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Abstract. We discuss piecewise smooth hybrid systems as models for
regulatory networks in molecular biology. These systems involve both
continuous and discrete variables. The discrete variables allow to switch
on and off some of the molecular interactions in the model of the bi-
ological system. Piecewise smooth hybrid models are well adapted to
approximate the dynamics of multiscale dissipative systems that occur
in molecular biology. We show how to produce such models by a top down
approach that use biological knowledge for a guided choice of important
variables and interactions. Then we propose an algorithm for fitting pa-
rameters of the piecewise smooth models from data. We illustrate some
of the possibilities of this approach by proposing hybrid versions of eu-
karyotic cell cycle regulation.
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1 Introduction

Hybrid systems are widely used in automatic control theory to cope with sit-
uations arising when a finite-state machine is coupled to mechanisms that can
be modeled by differential equations [MS00]. It is the case of robots, plant con-
trollers, computer disk drives, automated highway systems, flight control, etc.
The general behavior of such systems is to pass from one type of smooth dy-
namics (mode) described by one set of differential equations to another smooth
dynamics (mode) described by another set of differential equations. The com-
mand of the modes can be performed by one or several discrete variables. The
mode change can be accompanied or not by jumps (discontinuities) of the tra-
jectories.

Depending on how the discrete variables are changed there may be several
types of hybrid systems: switched systems [SWM+07], multivalued differential
automata [Tav87], differential equations with discontinuous vector fields [FA88],
piecewise affine [DJGH+04] and piecewise smooth systems [DB08]. Notice that
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in the last two cases, the mode changes when the trajectories attain some smooth
manifolds.

Piecewise affine hybrid systems have been used to model dynamics of gene
networks [DJGH+04,GRW07]. In these models, the gene variables evolve towards
discrete values (attractors). The transient dynamics leading to attractors is con-
sidered to be piecewise affine where the linear part of the dynamical equations
is defined by a diagonal matrix with negative entries. The transitions between
discrete attractors are dictated by the relative position of the above variables
with respect to some thresholds. Piecewise-affine hybrid models can be effec-
tively used in verification studies, for instance computing the set of reachable
states of a model. Identification of piecewise-affine models is a difficult problem
approached elsewhere with various methods such as affine approximations of vec-
tor fields [DMT10] and discrete/continuous optimization algorithms [BBG00].

Although sufficient for certain applications like gene networks, piecewise
affine models are less adapted to describe phenomena where the dynamics be-
tween two successive discrete events is strongly nonlinear. A typical example
of such phenomena is the machinery of the cell cycle. Proteolytic degradation
of the cyclins is switched on rapidly by the cyclin dependent kinase complexes
but between two successive switchings the complexes have non-linear dynamics
implying several positive (autocatalytic processes) and negative feed-back loops.
These non-linear processes contribute to the robustness of the mechanism.

The idea of piecewise smooth systems arises naturally in the context of bio-
chemical systems with multiple separated timescales. The dynamics of a mul-
tiscale, dissipative, large model, can be reduced to the one of a simpler model,
called dominant subsystem [RGZL08,GRZ10,GR08]. The dominant subsystem
depends on the comparison among the time scales of the large model. For non-
linear models, the dominant subsystem (which can be assimilated to a mode)
is only piecewise constant and can change several times during the dynamics.
The model reduction methods proposed in [GR08,RGZL08] generate dominant
subsystems whose reactions rates are multivariate monomials of the concentra-
tion variables, like in the well-known S-systems [SV87]. Indeed, when applied
to models using mass action kinetics, quasi-steady state and quasi-equilibrium
approximations [GRZ10] lead to lumped models in which the reactions rates
result from solving systems of polynomial equations. In general, these polyno-
mials contain only a few terms (fewnomials). The solutions of such systems are
much simplified in the case of total separation of the nonconstant terms in the
fewnomials and lead to monomial rates. The rate of the same reaction can be
represented by different monomials in different dominant subsystems (modes).
For instance, the rate of a Michaelis-Menten mechanism depends linearly on the
concentration of the substrate for small concentrations and is constant at satu-
ration. We expect that more general rate laws [LUK10] can be treated similarly
in our approach.

In this paper we propose a heuristic to construct appropriate modes and
adequate piecewise smooth models by using a top-down approach. Then, we
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show how the parameters of the hybrid model can be identified from data or
from trajectories produced by existing smooth, but more complex models.

