFB
consists of a set of inputs as required knowledge of compu-
tation, and a set of outputs as an outcome of computation.
These include both global and local variables defined in a
program.

In order to model the performance of mobile applica-
tions in heterogeneous hardware environments, we apply
a regression theory to derive statistical inference models,
by taking a small number of samples, where each sam-
ple denotes the execution time of a BFB on a particular
machine. In our regression model, a response is modeled as
a weighted sum of predictor variables. By adopting statisti-
cal techniques, we then assess the effectiveness of model’s
predictive capability.

We suppose there are a subset of observations �̂ in a
large observation space � for which values of response and
predictor variables are known. A observed response vector
is denoted by y = [y1, ..., yi, ..., yθ], where yi denotes it
response variable for a single observation i ∈ �̂ and a �

predictor vector is denoted by xi = [xφ
i , ..., x

φ
i ]. The cor-

responding set of regression coefficients is expressed by a
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vector � = [γ0, ..., γφ]. Thus, a linear function of predictors
� is given by,

f (yi) = �(xi)� + εi = γ0 +
�∑

j=1

�j(x
j
i )γj + εi (1)

γi can be seen as the expected change in yi per unit change
in the predictor variable x

j
i . An independent random error εi

has mean E(εi ) = 0 and constant variance V ar(εi) = σ 2.
In order to determine the best fitting model, we consider

least squared errors commonly used in minimizing �(�)

the sum of squared deviations of predicted responses give
by the model from observed responses.

�(�) = ∑�̂
i=1(yi − γ0 − ∑�

j=1 γjx
j

i )2 Obtaining esti-
mates of the coefficients � is the goal of this approach.
The correlation of response-to-predictor relationship is used
in identifying the significance of the estimates. We express
residuals to answer the problem of how well the model cap-
tures observed trends as, ε̂ = yi − γ̂0 − ∑�

j=0 γ̂j x
j
i Model

fitting can be assessed by the F-test [20] which is a standard
statistical test method using multiple correlation statistic R2

given by R2 = 1 −
∑�̂

i=1(yi−ŷi )
2

∑�̂
i=1(yi− 1

�̂

∑�̂
i=1 yi)

2
A larger R2 value

indicates better fits, while over-fitting if R2 is close to 1.
The over-fitting may occur when data sets are small and the
number of predictors are large. A typical strategy is to set the
number of predictors less than the number of observations

given by |�| < �̂
20 according to [20].

ŷi = E[γ0 +
�∑

j=1

γjx
j
i + εi ] = γ0 +

�∑

j=1

γjx
j
i (2)

The Eq. 2 presents the expected value of yi , E[yi ] and
its corresponding estimate ŷi with E[εi ] = 0. We herein
define a coefficient of performance η of a computer such
as a mobile client and cloud server. The coefficient con-
verts the performance in time ŷi into the one in power or

energy P̂i on a computer j as P̂
j
i = η · ŷ

j
i , where η can be

experimentally obtained.

Wireless network model

We consider multiple wireless network interfaces scenario
where heterogeneous radio access technologies (RAT)s such
as WIFI, WiMAX, UMTS, and GSM work together with
their overlapping network coverage in a given area. Accord-
ing to many researchers such as [21] and [19], RATs can
be largely characterized into two categories based on means
to share their channels: interference constrained RATs and
orthogonal RATs. In this paper, we only consider the
latter.

Orthogonal RATs are network interfaces where they
assume a fixed transmission power over all base stations

(BS)s. In this sort of systems, time and frequency slots
are thought to be their bandwidth per a base station, and
their resources are assigned to mobile devices by differ-
ent resource allocation techniques under various objectives
such as utility, fairness, and priority. An typical exam-
ple of such system is GSM/EDGE technology which is
based on TDMA. The signal to interference and noise
ratio (SINR) between a mobile client m and BS b can be
given by

νm,b = qm,bP̄m

ωb + πb

(3)

The thermal noise is denoted by πb, the transmission
power of BS is denoted by P̄b, and the intercell interference
is given by ωb for each BS b. THus, the assigned band-
width rm,b to a mobile client m in BS b does not depend
upon the SINR νm,b. Therefore, the link rate Dm,b of the
orthogonal-based system is given by,

Dm,b = D̄m,brm,b (4)

In TDMA system, D̄m,b denotes the link rate of a unit
time while it denotes the like rate of a unit frequency
between a mobile client m and m in BS b. D̄m,b can be
rewritten as a function of SINR νm,b defined in Eq. 3.

