The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

GENERALIZATION SOME FUZZY SEPARATION AXIOMS TO DITOPOLOGICAL TEXTURE SPACES

RIZA ERTÜRK^{1*}, ŞENOL DOST² AND SELMA ÖZÇAĞ³

Communicated by S. Jafari

ABSTRACT. The authors characterize the notion of quasi coincident in texture spaces and study the generalization of fuzzy quasi separation axioms defined by [12] to the ditopological texture spaces.

1. INTRODUCTION

Ditopological Texture Spaces: The notion of texture space was firstly introduced by L.M. Brown in [1, 2] under the name of fuzzy structure, and then it was called as texture space by L. M. Brown and R. Ertürk in [5, 6]. Ditopological texture spaces were introduced by L. M. Brown as a natural extension of the work of first author on the representation of lattice-valued topologies by bitopologies in [4]. It is well known that the concept of ditopology is more general than general topology, fuzzy topology and bitopology. So, it will be more advantage to generalize some various general (fuzzy, bi)-topological concepts to the ditopological texture spaces. An adequate introduction to the theory of texture spaces and ditopological texture spaces, and the motivation for its study may be obtained from [7, 8, 9, 10, 11, 16].

Let S be a set, a *texturing* S of S is a subset of $\mathcal{P}(S)$ which is a point-separating, complete, completely distributive lattice containing S and \emptyset , and for which meet coincides with intersection and finite joins with union. The pair (S, S) is then called a *texture*, or a *texture space*.

* Corresponding author.

Date: Received: 20/06/09; Revised: 26/07/09.

²⁰⁰⁰ Mathematics Subject Classification. 54A40, 54A10.

Key words and phrases. Quasi coincident, Quasi separation axiom, Ditopology.

In a texture, arbitrary joins need not be coincide with unions, and clearly this will be so if and only if S is closed under arbitrary unions. In this case (S, S) is said to be *plain texture*. It is known that, in a plain texture the cases of

- (1) $s \notin Q_s$ for all $s \in S$,
- (2) $P_s \not\subseteq Q_s$ for all $s \in S$,
- (3) $A = \bigvee_i A_i = \bigcup A_i$ for all $A_i \in S, i \in I$

are equivalent.

A texture space is called *coseparated* if $Q_s \subseteq Q_t \implies P_s \subseteq P_t$ for all $s, t \in S$ In general, a texturing of S need not be closed under set complementation, it will be that if there exists a mapping $\sigma: S \to S$ satisfying $A = \sigma(\sigma(A))$ for all $A \in S$, and $A \subseteq B \implies \sigma(B) \subseteq \sigma(A)$ for all $A, B \in S$. In this case σ is called a complementation on (S, S), and (S, S, σ) is said to be a complemented texture.

We will call a complementation σ on (S, S) grounded [16] if there is an involution $s \to s'$ on S so that $\sigma(P_s) = Q_{s'}$ and $\sigma(Q_s) = P_{s'}$ where $s' = \sigma(s')$ for all $s \in S$, and in this case the complemented texture space $(S, \mathfrak{S}, \sigma)$ is called *complemented grounded texture space.* It is noted that a complemented plain texture is grounded [17].

For a texture (S, \mathfrak{S}) , most properties are conveniently defined in terms of the *p*-sets

$$P_s = \bigcap \{A \in \mathcal{S} \mid s \in A\}$$

and the *q*-sets,

$$Q_s = \bigvee \{ A \in \mathcal{S} \mid s \notin A \}.$$

Theorem 1.1. [7] In any texture space (S, S), we have the following statements:

- (1) $s \notin A \Longrightarrow A \subseteq Q_s \Longrightarrow s \notin A^{\flat}$ for all $s \in S, A \in S$.
- (2) $A^{\flat} = \{s \in S \mid A \not\subseteq Q_s\}$ for all $A \in S$. (3) $(\bigvee_{i \in I} A_i)^{\flat} = \bigcup_{i \in I} A_i^{\flat}$ for all $s \in S, A \in S$.
- (4) A is the smallest element of S containing A^{\flat}
- (5) For $A, B \in S$, if $A \not\subseteq B$ then there exists $s \in S$ with $A \not\subseteq Q_s$ and $P_s \not\subseteq B$
- (6) $A = \bigcap \{Q_s \mid P_s \not\subseteq A\}$ for all $A \in S$.
- (7) $A = \bigvee \{P_s \mid A \not\subseteq Q_s\}$ for all $A \in S$.

The followings are some basic examples of textures.

