
International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Ontology Modeling and Object Modeling in Software Engineering

Dr. Waralak V. Siricharoen
University of the Thai Chamber of Commerce (UTCC)

126/1 Dindeang, Bangkok, Thailand 10400
(66)26976506-7, (66)816966425

waralak_von@utcc.ac.th

Abstract
A data model is a plan for building a database and is comparable to an architect's

building plans. There are two major methodologies used to create a data model: the Entity-
Relationship (ER) approach and the Object Model. This paper will be discussed only the object
model approach. The goal of the data model is to certify that all data objects required by the
database are completely and accurately represented. Ontologies are objects of interest
(Universal of discourse). The objective of this paper is to simplify object models compare with
ontologies models. There are some similarities between objects in object models and concepts
sometimes called classes in ontologies. Ontology can help building object model. The object
model is the center of data modeling; on the other hand ontology itself has the concept which is
the basis of knowledge base. Because ontologies are closely related to modern object-oriented
software design, it is good attempt to adapt existing object-oriented software development
methodologies for the task of ontology development. Selected approaches originate from
research in artificial intelligence; knowledge representation and object modeling are presented
in this paper. Some issues mentioned in this paper are related with their connection; some are
addressed directly into the similarities or differences point of view of both. This paper also
presents the available tools, methods, procedures, language, reusability which shows the
corporation with object modeling and ontologies.

1. Introduction

The object oriented paradigm is the structure in software engineering, influencing all
attempts in information science. Data modeling is probably the most time consuming and labor
intensive part of the development process and it need a lot of developer’s experience. A
common response by practitioners who write on the subject is that you should no more build a
database without a model than you should build a house without blueprints1.

A data model is a conceptual representation of the data structures that are required by a
database. The data structures include the data objects, the associations between data objects,
and the rules which run operations on the objects. It serves as a bridge between the concepts
that construct real-world events and processes and the physical representation of those concepts
in a database. The database design process generally follows five steps: planning and analysis,
conceptual design, logical design, physical design, and implementation. The data model gets its
inputs from the planning and analysis stage. Here the software developer, along with analysts,
collects information about the requirements of the database by reviewing existing
documentation and interviewing end-users. The one output of data model is an object model
(class diagram) or we called object model which represents the data structures in a pictorial

1 http://www.utexas.edu/its/windows/database/datamodeling /dm/design.html

 43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24065326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

form1. Because the picture diagram is simply knowledgeable, it is valuable tool to communicate
the model to the end-user.

The objects are then modeled and analyzed using an object diagram. The diagram can be
reviewed by the software developer and the end-users to conclude its completeness and
accuracy. What makes an object an object or attribute? For example, given the statement
Professor teaches in many courses which are assigned by the University. Should Professor be
classified as an object or attribute? The answer depends upon the requirements of the database.
In some cases, Professor and course would be an object, in some it would be an attribute.

Ontology is the concept which is separately identified by domain users, and used in a self-
contained way to communicate information. Combination of concept is the knowledge base or
knowledge network. Ontologies themselves are rising as an important tool for coping with very
great, compound and various sources of information. It has also been known that ontologies are
advantageous for data modeling in software engineering [17]. Ontology is well known as
description of declaration and abstract way the domain information of the application, it
involved with vocabulary and how to constrain the use of the data [3] and they are used widely
in the semantic web approach, which requires a significant degree of structure. In the area of
ontology the concept have been supplemented above which allow to express the similarity of
concept in ontology with object (or atom) in object oriented [4]. Ontology is actually well
known in philosophy research area since 1960s, in the artificial intelligence arena, has been
focused on knowledge modeling. The term ontology is used to refer to an explicit specification
of a conceptualization [of a domain] is mentioned by Tom Gruber which we are already
familiar with for quite sometimes. In other words, ontology refers to a formalization of the
knowledge in the domain. Ontologies are used for various purposes: first is the documents in
the document base are annotated and classified according to the ontology [20].

The main contribution of this paper is that it is seem appropriate to try to emphasize
similarities as well as significant differences between data modeling and ontology modeling by
describing the basic components of them. Ontology are intended to give details and explain the
world, while object model(database) are meant to describe that part of the world whose
representation has to be managed for some application purpose. Overcoming differences is a
meaningful way to benefit one domain with results from the other domain. The main thought is
that object-oriented software development methodologies show promise as a basis for
ontologies methodologies. On the other hand, the well- produced ontologies themselves which
are published online such as in ontology libraries. They are the very good starting point to use
ontologies to facilitate discovering object modeling as well.

