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Abstract—The operation of wireless network protocol stacks
is heavily dependent on the actual deployment of the system
and especially on the corresponding network topology, e. g., due
to channel contention. The nature of wireless communication
does not allow for a-priori determination of network topology;
network-defining metrics such as neighbor density and routing
span may drastically differ for various deployments. Therefore,
it is a difficult problem to foresee and consider the large
number of possible topologies that a system may run on during
protocol stack development. We propose to use an automated
approach for searching topologies for which a protocol stack
exhibits particularly poor quantitative performance. We formu-
late stress testing of protocol stacks on specific topologies as a
multi-objective optimization problem and use an evolutionary
algorithm for finding a set of small topologies that particularly
stress the protocol stack of a wireless network. For searching
the topology space, we present novel problem-specific variation
operators and show their improvements on search performance
in case studies. We showcase our results on stress testing using
two protocol stacks for wireless sensor networks.

Keywords-Testing, Software Testing, Wireless Networks,
Wireless Sensor Networks

I. INTRODUCTION

Wireless networks typically have strict requirements on
quantitative properties of the protocol stack: examples in-
clude the power consumption of a Medium Access Control
(MAC) protocol and the packet yield of a data collection
protocol. However, the operation of network and MAC
protocols strongly depends on deployment characteristics,
especially on the specific topology of the deployment. This
is because the topology affects which nodes can directly
communicate with each other; moreover, since the wireless
medium is shared among neighboring nodes, communication
may interfere locally and transmissions may collide, e.g.,
due to hidden terminals. Determining the effect of specific
topologies on the protocol stack is non-trivial and can
typically only be determined by experimentation, mainly
because simplistic assumption on radio models can lead to
misleading or incorrect results [22]. Hence, for a protocol
developer it is interesting to see which specific topologies
negatively affect the performance measured by some quan-
titative properties.

To this end, this work proposes an automated stress
testing method by evaluating quantitative properties of wire-

less network protocol stacks considering the diverse set
of topologies a system may run on. Our work presents a
search-based testing method that allows us to find network
topologies that exacerbate the operation of a protocol stack.
In particular, our approach focusses on testing Quality-of-
Service (QoS) metrics for wireless (sensor) network protocol
stacks. We strive to find network topologies that stress a
network’s operation and minimize its QoS. To achieve this,
we formulate an optimization problem for finding topologies
that result in low QoS. Our search-based testing approach
requires multiple (at least two) objectives: (i) a measure of
the size of the network and (ii) one or more QoS properties.
Since the relation of QoS properties to deployment topology
is non-trivial and typically unknown, we rely on stochastic
black-box optimization techniques.

The main objectives of this paper can be summarized
as follows: First, to identify why a protocol stack per-
forms poorly on a given topology, we need to analyze the
corresponding executions. The analysis and debugging is
obviously easier if the network is smaller since we only
need to look at a smaller number of interactions between
nodes. Therefore, we minimize topologies searching for
the smallest topology exhibiting the same characteristics.
Second, QoS properties are vital for evaluating the system
running on a given topology. Properties such as packet yield,
latency (end-to-end delay) and energy consumption are used
to determine QoS for data collection protocols [16], code
propagation protocols [26] and MAC protocols [4] amongst
others. The second objective is to find the smallest topology
for a given (lower) QoS.

The main contributions of this paper are the following:

« We propose a search-based approach for stress testing
wireless network protocol stacks and show how to
formulate testing w.r.t. different network topologies
and the quantitative properties of the protocol stack as
an optimization problem.
We investigate the use of multi-objective evolutionary
algorithms (MOEAs) to search the state space and pro-
pose novel variation operators for the problem domain.
« We show two case studies using network protocols
from the wireless sensor network domain: we test the



packet yield of a multi-hop data collection protocol, the
Collection Tree Protocol (CTP) [16], and the QoS of a
code propagation protocol, called Trickle [26].

The paper is structured as follows. We start by presenting
background and related work in Sec. II. We detail on
the modeling of the optimization problem for search-based
stress testing in Sec. III, followed by a description of the
proposed search-based testing strategy based on evolutionary
algorithms in Sec. IV. Sec. V presents the experiments
on a MOEA-based approach by comparing it to a “naive”
random search-based approach. Sec. VI discusses what we
can learn from topology-based testing w.r.t. the efficiency
and scalability of a protocol stack, before concluding the
paper with a summary in Sec. VIL

