Ventilation Induced Surfactant Spreading In Pulmonary Edema **Angana B. Kharge and Carrie E. Perlman**

brought to you by 🗴 CORE

Stevens Innovation Expo

60

Results

1. In vitro- In situ comparison

We flood alveoli with albumin or dextran solution, ventilate the lung with physiologic or excessive ΔA and determine T in edematous alveoli at cycles 0, 20, 40 and 60.

- \succ Surfactant, secreted by alveolar type II cells, reduces surface tension, T, at the alveolar air-liquid interface and prevents the lung from collapsing.
- > From experiments in vitro, plasma proteins in edema liquid are thought to inactivate surfactant activity and increase T^{1-3} . We have developed a novel method for determining T in situ in edematous alveoli of the isolated rat lung.
- \succ Our results indicate that protein inclusion does not alter T. To explain the *in vitro-in situ* difference, *in situ* we replicate the excessive surface area compression (ΔA) that was applied in vitro⁴⁻⁶ while determining T.

Ventilation cycles **Results**: (a) Proteins and excessive ΔA are both required to increase T (b) Regardless of protein content, excessive ΔA decreases T after 40 cycles

0.0

2. Investigate decrease in T with excess ΔA ventilation

2A. <u>Ventilation effects on surfactant release</u>

We ventilate the lung with physiologic or excessive ΔA and image tracked LB's at cycles 0, 20, 40 and 60.

Results: Over 60 ventilation cycles, LTR fluorescence decreases progressively in both physiologic and excessive ΔA groups (n=4;N.S.)

Methods

- I. Isolated rat lung preparation

surface alveoli

include BCECF injected in

Discussion

Our *in-situ* T measurements indicate that both albumin inclusion and excessive ΔA were required for cycling to increase T. In the absence of either albumin or excessive ΔA , T remained constant to cycle 40. Surprisingly, after 40 cycles and regardless of the presence of protein in the edema liquid, T decreased significantly with excess ΔA . We visualized surfactant secretion by labeling surfactant-storing acidic LB's with pH sensitive LTR. A decrease in LTR fluorescence indicates LTR loss due to LB fusion with the plasma membrane, thus surfactant secretion. LTR fluorescence decreased to the same degree in both physiologic and excessive ΔA groups suggesting no correlation between ventilation pattern and surfactant secretion. In contrast, excessive ΔA ventilation was particularly effective at promoting surfactant spreading (>50% compared to 11% with physiologic ΔA) at the alveolar airliquid interface.

Conclusion

Protein inclusion does not increase T in the lung during physiologic ventilation. But regardless of protein content, excessive ΔA ventilation decreases T after 40 cycles by promoting surfactant spreading at the interface. In patients with cardiogenic lung edema (non-proteinaceous edema liquid), transient ventilation with low end expiratory pressure might reduce T and increase compliance.

References	1. Warriner, <i>Biophys J</i> 82:835, 20	002.
	2. Hills, J Appl Physiol 87:1567, 1	999.

3. Zasadzinski, Biochim Biophys Acta 1798:801, 2010. 5. Seeger, J Appl Physiol 58:326-338, 1985. 6. Hallman *et al., J Clin Invest* 70:673, 1982. 4. Tierney, J Appl Physiol 20:1253-1260, 1965.