2. Ontology Modeling

Ontology describes basic concepts in a domain and defines relations among them. Basic
building blocks of ontology design include: classes or concepts, properties of each concept
describing various features and attributes of the concept, restrictions on slots (facets). This
section will clarify each part of ontology modeling as following.

2.1. Concept/Class

Concepts that are objects are likely to be best represented by classes. Classes (Concepts) are
abstract groups, sets, or collections of objects. Concepts in the ontology should be close to
objects (physical or logical) and relationships in your domain of interest. These are most likely
to be nouns (objects) or verbs (relationships) in sentences that describe your domain [9].

 44

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

A class is defined for a conceptual grouping of similar terms. For example, a Person could
be represented as a class which would have many subclasses such as Professor. Each class is
described by a definition which specifies the slots and values that describe the class itself.

They may contain individuals, other classes, or a combination of both. Ontologies vary on
whether classes can contain other classes, whether a class can belong to itself, whether there is
a universal class (that is, a class containing everything), etc. The concepts arranged in an
inheritance hierarchy.

2.2. Slots/Facets

Own slots are slots used to describe properties (or “is part of”) of the term itself. For most
terms, the only slots they have are own slots. The example of slots on the class Mother,
subclass-of is an own slot because it is used to indicate a property of the class Mother. Whereas,
has-children would be an instance slot because it describes a property of instances of the class
Mother9.

A slot is used to describe a relationship between two terms. The first term must be an
instance of the class that is the domain of the slot and the second must be an instance of the
class that is the Range of the slot. For example, brother could be represented as a slot such that
its Domain was Animal and its Range was Male-Animal. A slot may also be referred to as a
binary relation2. They are attached to classes or slots and contain meta-information, such as
comments, constraints and default values. Slots represent the attributes of the classes. Possible
slot types are primitive types (Integer, Boolean, String etc.), references to other objects
(modeling relationships) and sets of values of these types [7].

For each Professor, we want to know her address and salary, and what course she works for.
As we continue to generate terms, we are completely defining the scope of ontology, by what
we finally decide to include and what to exclude. For example, in order to verify the status of
Professor, a Professor has to work for at least one Course. Each Professor which inherits the
slot from concept Person has an address slot of type String. Properties of the classes, such as
age or address can be represented by slots, and restrictions on properties or relationships
between classes and or slots, are represented by slot facets.

2.3. Axioms

An axiom is a sentence in first order logic (F-logic) that is assumed to be true without
proof. In practice, axioms can be used to refer to the sentences that cannot be represented using
only slots and values on a frame2. Axioms must be entered in prefix notation. Use => to
indicate logical implication, <=> to indicate logical equivalence, and to indicate conjunction,
or to indicate disjunction, not to indicate negation, and exists to indicate existential
quantification2. For example in OWL, it is possible to state that two or more classes are
equivalent3,

axiom ::= 'EquivalentClasses(' classID classID { classID } ')'

2.4. Instances

Instances represent specific entities from the domain knowledge base (KB). An example KB
based on the Person ontology might contain the specific Professor Jane and Course SP233

2 http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/glossary-of-terms.html

3 http://www.w3.org/TR/owl-semantics/syntax.html#2.3.1

 45

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Database. Individuals (instances) are the basic components of ontology. The individuals in
ontology may include concrete objects such as people, animals, tables, automobiles, molecules,
and planets, as well as abstract individuals such as numbers and words.

2.5. Relationships

A relation is used to describe a relationship among two or more terms. If a relation represents
a relationship between only two terms, it is called a slot or a binary relation. If the relation
describes a relationship among n terms such that there is a unique nth term corresponding to any
set of the first n-1 terms, then the relation is called a function (section 2.6). For examples of
binary relations include: subclass-of and connected-to. If we introduce relationships to
ontology, we find that this simple and well-designed hierarchy structure becomes complex and
significantly more difficult to interpret manually. It is not difficult to understand why an entity
that is described as 'part of' another entity might also be 'part of' a third entity. Consequently,
entities may have more than one parent. The structure that emerges is known as a directed
acyclic graph (DAG4). As well as the standard is-a and part-of relationships, ontologies often
include additional types of relation that further refine the semantics they model. These relations
are often domain-specific and are used to answer particular types of question. The is-a
relationship can be used to inherit attributes and semantic relationships down (against the
direction of the arrows) from higher nodes to lower nodes in the DAG. This is very similar to
inheritance in Object Oriented Databases such as C++5. Example: If Person has the attribute
Name then Professor would inherit Name. We don't have to specify that Professor has Name.