2 Hybrid models

We consider the so-called hybrid dynamical systems (HDS) consisting of two
components: a continuous part, u, satisfying the equations

dui
dt

= fi(u(t), s(t)), t > 0, (2.1)

where u(t) = (u1(t), u2(t), ..., un(t)) ∈ Rn, and a discrete part s(t) ∈ S, where
S is a finite set of states. We consider that there is an increasing series τ0 =
0 < τ1 < . . . < τk < . . . such that the discrete variables are piecewise constant
on the intervals [τi, τi+1[ and that they change values at t = τk. The continuous
variables can also have discrete jumps at t = τk.

Typically, in molecular networks, the continuous variables are protein con-
centrations and the discrete states may be gene or protein activities described
by boolean variables s(t) = (s1(t), s2(t), ..., sm(t)), where sj(t) ∈ {0, 1}.

There are several possible ways to define the evolution of the s variables.
Rather generally, this can be done by a time continuous Markov chain with
transition probabilities p(s, s′, u) from the state s to the state s′ (per unit time)
depending on current state u(t). However, in many molecular regulatory net-
works, transition probabilities dependence on u is not smooth. For instance, the
probability for s to jump is close to one if u goes above some threshold value,
and close to zero if u is smaller than the threshold. We can, in certain cases,
neglect the transition time with respect to the time needed for u variables to
change. Assuming that some of the discrete variables contribute to production
of u and that other contribute to the degradation of u we obtain a general model
of hybrid piece-wise smooth dynamical system

dui
dt

=

N∑
k=1

skPik(u) + P 0
i (u)−

M∑
l=1

s̃lQil(u)−Q0
i (u),

sj = H(

n∑
k=1

wjkuk − hj), s̃l = H(

M∑
k=1

w̃lkuk − h̃l), (2.2)

where H is the unit step function H(y) = 1, y ≥ 0, and H(y) = 0, y < 0,
Pik, P

0
i , Qil, Q

0
i are positive, smooth functions of u representing production, basal

production, consumption, and basal consumption, respectively. Here w, w̃ are
matrices describing the interactions between the u variables, i = 1, 2, ..., n, j =
1, 2, ..., N , l = 1, ...,M and h, h̃ are thresholds.

One will usually look for solutions of the piecewise-smooth dynamics (2.2)
such that trajectories of u are continuous. However, we can easily extend the
above definitions in order to cope with jumps of the continuous variables. Sim-
ilarly to impact systems occurring in mechanics [DB08], the jumps of the con-
tinuous variables can be commanded by the following rule: u instantly changes
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to p±j (u) whenever a discrete variable ŝj = H(
∑n
k=1 ŵjkuk − ĥj) changes. The

± superscripts correspond to changes of ŝj from 0 to 1 and from 1 to 0, re-
spectively. We can consider reversible jumps in which case the functions p±j (u)

satisfy p+ ◦ p− = Id. The typical example in molecular biology is the cell cycle.
In this case, the command to divide at the end of mitosis is irreversible and
corresponds to p+

j (u) = u/2. No return is possible, p−j (u) = u.
The class of models (2.2) is too general. We will restrict ourselves to a subclass

of piecewise smooth systems where smooth production and degradation terms
are assumed multivariate monomials in u, plus some basal terms:

Pik(u) = aiku
αik

1
1 . . . u

αik
n
n ,

P 0
i (u) = a0i

Qil(u) = ãilu
α̃il

1
1 . . . u

α̃il
n
n

Q0
i (u) = ã0iui (2.3)

which will be chosen according to an heuristic presented in the next sections.
This restriction does not reduce the power of the method. As argued in the in-

troduction, the monomial rates represent good approximations for nonlinear net-
works of biochemical reactions with multiple separated timescales [RGZL08,GR08].
More generally, rational functions are good candidates for general rate laws
[LUK10]. However, when concentrations are very large or very small the mono-
mial laws are recovered. For instance, Michaelis Menten, Hill, or Goldbeter-
Koshland reactions switch from a saturated regime where rates are constant to
a small concentration regime where rates follow power laws. Finally, by methods
described in [Vak02,VG03] one can show that the above subclass of models can
approximate with arbitrary precision any structurally stable dynamics.