Examples 1.2. (1) If X is a set and $\mathcal{P}(X)$ the powerset of X, then $(X, \mathcal{P}(X))$ is the discrete texture on X. For $x \in X$, $P_x = \{x\}$ and $Q_x = X \setminus \{x\}$.

(2) Setting $\mathbb{I} = [0, 1], \mathcal{I} = \{[0, r), [0, r] \mid r \in \mathbb{I}\}$ gives the unit interval texture $(\mathbb{I}, \mathcal{I})$. For $r \in \mathbb{I}$, $P_r = [0, r]$ and $Q_r = [0, r)$.

(3) The texture (L, \mathcal{L}) is defined by $L = (0, 1], \mathcal{L} = \{(0, r) \mid r \in \mathbb{I}\}$. For $r \in L$, $P_r = (0, r] = Q_r.$

Since a texturing S need not be closed under the operation of taking the set complement, the notion of topology is replaced by that of *dichotomous topology* or ditopology, namely a pair (τ, κ) of subsets of S, where the set of open sets τ satisfies

235

- (1) $S, \emptyset \in \tau$,
- (2) $G_1, G_2 \in \tau \implies G_1 \cap G_2 \in \tau$ and
- (3) $G_i \in \tau, i \in I \implies \bigvee_i G_i \in \tau,$

and the set of *closed sets* κ satisfies

- (1) $S, \emptyset \in \kappa$,
- (2) $K_1, K_2 \in \kappa \implies K_1 \cup K_2 \in \kappa$ and
- (3) $K_i \in \kappa, i \in I \implies \bigcap K_i \in \kappa.$

Hence a ditopology is essentially a "topology" for which there is no *a priori* relation between the open and closed sets. For $A \in S$ we define the *closure* [A] and the *interior* |A| of A under (τ, κ) by the equalities

$$[A] = \bigcap \{ K \in \kappa \mid A \subseteq K \} \text{ and }]A[= \bigvee \{ G \in \tau \mid G \subseteq A \}.$$

On the other hand if the texture space (S, \mathbb{S}) is complemented, then we say that (τ, κ) is a complemented ditopology on (S, \mathbb{S}, σ) if τ and κ are related by $\kappa = \sigma[\tau]$. In this case we have $\sigma([A]) =]\sigma(A)[$ and $\sigma(]A[) = [\sigma(A)].$

It is well known that; in classic theory, $A \cap B = \emptyset \iff A \subseteq X \setminus B$ for

 $A, B \subseteq X$, and in fuzzy set theory, $A \cap B = \emptyset \implies A \subseteq X \setminus B$ for $A, B \subseteq X$.

So it could be defined an alternative binary implication in fuzzy set theory such as: Let I^X be the family of fuzzy sets and $A, B \in I^X$, then we say that;

Definition 1.3. [15] (1) A is quasi-coincident with B (denoted by AqB) \iff there exists an $x \in X$ such that A(x) + B(x) > 1,

(2) A is not quasi-coincident with B (denoted by $A \notin B$) $\iff A(x) + B(x) \le 1$ for all $x \in X$.

2. Q-SEPARATION AXIOMS

In [9], L. M. Brown, R. Ertürk and Ş. Dost have generalized the fuzzy separation axioms in the sense of B. Hutton and I. Reilly [14] to the ditopological texture spaces and they have obtained important results in separation axioms theory. But in applications, it was seen that T_0 axiom which is the one of generalized separation axioms is not so useful and it was given that many equivalent conditions that T_0 axiom. Some of them are followings:

Theorem 2.1. [9] Let (S, S, τ, κ) be a ditopological texture space, then the following statements are characteristic properties of T_0 axiom in a ditopological texture space:

(1) $P_s \not\subseteq P_t \implies \exists C_j \in \tau \cup \kappa; j \in J \text{ with } P_t \subseteq \bigvee_{j \in J} C_j \subseteq Q_s, \text{ for all } s, t \in S$

(2)
$$Q_s \not\subseteq Q_t \implies \exists C_j \in \tau \cup \kappa; j \in J \text{ with } P_t \subseteq \bigcap_{j \in J} C_j \subseteq Q_s, \text{ for all } s, t \in S$$

(3) For
$$A \in S$$
 there exists $C_j \in \tau \cup \kappa, j \in J, i \in I_j$ with $A = \bigvee_{j \in J_i \in I_j} C_i^j$

- (4) $Q_s \not\subseteq Q_t \implies \exists C \in \tau \cup \kappa \text{ with } P_s \not\subseteq C \not\subseteq Q_t$
- (5) $[P_s] \subseteq [P_t]$ and $]Q_s[\subseteq]Q_t[$ implies $Q_s \subseteq Q_t$

236

- (6) For all $s \in S$ we have $Q_s = \bigvee_{j \in J} C_j$ for $C_j \in \tau \cup \kappa$
- (7) If (S, S) is coseparated, then the following condition also characterizes the T_0 property: For all $s \in S$ we have $P_s = \bigcap_{j \in J} C_j$ for $C_j \in \tau \cup \kappa$.