Figure 1. A simple directed acyclic graph4

For example in the domain of Professors, we might define a live-in relationship which tells
us who each Professor lives in. So Jane is live in Bangkok. The ontology may also know that
Bangkok is-in Thailand and Thailand is-a country in Asia. Software using this ontology could
now answer a question like Who (Professor) is live in Thailand?

2.6. Functions

A function is a special type of relation which relates some number of terms to exactly one
other term. That is, a function is a relation such that no two relationships of n terms in the
relation have the same first n-1 terms. For example, Mother is a function that relates an Animal

4 http://en.wikipedia.org/wiki/Directed_acyclic_graph

5 http://web.njit.edu/~geller/what_is_an_ontology.html

 46

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Kentucky
http://en.wikipedia.org/wiki/Kentucky
http://en.wikipedia.org/wiki/Kentucky

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

to exactly one female animal. A function may also be referred to as a slot if it relates only two
terms [19].

2.7. Standards and Languages

One of the more recent developments with the Web is an activity known as the Semantic
Web. The Semantic Web is not a separate Web but an extension of the current one, in which
information is given well-defined meaning, better enabling computers and people to work in
cooperation [17]. For the web, ontology is about the precise description of Web information
and relationships between Web information. So the one important aspect of the Semantic Web
is a set of ontologies. Three enabling technologies for the Semantic Web are XML, RDF and
ontologies. Each of these has an important role to play in deploying and reusing learning
objects on the Semantic Web. XML is used to markup the structure of a learning object in a
machine readable way. It is also used to describe the metadata associated with objects. RDF
allows the specification of metadata and other information associated with objects in a more
flexible manner, facilitating the discovery and exchange of objects with limited information or
more than one metadata specifications. Ontologies allow the specification of concepts in a
domain as well as the terms used to markup content in a learning object. Shared ontologies
allow for different systems to come to a common understanding of the semantics of an object.

The ontology also was developed using OWL (Web Ontology Language). OWL was
proposed by the W3C for publishing and sharing data, and automating data understanding by
computers using ontologies on the Web. OWL is being planned and designed to provide a
language that can be used for applications that need to understand the meaning of information
instead of just parsing data for display purposes [17]. OWL became a W3C (World Wide Web
Consortium) recommendation in February 2004. W3C Recommendation is understood by the
industry and the web community as a web standard. A W3C Recommendation is a stable
specification developed by a W3C Working Group and reviewed by the W3C Membership6.
OWL is an ontology language for the Web, which builds on a rich technical tradition (of both
formal research and practical implementation), including SHOE (Simple HTML Ontology
Extensions), OIL, and DAML+OIL. The technical basis for much of OWL is the part of the
formal knowledge representations field known as Description Logic (aka "DL"). DL is the main
formal underpinning of such diverse kinds of knowledge representation formalisms as semantic
nets, frame-based systems, and others7.

6 http://www.w3schools.com/rdf/rdf_owl.asp

7 http://www.xml.com/pub/a/2003/08/20/deviant.html

 47

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Figure 2. The example of OWL description about class Professor

- <owl:Class rdf:ID="Professor">
 <rdfs:label>Professor</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Faculty" />
 </owl:Class>
- <owl:Class rdf:ID="Faculty">
 <rdfs:label>faculty member</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Employee" />
 </owl:Class>
- <owl:Class rdf:ID="Employee">
 <rdfs:label>Employee</rdfs:label>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person" />
- <owl:Restriction>
 <owl:onProperty rdf:resource="#worksFor" />
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Organization" />
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
..…- <owl:ObjectProperty rdf:ID="teacherOf">
 <rdfs:label>teaches</rdfs:label>
 <rdfs:domain rdf:resource="#Faculty" />
 <rdfs:range rdf:resource="#Course" />
 </owl:ObjectProperty>

From Figure 2 shows that “rdfs:subClassOf” is represent the inherit characteristics of

ontology. This means Professor is subclass of Faculty, so Professor also inherits the
ObjectProperty from Person. The development of ontologies for the Web has led to the
apparition of services providing lists or directories of ontologies with search facility. Such
directories have been called ontology libraries [16]. The following are static libraries of human-
selected ontologies.