These models have several advantages with respect to standard models in
molecular biology and neuroscience based on differential equations. They allow us
to simulate, in a fairly simple manner, discontinuous transitions occurring in such
systems (see a typical graph describing time evolution of protein concentration
within cellular cell cycle, Fig.5.1). The discontinuous transitions result either
from fast processes or from strongly non-linear (thresholding) phenomena. This
class of models is also scalable in the sense that more and more details can be
introduced at relatively low cost, by increasing the number of discrete variables
and the size of the interaction matrices.

The definition of the rates slightly extends the one used in S-systems, intro-
duced by Savageau [SV87]. Our choice was motivated by the fact that S-systems
proved their utility as models for metabolic networks whose dynamics we want
to encompass by considering the modes. The introduction of basal terms avoids
spurious long living states when some products have zero concentrations.

3 Regulated reaction graphs and hybrid reaction schemes

Interaction mechanisms in molecular biology can be schematized as regulated
reaction graphs.
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A regulated reaction graph is a quadruple (V,R,E,Er). The triplet (V,R,E),
where E ⊂ V × R ∪ R × V , defines a reaction bipartite graph, ie (x, y) ∈ E iff
x ∈ V, y ∈ R and x is a substrate of R, or x ∈ R, y ∈ V and y is a product of
x. Er ⊂ V × R is the set that defines regulations, (x, z) ∈ Er if the rate of the
reaction z ∈ R depends on x ∈ V and x is not a substrate of R.

Similar structures of regulated reactions where proposed elsewhere for non-
hybrid models [LUK10].

In order to define a hybrid model we first need a hybrid reaction scheme. This
consists in saying, for each given species, whether its production/degradation
can be switched on and off and by which species, also which species modulate
the production/degradation of a given species in a smooth way. This means
specifying a partition of the regulations Er = Edr ∪Ecr . A regulation (x, r) ∈ Edr is
discrete if the decision to switch on and off the reaction r depends (among others)
on x. Discrete interactions manifest themselves punctually as a consequence of
thresholding and/or of rapid phenomena. The continuous regulations guide the
dynamics of the modes. Similarly, there is a partition of the reactions R =
Rs∪Rc. A reaction r belongs to the switched reactions r ∈ Rs if (x, r) ∈ Edr , for
some x ∈ V . The role of the regulators (continuous if they modulate the reaction
rate, discrete if they contribute to switching it on and off) should be indicated
on the graph together with the signs of the regulations.

4 Identification of piecewise smooth models

We would like to develop methods allowing to find the parameters of a model
from the class introduced above that best describes the observed trajectories
of a biological system. These trajectories can come from experiments or can be
produced by non-hybrid models. In both situations we obtain a model whose
parameters can be easily interpreted in biological terms. The hybrid model can
be further analyzed or used to model more complex situations.

In the following we present a reverse engineering algorithm that works well
for systems with sharp transitions.

Data. n trajectories (time series) u1(t), ..., un(t) given at time moments t0, t1,
..., tN . A regulated reaction graph (the smooth/discrete partition of the regula-
tions can be unspecified).

Output. A model of the type (2.2), (2.3) with values of the parameters that
fit well the data.

The algorithm has several steps, some of them involving several alternative
numerical solutions. For some of the steps the choice of the numerical solution
was adapted to the application presented in the paper, which is the reconstruc-
tion of a hybrid cell cycle oscillator.

I. Choice of hybrid reaction scheme and of monomials giving the smooth part
of the rates.

The reaction rates have the forms given by (2.3). The monomial exponents
αij , α̃

i
j , the rate functions defining the modes, the mode switching and the jumps

can be obtained from the following heuristic rules:



6 Lecture Notes in Computer Science: Authors’ Instructions

i) If a reaction j is activated then αij = 1 for all activators and αij = −1 for all
inhibitors i in the absence of cooperativity. Cooperativity may be taken into
account by considering |αij | > 1.

ii) Basal rates are constant for reactions without substrates and proportional
to the concentration of the substrate otherwise.

iii) If activated reactions are present with intermittence, their non-basal rates
are multiplied by discrete variables si; this defines the mode switching.

iv) If a continuous variable ui is known to induce a jump decision (for instance
cell division), it should appear in the definition of the jump discrete variables
ŝ. The functions p(u) follow from biological observations.

Once the hybrid reaction scheme chosen, we want to fit the remaining model
parameters in order to reproduce the observed dynamics.

II. Detection of the events locations.

We look for K time intervals I1, I2, ..., IK . The dynamics on each of the in-
tervals is smooth, it is given by (2.2) with the s variables fixed. Mode transitions
(change of the variables) occur at the borders of these intervals. We denote the
switching times as τ1, ...τK .