In this study, the new generalization separation axioms will be defined. These generalization axioms obtained that the fuzzy quasi separation axioms, in the sense of M. H. Ghanim, O. A. Tantawy [12]. In applications, the new generalized T_0 is more useful than generalized T_0 axiom in the sense of [9]. To do this we will give some basic results obtained by authors in a complemented grounded ditopological texture space.

Definition 2.2. Let $(S, \mathfrak{S}, \sigma)$ be a complemented grounded texture space. Then we have the following statements:

- (1) $AqB \iff A \not\subseteq \sigma(B) \iff \exists s \in S \text{ with } A \not\subseteq Q_s \text{ and } P_s \not\subseteq \sigma(B) \text{ by Theorem 1.1(5)},$
- (2) $Aq\sigma(B) \iff A \not\subseteq B$,
- (3) $A \subseteq B \iff A \not q \sigma(B)$.

As a result of the above definition we obtain the followings:

- (1) AqB and if $A \subseteq C, B \subseteq D$ then CqD,
- (2) $A \not \in B$ and if $C \subseteq A, D \subseteq B$ then $C \not \in D$.
- (3) If $U, V \in \tau$ and if $UqV \Longrightarrow [U]qV$ and so $\Longrightarrow [U]q[V]$.

Now we want to give new definitions of quasi (Q-) separation axioms in a complemented grounded ditopological texture space $(S, \mathfrak{S}, \tau, \kappa, \sigma)$ which are generalized fuzzy quasi separation axioms in the sense of [12].

Definition 2.3. The ditopological space (τ, κ) is called

- (1) $Quasi-T_0$ (QT_0) space if for each $P_s \not\subseteq P_t$ $(s, t \in S)$ there exists a $U \in \tau$ such that $P_s qU$, $U \subseteq Q_{\sigma(t)}$ or there exists a $K \in \kappa$ such that $P_t \not AK$, $P_s \not\subseteq \sigma(K)$.
- (2) Strong quasi- T_0 (SQT₀) space if P_s is a closed set for all $s \in S$.
- (3) Quasi- T_1 (QT₁) space if for each $P_s \not\subseteq P_t$ ($s, t \in S$) there exist $U \in \tau, K \in \kappa$ such that $P_s q U, U \subseteq Q_{\sigma(t)}$ and $P_t \not \in K, P_s \not\subseteq \sigma(K)$.
- (4) Quasi- T_2 (QT₂) space if for each $P_s \not\subseteq P_t$ ($s, t \in S$) there exist $U \in \tau, K \in \kappa$ such that $P_s qU, U \subseteq Q_{\sigma(t)}$ and $P_t \not\in K, P_s \not\subseteq \sigma(K)$ and $U \subseteq K$.
- (5) $Quasi-T_{2(1/2)}$ $(QT_{2(1/2)})space$ if for each $P_s \not\subseteq P_t$ $(s, t \in S)$ there exist $U \in \tau, K \in \kappa$ such that $P_sqU, U \subseteq Q_{\sigma(t)}, P_t \not qK, P_s \not\subseteq \sigma(K)$ and $[U] \subseteq \sigma([\sigma(K)]).$
- (6) Quasi-regular (Q-regular) if $\forall s \in S \ F \in \kappa$ with $P_s q \sigma(F)$, there exist $U \in \tau, K \in \kappa$ such that $P_s q U, F \not \in K$ and $[\sigma(K)] \subseteq \sigma([U])$.

A Q-regular space which is strong QT_0 is called *quasi-T*₃ (QT_3) space.

(7) Quasi-normal(Q-normal) space if $\forall F_1, F_2 \in \kappa$ with $F_1q\sigma(F_2)$ there exits $U \in \tau, K \in \kappa$ such that $F_1qU, F_2 \not \in K$ and $[\sigma(K)] \subseteq \sigma([U])$.

A Q-normal space which is strong QT_0 is called quasi- T_4 (QT_4) space.