- The DAML Ontology Library8 maintains a legacy of ontologies in DAML (Figure 3.).
- Protégé Ontology Library 9 contains a set of owl, Frame-based and other format

ontologies. Protégé is a free, open source ontology editor and knowledgebase framework.
The Protégé platform supports two main ways of modeling ontologies via the Protégé-
Frames and Protégé-OWL editors. Protégé ontologies can be exported into a variety of
formats including RDF(S), OWL, and XML Schema. Protégé is based on Java, is
extensible, and provides a plug-and-play environment that makes it a flexible base for rapid
prototyping and application development (Figure 4).

- SchemaWeb10 is a directory of RDF schemas expressed in RDFS, OWL and DAML+OIL

(Figure 5).

8 www.daml.org/ontologies/

9 http://protege.stanford.edu/overview/protege-owl.html
10 http://www.schemaweb.info/default.aspx

 48

http://www.daml.org/ontologies/
http://protege.stanford.edu/../overview/protege-frames.html
http://protege.stanford.edu/../overview/protege-frames.html
http://protege.stanford.edu/../overview/protege-owl.html
http://www.schemaweb.info/

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Figure 3. DAML Ontology library

Figure 4. Protégé Ontology Library

 49

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Figure 5. SchemaWeb

Finding ontologies is seen as important to avoid the creation of new ontologies where
serviceable ones already exist [20]. This approach will guide to emergence of widely-used
canonical ontologies. The following are both directories and search engines. They include
crawlers searching the Web for well-formed ontologies.

- Swoogle11 is a directory and search engine for all RDF resources available on the
Web, including ontologies. Swoogle support querying for ontologies containing
specified terms, this can be refined to find ontologies where such terms occur as
classes or properties, or in some senses about specified terms[20].

- The OntoSelect Ontology Library12 provides an access point for ontologies on any

possible topic or domain that will be updated continuously, organized in a
meaningful way and with automatic support for ontology selection in knowledge
markup. Unlike the DAML and SchemaWeb ontology libraries, OntoSelect is not
based primarily on a static registration of published ontologies, but includes a

11 http://swoogle.umbc.edu/

12 http://olp.dfki.de/ontoselect/

 50

http://en.wikipedia.org/wiki/Swoogle
http://olp.dfki.de/OntoSelect/

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

crawling procedure that monitors the web for any newly published ontologies in the
following representation formats: RDF/S, DAML or OWL [21].

- Ontaria13 is a searchable and browsable directory of semantic web data, with a focus

on RDF vocabularies with OWL ontologies. Ontaria is primarily intended for people
creating RDF content who want to better understand which vocabularies are available
and how they are being used. Ontaria may be useful for finding and exploring
arbitrary RDF content.

Figure 6a. Swoogle Figure 6b. OntoSelect

Figure 6c. Ontaria

3. Object Modeling
In class diagram, classes are represented by a box with 3 parts: the name of class, the

attributes of the class (specified by their name, type and visibility) and the operation of the
classes as see in Figure 7.

3.1. Object/Class

To emphasize that an object actually contains meaningful data, a term data object is
sometimes used to refer to such an object. Object or Class is the tangible things. For example,
the University system might contain the object Professor and instance Jane.

13 http://www.w3.org/2004/ontaria/

 51

http://www.w3.org/2004/ontaria/

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Professor

age()
setSalary()
getSalary()
yearsService()

firstName
lastname
salary
jobGrade
birthDate
startDate

Jane: Professor

birthDate = 01/01/70
startDate = 05/06/99
salary = $65,000

Figure 7. The example of class Professor and object Professor: Jane

3.2. Attributes/Properties

Attributes are data objects that either identify or describe entities. Attributes that identify
entities are called key attributes. Attributes that describe an entity are called non-key attributes.
Objects will have at least one attribute. Possible slot types are primitive types (integer, Boolean,
string etc.), references to other objects (modeling relationships) and sets of values of these
types. Properties generally associated with a class are its attributes and operations, which,
following OMG terminology, we will collectively refer to as features. Thus, the class defines
the features of Professor objects, each of which has a birthDate attribute, a startDate attribute,
a salary attribute.