Finding τk is a problem of singularity detection. This could be done by various
methods, for example by wavelet analysis. Here we decided to use the derivatives
of the reaction rates to locate the mode switching events. The peaks of these
derivatives indicate the positions of switching events, whereas the sign of the
derivatives indicate the sign of the change (activation if positive, inactivation if
negative). With this simple criterion we are able to reconstruct the sequence of
modes which is defined by the values of the boolean variables s(t).

III. Determining the mode internal parameters.

The previous steps define a set of modes and the static event location. Given a
choice of the modes internal parameters the hybrid trajectories can be integrated
without knowing the discrete regulations (this will allow the dynamic event
location at the next step): the values of s between two successive events are
enough. Modes internal parameters are obtained by optimization. Let umodesi (t)
be the continuous hybrid trajectories obtained by integrating the modes between
the calculated transition times. We use a parallel version of Lam’s simulated
annealing algorithm [CDR99] to minimize the following objective function:

F =
∑
i,k

Ck(umodesi (tk)− ui(tk))2,

where Ck are positive weights. The choice of the weights depends on the dynam-
ical features one wants to reproduce. For instance, for the cell cycle application
we choose weights that increase with time. We thus penalize large time devia-
tions that can arise from the loss of synchronicity among variables ui and avoid
the period misfit that could arise between the hybrid and the smooth dynamics
after dynamic event location.

IV. Determining the mode control parameters and dynamic event location.
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Let sm = H(
∑

(m,j)∈Er wmjuj − hj) be the discrete variables determined
above. Let smk be the constant values of sm on Ik. Consider now the optimal
trajectories umodes∗i (tl) obtained before.

Then, one should have

(
∑

(m,j)∈Er

wmju
modes∗
j (tl)− hj)smk > 0, for all tl ∈ Ik, (4.1)

which is a linear programming problem for wmj that can be resolved (if it has a
solution) in polynomial time.

5 Examples

Fig. 5.1. (Top Left) Trajectories of the non-hybrid model by Tyson [Tys91]. (Top
Right) Trajectories of the hybrid model. (Bottom Left) Reaction graph of the non-
hybrid model. (Bottom Right) Reaction graph of the hybrid model.

A simple cell cycle model As a simple example let us consider the minimal
model proposed by Tyson for Cdc2 and Cyclin interactions [Tys91]. This model,
which contains initially 6 species and 9 reactions, can be reduced to only 2
species and 4 reactions (details of the reduction will be given elsewhere), while
keeping the same dynamics. The two species left are Cyclin-Cdk complexes,
with two phosphorylation states: phosphorylation of both monomers (Cpp :=
Cyclinp.Cdc2p), or only Cyclin phosphorylated (Cp := Cyclinp.Cdc2).

d[Cpp]

dt
= k1 − k′4[Cpp]− k4[Cpp][Cp]2

d[Cp]

dt
= −k6[Cp] + k′4[Cpp] + k4[Cpp][Cp]2

(5.1)
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The regulated reaction graph and the hybrid scheme are represented in
Fig.5.1. The dynamics of this model is quite simple. The linear dephosphory-
lation is slower than the production of Cpp. This create an accumulation of
Cpp. Then at some threshold the Cp produced activates the second, faster,
dephosphorylation, which drains the accumulated Cpp. Here we model this sec-
ond, faster reaction as an hybrid reaction, totally controlled by thresholds. This
is justified by the observed peaks of the rate derivative (Fig.5.2) and leads to
the following hybrid model:

d[Cpp]

dt
= k̃1 − k̃′4[Cpp]− k̃4s[Cpp]

d[Cp]

dt
= −k̃6[Cp] + k̃′4[Cpp] + k̃4s[Cpp]

(5.2)

where s = H(w1[Cpp] + w2[Cp]− h) is the boolean variable.
After the parameter fit we find that w1 and w2 are both positive.
For this model no jumps of the continuous variables are needed. Indeed, at

the end of mitosis, all continuous variables have small values. Bringing their
values to half would not change much the behavior of the model.

Fig. 5.2. Rate derivative for the simple cell cycle model.