Now, we will give some implications between these separation axioms as follows:

Corollary 2.4. Let $(S, \mathfrak{S}, \tau, \kappa, \sigma)$ be a complemented grounded texture space, then

(1)
$$QT_{2(1/2)} \Longrightarrow QT_2 \Longrightarrow QT_1 \Longrightarrow SQT_0 \Longrightarrow QT_0$$

(2) $QT_4 \Longrightarrow QT_3 \Longrightarrow QT_{2(1/2)}$

Proof. The first and the second implications of (1) are clear.

To show that the third implications of (1), $(QT_1 \implies SQT_0)$, we must show $P_s = [P_s]$ for all $s \in S$. To do this, assume that there exists an $s \in S$ such that $[P_s] \not\subseteq P_s$. Then there exists $t \in S$ such that $[P_s] \not\subseteq Q_t$ and $P_t \not\subseteq P_s$. Since (τ, κ) is (QT_1) , we have $U \in \tau, K \in \kappa$ such that $P_tqU, U \subseteq Q_{\sigma(s)}$ and $P_s \not\in K, P_t \not\subseteq \sigma(K)$. Hence $(U \subseteq Q_{\sigma(s)} \implies P_s \subseteq \sigma(U) = F \in \kappa, [P_s] \subseteq F)$ and since $[P_s] \not\subseteq Q_t$, we have $F \not\subseteq Q_t$ that is $P_t \subseteq F$. On the other hand since $P_tqU \implies P_t \not\subseteq \sigma(U) = F$. These two case give a contradiction. That is $[P_s] \subseteq P_s$ and so $[P_s] = P_s$.

To show that the last implication of (1), $(SQT_0 \implies QT_0)$, take $s, t \in S$ with $P_s \not\subseteq P_t$. Then there exists $r \in S$ with $P_s \not\subseteq Q_r$ and $P_r \not\subseteq P_t$. Since (τ, κ) is (SQT_0) , we have $P_t \in \kappa$ for all $t \in S$; that is $P_r \not\subseteq P_t = \bigcap \{K \in \kappa \mid P_t \subseteq K\}$. Hence there exists $K \in \kappa$ such that $P_r \not\subseteq K$ and $P_t \subseteq K$; that is $(\exists K \in \kappa; P_s \not\subseteq K$ and $P_t \subseteq K \implies \sigma(K) \subseteq \sigma(P_t) = Q_{\sigma(t)}$ and $\sigma(K) \not\subseteq \sigma(P_s) = Q_{\sigma(s)})$. Now if we take $U = \sigma(K) \in \tau$, then we obtain that $U \subseteq Q_{\sigma(t)}$ and $P_s \not\subseteq K \iff P_s q\sigma(K)$. So we have $P_s qU$ and $U \subseteq Q_{\sigma(t)}$, that is $(S, S, \tau, \kappa, \sigma)$ is a QT_0 space.

Now we will show the implications in (2). Firstly to show that the second implication of (2), $QT_3 \implies QT_{2(1/2)}$, take $s, t \in S$ with $P_s \not\subseteq P_t = \sigma(Q_{\sigma(t)})$, that is $P_s q Q_{\sigma(t)} = \sigma(P_t)$. By SQT_0 of ditopological space (τ, κ) , it is known that $F = P_t \in \kappa$ and so we have $P_s q \sigma(F)$. Now since (τ, κ) is quasi-regular, there exist $U \in \tau, K \in \kappa$ such that $P_s qU$, $F = P_t \not A K$ and $[\sigma(K)] \subseteq \sigma([U])$. Then we have $[U] \subseteq \sigma([\sigma(K)])$. On the other hand since $[\sigma(K)] \subseteq \sigma([U])$, we have $P_s qU \implies P_s \not\subseteq \sigma(U) \implies P_s \not\subseteq \sigma([U]) \implies P_s \not\subseteq \sigma(K)$ and $P_t \not A K \implies$ $P_t \subseteq \sigma(K) \subseteq [\sigma(K)] \subseteq \sigma([U]) \implies P_t \subseteq \sigma([U]) \implies U \subseteq \sigma(P_t) = Q_{\sigma(t)}$ That is $(S, S, \tau, \kappa, \sigma)$ is a $QT_{2(1/2)}$ space.

The first implication of (2), $QT_4 \implies QT_3$ is clear.

Corollary 2.5. If $(S, \mathfrak{S}, \tau, \kappa, \sigma)$ is QT_0 then it is T_0 in the sense of L. M. Brown, R. Ertürk and Ş. Dost [9].