II. BACKGROUND AND RELATED WORK

In the following, we focus on wireless sensor networks as
one class of wirelessly networked systems. A wireless sensor
network is a distributed system composed of resource-
constrained embedded devices called sensor nodes. A sensor
node typically consists of a radio, a microprocessor, some
storage, one or more sensors, and a limited energy source.
Although sensor nodes are quite limited by themselves
they can collaboratively monitor a spatial phenomenon,
such as permafrost in the Alps [5], with a high spatial
and temporal resolution. Deployments of sensor networks
have strict requirements on quantitative performance and are
often deployed in harsh environments. Most wireless sensor
network protocols, e. g., MAC protocols such as XMAC [9]
and EM-MAC [34], are evaluated based on quantitative, non-
functional properties such as energy-efficiency. QoS is thus
vital for testing as well as for the design process, e.g., in
design space exploration [20]. We investigate the effect of
network topology on the QoS of two well-known protocols
for wireless sensor networks. The first protocol is a multi-
hop data collection protocol, the Collection Tree Protocol
(CTP) [16]. Data collection is one of the mainstream appli-
cation scenarios in wireless sensor networks. Data sensed
at individual sensor nodes is routed to the gateway node
that provides access to the data to the external world, e. g.,
by connecting to the Internet. For data collection, QoS is
mainly determined by the packet yield, i.e., how much data
from the sensors is received at a common gateway node.
The second protocol used as a case study is Trickle [26],
a code propagation algorithm based on “polite gossiping”.
The Trickle protocol is used to disseminate software update
information when the embedded software running on every
sensor node needs to change. A gateway node indicates a
new version of the software; in turn, all sensor nodes need
to be notified of the software update, i.e., the update needs
to be disseminated from the gateway node to the whole
network.

Verification of sensor networks operation is sought-after;
however, exhaustive methods are severely hampered for

wireless sensor networks by state space explosion. Firstly,
executions of a distributed system (on a fixed topology)
feature a large number of next-state transitions. Secondly,
the set of of possible topologies results in a large number
of initial states. Both the state space and the number of
initial states are exponential in the number of sensor nodes.
Therefore, up to now, testing and verification of sensor
networks has mostly focussed on efficient verification of
functional properties, e.g., using domain-specific model
checking [30], symbolic executions [33] and randomized
depth-first search state space exploration [27]. Exceptions
are the work of Ballarini et al. [4] on QoS of Medium
Access Control and our previous work on testing the power
consumption of sensor nodes [36]. However, all of these
works rely on a fixed topology. In this work, we take a
fundamentally different approach by investigating the impact
of topologies. This allows us to:

1) find the smallest topology for each QoS performance
level and

2) explore the efficiency and scalability of protocol stacks
w.r. t. their QoS.

Note that the first goal (of test input minimization) is
similar to work on test case minimization such as delta
debugging by Zeller et al. [39] and unit test case minimiza-
tion [24], despite the fact that we do not have qualitative, but
quantitative properties. Hence, we formulate stress testing
as a search-based test problem [18], [29]. Similar to the
work by Li et al. [28] we prioritize test cases in that we
focus on topologies that exacerbate the operation of the
protocol stack. We present an evolutionary algorithm-based
approach for test input generation. This is not a new idea —
Xanthakis et al. [37] were the first to propose evolutionary
testing in the 1990s. Multi-objective problem formulations
have been studied previously, e.g., for branch coverage
by Harman et al. [17], mutation coverage [23] and test
case generation from extended finite state machines [38].
Ferrer et al. [13] compare different approaches for the multi-
objective test data generation, thereby providing a good
overview of state-of-the-art (multi-objective) evolutionary
algorithms. In contrast the contribution of this paper is
to use a multi-objective problem formulation for wireless
networks to minimize QoS and topology size; for this
problem domain, we present and evaluate new crossover
operators.

Clark [11] previously proposed search-based testing using
simulated annealing and genetic algorithms for protocol se-
curity. We focus on quantitative, nonfunctional properties of
protocols and how these are (negatively) affected by network
topology. Afzal et al. [1] present an overview of search-
based testing of non-functional properties. Out of the works
surveyed in [1], two use search-based testing of QoS of web
services using genetic algorithms: Canfaro et al. [10] test
QoS-aware service composition, while Di Penta et al. [12]



test service level agreements. In contrast to these works, we
look at wireless networks that are dependent on their deploy-
ment, i.e., environmental conditions. This work is loosely
related to Nguyen et al. [31] in that we want to investigate
the environmental effects on an autonomous distributed
system. However, we specifically focus on stress testing of
distributed systems, similar to the work by Garousi [15],
yet focus particularly on the impact of the topology on the
protocol stack of wirelessly networked systems.

The approach presented in this paper is unique in that
it relates non-functional properties to network topology size
(and structure). This allows us to find the smallest topologies
with a given QoS in order to (i) determine the efficiency of
protocol stacks as well as (ii) to find small topologies that
exhibit a particular (poor) behavior. For the first goal, we
realize that systems may suffer from scalability issues. As
a network grows and contains certain topological features
such as high network density and a large depth, the QoS of
a network protocol may deteriorate. We describe this further
in the following section.

Note that search-based stress testing is inspired by our
previous work on optimizing node deployments for wire-
less sensor networks [35]. In contrast to optimizing node
deployments, where we aimed at maximizing the network’s
connectivity, the search-based topology testing formulation
takes the opposite approach and tries to minimize the utility
(w.r.t. QoS) of a given network.

III. APPROACH

Topology testing relies on formulating a search problem.
We start by describing the model of a network topology and
proceed with detailing on the optimization problem.

A. Topology model

We model a deployed network as a graph G=(V,E) where
the vertices represent wireless sensor nodes and edges rep-
resent communication links. Since the space of all possible
graphs is very large and most graphs do not have a physical
realization, i. e., there is no network deployment that results
in such topologies, we use random geometric graphs [32]
in two-dimensional space to approximate the set of feasible
deployments. In a nutshell, a random geometric graph is a
random undirected graph drawn on a bounded region; we
use [0,1) x [0,1). Nodes are placed at random uniformly
and independently on this bounded region. Two nodes
u,v can communicate iff the geometric distance d(u,v)
between them is at most a communication threshold ¢,
i.e., d(u,v) < t. In this paper we simplify the model for
simulation and abstract from link qualities and directionality
as this facilitates the comparison of different approaches as
described in Sec. V.