3.3. Method/Operations/Functions

They are attached to classes or slots and contain meta-information, such as comments,
constraints and default values. For example, in order to verify the status of a Professor, a
Professor has to assign at least one Course. They are attached to classes or slots and contain
meta-information, such as comments, constraints and default values. As in Figure 7 the
operations are age () and yearsService ().

3.4. Relationship/Relations

In object–oriented programming, is-a relationship exist through the definitions of inheritance,
and other relationships exist via class membership. To construct a generalization hierarchy, all
common attributes are assigned to the supertype. The supertype is also assigned an attribute,
called a discriminator, whose values identify the categories of the subtypes. Attributes unique to
a category, are assigned to the appropriate subtype. Each subtype also inherits. The inheritance
mechanism forms one of the foundations of object technology, and is the primary feature that,
at the language level, distinguishes object-oriented development from object-based
development. From a modeling perspective, inheritance is used to capture the situation in which
one type of abstraction is "like" another type of abstraction, but with some additional
properties. Thus, instead of defining all features of Professor objects directly in the class
Person, it is also possible to use inheritance to define some of them in a superclass of
Professor. It means in describing Figure 8, "An Professor is a person."[18]

 52

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Person

age()

birthDate

Figure 8. Hierarchy in object model

Professor

yearsWork()

startDate
salary

3.5. Instances

Each instance of the Employee class has values for each of these attributes, as illustrated as
in Figure 7 and 8: "Jane is a professor." This UML model captures the fact that the object Jane
is an instance-of the class Professor, and has specific values for its attributes. Note: In this and
the following examples, our focus is not on providing the optimal representation of every
logical concept, for example whether age should be an attribute or a method, or whether role
modeling should be used in place of inheritance but rather on illustrating the different effects of
the meta-modeling and inheritance mechanisms on model elements[18].

3.6. Standards and Languages

Data (Conceptual) modeling languages have mainly been used in the development process of
databases schema and have been supported by numerous case tools. Unified Modeling
Language (UML) is well known and widely used object modeling that consist of
concepts/entitypes/classes in a specification hierarchy, the description of concepts by attributes
which have range and relationship between concepts. UML defines several types of diagram
that can be used to model the static and dynamic behaviors of a system.

The business information model can be defined using an ontology. Concepts (or classes) are
defined and related to each other, much like classes in a UML class diagram [10]. Unlike in
commonly-known object-oriented data models attributes and associations are not defined with
the class specification itself. Instead, class properties are first-class primitive themselves [11].

Conceptual (or Data) modeling deals with the question on how to describe in a declarative
and abstract way the domain information of an application, its relevant vocabulary, and how to
constrain the use of the data. Modeling languages like UML and ODMG have been developed
for object oriented models in software engineering. Common to all of these newer models is the
arrangement of concepts/entitytypes/classes in a specialization hierarchy, the description of
concepts by attributes which have ranges and relationships between concepts. Concepts,
relationship types and attributes abstract from concrete objects or values and thus describe the
schema (the ontology). On the other hand concrete objects populate the concepts, concrete
values instantiate the attributes of these objects and concrete relations instantiate relationships
[3].

Like UML, Object Data Management Group (ODMG) Object Model is intended to allow
portability of applications among object database products. It provides a common model for

 53

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

these products by defining extensions to the OMG object model that support object database
requirements. UML and ODMG have been developed for object oriented models in software
engineering. There are a lot of paper address about the object oriented standard to be used for
ontology modeling for example as [5] the large user community and commercial support for
object oriented standards warrants the investigation of standard object modeling technique for
ontology development. We can see clearly that ontology modeling can be connecting to object
model by this example: the ontology representation language used in this paper a UML class
diagram (contain OCL constraints) in conjunction with an object diagram – contains both a
highly structured model that could support automated reasoning (the basic class and object
model, ignoring the constraints)

