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Abstract When there are two classes whose mean vectors and covariance matrices are known, Lanckriet et
al. [7] consider the Linear Minimax Classification (LMC) problem and they propose a method for solving it.
In this paper we first discuss the Quadratic Minimax Classification (QMC) problem, which is a generalization
of LMC. We show that QMC is transformed to a parametric Semidefinite Programming (SDP) problem.
We further define the Convex Minimax Classification (CMC) problem. Though the two problems are
generalizations of LMC, we prove that solutions of these problems can be obtained by solving LMC.
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1. Introduction

Classification is a widely used technique in real life. Its practical importance has attracted
a large number of researches. These researches include, for example, classification using the
Mahalanobis distance, the Neural Network, and the Support Vector Machine (SVM).

Recently, Lanckriet et al. [7] propose a minimax approach to binary classification. Their
approach needs mean vectors and covariance matrices of two classes, and no assumptions
are made with respect to the probability distributions. Generally, the performance of a
classifier is affected by the unknown distributions. To avoid the poor performance of a
classifier, Lanckriet et al. [7] propose to use a linear classifier which minimizes the worst-
case misclassification probability under all the possible choice of probability distributions
with given mean vectors and covariance matrices. In this paper, we call this problem
the Linear Minimax Classification (LMC) problem. Lanckriet et al. [7] show that LMC
is formulated as a Second Order Cone Programming (SOCP) problem. The size of this
problem depends only on the dimension and it is independent from the number of data,
so the problem is easily solved by an interior point method. Their algorithm is called
the Minimax Probability Machine (MPM). They demonstrate that a classifier obtained by
MPM works well to practical problems. From its theoretical and practical importance,
many researches related to MPM have been made. Huang et al. [4] propose the Biased-
MPM, which takes into account an importance of each class. In [5], the same authors as [4]
further generalize the Biased-MPM and develop the Minimum Error MPM, which brings
tighter worst-case accuracy. Hoi et al. [3] and Kitahara et al. [6] both extend MPM to
multiple classification. Hoi et al. [3] adopt a classical method which uses binary classifiers.
In contrast, Kitahara et al. [6] formulate a problem to find linear functions whose worst-case
misclassification probability is small.

In most cases, classification methods are first developed in linear classification. Then
they are extended to improve the performances by allowing nonlinear classification functions.
For example, SVM is first proposed to give linear classifiers, after that the Kernel method
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is developed for handling nonlinear classification functions. As for MPM, there are few
researches in this direction. Cooke [2] analyzes quadratic classifiers which minimize the
worst-case misclassification probability. But his analysis is rather restrictive due to the
assumption that the covariance matrices are diagonal.

In this paper, we formally address the problem using quadratic classifiers with only the
assumption that the covariance matrices are positive definite. Practically, this assumption is
acceptable. We call the problem the Quadratic Minimax Classification (QMC) problem. We
show that QMC is formulated as a parametric Semidefinite Programming (SDP) problem.
The parametric SDP problem can be solved by an interior point method. However, in
our preliminary computational experiments we observe that solutions of various examples
of QMC are always linear. Motivated by these facts, we conduct a theoretical analysis of
QMC.

In our analysis, we define another generalization of LMC. In both linear and quadratic
classification, we essentially classify samples using a set defined by a classifier and its com-
plementary set. Noticing this fact, we consider the problem of finding a convex set which
minimizes the worst-case misclassification probability. We refer to this problem as the Con-
vex Minimax Classification (CMC) problem. As opposed to LMC or QMC, so far we have
not found any computational method to solve CMC directly. In this paper, we prove that
any optimal solution of LMC is an optimal solution of CMC. Moreover, from this fact we
manage to show that any optimal solution of LMC is an optimal solution of QMC.

The rest of this paper is organized as follows. In Section 2, we review LMC by Lanckriet
et al. [7]. In Section 3, we define QMC and we give an SDP representation of QMC. In
Section 4, we introduce CMC. Relations between the three problems are investigated in
Section 5. Finally in Section 6, we conclude the paper.

Throughout this paper, we use the following notations. Let ℜn be the n-dimensional
Euclidean space and Sn be the set of n-dimensional symmetric matrices. Sn

+ and Sn
++

represent the set of n-dimensional symmetric positive semidefinite and positive definite
matrices, respectively. For X ∈ Sn, X ≽ O means that X is positive semidefinite.