Using the topology model we evaluate a given protocol
stack and determine its different QoS metrics. Our formu-
lation is generic and allows us to use different methods of
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Figure 1. Pareto front based on the Pareto-optimal points (circles) for

two objectives fo and f1, a single QoS property f1 and the topology size
fo. We can either use the protocol stack efficiency or the hypervolume for
formulating the optimization problem.

evaluation given the topology model, e.g., simulations and
an analytical model. In this work we focus on simulations
as detailed in the case studies.

B. Stress testing using topologies

We are interested in stress testing and therefore in the
worst-case performance of a protocol stack given different
network topologies. Hence, we are looking for network
topologies that result in worst performance w.r.t. QoS.
Intuitively, for a given topology size s we have to find the
topology with minimal QoS within the set of all possible
topologies. Obviously, the set of all possible topologies
is exponential in s. In the following, we detail on the
corresponding (multi-objective) minimization problem that
we use to search for worst-case topologies.

In particular, we want to quantify the protocol stack
efficiency p w.r.t. a set of performance metrics F,|F| =m
and a measure of the size of the network topology. Formally,
we want to minimize § = f(G) = [f1(G),..., fm(G)]T,
where G denotes the topology (graph) as described above
and f; : (V,E) — R denotes a function for QoS metric i
achievable by the protocol stack given a topology G. Let us
denote the size of a network as function fo(G). Without loss
of generality, let us assume that we normalize the size of a
network such that fo € [0, 1]. Similarly we normalize each
QoS property f; € F such that f; € [0,1]. We use Pareto-
optimality as classically defined w.r.t. dominance [40]. For
our minimization problem, a point G; dominates G5 iff:

Vi € {0, .. .,TL} fZ(Gl) < fZ(GQ) A
E|_] S {O, .. ,n} :fj(Gl) < f](Gz)

Basically, a non-dominated point is Pareto-optimal. We
refer to the set of Pareto-optimal points as the Pareto front.
The Pareto front of QoS performance points allows us to
define a metric of efficiency of a protocol stack.

As shown in Fig. 1, we can formulate the dual problem
to protocol stack efficiency using the hypervolume indicator
I [14]. In particular we calculate the hypervolume w.r.t. to
a reference point [40]. In this work we choose the point of
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Figure 2. General view of multi-objective evolutionary algorithms [7].

optimal efficiency 1, where |T| = m+1. Intuitively as shown
in Fig. 1, the hypervolume is determined by calculating
the volume between the front of Pareto-optimal points and
the reference point. It follows that p = 1 — Iy. We use
the hypervolume also to evaluate the performance of the
variation operators; note that we use the terms hypervolume,
hypervolume indicator and Iz synonymously.

We want to minimize the efficiency of the protocol
stack, i.e., we are interested in the worst-case operation by
searching for topologies that particularly stress the proto-
col’s operation. Hence, we are looking for maximizing the
hypervolume in the evaluations. In addition to protocol stack
efficiency as described by p, we can also investigate protocol
stack scalability: We may inquire whether QoS of a protocol
stack drops with increasing the number of nodes as shown in
Fig. 1. We investigate scalability on a parametrized protocol
stack in Sec. VL

IV. A MOEA-BASED APPROACH

We evaluate the use of multi-objective evolutionary al-
gorithms (MOEAs) for searching the topology space. We
detail on the MOEA-based approach in the following and
compare it to a “naive” random search-based strategy. We
present a general view of MOEAs [7] in Fig. 2 to outline
the nomenclature used in the following.

A. MOEA for topology testing

We use an off-the-shelf MOEA, the Simple Indicator
Based Evolutionary Algorithm (SIBEA) [8] as it is provided
in the PISA framework [6]. We adapt initialization, and
the variation operators, i.e., crossover and mutation, to the
new search space, where one crossover and the mutation
operators are similar to our previous work in [35].

1) Representation: An individual represents an entire
wireless sensor network as a set of nodes and their communi-
cation capabilities. More precisely, an individual stores a set
of nodes; for each node it records an identifier, the cartesian
coordinates and a communication threshold. Based on the
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Figure 3.  Variable length representation of an individual: A topology
consists of a set of nodes. Each node description consists of an ID, its
cartesian coordinates and a communication threshold.

communication threshold, the simulation model determines
the communication links between nodes whether based on
signal strength [35] or using a unit-disk graph model as de-
scribed in Sec. ITI-A. A simple example in Fig. 3 shows that
the topology model is general and may result in asymmetric
links. Since the number of nodes is one of the optimization
criteria, we explicitly allow variable-length representations,
i. e., sensor networks with a varying number of nodes. Please
note that we use the physical placement merely to generate
valid topologies — in essence, we are only interested in the
graph structure of a topology.

2) Constraints: Some generated networks do not repre-
sent practical deployments. We use constraints to remove
topologies that should not be considered. In the case studies,
we use two constraints on the generated networks: (i)
Topologies must be connected, i.e., there should be no
partitions. (ii) We additionally use an upper threshold on
node density set to 40. Note that more problem-specific
constraints may be easily added.