One approach for implementing objects is to have a class, which defines the implementation
for multiple objects. A class defines what types the objects will implement, how to perform the
behavior required for the interface and how to remember state information. Each object will
then only need to remember its individual state. Although using classes is by far the most
common object approach, it is not the only approach (using prototypes is another approach) and
is really peripheral to the core concepts of object-oriented modeling [1]. With F-Logics we
provide a clearly defined syntax and semantics to ontologies and the representation of these
knowledge models is based on a well-understood logical framework. F-Logic allows to describe
ontologies, i.e. classes, the hierarchy of classes, their attributes and relationships between
classes in an object oriented style way. For simplicity, Assume that some of the objects you
plan to use in your application will be developed by many different vendors using languages
such as C, C++, and Java [12] as see the example of the class Professor applied in Java14.

public class Professor {

public String FirstName;
public String LastName;
private float Salary;
private int JobGrade;

public Professor() {
FirstName ="";
LastName ="";
Salary = 0.0f;
JobGrade = 0; }
public Professor (String First, String Last) {
FirstName = First;
LastName = Last;
Salary = 0.0f;
JobGrade = 0;}
public Professor (String First, String Last, float salary, int grade) {
FirstName = First;
LastName = Last;
Salary = salary;
JobGrade = grade;}
public void SetSalary(float Dollars) {
Salary = Dollars;}

14 http://livedocs.adobe.com/coldfusion/6.1/htmldocs/java30.htm

 54

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

public float GetSalary() {
return Salary;}

4. Modeling Comparison Issue

This following section shows the comparison between Semantic Web languages and object-
oriented languages. In general the domain models of both ontology language and object-
oriented language consists of classes, properties and instances (individuals). Classes can be
arranged in a subclass hierarchy with inheritance. Properties can take objects or primitive
values (literals) as values.

Table 1. A Comparison of Ontology language and Object-Oriented Languages (UML)
[15]

 Object-Oriented Languages Ontologies Language

(specific XML, OWL, and RDF)
Classes are regarded as types for
instances.

Classes are regarded as sets of
individuals.

Classes
and

Instances Each instance has one class as its
type. Classes cannot share
instances.

Each individual can belong to multiple
classes.

Properties are defined locally to a
class (and its subclasses through
inheritance).

Properties are stand-alone entities that
can exist without specific classes.

Instances can have values only for
the attached properties. Values must
be correctly typed. Range
constraints are used for type
checking.

Instances can have arbitrary values for
any property. Range and domain
constraints can be used for type
checking and type inference.

Classes encode much of their
meaning and behavior through
imperative functions and methods.

Classes make their meaning explicit in
terms of OWL statements. No
imperative code can be attached.

Classes can encapsulate their
members to private access.

All parts of an OWL/RDF file are
public and can be linked to from
anywhere else.

Propertie
s,

Attributes
and

Values

Closed world: If there is not enough
information to prove a statement
true, then it is assumed to be false.

Open world: If there is not enough
information to prove a statement true,
then it may be true or false.

Some generic APIs are shared
among applications. Few (if any)
UML diagrams are shared.

RDF and OWL have been designed
from the ground up for the Web.
Domain models can be shared online.

Role in
the Design

Process
Domain models are designed as part Domain models are designed to

 55

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

of software architecture. represent knowledge about a domain,
and for information integration.

UML, Java, C# etc. are mature
technologies supported by many
commercial and open-source tools.

The Semantic Web is an emerging
technology with some open-source tools
and a handful of commercial vendors.

UML models can be serialized in
XMI, which is geared for exchange
among tools but not really Web-
based. Java objects can be serialized
into various XML-based or native
intermediate formats.

RDF and OWL objects have a standard
serialization based on XML

5. Reusability

Once an object has been created and installed on a file system, implementing inheritance
from that object using a new object is not possible. However, within the object, using a
language such as C++, interfaces can be inherited from or overridden. Using any object-
oriented language that supports inheritance, this kind of functionality is possible when building
the object. To increase sharing and minimize duplicate efforts, the ontology libraries have been
established [2]. Now there are many ontologies are produced and contained in the ontologies
library for simply inquiry. As we you can see the example of semantic search engine in
previous section that we can simple type your keyword of ontologies to those search engine, we
will find the proper ontologies that be needed in very short period of time [17].

6. Conclusion

Ontology describes the types of things that exist, and rules that govern them; a data model
defines records about things, and is the basis for a database design. Not all the information in
ontology may be needed (or can even be held) in a data model and there are a number of
choices that need to be made. For example, some of the ontology may be held as reference data
instead of as entity types [6].