2. The Linear Minimax Classification Problem

In this section, we review the Linear Minimax Classification (LMC) problem by Lanckriet
et al. [7].

Let x ∈ ℜn be a sample which belongs to one of two classes, namely, Class 1 or Class 2.
Suppose that we know the mean vector µi ∈ ℜn and the covariance matrix Σi ∈ Sn

++ of each
class i ∈ {1, 2}. In this paper, we assume that the covariance matrices are positive definite.
This assumption is valid when a regularization term is added to each of the covariance
matrix. No further assumptions are made with respect to the probability distributions. We
remark that the settings stated in this paragraph are valid throughout this paper.

We determine a linear classifier l(z) = aT z + b, where a ∈ ℜn \ {0}, b ∈ ℜ, and z ∈ ℜn.
For any given sample x, if aT x + b < 0 then it is classified as Class 1, if aT x + b > 0 then
it is classified as Class 2, and if aT x + b = 0 then it can be classified as either Class 1 or
Class 2.

For the classifier l(z) = aT z + b, its worst-case misclassification probability of Class 1
sample as Class 2 is expressed as

sup
x∼(µ1,Σ1)

Pr{aT x + b ≥ 0},

where the supremum is taken over all probability distributions having the mean vector
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µ1 and the covariance matrix Σ1. Considering the other case similarly, the worst-case
misclassification probability αl of the classifier l(z) = aT z + b is given by

αl = max{ sup
x∼(µ1,Σ1)

Pr{aT x + b ≥ 0}, sup
x∼(µ2,Σ2)

Pr{aT x + b ≤ 0}}. (1)

Definition 2.1 (LMC) We refer to the problem of finding a linear function l(z) = aT z+b,
which minimizes the worst-case misclassification probability defined by (1), as the Linear
Minimax Classification (LMC) problem. We represent the optimal value of LMC as α1,
that is,

α1 = min
l

αl. (2)

From (1), it is easy to see that LMC can be expressed as

min α
subject to supx∼(µ1,Σ1) Pr{aT x + b ≥ 0} ≤ α,

supx∼(µ2,Σ2) Pr{aT x + b ≤ 0} ≤ α,
(3)

where α ∈ [0, 1], a ∈ ℜn \ {0}, and b ∈ ℜ are variables. Lanckriet et al. [7] prove that if
µ1 ̸= µ2 then α1 < 1 and a ̸= 0 at any optimal solution (α, a, b) of (3). In the following, we
assume µ1 ̸= µ2.

Lanckriet et al. [7] show that (3) is reduced to the following problem:

min ∥Σ1/2
1 a∥ + ∥Σ1/2

2 a∥
subject to (µ2 − µ1)

T a = 1,
(4)

where Σ
1/2
i (i = 1, 2) is a symmetric positive definite matrix which satisfies (Σ

1/2
i )2 = Σi.

The problem (4) is a Second Order Cone Programming (SOCP) problem and can be solved
efficiently by an interior point method. The algorithm is called the Minimax Probability
Machine (MPM). In [7], it is demonstrated that the performance of MPM is competitive to
the Support Vector Machine (SVM).

3. The Quadratic Minimax Classification Problem

In this section, we define the Quadratic Minimax Classification (QMC) problem and present
an SDP representation of it.

Under the same settings as Section 2, we consider to classify a sample using a quadratic
function of the form q(z) = zT Az +2bT z + c ((A, b, c) ∈ Sn ×ℜn ×ℜ) in analogy with linear
classification. Then, the worst-case misclassification probability αq of q(z) is given by

αq = max{ sup
x∼(µ1,Σ1)

Pr{xT Ax + 2bT x + c ≥ 0}, sup
x∼(µ2,Σ2)

Pr{xT Ax + 2bT x + c ≤ 0}}. (5)

Definition 3.1 (QMC) We call the problem of finding a quadratic function q(z) = zT Az+
2bT z + c, which minimizes the worst-case misclassification probability defined by (5), the
Quadratic Minimax Classification (QMC) problem. The optimal value of QMC is repre-
sented as α2, that is,

α2 = min
q

αq. (6)
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Since a linear function is a special quadratic function, we have

α2 ≤ α1. (7)

QMC can be formulated as

min α
subject to supx∼(µ1,Σ1) Pr{xT Ax + 2bT x + c ≥ 0} ≤ α,

supx∼(µ2,Σ2) Pr{xT Ax + 2bT x + c ≤ 0} ≤ α,
(8)

where α ∈ [0, 1], A ∈ Sn, b ∈ ℜn, and c ∈ ℜ are variables.
The next lemma gives an SDP representation of QMC.