3) Initialization: In the initialization step we generate
topologies from the family of random geometric graphs.
Hence, we have two parameters for a graph: (i) the number
of nodes n and (ii) the communication threshold %, i.e., t is
initially the same for all nodes. We select ¢ from a uniform
distribution between [0, 1), yet reject any resulting topology
that does not satisfy the constraints described above. We use
a common communication threshold to initialize all links of
the network, yet after variation these can be heterogeneous
for a network given that our variation operators allow us to
add new nodes with a different ¢ and the crossover com-
bining two topologies containing nodes with (potentially)
different ¢’s. In order to allow for a better comparison, the
generation of random geometric graphs is the same as the
initialization for the MOEA approach, i.e., we randomly
generate random geometric graphs as detailed above.

4) Crossover: In the following, we investigate several
crossover operators. We start with the cut operator [35].

Cut: The crossover operator cuts the physical region of
two parents and recombines them. Different to its use in [35]
we do not need to consider the convex hull of a space of
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Figure 4. Cut crossover operator from [35] in a unit square.

interest, but perform the crossover directly on the unit square
a random geometric graph is placed into as shown in Fig. 4.

We ran micro-benchmarks to see the performance of the
cut-crossover in isolation. While the cut operator previously
worked well when all topologies try to find a (more or less)
even distribution, here we often see that it fails to produce
good offsprings. As we can see from the results of the EA,
i.e., the resulting hypervolume shown in Figure 6(a) on the
left, the cut operator performs quite poorly for our search
problem. Katagiri et al. [21] also observed in their work that
small changes on graphs may be better for the fitness of the
crossover. Thus, we additionally investigate two variants of
extracting a connected subgraph of the parents and replacing
it with a corresponding connected subgraph in the other
parent.

Fixed neighborhood swap (swap): The swap operator
selects a node from one parent topology and determines the
corresponding closest node in the other parent topology. In
the example depicted in Fig. 5, the selected nodes are anno-
tated in light gray. These nodes, as well as all neighboring
nodes of these selections (dark gray in the figure), constitute
the swap set. In turn these node sets are swapped between
the respective topologies. The selected (light gray) nodes
are swapped so that their position is adjusted to match the
position of the corresponding node in the other parent. All
other nodes in the swap set (dark gray) are moved with the
same displacement as the selected nodes. As an example,
consider nodes 1,2 and 3 in the figure and their respective
positions x;,y;,% € {1,2,3}. The new position of node 3
a% when placed into parent 2 is calculated as:

fO0<z3—21+22 <1
ifxs —x1+2x2 <0
ifxs —x1+x9>1

T3 — X1+ X2
g
3 =40

1

y4 follows correspondingly.

Flexible neighborhood swap (flexible): Flexible is a vari-
ation of the swap crossover. It maintains the node selection
functionality and merely changes the swapping behavior
described above. Instead of moving the selected nodes with
a fixed displacement, it tries to maintain the topology in the
neighborhood by formulating the neighborhood relation of

Parent 1 Parent 2

Figure 5. Swapping the neighborhoods of two corresponding nodes (light
gray) and their direct neighbors (dark gray) from each parent topology.

the selected (light gray) nodes as constraints. As an example,
it tries to place node 1 in the parent 2 topology in a way that
it maintains exactly 3 neighbors (and not more); to accom-
plish this, the transmission radii of the nodes might need to
be adapted as well. The flexible crossover uses a constraint
solver in order to find a physical (coordinate) embedding for
the swapped nodes respecting the neighborhood constraints.

5) Mutation: We evaluate two different mutation opera-
tors on topologies described in our previous work [35] with
one difference: The operators mutate multiple nodes c¢ in
a topology at once. This is due to the fact that mutation
on a single node does not result in high hypervolume.
We performed several experiments to determine how many
nodes should be mutated. In this work, we always mutate
at least one node plus a (rounded) random number sampled
from an exponential distribution. As a result, the number of
nodes to change c is determined as ¢ = 1 + round(z), with
the random sample x drawn from fe,,(z,A) with A = %

Topology change: The topology change mutation opera-
tor adds or removes c random nodes from the topology. The
probability of adding and removing is %

Position change: The position change adds gaussian
variation to the position (both x and y position) of ¢ nodes
with (0, o). The standard deviation is set to o = %, where
r; 1s the transmission radius of the selected node i.

V. CASE STUDIES

In the following we present two case studies focussing
on the network protocols CTP and Trickle. We detail on the
performance of the evolutionary algorithm and the proposed
crossover operators by comparing it to a random search
strategy.

A. Experimental setup

For the evolutionary algorithm, we use 40 individuals per
generation as in our previous work [35]. The maximum
number of generations is set to 100. This is obviously a
trade-off since evaluation of individuals is expensive and
the hypervolume improvements by running additional gen-
erations diminish as we will show in the results in Fig. 8(b).
We compare the results of the evolutionary algorithm-based
approach to a random search generating 4000 (random)
topologies. We compare the search strategies based on the



hypervolume from 10 individual runs with different initial
seeds.