Proof. To show that this implication, we will use the "Theorem 2.1.(1). Let $s, t \in S$ be with $P_s \not\subseteq P_t$. Then there exists $U \in \tau$ such that $P_s qU, U \subseteq Q_{\sigma(t)}$ or there exists a $K \in \kappa$ such that $P_t \not A K$ and $P_s \not\subseteq \sigma(K)$ by QT_0 of (τ, κ) . So we have $P_s \not\subseteq \sigma(U)$ and $P_t \subseteq \sigma(U)$. If it taken $\sigma(U) = F \in \kappa$, we obtain that $P_s \not\subseteq F$ and $P_t \subseteq F \implies P_t \subseteq F \subseteq Q_s$. That is $(S, S, \tau, \kappa, \sigma)$ is T_0 .

If $K \in \kappa$, such that $P_t \not \in K$ and $P_s \not \subseteq \sigma(K) \implies P_t \subseteq \sigma(K)$ and $\sigma(K) \subseteq Q_s$. If it taken $U = \sigma(K) \in \tau$, the we have $P_t \subseteq U \subseteq Q_s$. Hence $(S, \mathfrak{S}, \tau, \kappa, \sigma)$ is QT_0 .

The following example shows that the converse implication of above corollary is not true in generally. **Example 2.6.** Let $S = \{a, b\}$, $S = \mathcal{P}(S)$, $\tau = \{\emptyset, \{a\}, S\}$, $\kappa = \{\emptyset, \{b\}, S\}$. Then (S, S, σ) is a grounded complemented texture space since it is plain and each plain texture is grounded. Hence $(S, S, \tau, \kappa, \sigma)$ is a complemented ditopological texture space for the complemented $\sigma(\{a\}) = \{b\}$, $\sigma(\{b\}) = \{a\}$. This ditoplogical texture space $(S, S, \tau, \kappa, \sigma)$ is T_0 in the sense of L. M. Brown, R. Ertürk, Ş. Dost but it is not QT_0 .

Examples 2.7. (1) For $\mathbb{I} = [0,1]$ define $\mathcal{I} = \{[0,t] \mid t \in [0,1]\} \cup \{[0,t) \mid t \in [0,1]\}$, $\sigma([0,t]) = [0,1-t)$ and $\sigma([0,t)) = [0,1-t]$, $t \in [0,1]$ and $\tau = \{[0,t) \mid t \in [0,1]\} \cup \{\mathbb{I}\}, \kappa = \{[0,t] \mid t \in [0,1]\} \cup \{\emptyset\}$. Then $(\mathbb{I}, \mathcal{I}, \tau, \kappa, \sigma)$ is a grounded texture, which we will refer to as the *unit interval texture*. This time (I,\mathcal{I}) is a plain texture. Then the ditopological texture space $(\mathbb{I}, \mathcal{I}, \tau, \kappa, \sigma)$ is a QT_0 and T_0 space.

Definition 2.8. [5],[8] Let $(S_i, \mathfrak{S}_i, \sigma_i)$ be textures $i \in I$, set $S = \prod_{i \in I} S_i$ and $A \subseteq \mathfrak{S}_k$ for some $k \in I$. We write

$$E(k, A) = \prod_{i \in I} Y_i \text{ where } Y_i = \begin{cases} A, \text{ if } i = k \\ S_i, \text{ otherwise.} \end{cases}$$

Then the product texturing $S = \bigotimes_{i \in I} S_i$ on S consists of arbitrary intersections of elements of the set

$$\mathcal{E} = \bigg\{ \bigcup_{j \in J} E(j, A_j) \mid J \subseteq I, A_j \in \mathfrak{S}_j \text{ for } j \in J \bigg\}.$$

and $\sigma: \mathfrak{S} \longrightarrow \mathfrak{S}, \ \sigma(A) = \bigcap_{s \in A} \bigcup_{i \in I} E(i, \sigma_i(P_{s_i}))$ is a complementation on \mathfrak{S} .

We have noted that by [8]; If $(S, \mathfrak{S}, \sigma)$ is a complemented product texture of $(S_i, \mathfrak{S}_i, \sigma_i)$, then for $i \in I$ and $A_i \in \mathfrak{S}_i$, $s = (s_i)$ it can be obtained the following equalities:

(a)
$$P_s = \bigcap_{i \in I} E(i, P_{s_i}) = \prod_{i \in I} P_{s_i}, \quad (b) Q_s = \bigcup_{i \in I} E(i, Q_{s_i}),$$

(c) $\sigma(E(i, A_i)) = E(i, \sigma_i(A_i)), \quad (d) \sigma(P_s) = \bigcup_{i \in I} E(i, \sigma_i(P_{s_i}))$

Corollary 2.9. $(S_i, \mathfrak{S}_i, \sigma_i)$ are complemented grounded textures for each $i \in I$ iff the product texture $(S, \mathfrak{S}, \sigma)$ of $(S_i, \mathfrak{S}_i, \sigma_i)$ is complemented grounded.