Lemma 3.1 Suppose that µ1 ̸= µ2. Then the optimal value of (8) is less than 1. Further-
more, the problem (8) is equivalent to the following parametric semidefinite programming
problem:

min α
subject to tr((Σi + µiµ

T
i )Pi) + 2µT

i qi + ri ≤ τiα (i = 1, 2),[
Pi qi

qT
i ri

]
≽ O (i = 1, 2),[

P1 − A q1 − b
(q1 − b)T r1 − τ1 − c

]
≽ O,[

P2 + A q2 + b
(q2 + b)T r2 − τ2 + c

]
≽ O,

τi > 0 (i = 1, 2),

(9)

where α, (Pi, qi, ri, τi) ∈ Sn×ℜn×ℜ×ℜ (i = 1, 2), and (A, b, c) ∈ Sn×ℜn×ℜ are variables.

The following lemma is needed in the proof of Lemma 3.1.

Lemma 3.2 The value supx∼(µ1,Σ1) Pr{xT Ax + 2bT x + c ≥ 0} is the optimal value of the
following semidefinite programming problem:

min tr((Σ1 + µ1µ
T
1 )P ′

1) + 2µT
1 q′1 + r′1

subject to

[
P ′

1 q′1
(q′1)

T r′1

]
≽ O,[

P ′
1 − τ ′

1A q′1 − τ ′
1b

(q′1 − τ ′
1b)

T r′1 − 1 − τ ′
1c

]
≽ O,

τ ′
1 ≥ 0,

(10)

where (P ′
1, q

′
1, r

′
1, τ

′
1) ∈ Sn ×ℜn ×ℜ×ℜ are variables.

Proof. The proof is given in Vandenberghe et al. [10]. Here we give a sketch of the
proof.

Define the set
D = {x ∈ ℜn : xT Ax + 2bT x + c ≥ 0}.

From the constraints of (10), for any x ∈ ℜn we have

xT P ′
1x + 2q′T1 x + r′1 ≥ 1 + τ ′

1(x
T Ax + 2bT x + c),

xT P ′
1x + 2q′T1 x + r′1 ≥ 0.
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Thus it follows that

xT P ′
1x + 2q′T1 x + r′1 ≥ δD(x) =

{
1; x ∈ D
0; x ̸∈ D

Therefore, for x ∼ (µ1, Σ1), we have

tr((Σ1 + µ1µ
T
1 )P ′

1) + 2µT
1 q′1 + r′1 = E[xT P ′

1x + 2q′T1 x + r′1]
≥ E[δD(x)] = Pr{x ∈ D}.

The above relation implies that the optimal value of (10) is an upper bound for the value
supx∼(µ1,Σ1) Pr{xT Ax + 2bT x + c ≥ 0}. We can also show that the optimal value of the dual
problem for (10) gives a lower bound. Notice that (10) is strictly feasible. From these facts
and the semidefinite programming duality, the statement follows. ¤

Proof of Lemma 3.1. As we mentioned in Section 1, when µ1 ̸= µ2, we have α1 < 1,
which implies α2 < 1.

To show the second statement, we claim that when α < 1, the first constraint of (8) is
equivalent to the existence of (P1, q1, r1, τ1) which satisfies the constraints of (9).

From Lemma 3.2, the constraint is equivalent to the existence of (P ′
1, q

′
1, r

′
1, τ

′
1) ∈ Sn ×

ℜn ×ℜ×ℜ satisfying the following system:

tr((Σ1 + µ1µ
T
1 )P ′

1) + 2µT
1 q′1 + r′1 ≤ α, (11)[

P ′
1 q′1

(q′1)
T r′1

]
≽ O,[

P ′
1 − τ ′

1A q′1 − τ ′
1b

(q′1 − τ ′
1b)

T r′1 − 1 − τ ′
1c

]
≽ O,

τ ′
1 ≥ 0.