Optimization problem formulation

We mainly solve different problems: a program partitioning
program (P1), network resource allocation problem (P2),
network selection problem (P3), and cloud resource alloca-
tion problem (P4) as depicted in Fig. 8. In this work, we
mainly focus on the first three. A solution to the partitioning
problem gives an optimal set of code offloading decisions in
terms of computation cost and communication cost, while a
solution to the network resource allocation problem gives an
optimal allocation strategy toward maximizing the utility of
network systems. It is obvious that solving the latter prob-
lem provides a way to choosing the best communication cost
in the former problem.

Program partitioning problem

Let us consider a mobile application A and its call function
graph G = (V, E), where each vertex v ∈ V denotes a
method in A. An invocation of method v from one another u

thereby is denoted by an edge e = (u, v). We annotate each
vertex with the execution time Tv of the method v and each
edge with the data transfer time Tu→v incurred when the
method v is offloaded from the method u. We reconstruct
a new graph G′ = (V ′, E′) from G by adding correspond-
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ing offloading methods to V . The code partitioning problem
based on G′ can be formulated as,

min
∑

v′∈V ′ Tv′ + ∑
e′∈E′ Te′:u′→v′,

s.t.
∑

v′∈V ′ Tv′+∑
e′∈E′ Te′∑

v∈V Tv+∑
e∈E Te

≤ 1,

Tv′ ≥ 0, Tv ≥ 0, Te′ ≥ 0, Te ≥ 0 (5)

The calculation of computation cost Tv, Tv′ depends
upon the performance estimate ŷi for each basic func-
tional block (BFB) v, v′. Furthermore, the calculation
of communication cost incurred due to code offload is
given by,

Tv′ = nv′ × Dm,b, (6)

where the assigned data rate is denoted by Dm,b for a mobile
client m in BS b, and the size of data to be transferred due
to offloading for BFB v′ is given by nv′ . We formulate fur-
ther problems for how to assign the data rate to each mobile
client in section “Network selection problem” and how to
select one of the heterogeneous network interfaces in sec-
tion “Network resource allocation problem”. The problem
formulated in Eq. 6 consists of a concave objective over
linear constraints, and it becomes convex. Therefore, there
are various convex optimization algorithms to solve it from
[25].

Network resource allocation problem

We consider a utility metric as the effectiveness of allocated
resources of networked systems in our optimization problem
as,

U =
∑

m

∑

b

Dm,b (7)

In order to deal with fairness in resource allocation
among mobile clients, the utility function with a weight
variable w can construct the α proportional fairness as,

U =
∑

m

wm

1 − α

∑

b

D1−α
m,b , (8)

where 0 ≤ α < 1. Now, we present an optimization problem
as,

max U,

s.t.
∑

m
Dm,b

D̄m,b
≤ �b,

∑
b Dm,b ≥ Dmin,b,

Dm,b ≥ 0, (9)

where Dmin,b is the minimum data rate assigned to mobile
clients. Our goal is for a network operator to maximize the
sum of utility of all mobile users in all base stations. Note
that Eq. 9 consists of a concave objective over linear con-
straints and thus is convex. That means there exists various
algorithms to solve the problem immediately [25].

Algorithm 1 mHealthMon: an orchestrated approach to
four different optimization algorithms to achieve a global
optimization objective in a distributed manner. (also see
Fig. 8)

Network selection problem

The network system model in this paper considers multiple
wireless network interfaces with different radio access tech-
nologies (RAT)s such as WIFI, WiMAX, UMTS, and GSM
having different capacity constraints and channel condi-
tions. The problem we would construct is a decent network
selection strategy that minimizes the expected mean cost
of data transfer from a mobile client to a target offload-
ing agent such as cloud machines. We develop a simple
heuristic-based strategy S(m, b, l) ∈ S where it takes into
account current workload lm ∈ L for a mobile client m ∈ M

in a base station b ∈ B which corresponds to the size of
data to be transferred over the wireless network medium.
The strategy S(m, l) selects the best RAT which can sup-
port its workload l satisfying QoS requirements. We assume
each mobile user belongs to one of K different user classes.
With probability pk , an arriving mobile user is characterized
by a specific class k in the network system. Let X̄k ∈ X

denote a set of states loaded for class k specifying whether
it allows the admission of a mobile user in class k to one of
the RATs r ∈ R. Therefore, the strategy S(m,b,l,r) can be
defined as,