The whole testing framework is implemented in Python
and relies on NetworkX (http://networkx.lanl.gov/) for all
graph operations on topologies. The embedding opera-
tion used for the flexible crossover operator is formu-
lated as a constraint satisfaction problem and solved using
ECLiPSe [2]. For each topology representation we generate
the topology’s adjacency matrix and model (existing) links
as perfect. Additionally, the simulation model always gener-
ates symmetric links. We use TOSSIM [25] for simulation, a
discrete-event simulator that is part of the TinyOS operating
system distribution [19]. TOSSIM allows us to simulate
actual sensor node applications based on a simple radio
propagation model. We build a test application for each
specific protocol stack. On the network layer we use the
standard implementation of the protocols in TinyOS. Note
that the MAC layer is fixed in the experiments, since
TOSSIM only provides a fixed CSMA-based MAC. While
our focus is on the network layer we must consider that the
selection of a CSMA MAC protocol obviously influences the
behavior of the complete protocol stack. Note that we need
to consider that our approach necessitates a large number of
evaluations, i.e., simulations. This means that simulations
must be short, since we need to perform multiple runs (we
repeat each simulation of a topology four times) for testing
the behavior under different conditions. We evaluate runs
based on the hypervolume as described in Sec. III-B.!

B. Protocol stacks

In the following we describe the two protocol stacks under
test. We explain the application that we use in order to
test the stack as well as the specific optimization problem
formulations.

1) CTP: CTP [16] is a tree-based, multi-hop data collec-
tion protocol for wireless sensor networks. Data is collected
from a set of nodes to one (or more) gateway nodes. Nodes
generate routes to the gateway node using a routing gradient
based on hop distance and link quality. In this paper we
test how many packets that each sensor node sends actually
arrive at the gateway node. To that end, we use a data
collection application, where each node sends 50 packets.
Packets are spaced 5s apart; intermediately the node samples
its sensors. The gateway node keeps track on how many
packets it received from individual nodes.

We use the number of nodes n as the first optimization

criterion:
n

fozm

We normalize the number of nodes, such that f, € [0, 1].
Note that we could easily look at additional metrics such

'As a reference point, for the implementation we actually choose
(1.01,1.01) resulting in a maximal hypervolume indicator value of ~
1.0201.

as the number of communication links, average in- or out-
degree of nodes, etc.

As a second minimization criterion we use the packet
yield averaged over all nodes j € {1,...,n} and averaged

over the number of experiments ¢ € {1,...,4}:
4 n i
1 1 T
= Z;(n—lzm)

where 7; is the number of packets that the gateway node
(node 0) received from node j. The superscript ¢ indicates
a simulation run.

2) Trickle: The second protocol stack under test is based
on Trickle [26], a probabilistic (code) dissemination proto-
col. One node, i.e., the gateway node, is informed of an
update of the embedded software and advertises it to the
network. Nodes that hear an update propagate it further. We
are interested in the control flow of updates, i.e., whether
all nodes are informed that an update is waiting to be
applied and how fast the nodes are notified of the update. An
important mechanism of Trickle is that a node forwards a
code update to other nodes if it has received an update itself,
yet the number of updates it received is not larger than a
preset redundancy constant r (we set r to 3). This is used
to control excessive messaging leading to high contention in
the network. However, in certain topology configurations this
constant may preclude certain nodes from receiving updates
- for a more detailed discussion of this problem we refer the
interested reader to Mottola et al. [30].

For testing Trickle, we used its standard implementation
in TinyOS used in a dissemination application. After an
initialization period of 50s, the application generates in total
10 updates on the gateway node. Updates are spaced 10s
apart. We again use the normalized number of nodes as the
first optimization criterion, i.e., fo = ﬁ As the second
optimization criterion we use the following dissemination
criterion mapped to an interval [0, 1]:

7
J1J

n—1

*d,

_1
f1 = e 1079 where dg,g =

2

=1

N

and d; is the dissemination delay of a code update to node
j for packet 7. This criterion evaluates dissemination latency
but also scores lost updates. As described above some nodes
might not receive certain updates at all. While we could add
a third optimization criterion for minimizing lost updates,
we include these directly into the dissemination criterion by
setting a maximal dissemination delay of d,,q; = 500 (sec)
for “lost” updates.

C. Micro-benchmarks on CTP

We first perform micro-benchmarks and determine the
performance of individual crossover and mutation operators
individually. Note that we evaluate the results of the oper-
ators based on the resulting hypervolume of the search and
always compare to the “naive” random search strategy.
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Figure 6. Hypervolume distribution for variation operators. Boxplots of
10 runs each.

Crossover operators: Figure 6(a) summarizes the per-
formance of the different crossover operators. As mentioned
before the cut operator does not perform well for our opti-
mization problem with a median hypervolume of 0.257. The
swap operator is only slightly better than the cut operators
but exhibits a high variance. The flexible crossover performs
considerably better than all other approaches achieving a
median hypervolume of 0.311. Therefore, we selected the
flexible crossover operators for the following experiments.

Mutation operators: Figure 6(b) shows that both muta-
tion operators perform similar to a random search. Hence,
we maintain both mutation operator to see their performance
in combination with the flexible crossover operator.

Random search: All in all, the random generation of
topologies works fairly well. Note that this is also beneficial
for the MOEA formulation as the random generation uses
the same approach as the initialization of the MOEA to allow
for a fairer comparison.