If τ ′
1 = 0, then we have [

P ′
1 q′1

(q′1)
T r′1 − 1

]
≽ O,

which leads to

tr

([
P ′

1 q′1
(q′1)

T r′1 − 1

]
·
[

Σ1 + µ1µ
T
1 µ1

µT
1 1

])
≥ 0

or equivalently
tr((Σ1 + µ1µ

T
1 )P ′

1) + 2(q′1)
T µ1 + r′1 ≥ 1,

which contradicts to (11). Thus we have τ ′
1 ̸= 0. Then (P1, q1, r1, τ1) = 1

τ ′
1
(P ′

1, q
′
1, r

′
1, 1)

satisfy the constraints of (9). Similarly, we can show that the second constraint of (8) is
equivalent to the existence of (P2, q2, r2, τ2) satisfying the constraints of (9).

Thus we have established the fact that when α < 1, the constraints of (8) is equivalent
to those of (9), which completes the proof. ¤

If we fix α, the constraints of (9) are semidefinite constraints, and the resulting feasibility
problem is an SDP problem. Furthermore, the constraints of (9) are monotonic in α, that is,
if the constraints are infeasible for some α′, then they are infeasible for α ≤ α′. Exploiting
these facts, we can compute the optimal value of (9) by using a line search on α, for example,
a bisection method.

In our preliminary computational experiments, we observe that solutions of various ex-
amples of QMC are always linear. In section 5, we prove that this property holds in general.
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4. The Convex Minimax Classification Problem

In this section, we generalize LMC by noticing the fact that the classification rule is char-
acterized by a set.

We define an open half space

S = {z ∈ ℜn|aT z + b < 0}

for a linear classifier l(z) = aT z+b. Let ext(S) and bd(S) denote the exterior and boundary
of S, respectively. Then the worst-case misclassification probability (1) is equivalent to

α = max{ sup
x∼(µ1,Σ1)

Pr{x ∈ ext(S) ∪ bd(S)}, sup
x∼(µ2,Σ2)

Pr{x ∈ S ∪ bd(S)}} . (12)

The LMC problem is to find an open half space S, which minimizes α defined by (12).
Now we consider a classification rule using a general set which is not restricted to a

half space. Suppose we have a set S ⊂ ℜn. For any sample x ∈ ℜn, if x ∈ S, then it is
classified as Class 1, if x ∈ ext(S) then it is classified as Class 2, and if x ∈ bd(S), then
it can be classified as either Class 1 or Class 2. As in the former sections, the worst-case
misclassification probability αS of S is expressed as

αS = max{ sup
x∼(µ1,Σ1)

Pr{x ∈ ext(S) ∪ bd(S)}, sup
x∼(µ2,Σ2)

Pr{x ∈ S ∪ bd(S)}} . (13)

It is possible to consider S to be a general set, but due to its generality, the problem is
intractable. Therefore, as the first step, in this paper we focus on the case where S is an
open convex set.

Definition 4.1 (CMC) We call the problem of finding an open convex set S, which mini-
mizes the worst-case misclassification probability defined by (13), the Convex Minimax Clas-
sification (CMC) problem. The optimal value of CMC is denoted by α3, that is,

α3 = min
S:open convex

αS. (14)

It is easy to see that
α3 ≤ α1.

As in the former sections, CMC can be expressed as

min α
subject to supx∼(µ1,Σ1) Pr{x ∈ ext(S) ∪ bd(S)} ≤ α,

supx∼(µ2,Σ2) Pr{x ∈ S ∪ bd(S)} ≤ α,
S ⊂ ℜn : open, convex.

(15)

In contrast to LMC or QMC, we have not found any solvable optimization problem for
CMC.

5. Relations between Three Problems

In this section, we investigate relations between LMC, QMC, and CMC. We state our main
results as the following two theorems.

Theorem 5.1 Suppose that µ1 ̸= µ2. Then any optimal solution of LMC is an optimal
solution of QMC. In short, we have α1 = α2.
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Theorem 5.2 Suppose that µ1 ̸= µ2 and let aT
∗ z + b∗ be any optimal solution of LMC.

Then the half space
H∗ = {z ∈ ℜn | aT

∗ z + b∗ < 0} (16)

is an optimal solution of CMC, that is, α1 = α3.

Remember that both QMC and CMC are generalizations of LMC, so there is a possibility
that we could obtain a better classifier than the optimal one of LMC. It is interesting to see
that the above two theorems exclude this possibility. We also remark that Cooke [2] shows
the same result as Theorem 5.1 under the assumption that covariance matrices are diagonal.
As he admits, this is a restrictive assumption. In this section, we prove the property with
only the assumption that the covariance matrices are positive definite.