S(m, b, l, r) := max lm × Dm,b,r , (10)

∀lm ∈ L∀m ∈ M, ∀b ∈ B, ∀r ∈ R

If there are several S(m, b, l, r) that maximizes the per-
formance of data transfer cost, among them the strategy
chooses the one which is equivalent to the RAT having
minimum current total workload.

Algorithm

We present an algorithm used in mobile health monitoring
settings. We are not evaluating our optimization schemes
one by one since our proposal is in nature coordinated and
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orchestrated as shown in Algorithm 1. For example, when
you make a decision for offloading computation, additional
results coming from other two optimization problems are
needed. One is network bandwidth assignment from wire-
less medium (P2). The other is the best wireless technology
selection (P3). In the dynamic scenario, mobile clients or
users request and their mobility are subject to a given
mobility and traffic model rather than stochastic processes.
Algorithm 1 solves P2, P3, P4, and P1 in order until the
mobile cloud computing facility based on data centers ends.
The network resource allocation problem P2 is for a net-
work operator to maximize the sum of utility U of all mobile
users in all base stations (Eq. 9). The following network
selection problem P3 that maximizes the performance of
data transfer cost, resulting in an optimal choice Dm,b of
RAT among candidate RATs (Eq. 6). The data center job
allocation problem P4 minimizes the total amount of power
consumption within a data center. It results in the perfor-
mance estimate ŷ for given computation to be offloaded
by mobile applications, and its power consumption foot-
print P . Finally, the program partitioning problem collects
computation cost and communication cost, and makes a
decision of whether or not given computational blocks are
outsourced based on optimal resources provided by P2,
P3, and P4. The final offloading decision is denoted by a
graph of BFBs Ĝ′ (Eq. 5) with a set of optimal resources
assigned.

System evaluation

Evaluating the performance consists of two parts: the per-
formance in a mobile device and the one in a cloud machine.
The former is presented in the computation cost and com-
munication cost in five offload scenarios: local execution
(L) in a mobile client, offloading with 1–5 concurrent
requests (O1–O5). Note that O1 represents serial offload-
ing similar to MAUI [5], [3], and Cloudlets [7]. Our work
differs from them in that parallel and concurrent offloading
is supported. For our proposed scheme, O2-O5 stands for
asynchronous parallel offloading with the different number
of concurrent parallel requests.

Evaluating mobile clients

This section analyzes computation cost and communication
cost in time and energy when applying optimization strate-
gies presented in this paper. We implemented a iOS-based
mobile health monitoring applicaiton as shown in Figs. 3, 4,
5, 6, 7 and 8. Figure 9 compares the execution time between
the mobile and the cloud by applying to a typical mobile
health monitoring application. Figure 10 compares energy
consumption in the same settings. As discussed, we also

Fig. 3 We developed an iOS-based mobile health monitoring applica-
tion: a screenshot for patient’s EHR

study how concurrent offloading requests help save time
and energy in various scenarios: O1-O5. ROB presents rel-
ative offload benefits, comparing each offloading case with
the non-offloading case L. We present the proposed system
with the help of 5 parallel execution (O5) can perform up
to 20.2 times faster and 10.1 times more energy-efficient
compared to a standalone mobile health application L. We

Fig. 4 A screenshot for a list of available medical sensors via
Bluetooth
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Fig. 5 A screenshot for sensor feeding (systolic/diastolic) from a
blood pressure sensor

also observe that our work (O2–O5) outperforms over non-
parallel offloading schemes (O1) such as MAUI [5] and
CloneCloud [3], resulting in at least 2 times better both
in time and energy. We observe the overall time saving
and energy saving rate increases as the number of con-
current requests increases. This is done by a non-blocking
(asynchronous) offload request.