Definition 2.10. [5],[8] Let (S_i, S_i) $i \in I$ be textures with $S_i \cap S_j = \emptyset$ for $i \neq j$. Let $S = \bigcup_{i \in I} S_i$ and $S = \{A \mid A \subseteq S, A \cap S_i \in S_i, \forall i \in I\}$. Then (S, S) is a texture which is called sum of disjoint textures (S_i, S_i) $i \in I$ and if (S_i, S_i, σ_i) are the complemented textures for all $i \in I$ then the complementation

$$\sigma: \mathfrak{S} \longrightarrow \mathfrak{S}, \sigma(A) \cap S_i = \sigma_i(A \cap S_i), i \in I$$

makes $(S, \mathfrak{S}, \sigma)$ is a complemented texture.

We have noted that by [8]; If $(S, \mathfrak{S}, \sigma)$ is a complemented sum texture of $(S_i, \mathfrak{S}_i, \sigma_i)$, then for $j \in I$ it can be obtained the following equalities:

$$(a)P_{s} = P_{s_{j}} \times \{j\}, \quad (b)Q_{s} = (Q_{s_{j}} \times \{j\}) \cup (\bigcup_{k \in I \setminus \{j\}} S_{k} \times \{k\})$$

Corollary 2.11. $(S_i, \mathfrak{S}_i, \sigma_i)$ $i \in I$ is complemented grounded texture for each $i \in I$ iff the sum texture $(S, \mathfrak{S}, \sigma)$ of $(S_i, \mathfrak{S}_i, \sigma_i)$ is complemented grounded.

Theorem 2.12. Let $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$, $j \in J$, be non-empty complemented ditopological grounded texture spaces and $(S, S, \sigma, \tau, \kappa)$ their product. Then $(S, S, \sigma, \tau, \kappa)$ is QT_0 if and only if $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$ is QT_0 for all $j \in J$.

Proof. (\Leftarrow) Suppose that $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$ is QT_0 for all $j \in J$ an take $s = (s_j), t = (t_j) \in S$ with $P_s \notin P_t$. Since $P_s \notin P_t = \bigcap_{j \in J} E(j, P_{t_j})$, there exists $j \in J$ with $P_s \notin E(j, P_{t_j})$ and so we have $E(j, P_{s_j}) \notin E(j, P_{t_j})$, and hence it will be $P_{s_j} \notin P_{t_j}$. By the QT_0 of $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$, there exists $U_j \in \tau_j$ such that $P_{s_j}qU_j$ and $U_j \subseteq Q_{\sigma_j(t_j)}$ or there exists $F_j \in \kappa_j$ such that $P_{t_j} \not dF_j$ and $P_{s_j} \notin \sigma_j(F_j)$. Now if we choose $U = E(j, U_j)$, then $U \in \tau$. Since $P_{s_j} \notin \sigma_j(U_j)$, it can be obtained $P_s \notin \sigma(U) = E(j, \sigma_j(U_j))$ and this gives P_sqU . On the other hand since $U_j \subseteq Q_{\sigma_j(t_j)}$, we have $E(j, U_j) \subseteq \bigcup_{j \in J} E(j, Q_{\sigma_j(t_j)})$, and that is $U \subseteq Q_{\sigma(t)}$.

For the other case of "or", if we choose $F = E(j, F_j) \in \kappa$, it can be obtained the required properties similarly above case. So $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ is QT_0 .