First we prove Theorem 5.2. Our proof heavily relies on the next classical result.

Lemma 5.1 (Marshall and Olkin [8]) Let (µ, Σ) ∈ ℜn ×Sn
++ be given. Then for any convex

set S ⊂ ℜn, it holds that

sup
x∼(µ,Σ)

Pr{x ∈ S} =
1

1 + d2
,

where d2 = infy∈S(y − µ)T Σ−1(y − µ).

The result is rediscovered by Popescu [9] from an optimization perspective. Intuitively
speaking, the lemma states that the supremum of the probability is determined by a kind
of distance from µ to S.

We remark that this type of bounds, so to speak Chebyshev bounds, have regained
interests with the recent developments of interior point methods for semidefinite program-
ming problems [10]. It is because in some cases the bounds can efficiently be computed by
semidefinite programming formulations, as Lemma 3.2 shows.

Proof of Theorem 5.2. We prove this theorem by showing that for any open convex
set S, there exists a half space H such that αH ≤ αS, where αS and αH are defined by (13).

As S is convex, its closure cl(S) = S ∪ bd(S) is also convex. Thus, from Lemma 5.1, we
have

sup
x∼(µ2,Σ2)

Pr{x ∈ cl(S)} =
1

1 + d2
,

where
d2 = inf

y∈cl(S)
(y − µ2)

T Σ−1
2 (y − µ2)

or equivalently
d = inf

y∈cl(S)
∥Σ−1/2

2 y − Σ
−1/2
2 µ2∥. (17)

Here Σ
−1/2
2 is a symmetric positive definite matrix satisfying (Σ

−1/2
2 )2 = Σ−1

2 .
The right-hand minimization problem of (17) can be seen as a projection problem. Let

T = {z ∈ ℜn | z = Σ
−1/2
2 w, w ∈ cl(S)}

and define the problem
inf
z∈T

∥z − Σ
−1/2
2 µ2∥. (18)

Both Figure 1 and Figure 2 show an essence of our proof. In the transformed space shown
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Figure 1: The original space
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Figure 2: The transformed space

in Figure 2, there is a unique projection of Σ−1/2µ2 onto T , which is denoted by z∗. Let H ′

be a set defined by

H ′ = {z ∈ ℜn| (Σ
−1/2
2 µ2 − z∗)T (z − z∗) < 0}.

Then by considering the tangent at z∗ it is easy to see that

T ⊂ cl(H ′) (19)

and
inf
z∈T

∥z − Σ
−1/2
2 µ2∥ = inf

z∈cl(H′)
∥z − Σ

−1/2
2 µ2∥ = ∥z∗ − Σ

−1/2
2 µ2∥. (20)

Back in the original space, for y∗ = Σ
1/2
2 z∗, let H be a set defined by

H = {y ∈ ℜn| (Σ−1
2 (µ2 − y∗))T (y − y∗) < 0}.

Then (19) implies
S ⊂ H,

which is equivalent to
ext(H) ∪ bd(H) ⊂ ext(S) ∪ bd(S).

Thus we have

sup
x∼(µ1,Σ1)

Pr{x ∈ ext(H) ∪ bd(H)} ≤ sup
x∼(µ1,Σ1)

Pr{x ∈ ext(S) ∪ bd(S)}. (21)

Note that (20) shows

inf
y∈cl(S)

∥Σ−1/2
2 y − Σ

−1/2
2 µ2∥ = inf

y∈cl(H)
∥Σ−1/2

2 y − Σ
−1/2
2 µ2∥,

which means
sup

x∼(µ2,Σ2)

Pr{x ∈ cl(H)} = sup
x∼(µ2,Σ2)

Pr{x ∈ cl(S)} (22)

from Lemma 5.1. Combining (21) with (22), we conclude that αH ≤ αS.
Let aT

∗ z + b∗ be any optimal solution of LMC and define the half space H∗ according to
(16). Obviously, H∗ is a feasible solution of CMC and now we have shown that its objective
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value is the same as the optimal value of CMC, that is, α1 = αH∗ = α3, which shows H∗ is
an optimal solution of CMC. ¤

Since we do not assume convexity in QMC, Theorem 5.1 is not directly derived from
Theorem 5.2. But the next lemma essentially says that we can focus only on a convex
quadratic classifier in QMC.

