
A History of the Improvement of Internet Protocols Over Satellites
Using ACTS

Mark Allman
NASA GRC/BBN Technologies
mallman@grc.nasa.gov

Hans Kruse
Ohio University

hkruse1@ohiou.edu

Shawn Ostermann
Ohio University

ostermann@cs.ohiou.edu

Abstract

This paper outlines the main results of a number of ACTS
experiments on the efficacy of using standard Internet pro-
tocols over long-delay satellite channels. These experi-
ments have been jointly conducted by NASA’s Glenn Re-
search Center and Ohio University over the last six years.
The focus of our investigations has been the impact of
long-delay networks with non-zero bit-error rates on the
performance of the suite of Internet protocols. In par-
ticular, we have focused on the most widely used trans-
port protocol, the Transmission Control Protocol (TCP),
as well as several application layer protocols. This paper
presents our main results, as well as references to more
verbose discussions of our experiments.

1 Introduction

The work presented in this paper started in 1994 as a se-
ries of experiments to determine the impact of a geosyn-
chronous satellite link in a network path on the standard
TCP/IP Internet suite of protocols [Ste94]. Our investiga-
tions are important for several reasons. First, commercial
satellite companies would like to deliver Internet services
to consumers and institutions in remote areas of the world
not covered by good terrestrial connectivity (e.g., Hughes
DirecPC). Our investigations have helped to define and
identify the extensions to the Internet protocol suite that
are beneficial to delivering Internet content over network
paths containing long-delay satellite channels. In addi-
tion, NASA is interested in possibly employing off-the-
shelf Internet protocols to meet its near-Earth communi-
cation needs. Therefore, our experiments focus on im-
proving standard Internet protocols in ways that are both
safe in all network environments and beneficial to long-

This paper appears in the proceedings of the ACTS Conference
2000, May 2000.

delay networks.

We utilized NASA’s Advanced Communication Tech-
nology Satellite (ACTS) to conduct our experiments.
We used VSAT ground stations and data rates between
roughly 0.75 Mbps and 1.5 Mbps (i.e., between half and
full T1 rate)in all our experiments. While these tests were
conducted at relatively modest data rates, the results scale
with the available bandwidth (as shown in [IBF 99]).
Generally, our experiments were conducted with a sender
at NASA’s Glenn Research Center and a receiver at Ohio
University (or vice versa). However, several of our exper-
iments were performed with a loopback circuit, such that
the sender and receiver were located in the same location.

The bulk of our experiments focus on the Transmis-
sion Control Protocol (TCP) [Pos81]. TCP is the Inter-
net’s most used transport protocol. TCP provides reliable,
in-order transmission of data to applications. In addition,
TCP provides end-to-end congestion control mechanisms
that attempt to protect the network against congestion col-
lapse (a state when the network is very busy, but little use-
ful work is being done) [FF99]. Additionally, we have ex-
plored several application layer protocols that utilize TCP.

This paper is organized as follows. Section 2 out-
lines our early work in determining the problems with
using standard Internet protocols over ACTS. Section 3
discusses an application layer mitigation to TCP’s short-
comings over long-delay networks. Next, Section 4 out-
lines our experiences using standardized solutions to mit-
igate TCP’s performance problems over ACTS. Section 5
discusses two experimental mechanisms introduced into
TCP and the impact of these extensions on performance.
Section 6 outlines our investigation of the performance of
HTTP, the application layer protocol used on the World-
Wide Web. Section 7 discusses our investigation of us-
ing a realistic traffic mix across a network path containing
an ACTS satellite circuit. Section 8 outlines our experi-
ments into TCP performance over circuits with non-zero
bit-error rates. Finally, Section 9 gives our conclusions

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24061511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and outlines future work in this area.

2 Problems with TCP/IP Over
ACTS

Our early work [Kru95] illustrates two main causes of
performance degradation in TCP file transfers. First, in
long transfers the advertised window supported by off-
the-shelf TCP stacks is inadequate. The throughput (or
bandwidth attained) for long-lived TCP transfers is given
by the formula in equation 1 [Pos81], where is the
advertised window size, is the bandwidth of the net-
work link and is the round-trip time between the
data sender and the data receiver.

(1)

The advertised window is the largest amount of data
that can be buffered by the receiver. Therefore, the adver-
tised window represents the largest amount of data a TCP
sender can transmit before receiving an acknowledgment
(ACK) from the receiver. As and/or grow,
must be increased accordingly. However, TCP places a
limit on by only allocating 16 bits of header space for
the value. Thus, the advertised window can be no more
than 64 KB1. The effect of this limit is that TCP cannot
fully utilize the bandwidth of a network path with a large
delay-bandwidth product. In addition, many TCP stacks
use advertised window sizes much less than 64 KB by
default. For instance, the hosts used in our early experi-
ments [Kru95] utilized advertised window sizes of 24 KB.
Therefore, the maximum throughput of a transfer over
ACTS was approximately 44,000 bytes/second regardless
of the amount of capacity available over the satellite cir-
cuit.