Ontologies are promised to bright future. In this paper we propose that as ontologies are
closely related to modern object-oriented software engineering, it is natural to adapt existing
object-oriented software development methodologies for the task of ontology development.
This is some part of similarity between descriptive ontologies and database schemas,
conceptual data models in object oriented are good applicant for ontology modeling, however;
the difference between constructs in object models and in current ontology proposals which are
object structure, object identity, generalization hierarchy, defined constructs, views, and
derivations. We can view ontology design as an extension of logical database design, which
mean that the training object data software developers could be a promising approach.
Ontology is the comparable of database schema but ontology represent a much richer
information model than normal database schema, and also a richer information model compared
to UML class/object model. Object modeling focus on identity and behavior is completely
different from the relational model’s focus on information.

It is likely to adjust existing object oriented software development methodologies for the
ontology development. The object model of a system consists of objects, identified from the
text description and structural linkages between them corresponding to existing or established
relationships. The ontologies provide metadata schemas, offering a controlled vocabulary of
concepts. At the center of both object models and ontologies are objects within a given problem

 56

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

domain. The difference is that while the object model should contain explicitly shown structural
dependencies between objects in a system, including their properties, relationships, events and
processes, the ontologies are based on related terms only. On the other hand, the object model
refers to the collections of concepts used to describe the generic characteristics of objects in
object oriented languages. Because ontology is accepted as a formal, explicit specification of a
shared conceptualization, Ontologies can be naturally linked with object models, which
represent a system-oriented map of related objects easily.

An ontology structure holds definitions of concepts, binary relationship between concepts
and attributes. Relationships may be symmetric, transitive and have an inverse. Minimum and
maximum cardinality constraints for relations and attributes may be specifies. Concepts and
relationships can be arranged in two distinct generalization hierarchies [14]. Concepts,
relationship types and attribute abstract from concrete objects or value and thus describe the
schema (the ontology) on the other hand concrete objects populate the concepts, concrete
values instantiate the attributes of these objects and concrete relationship instantiate
relationships. Three types of relationship that may be used between classes: generalization,
association, aggregation.

6. Acknowledgements
The author would like to thanks University of the Thai Chamber of Commerce (UTCC),
Bangkok, Thailand for supporting the research funding.

7. References
[1] ChiMu Corporation “Object Modeling Foundations of O-R Mapping”, to appear, [Online] available:

http://www.chimu.com/publications/objectRelational/part0003.html

[2] W. V. Siricharoen, “Ontologies and Object models in Object Oriented Software Engineering”, In Proceeding
Conference: The International MultiConfernce of Engineers and Computer Scientists 2006 (IMECS 2006),
Hong Kong, March 2006, pp 856 – 861.

[3] Z. Hu, “Using Ontology to Bind Web Services to the Data Model of Automation Systems”, In Journal Lecture
Notes in Computer Science 0302-9743 (Print) 1611-3349 (Online) Springer Berlin / Heidelberg Volume
2593/2003, pp 154-168.

 [4] W. V. Siricharoen, “Ontologies and Software Engineering ", In Proceeding International Conference on
Computational Science (ICCS 2007) Lecture Notes of Computer Science, May 27-30, 2006, Beijing, China,
Volume 44881105, pp. 1151-1162.

[5] S. Cranefield, M. Purvis, “UML as an Ontology Modeling Language”, In Proceeding of the IJCAI-99 Workshop
on Intelligent Information Integration, Department of Information Science, University of Otago, New Zealand,
1999.

[6] M. West, “Ontology Forum Database and Ontology mini-series Session-2”, 2006, [Online] available: From-
Ontology-to-DataModel-- MatthewWest_20061116.ppt

[7] H. Knublauch, “Three Patterns for the Implementation of Ontologies in Java”, Submitted to OOPSLA'99
Metadata and Active Object-Model Pattern Mining Workshop, Research Institute for Applied Knowledge
Processing (FAW), Germany, 1999, [Online] available: http://www.knublauch.com/publications/OOPSLA99-
Metadata.html

 57

http://www.chimu.com/publications/objectRelational/index.html
http://www.chimu.com/publications/objectRelational/part0003.html

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

[8] S. Strom, “Building a Large-Scale Generic Object Model: Applying the CYC Upper Ontology to Object

Database Development in Java”, to appear, [Online] available: www.techtrader.com.