D. MOEA evaluation

The final set of experiments investigates the performance
of combining the mutation operators with the flexible
crossover operator, where mutation and crossover have both
an equal probability of 50%. Fig. 7 shows that the evo-
lutionary algorithms perform considerably better than the
random approach. Indeed the median hypervolume for the
random front is 0.284, while the hypervolume of the flexible
crossover combined with position mutation achieves a mean
hypervolume of 0.339. Note that the crossover combined
with topology mutation perform slightly worse, yet shows
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Figure 7. Combined boxplots of selected operators for the MOEA-based
approach for 10 runs each.

less variance in the experiments. All in all, we can see that
adding mutation (moderately) improves the results.

While the MOEA-based approach is clearly better than
random search, the question remains on how good it really
is. This is dependent on the maximum possible hypervolume,
which is determined by the actual protocol stack efficiency p
of the data collection protocol stack and in particular CTP.
We aggregate all Pareto-optimal results from all different
runs that we performed (all MOEA runs as well as the
random runs) to approximate this maximum. We show the
resulting front (squares) in Fig. 8(a) that gives a hint at
the “real” efficiency p of the data collection application
in our configuration. This combined front actually achieves
a hypervolume of 0.404, indicating that we can further
improve our search strategy in the future. As a comparison
the figures also shows the results of all runs of the flexible
crossover combined with position mutation as circles.

Fig. 8(b) shows the evolution of the hypervolume indicator
over generations for all runs of the flexible crossover com-
bined with position mutation. We see that the hypervolume
slowly converges. We stop at 100 generations. Obviously
this is a trade-off: Since results improve only marginally,
we trade-off further gains with the computational overhead
of further simulations.

E. Validation using Trickle

Up to now, we have validated our approach only using
CTP. Thus, the question is whether the results hold for
very different kinds of protocol stacks and properties. While
we cannot answer this question in general we performed
some experiments using the Trickle protocol. Note that we
expect to find small topologies with poor protocol stack
performance as the small redundancy constant precludes the
protocol to spread the updates reliably as described above.
This means that the dissemination optimization criterion is
mainly influenced by lost updates.

Fig. 9 shows that the MOEA-based approach finds such
small bad topologies in each individual search — the median
hypervolume found is 0.948, the minimum is 0.933. In
contrast, the random search has a median value of merely
0.859 and a maximum of 0.921. As a result, we can see
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Figure 9. Search-based testing results for the Trickle protocol for 10 runs
each.

that for the Trickle testcase the MOEA-based approach is
considerably better and more robust than the random search.

FE. Threats to validity

Our search-based formulation for stress testing protocols
is very generic and can be applied to any protocol stack that
provides quantitative properties for evaluation. The results
on the performance of the specific mutation and crossover
operators may however be dependent on the specifics of
the protocol stack under test. We addressed this concern
by considering two different protocol stacks, relying on dif-
ferent communication mechanisms (unicast versus broadcast
messaging) and considering different quantitative properties.
Nevertheless, these are just two samples from the vast
design space of network protocols, so further experiments
are needed to investigate the performance of the variation
operators on other protocol stacks. Moreover, since stochas-
tic search algorithms are affected by chance, we repeated
each experiment 10 times with different random seeds in
order to fairly compare the different approaches. For tuning
the evolutionary algorithm, we relied on our experience and
previous experiments on optimizing node deployments [35]
and performed micro-benchmarks to explore the perfor-
mance of the different variation parameters. However a full
parameter tuning, e.g., as described in [3], is out of scope

of this work. As an example, we only investigated using
only mutation, only crossover and combination with equal
50% probabilities. Obviously further combinations may be
explored for potentially better results.

VI. PROTOCOL STACK SCALABILITY

As a final step of our approach we want to show an intu-
itive application of protocol stack scalability (cf. Sec.III-B).
We first discuss results on the data collection application
followed by a detailed investigation for the Trickle protocol
stack. All experiments are performed using the MOEA-
based approach with the flexible operator combined with
position mutation as described above.

A. CTP

For CTP we clearly see in Fig. 8(a) that the packet
yield decreases with size. Figures 10(a) and 10(b) illustrate
the difference; Figures 10(a) is a topology with a good
yield, while the yield for the topology in Fig. 10(b) is
quite poor. The major problem is that the neighbor density
considerably increases in the larger topology. Most nodes
in the larger topology are located closely together (in the
upper right corner of Fig. 10(b)) resulting in high congestion
and thus low packet yield. Note that we already mitigated
contention to some extent by putting a constraint on neighbor
density. There are several further possibilities to remedy
this situation: (i) Either we must specify that the data
collection application is targeted for low-density topologies
and thus further decrease the network density constraint
or (ii) improve the scalability of the protocol stack by
mitigating congestion — a prime candidate would be the
MAC layer. Note that in our experiments the MAC protocol
is fixed to CSMA by using the TOSSIM simulator.