The second problem noted in [Kru95] pertains to short
transfers. Our experiments illustrate that TCP’s slow start
algorithm [Jac88, APS99] was the cause of the perfor-
mance degradation. The slow start algorithm is part of
TCP’s congestion control mechanism. The algorithm in-
troduces a congestion window (cwnd), which is the send-
ing TCP’s measure of the current capacity of the network.
Slow start begins conservatively, by initializing cwnd to
1 segment. For each ACK received, cwnd is increased
by 1 segment, providing an exponential increase in the
sending rate. The slow start algorithm terminates when
loss is detected (assumed to indicate network congestion)
or cwnd reaches the advertised window size. For long
transfers, this slow probing of the network to determine
the capacity is a small percentage of the transfer time and

1For the first sets of experiments we did not consider TCP’s optional
window scaling mechanism [JBB92], which allows for advertised win-
dows larger than 64 KB, due to the lack of implementations of the mech-
anism. Later experiments did utilize these TCP extensions, as outlined
in section 4.

therefore does not have a large negative impact on perfor-
mance. However, for short transfers, TCP is never able
to fully utilize the capacity of the network path. For in-
stance, a 2 segment transfer will take 2 RTTs (or more
than 1 second) after TCP’s three-way handshake is com-
pleted even if the network capacity to transmit both seg-
ments was available when the transfer started.

100

1000

10000

100000

1e+06

1e+07

0 0.5 1 1.5 2 2.5 3 3.5 4

D
at

a 
T

ra
ns

m
itt

ed
 (

by
te

s)

Time (seconds)

Satellite Network
Terrestrial Network

Figure 1: Data transferred as a function of time over satel-
lite and terrestrial network paths.

Figure 1 from [All97] illustrates the low utilization of a
satellite network during slow start, as compared to a net-
work with a terrestrial delay (80 ms in this model). Just
before 4 seconds into the transfer over the satellite link
the slow start phase completes. During that same amount
of time, the terrestrial network is able to transfer 22 times
the amount of data as is sent over the satellite link! Af-
ter slow start, both networks send the same number of
bytes/second, but obviously the slow start phase hurts
the performance of the long-delay connection much more
than the shorter-delay terrestrial network connection.

3 An Experimental Application
Layer Mitigation

The above problems led to the development of an
application-level tool to enhance the efficiency of data
transfers. We extended the the File Transfer Protocol
(FTP) [PR85] to use multiple TCP connections to trans-
fer a given file, rather than one connection as specified
in [PR85]. This multiplied TCP’s aggressiveness by the
number of TCP connections being utilized. The syntax
and semantics of the extensions to FTP are outlined in
[AO97]. The ACTS experiments involving xftp are out-
lined in [AOK95, AKO96, All97].

Figure 2 shows the throughput of a 5 MB transfer as a
function of the number of parallel data connections used
to transfer the file over an ACTS T1 link. Each connection
used an advertised (maximum) window of 24 KB which

2



yields throughput of approximately 44,000 bytes/second,
as outlined above. Therefore, we would predict that 4 con-
nections would be required to fully utilize the capacity of
the channel (approximately 192,000 bytes/second). How-
ever, the best performance is obtained when using 6–
8 data connections. We believe it takes more than four
connections to reach optimal performance due to segment
overhead, as well as lingering slow start effects. When us-
ing 6–8 connections we achieve nearly optimal through-
put when all protocol overhead is taken into account. Us-
ing more than 8 connections leads to sub-optimal perfor-
mance (but, still much better than using a single connec-
tion). This drop in throughput is caused by segment losses
due to increased congestion from competing TCP flows.
Part of TCP’s congestion control mechanism calls for a
reduction in cwnd when a loss is detected, as the loss is
assumed to indicate network congestion. As soon as xftp
starts over-running router buffer queues, thus losing seg-
ments, some of the connections reduce their sending rate,
so the time required for the entire transfer increases.

70

80

90

100

110

120

130

140

150

160

170

2 4 6 8 10 12 14 16 18 20

K
B

yt
es

/S
ec

on
d

TCP Connections

Throughput

Figure 2: Performance of xftp as a function of the number
of parallel TCP connections employed over an ACTS T1
circuit.

The following are some of our key findings from our
xftp ACTS experiments:

Large advertised windows are required. As predicted
by the experiments outlined in the previous section,
using a larger effective window size (i.e., the sum of
the advertised window sizes across all connections
used by xftp) allows full utilization of the available
capacity for long-lived data transfers.

Larger initial congestion window sizes help. Using
connections in parallel speeds up slow start by us-

ing an effective initial cwnd of segments. This
cuts several RTTs off the transfer time and could be
especially useful for short transfers.

The throughput of the transfer is sensative to the
number of connections employed. Using too few
connections results in an effective advertised window
less than the delay-bandwidth product and thus an
underutilization of the capacity. Using too many con-
nections leads to loss on the channel and a reduction
in sending rate due to network congestion. Finding a
general mechanism to choose the proper number of
connections during the data transfer proved difficult
[AKO96].