Lemma 5.2 For any quadratic classifier q(z) = zT Az + 2bT z + c, there exists a convex
quadratic classifier f(z) = zT A′z + 2b′T z + c′ ((A′, b′, c′) ∈ Sn

+ ×ℜn ×ℜ) such that αf ≤ αq.

Proof. When αq = 1, where αq is defined by (5), any convex quadratic classifier
satisfies the property of the lemma. Therefore in the following, we assume that αq < 1.

From Lemma 3.2, the worst-case misclassification probability of Class 1 can be computed
as the optimal value of the following Semidefinite Programming (SDP) problem:

min tr((Σ1 + µ1µ
T
1 )P ) + 2µT

1 q + r

subject to

[
P q
qT r

]
≽ O,[

P − τA q − τb
(q − τb)T r − 1 − τc

]
≽ O,

τ ≥ 0.

We denote this problem as P(A, b, c). Notice from the assumption αq < 1, the matrix

Â =

[
A b
bT c

]
is neither positive semidefinite nor negative semidefinite. Indeed, if Â were positive semidef-
inite, for any x ∈ ℜn we would have

xT Ax + 2bT x + c ≥ 0,

which implies
sup

x∼(µ1,Σ1)

Pr{xT Ax + 2bT x + c ≥ 0} = 1.

Thus we would have αq = 1 from (5), which is a contradiction. Similarly, we can show a

contradiction in the case where Â were negative semidefinite. Note also that we can add
the condition

tr((Σ1 + µ1µ
T
1 )P ) + 2µT

1 q + r ≤ 1

to the problem. From these facts and the assumption that Σ1 is positive definite, we can
show that feasible solutions of P(A, b, c) are bounded. Therefore, the set of the optimal
solutions of P(A, b, c) is nonempty. Let (P ∗, q∗, r∗, τ ∗) be one of them. Now for (A′, b′, c′) =
(P ∗, q∗, r∗ − 1), consider the new classifier zT A′z + 2b′T z + c′. Define

p1 = supx∼(µ1,Σ1) Pr{xT Ax + 2bT x + c ≥ 0},
p2 = supx∼(µ2,Σ2) Pr{xT Ax + 2bT x + c ≤ 0}, (23)

and also
p3 = supx∼(µ1,Σ1) Pr{xT A′x + 2b′T x + c′ ≥ 0},
p4 = supx∼(µ2,Σ2) Pr{xT A′x + 2b′T x + c′ ≤ 0}, (24)
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We prove the lemma by showing p3 ≤ p1 and p4 ≤ p2.
Note that p3 is the optimal value of P (A′, b′, c′) and that (P ∗, q∗, r∗, 1) is a feasible

solution of P(A′, b′, c′) with objective value p1. Hence we have p3 ≤ p1.
Next, the second constraint in P(A, b, c) indicates that

zT A′z + 2b′T z + c′ ≥ τ ∗(zT Az + 2bT z + c) for any z ∈ ℜn.

Remark that from the assumption that αq < 1, we have p1 < 1, which implies τ ∗ > 0. Then
we have

{z ∈ ℜn| zT Az + 2bT z + c > 0} ⊂ {z ∈ ℜn| zT A′z + 2b′T z + c′ > 0}.

which is equivalent to

{z ∈ ℜn| zT A′z + 2b′T z + c′ ≤ 0} ⊂ {z ∈ ℜn| zT Az + 2bT z + c ≤ 0}.

This shows p4 ≤ p2. ¤

Proof of Theorem 5.1. From Theorem 5.2 and Lemma 5.2, we have α1 = α3 ≤ α2.
Since α2 ≤ α1 from (7), we have α1 = α2. By the logic similar to the one appearing in the
last paragraph of the proof of Theorem 5.2, we can show that any optimal solution of LMC
is an optimal solution of QMC. ¤

6. Conclusion

In this paper, we introduce QMC (Quadratic Minimax Classification problem) and CMC
(Convex Minimax Classification problem) by generalizing LMC (Linear Minimax Classifi-
cation problem) proposed by Lanckriet et al. [7]. We show that QMC is transformed to a
parametric SDP (Semidefinite Programming problem), which is easily solved by an interior
point method. In our preliminary computational experiments, we observe that all the solu-
tions of QMC are linear. So we guess that QMC has the same solution as LMC in spite of
the generality. We succeed to prove the result theoretically. We also show that the solution
of CMC is obtained from the solution of LMC, although we do not have any direct method
for solving CMC.
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