B. Trickle

We investigate the effect of different parameterizations of
the Trickle protocol by comparing their respective perfor-
mance. In particular we investigate the influence of the re-
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Figure 10. Topologies for CTP exploration on the Pareto front. Darker
node color indicates proximity to the gateway node, i.e., the darkest node
is the gateway. Note that nodes are arranged to show connectivity, rather
than the physical location determined by the MOEA.
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Figure 11. Protocol efficiency for Trickle for different parameterizations

of redundancy constant 7.

dundancy constant . We test Trickle for r = {3,5, 8,10, 15}
and identify the differences in scalability due to increasing
the redundancy constant. Figure 11 visualizes the scalability
of Trickle for three of these parameterizations. As we can
see, the efficiency of the protocol stack, and likewise the
scalability, drastically improves when increasing r. Below
we show the results for the protocol efficiency p dependent
on different values of 7:

T 3 5 8 10 15
p | 0.053 | 0.091 | 0.432 | 0.526 | 0.583

The improved efficiency is not surprising - more messages
are being sent, thereby trading of reliability with energy
expenditure. Increasing r improves scalability: As Fig. 11
shows that for » = 5 the dissemination criterion drops to
0.091 for 12 nodes, while for r» = 15 the protocol maintains
stable operation with a dissemination criterion of at least
0.539. However, the benefit of increasing r decreases. The
results for » = 10 and r = 15 are similar, but the energy
expenditure using » = 15 is considerably larger than for
r = 10. Therefore, in the future we need to additionally
investigate the energy-efficiency of the stack as a third
objective. We leave this evaluation as future work.

VII. SUMMARY

This paper presented an approach to perform stress test-
ing of wireless network protocol stacks considering the
influence of the deployment settings w.r.t. the topology.
We demonstrated how to formulate an optimization prob-

lem that considers the size of the topology as well as
quantitative properties of the protocol stack. We proposed
a search-based approach using multi-objective evolutionary
algorithms to find small topologies that exhibit poor QoS.
For our specific problem domain of network topologies, we
proposed new crossover operators and benchmarked their
performance. We evaluated our approach using two different
and prominent wireless sensor network protocol stacks. Our
testing approach allows us to compare protocol stacks w.r.t.
their efficiency and scalability; we showed this for different
parameterizations of the Trickle protocol. Additionally, we
showed with two case studies that minimizing topologies
with poor Quality-of-Service facilitates the understanding of
protocol performance under diverse operating conditions.

Acknowledgements: Matthias Woehrle is supported by the
Dutch Technology Foundation STW and the Technology
Programme of the Ministry of Economic Affairs, Agricul-
ture and Innovation. The author thanks Koen Langendoen,
Andreas Loukas, Philipp Glatz and the anonymous reviewers
for their valuable feedback.

VIII. REFERENCES

[1] W. Afzal, R. Torkar, and R. Feldt. A systematic review of
search-based testing for non-functional system properties. Inf.
Softw. Technol., 51:957-976, 2009.

[2] K. R. Apt and M. Wallace. Constraint Logic Programming
using Eclipse. Cambridge University Press, 2007.

[3] A. Arcuri and G. Fraser. On parameter tuning in search based
software engineering. In Proc. 3rd Int’l Conference on Search
based software engineering, pages 33-47, 2011.

[4] P. Ballarini and A. Miller. Model checking medium access
control for sensor networks. In Proc. 2nd Int’l Symposium
on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2006), pages 255-262, 2006.

[5] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl,
I. Talzi, L. Thiele, C. Tschudin, M. Woehrle, and M. Yuecel.
PermaDAQ: A scientific instrument for precision sensing
and data recovery in environmental extremes. In Proc. Sth
ACM/IEEE Int’l Conference on Information Processing in
Sensor Networks (IPSN 2009), pages 265-276, 2009.

[6] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A
Platform and Programming Language Independent Interface
for Search Algorithms. In Proc. 2nd Int’l Conference on Evo-
lutionary multi-criterion optimization (EMO 2003), volume
2632 of LNCS, pages 494-508, 2003.

[7]1 D. Brockhoff. Many-Objective Optimization and Hypervol-
ume Based Search. 2009. PhD thesis at ETH Zurich.

[8] D. Brockhoff and E. Zitzler. Improving SIBEA rvolume-
based Multiobjective Evolutionary Algorithms by Using Ob-
jective Reduction Methods. In Proc. congress on Evolutionary
Computation (CEC 2007), pages 2086-2093, 2007.

[9] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-
mac: a short preamble MAC protocol for duty-cycled wireless
sensor networks. In Proc. 4th Int’l Conference on Embedded
networked sensor systems, SenSys ’06, pages 307-320, 2006.

[10] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani.
An approach for QoS-aware service composition based on
genetic algorithms. In Proc. 7th Conference on Genetic and



(11]

(12]

(13]

(14]

[15]

(16]

(171

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

evolutionary computation (GECCO 2005), pages 1069-1075,
2005.

J. A. Clark and J. L. Jacob. Protocols are programs too: the
meta-heuristic search for security protocols. Information and
Software Technology, 43:891-904, 2001.

M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and
M. Bruno. Search-based testing of service level agreements.
In Proc. 9th Conference on Genetic and evolutionary compu-
tation (GECCO 2007), pages 1090-1097, 2007.

J. Ferrer, F. Chicano, and E. Alba. Evolutionary algorithms
for the multi-objective test data generation problem. Software:
Practice and Experience, 2011.

M. Fleischer. The measure of pareto optima applications to
multi-objective metaheuristics. In Proc. 2nd Int’l Conference

on Evolutionary multi-criterion optimization (EMO 2003),
pages 519-533, 2003.