 (\Longrightarrow) Let the complemented grounded product ditopological texture space $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ be QT_0 . Take any $j \in J$ and $s_j, t_j \in S_j$ with $P_{s_j} \not\subseteq P_{t_j}$. For $k \in J \setminus \{j\}$, choose $u_k \in S_k^{\flat}$, which is possible since $S_k \neq \emptyset$. Now let $s = (s_i), t = (t_i) \in S$ defined by

$$s_i = \begin{cases} s_j, \text{ if } i = j \\ u_i, \text{ if } i \neq j \end{cases} \quad t_i = \begin{cases} t_j, \text{ if } i = j \\ u_i, \text{ if } i \neq j \end{cases}$$

It is verify that $P_s \not\subseteq P_t$, since $P_{s_j} \not\subseteq P_{t_j}$. By the QT_0 of $(S, S, \sigma, \tau, \kappa)$, there exists $B \in \tau$ such that $P_s qB$ and $B \subseteq Q_{\sigma(t)}$ or there exists $F \in \kappa$ such that $P_t \not qF$ and $P_s \not\subseteq \sigma(F)$. Firstly, suppose the case $B \in \tau$ with $P_s qB$ and $B \subseteq Q_{\sigma(t)}$, that is $\sigma(B) \in \kappa$ and $P_s \not\subseteq \sigma(B)$, $P_t \subseteq \sigma(B)$. By the definition of product cotopology [8], we have $j_1, j_2, \ldots, j_n \in J$ and $\sigma_{j_k}(B_{j_k}) \in \kappa_{k_j}, 1 \leq k \leq n$, so that $\sigma(B) \subseteq \bigcup_{k=1}^n E(j_k, \sigma_{j_k}(B_{j_k}))$ and $P_s \not\subseteq \bigcup_{k=1}^n E(j_k, \sigma_{j_k}(B_{j_k}))$. Thus we have $P_s \not\subseteq E(j_k, \sigma_{j_k}(B_{j_k}))$ for all k. On the other hand, $P_t \subseteq \bigcup_{k=1}^n E(j_k, \sigma_{j_k}(B_{j_k}))$, for some k, and hence it can be obtained $P_{s_j} \not\subseteq \sigma_{j_k}(B_{j_k})$ and $P_{t_j} \subseteq \sigma_{j_k}(B_{j_k})$. By the definition of s and t, $j_k = j$, we have $B_j \in \tau_j$ satisfying $P_{s_j} \not\subseteq \sigma_j(B_j)$ and $B_j \subseteq Q_{\sigma_j(t_j)}$.

The other case of "or", for the closed set case, can be shown similarly above. Thus, the complemented grounded ditopological texture space $(S_j, \mathfrak{S}_j, \sigma_j, \tau_j, \kappa_j)$ is QT_0 for all $j \in J$.

Theorem 2.13. Let $(S_j, \mathfrak{S}_j, \sigma_j, \tau_j, \kappa_j)$, $j \in J$, be non-empty complemented ditopological grounded texture spaces and $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ their sum. Then $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ is QT_0 if and only if $(S_j, \mathfrak{S}_j, \sigma_j, \tau_j, \kappa_j)$ is QT_0 for all $j \in J$.

Proof. (\Leftarrow) Suppose that $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$ is QT_0 for all $j \in J$ and take $s, t \in S$ with $P_s \not\subseteq P_t$. Let $j, k \in J$ be the unique indices satisfying $s \in S_j, t \in S_k$. If $j \neq k$ then $P_{s_j} \not\subseteq P_{t_k}$. Hence $P_{t_k} \not\subseteq S_j$. $S_j \in \tau_j$ has the required properties.

Indeed, $P_s \not\subseteq \sigma(S_j) = \emptyset$ and $S_j \subseteq Q_{t_k} = \sigma(P_t)$. If j = k then $P_{s_k} \not\subseteq P_{t_k}$. By the QT_0 of $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$, there exists $B_k \in \tau_k$ such that $P_{s_k}qB_k$ and $B_k \subseteq Q_{\sigma_k(t_k)}$ or there exists $F_k \in \kappa_k$ such that $P_{t_k} \not \not qF_k$ and $P_{s_k} \not\subseteq \sigma_k(F_k)$. Now, if we choose $B = B_k$, then $B \in \tau$ and $P_s = P_{s_k}qB_k$, $B = B_k \subseteq Q_{\sigma_k(t_k)}$. In the case of $F_k \in \kappa_k$ we have dual proof. So $(S, S, \sigma, \tau, \kappa)$ is QT_0 .