Fig. 6 A screenshot for the Canadian CT rule

Fig. 7 A screenshot for patient’s statistics

Evaluating cloud servers

We implement an event-driven discrete-time simulator
where each overlay hop takes a unit time. For the sake of
a large-scale network simulation, our simulator does not
model any queuing delay at intermediate nodes or packet
loss on links. The simulator is implemented in C# and
supports dynamic node generation/join/leave, load balanc-
ing, and publish-subscribe features. For system evaluation,
we consider a large-scale participatory vehicular sensing
scenario where mobile users in the cars participate in vehic-
ular sensing projects (e.g., traffic information sharing and
road condition monitoring). For realistic mobility gener-
ation, we use VanetMobiSim that simulates macro- and
micro-mobility patterns in urban environments [22]. Macro-
mobility deals with road topology/structure and traffic signs
(stop signs, traffic lights, speed limits), and micro-mobility
models the speed and acceleration of each mobile device.

For mobile scenarios, we use this mobility trace for
the duration of 300s. We use the network area size
of 12800m×12800 m. The Westwood topology from
Tigermap (TGR06037, Los Angeles [2]) represents the area
in the vicinity of the UCLA campus. We discretize the net-
work area into grids for the Hilbert curve-based lineariza-
tion, resulting 100×100 grids. Geographic range queries are
made by specifying a square area (e.g., 4×4 grids). Each
mobile node reports sensor data to its associated overlay
node every second. The size of data is set to 128 Bytes
(e.g., GPS sample, timestamp, accelerometer samples). We
assume that each node knows its accurate geographic coor-
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Fig. 8 A high level presentation
of optimization solutions to
green mobile cloud computing.
Four optimization subproblems
achieve a global optimization
objective in a distributed fashion

dinate and thus can dynamically change their associated
overlay node without any errors (e.g., no bouncing at the
boundary). In GeoTable, the number of long links is set
to five, as recommended in Symphony DHT [6]. Unless
otherwise mentioned, for each configuration we report the
average value of 30 runs. For simplicity, orthogonal-based
WLAN and TDMA-based GSM are only considered. Unless
specified, the network selection follows a strategy given in
Equation 6 and network parameters form [19]. We assume
that each BS knows its accurate geographic coordinate and
thus can dynamically change their associated BS without
any errors (e.g., no bouncing at the boundary). In our sim-
ulation, each mobile client randomly chooses one of four
mobile applications. The duration of execution time and
energy of each mobile application is given by experimen-
tal results. When one application is done, another random
assignment is made automatically during our simulation
period.
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Fig. 9 The average execution time of mHealthMon with various
offloading scenarios are measured and presented with 95 percent
confidence intervals

Large-scale simulation

Figure 11 presents the energy consumption with six differ-
ent offloading scenarios in the case of 128×128 grid cells.
We assume each cell has only one base station. In our pre-
sentation, a boxplot shows min, 25 percentile, median, 75
percentile, and max; an empty rounded dot inside of each
box presents median. As a ground truth, we first show local
execution of mobile health applications with no offload-
ing capability, resulting in no energy saving. The mobility
is generated by the VanetMobisim simulator. By applying
our proposed offloading technique with concurrent request
capability, we see clear improvement of time and energy
saving in a static viewpoint. From O2 to O5 scenarios, we
apply parallelism with the different number of concurrent
requests, resulting in slightly 2× more energy saving com-
pared to local execution only. This means applying our opti-
mization techniques saves lots of energy by utilizing cloud.
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Fig. 10 The average energy consumption of mHealthMon with vari-
ous offloading scenarios are measured and presented with 95 percent
confidence intervals
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Fig. 11 Energy consumption
[Watts] for the simulation period
is presented. The total amount of
energy consumed by each cell is
averaged
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Conclusion

This paper presents an attempt to decompose the very
complex mobile health monitoring system whose layer
in the system corresponds to a decomposed subproblem,
and interfaces between them are quantified as functions
of the optimization variables in order to orchestrate the
subproblems. By simulations, we showed the proposed sys-
tem can perform up to 10.1 times more energy-efficient and
20.2 times faster compared to a standalone mobile health
application. We also compared our work with non-parallel
offloading schemes such as MAUI [5] and CloneCloud
[3], resulting in at least 2 times better both in time and
energy. For the future work, we plan to study energy issues
in resource allocation of cloud services. Particularly, the
cooling down machines in data center has been a major
research topic. By modeling air flow in data center, we may
generate a better power management and job scheduling
strategy.
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