V. Garousi. A genetic algorithm-based stress test requirements
generator tool and its empirical evaluation. IEEE Trans. Softw.
Eng., 36:778-797, 2010.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In Proc. 7th ACM Conference on
Embedded Networked Sensor Systems, SenSys 09, pages 1—
14, 2009.

M. Harman, K. Lakhotia, and P. McMinn. A multi-objective
approach to search-based test data generation. In Proc.
9th Conference on Genetic and evolutionary computation
(GECCO 2007), pages 1098-1105, 2007.

M. Harman and P. McMinn. A theoretical and empirical study
of search-based testing: Local, global, and hybrid search.
IEEE Transactions on Software Engineering, 36:226-247,
2010.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter. System architecture directions for networked sensors.
In Proc. 9th Int’l Conference on Architectural support for
programming languages and operating systems (ASPLOS-IX),
pages 93-104, 2000.

R. Hoes, T. Basten, C.-K. Tham, M. Geilen, and H. Corpo-
raal. Quality-of-service trade-off analysis for wireless sensor
networks. Perform. Eval., 66:191-208, 2009.

H. Katagiri, K. Hirasawa, J. Hu, and J. Murata. Comparing
some graph crossover in genetic network programming. In
Proc. 41st SICE Annual Conference, volume 2, pages 1263
— 1268, 2002.

D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott. Experimental evaluation of wireless simulation
assumptions. In Proc. 7th Int’l symposium on Modeling, anal-
ysis and simulation of wireless and mobile systems (MSWiM
2004), pages 78-82, 2004.

W. B. Langdon, M. Harman, and Y. Jia. Efficient multi-
objective higher order mutation testing with genetic program-
ming. Journal of Systems and Software, 83:2416-2430, 2010.
A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
Efficient unit test case minimization. In Proc. 22nd Int’l
Conference on Automated Software Engineering (ASE 2007),
pages 417-420, 2007.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate
and scalable simulation of entire TinyOS applications. In
Proc. Ist Int’l Conference on Embedded networked sensor
systems (SenSys 2003), pages 126-137, 2003.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: a self-
regulating algorithm for code propagation and maintenance

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

in wireless sensor networks. In Proc. Ist Symposium on
Networked Systems Design and Implementation - Volume 1,
2004.

P. Li and J. Regehr. T-check: bug finding for sensor networks.
In Proc. 9th ACM/IEEE Int’l Conference on Information
Processing in Sensor Networks, IPSN *10, pages 174185,
2010.

Z. Li, M. Harman, and R. M. Hierons. Search algorithms
for regression test case prioritization. IEEE Transactions on
Software Engineering, 33:225-237, 2007.

P. McMinn. Search-based software test data generation: a
survey: Research articles. Softw. Test. Verif. Reliab., 14:105—
156, 2004.

L. Mottola, T. Voigt, F. Osterlind, J. Eriksson, L. Baresi, and
C. Ghezzi. Anquiro: Enabling efficient static verification of
sensor network software. In Proc. Ist Int’l Workshop on
Software Engineering for Sensor Networks (SESENA 2010),
2010.

C. D. Nguyen, A. Perini, P. Tonella, and F. B. Kessler.
Constraint-based evolutionary testing of autonomous dis-
tributed systems. In Proc. 2008 IEEE Int’l Conference on
Software Testing Verification and Validation Workshop, pages
221-230, 2008.

M. Penrose. Random Geometric Graphs. Oxford Studies in
Probability. Oxford University Press, 2003.

R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. Kleenet: discovering in-
sidious interaction bugs in wireless sensor networks before
deployment. In Proc. 9th ACM/IEEE Int’l Conference on
Information Processing in Sensor Networks, IPSN 10, pages
186196, 2010.

L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson. EM-MAC:
a dynamic multichannel energy-efficient mac protocol for
wireless sensor networks. In Proc. 12th ACM Int’l Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc ’11,
pages 23:1-23:11, 2011.

M. Woehrle, D. Brockhoff, T. Hohm, and S. Bleuler. Investi-
gating coverage and connectivity trade-offs in wireless sensor
networks: The benefits of MOEAs. In Proc. 19th Int’l Con-
ference on Multiple Criteria Decision Making (MCDM 2008),
pages 211-221, 2008.

M. Woehrle, K. Lampka, and L. Thiele. Exploiting timed
automata for conformance testing of power measurements.
In 7th Int’l Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS 2009), pages 275-290, 2009.

S. Xanthakis, C. Ellis, C. Skourlas, A. L. Gall, S. Katsikas,
and K. Karapoulios. Application of genetic algorithms to
software testing. In Proc. 5th Int’l Conference on Software
Engineering and its Applications, pages 625-636, 1992.

T. Yano, E. Martins, and F. L. de Sousa. Most: A multi-
objective search-based testing from efsm. In Proc. 4th Int’l
Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2011), pages 164—173, 2011.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. /EEE Trans. Softw. Eng., 28:183-200,
2002.

E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume
Indicator Revisited: On the Design of Pareto-compliant Indi-
cators Via Weighted Integration. In Proc. Int’l Conference on
Evolutionary multi-criterion optimization (EMO 2007), pages
862-876, 2007.