Generic mammalian cell cycle model A complex example with mode switch-
ing and jumps is obtained from Novak and Tyson 2006 generic cell cycle model
[Csi06]. The generic model contains four different versions, each of them repro-
duce the cell cycle for a different eukaryote organism : Mammalians, Xenopus
embryo, Budding yeast, Fission Yeast. Our study will only focus on the mam-
malian version. This model contains 12 species and 34 reactions.

We briefly discuss the steps of the algorithm applied to this model.
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Choice of the hybrid scheme. Four of these reactions are typically switch-
like, following Goldbeter-Koshland kinetics. Another reaction is following Hill
kinetics, and also shows switch-like behavior. These reactions are replaced by
switched reactions whose rates are simplified monomial rate multiplied by a
boolean variable.

For instance the reaction that produces Cyclin-B, induced by the cell mass,
is defined by the following kinetic rate:

R = ksbpp [Mass] GK(kafb [CycB], kifb, Jafb, Jifb) (5.3)

In this case we can replace the Goldbeter-Koshland (GK) function by a
boolean variable (see Fig.5.3) and obtain the following simpler rate:

R′ = ksbpp [Mass] s (5.4)

where s is a boolean variable.

Fig. 5.3. left: Reaction flow of the GK function, right: Derivative of reaction flow of
the GK function.

Detection of the transitions. Static event locations follow from the positions
of the peaks of the derivative of the reactions rates with respect to time. For the
reaction considered above, we find 2 peaks per period of the cell cycle model (see
Fig. 5.3), which correspond to switching the reaction from an active state to an
inactive one and back. At the end of this step, we obtain a list of the transitions
points for each switched reaction, and the status of the switched reactions during
each mode (ie between successive transitions) as boolean variables.

Fitting the hybrid model parameters. Once we have this definition, we can
fit the model, using the parallel simulated annealing algorithm. As a control we
can see the results of the fitting on the rate of the reaction considered above
(Fig.5.4).

Computing the mode control parameters. The final goal is to obtain a dynamic
definition of these events location, by computing the regulation matrix w and
the thresholds h for all the boolean variables.

For instance, the reaction discussed is controlled by the function f(u) =
−37.32[CycA]− 1.694[CycB]− 173.7[CycE]− 177.8[APCP ] + 331.2[Cdc20a] +
97.8[Cdc20i]−78.5[Cdh1]−107.1[CKI]+0.3481Mass+53.52[pB]+1337[TriA]+
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Fig. 5.4. left: Original reaction flow, right: Hybrid reaction flow.

39.57[TriE], which is the parameter of the Heaviside function. The sign of this
event function will control the state of the reaction, keeping it inactive if the
function is negative, and activating the reaction when the function is positive
(Fig.5.5).

Fig. 5.5. Event location function, ie the Heaviside function parameter.

On Fig.5.6, we can see the trajectories of the hybrid model (with dynamic
event location), compared to those of the original model.

6 Conclusion

The results that we present are a proof of principle that piecewise smooth hybrid
models can be constructed with a simple heuristic from basic information about
biochemical interactions. Using this class of hybrid models instead of piecewise-
linear approximations provides, in many situations, a better balance between
discrete and smooth interactions. The identification algorithm proposed in the
paper combines the static location of the events, the identification of the modes
by simulated annealing, and the identification of the mode control parameters by
dynamic location. The hardest step of this algorithm is the simulated annealing.
Furthermore, for large models, we expect several solutions for the mode control
parameters. We are currently improving the algorithm to cope with these sit-
uations. A better choice of the modes dictated by model reduction techniques
could reduce the time for simulated annealing. Also, we are investigating the use
of event location functions that are linear in the logarithms of the continuous
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Fig. 5.6. (Left) Trajectories of four main variables of the non-hybrid model by Novak
and Tyson [NT04]. (Right) Trajectories of the hybrid model. (blue : Cyclin-A, green :
Cyclin-B, red : Cyclin-C, aqua : cell size)

variables. According to the ideas of the introduction, these nonlinear location
functions will indicate changes of the dominant monomials in the rate func-
tions, more accurately than the linear location functions. Moreover, they can
be obtained directly from the initial smooth model without the need to solve
(eventually undetermined) dynamic location inequations. Improved segmenta-
tion techniques are needed for future application of the algorithm directly to
data.

In the future we will apply the heuristic and the fitting algorithm to model
complex situations when signaling pathways interact with the eucaryotic cell
cycle. The resulting hybrid models will also be used to investigate emerging
properties of regulatory networks such as viability and robustness.
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