 $(\Longrightarrow) \text{ Let the complemented grounded sum ditopological texture space } (S, S, \sigma, \tau, \kappa) \text{ be } QT_0. \text{ Take any } k \in J \text{ and } s_k, t_k \in S_k \text{ with } P_{s_k} \notin P_{t_k}. \text{ Then for } s = (s_k, k), t = (t_k, k) \in S \text{ we have } P_s \notin P_t. \text{ By the } QT_0 \text{ of } (S, S, \sigma, \tau, \kappa), \text{ there exists } B \in \tau \text{ such that } P_s qB \text{ and } B \subseteq Q_{\sigma(t)} \text{ or there exists } C \in \kappa \text{ such that } P_t \not AC \text{ and } P_s \notin \sigma(C). \text{ Firstly, suppose the case of } B \in \tau \text{ with } P_s qB \text{ and } B \subseteq Q_{\sigma(t)}, \text{ that is } \sigma(B) \in \kappa \text{ and } P_s \notin \sigma(B), P_t \subseteq \sigma(B). \text{ By the definiton of sum ditopological texture space there exists } B_j \in \tau_j, j \in J \text{ such that } \sigma_j(B_j) \in \kappa_j \text{ where, } \sigma(B) \subseteq \sigma_j(B_j) \times \{j\} \cup \bigcup_{j \in J \setminus \{j\}} (S_i \times \{i\}) \text{ and } P_s \notin \sigma_j(B_j) \times \{j\} \cup \bigcup_{j \in J \setminus \{j\}} (S_i \times \{i\}) \text{ and } P_t \times \{k\} \notin \sigma_k(B_k) \times \{k\} \text{ and so we have } P_{s_k} qB_k \text{ and } B_k \times \{k\} \subseteq \sigma_k(B_k) = Q_{\sigma(t)}. \text{ If } j \neq k \text{ then } P_{s_k} \times \{k\} \notin S_j \times \{j\}. \text{ It has the required properties.}$

The other case of "or", for the closed set case, can be shown similarly above. Thus, the complemented grounded ditopological texture spaces $(S_j, \mathfrak{S}_j, \sigma_j, \tau_j, \kappa_j)$ are QT_0 for all $j \in J$.

References

- 1. L. M. Brown, Ditopological fuzzy structures I, Fuzzy Systems a A. I M. 3 (1), 1993.
- 2. L. M. Brown, Ditopological fuzzy structures II, Fuzzy Systems a A. I M. 3 (2), 1993.
- L. M. Brown, Quotients of textures and of ditopological texture spaces, Topology Proceedings 29 (2) (2005), 337–368.
- L. M. Brown and M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy sets and systems 98, (1998), 217–224.
- 5. L. M. Brown and R. Ertürk, Fuzzy Sets as Texture Spaces, I. Representation Theorems, Fuzzy Sets and Systems 110 (2) (2000), 227–236.
- L. M. Brown and R. Ertürk, Fuzzy sets as texture spaces, II. Subtextures and quotient textures, Fuzzy Sets and Systems 110 (2) (2000), 237–245.
- L. M. Brown, R. Ertürk and Ş. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147 (2) (2004), 171–199.
- L. M. Brown, R. Ertürk and Ş. Dost, Ditopological texture spaces and fuzzy topology, II. Topological Considerations, Fuzzy Sets and Systems 147 (2) (2004), 201–231.
- L. M. Brown, R. Ertürk and Ş. Dost, Ditopological texture spaces and fuzzy topology, III. Separation Axioms, Fuzzy Sets and Systems 157 (14) (2006), 1886–1912.
- L. M. Brown and M. Gohar, Compactness in ditopological texture spaces, Hacettepe J. Math. and Stat., V. 38(1) (2009), 21-43.
- 11. M. Demirci, Textures and C-spaces, Fuzzy Sets and Systems 158 (11) (2007), 1237–1245.
- M. H. Ghanim, O. A. Tantawy and Fawzia M. Selim, On lower separation axioms, Fuzzy Sets and Systems 85 (1997), 385–389.
- G. Gierz, K. H. Hofmann, D. Keimel, J. Lawson, M. Mislove and, D. Scott, A compendium of continuous lattices (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
- B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980), 93–104.
- 15. P. Pao Ming and L. Ying Ming, Fuzzy topology I, neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math.Anal. Appl., 76 (1980), 571-599.

241

- 16. S. Özçağ and L. M. Brown, Dicompletion of plain diuniformities, Topology and its Applications, submitted.
- 17. I. Tiryaki and L. M. Brown, Plain textures and fuzzy sets over a poset, preprint.

 1 Department of Mathematics, University of Hacettepe, 06800 Beytepe, Ankara, Turkey.

E-mail address: rerturk@hacettepe.edu.tr

 2 Department of Secondary Science and Mathematics Education, University of Hacettepe , 06800 Beytepe, Ankara, Turkey.

E-mail address: dost@hacettepe.edu.tr

 3 Department of Mathematics, University of Hacettepe, 06800 Beytepe, Ankara, Turkey.

E-mail address: sozcag@hacettepe.edu.tr