[9] N. F. Noy, and D. L. McGuinness, “Ontology Development 101: A Guide to Creating Your First Ontology.
Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880”, March 2001. [Online] available:
http://mia.ece.uic.edu/~papers/MediaBot/ontology101.pdf

[10] D. E. Jenz, “It is High Time for Pursuing the Ontology-Centric Approach”, 2003, [Online] available:
http://www.bpiresearch.com/Resources/RE_SWPr/A_OntologyCentricApproach.pdf

[11] R. Volz, D. Oberle, and R. Studer, “Views for light-weight web ontologies”, In Proceeding of SAC 2003,
Melbourne, Florida, USA. 1999,

[12] B. Morgan, “Java and the Component Object Model”, to appear, [Online] available:
http://docs.rinet.ru/ZhPP/ch16.htm#TypeLibrariesandObjectDescriptionLanguage

[13] P. Mohan, and C. Brooks, “Learning Objects on the Semantic Web”, to appear, [Online] available:
http://www.cs.usask.ca/~cab938/icalt2003_mohan_brooks.pdf

[14] N. Cullot, and al. et., “Ontologies : A contribution to the DL/DB debate”, to appear, [Online] available:
http://lbdwww.epfl.ch/e/publications_new/articles.pdf/Cullot_SW_DB2003_CR.pdf

[15] H. Knublauch, and et al., “A Semantic Web Primer for Object-Oriented Software Developers”, W3C Working
Group Note, March 9, 2006, [Online] available: http://www.w3.org/TR/2006/NOTE-sw-oosd-primer-
20060309/

[16] Y. Ding, and D. Fensel, “Ontology Library Systems: The key to successful Ontology Re-use”, In Proceedings of
the International Semantic Web Working Symposium 2001: SWWS2001. pp. 93-112, 2001, [Online] available:
http://www.semanticweb.org/SWWS/program/full/paper58.pdf

[17] W. V. Siricharoen, “Ontologies and Object models in Object Oriented Software Engineering” In International
Association of Engineers (IAENG) Journal of Computer Science (JICS) Volume 33(1), pp. 1151-1162, 2006,
[Online] available: http://www.iaeng.org/IJCS/issues_v33/issue_1/IJCS_33_1_4.pdf

[18] C. Atkinson, B. Henderson-Sellers and T. Kühne, “To Meta or Not to Meta—That Is the Question”, 2001
[Online] available: http://www.adtmag.com/joop/article.aspx?id=207

[19] A Glossary of Ontology Terminology, to appear. [Online] available: http://www-ksl-
svc.stanford.edu:5915/doc/frame-editor/glossary-of-terms.html

[20] Davies, J., Studer, R., and Warren, P., Semantic Web Technologies Trends and research in ontology-based
systems, John Wiley & Sons Inc., West Sussex, England, 2006.

[21] P. Buitelaar, T. Eigner, T. Declerck, “OntoSelect: A Dynamic Ontology Library with Support for Ontology
Selection”, In Proceeding of the3rd International Semantic Web Conference (ISWC 2004), Hiroshima, Japan,
November 2004, [Online] available: http://www.dfki.de/~paulb/iswc04.demo.OntoSelect.pdf

 58

http://www.techtrader.com/
http://www.w3.org/TR/2006/NOTE-sw-oosd-primer-20060309/
http://www.w3.org/TR/2006/NOTE-sw-oosd-primer-20060309/

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

Author

 Dr. Waralak V. Siricharoen

Waralak Vongdoiwang Siricharoen is lecturer and researcher of
Computer Science Department, School of Science, University of the
Thai Chamber of Commerce (UTCC), Bangkok, Thailand. She
received her master degree in Business Administration with
Computer Information Systems Certificate in 1999 from University
of Southern New Hampshire (New Hampshire College), NH, USA.
And she received her Doctoral Degree of Technical Science in 2005
from Asian Institute of Technology (AIT), Thailand. Her previous
works focus on creating the object models from ontologies. Her
works have been reported in peer-reviewed papers published in
international journals, conference proceedings, and books. Her
research area specialists are ontologies, database technology,
software engineering, object oriented, human computer interaction,
etc.
Website: http://waralak.mypage.utcc.ac.th

 59

International Journal of Software Engineering and Its Applications

Vol. 3, No. 1, January, 2009

 60

	6. Acknowledgements