The multiple TCP connections acted much like a “se-
lective acknowledgment” (SACK) mechanism. In
other words, xftp’s loss recovery is more efficient
than the standard TCP loss recovery [APS99] be-
cause it was spread across many connections that
each keep track of their own sequence space. Stan-
dard TCP can effectively recover from one lost seg-
ment per RTT [FF96]. Therefore, xftp can effectively
recover from roughly losses per RTT (assuming
parallel connections).

Finally we note that using multiple parallel TCP con-
nections is not “friendly” to the network in general be-
cause each indication of network congestion reduces cwnd
by less than the reduction would be if one connection were
used [FF99]. Therefore, while xftp is a valuable tool in
learning about network dynamics it is not recommended
for general purpose use.

4 Standard Solutions

During our investigations, the Internet Engineering Task
Force (IETF) standardized options to TCP to mitigate
some of the problems outlined above. RFC 1323 [JBB92]
introduced an option for TCP to advertise windows much
larger than 64 KB. Meanwhile, RFC 2018 [MMFR96]
introduced a selective acknowledgment (SACK) option
to TCP. Using the SACK option, receivers can inform
senders exactly which segments have arrived, rather than
relying on TCP’s cumulative acknowledgment. This al-
lows a TCP sender to efficiently recover from multiple
lost segments without reverting to using a costly retrans-
mission timeout to determine which segments need to be
resent [FF96].

We conducted a series of ACTS experiments using
these two new TCP options [AHKO97, Hay97]. Figure 3
shows the throughput for a number of different variants
of TCP as a function of transfer size. We used a half-
T1 ACTS link for these experiments. The xftp experi-
ments use 4 parallel connections. First, we turn our atten-
tion to the two experiments run using effective advertised
window sizes of the delay-bandwidth product (which pro-
duces no network congestion and therefore no segment

3



10

20

30

40

50

60

70

80

1.00*10^5 1.00*10^6 1.00*10^7

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

on
d)

Transfer Size (bytes)

Reno- DBP Window
XFTP- DBP Window

Reno- DBP+28K Window
XFTP- DBP+28K Window
SACK- DBP+28K Window

Figure 3: Throughput of various versions of TCP as a
function of transfer size.

loss). In this case, xftp slightly outperforms the one con-
nection Reno transfer. The amount by which the through-
put differs between the transfers gets smaller as the trans-
fers grow longer. This indicates that the difference is due
to the xftp transfer using a larger initial cwnd.

The lower three lines on the plot represent experiments
with a larger than necessary advertised window. The in-
creased advertised window leads to dropped segments due
to buffer overflow in a router in the middle of the network
path. Standard Reno TCP performs the worst in these ex-
periments. As shown, using TCP with the SACK option
drastically increases throughput. Using xftp provides still
better throughput. However, xftp has a more aggressive
response to network congestion than a single TCP con-
nection. When one loss occurs on the set of parallel con-
nections only one of the four TCP connections reduces its
cwnd by half, leading to an overall reduction of an eighth
in response to a single congestion indication (rather than
the standard reduction of one half) in this experiment. The
more aggressive response to congestion used by xftp ex-
plains the throughput benefit shown in the plot.

The following is a summary of our conclusions from
this set of ACTS experiments:

When the network is uncongested, TCP’s large win-
dow extensions (RFC 1323 [JBB92]) provide nearly
the same behavior as xftp, modulo the larger initial
cwnd utilized by xftp.

TCP’s SACK option provides drastic throughput im-
provements in the face of network congestion.

The results of these experiments alluded to the fact
that the throughput of a transfer was quite sensative
to the advertised window chosen. Hayes [Hay97]
emulated our ACTS setup and shows the disastrous
effects that choosing the wrong advertised window
size can have on performance.

The ACTS experiments outlined in this section were in-
fluential to the IETF’s TCP Over Satellite Working Group
as RFC 2488 [AGS99] was prepared. This RFC outlines
the standard IETF mechanisms that should be used by
hosts transfering data over network paths containing satel-
lite links.

5 Experimental TCP Mitigations

Our next short set of ACTS experiments involved in-
vestigating ways to mitigate the underutilization of the
network during the slow start phase of a TCP transfer.
The first mechanism we studied was using a larger ini-
tial cwnd, as suggested by the experiments outlined in the
last section.

-20

0

20

40

60

80

100

120

140

160

180

200

1 10 100

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

%
)

Initial Window (segments)

30,720 byte transfer
102,400 byte transfer
204,800 byte transfer

1,048,576 byte transfer
5,242,880 byte transfer

Figure 4: Throughput improvement as a function of initial
cwnd size.

Figure 4 from [All97] shows throughput improvement
as a function of the initial cwnd size for various trans-
fer sizes. As shown, the throughput increases as the ini-
tial value of cwnd is increased. The impact is especially
significant for short transfers. The impact for the longer
transfers is much less due to the relatively short amount
of time spent using slow start when compared to the total
time required to transfer the file.

These experiments, along with several additional inves-
tigations [AHO98, PN98, SP98], influenced the IETF’s
decision to make the use of a larger initial cwnd a sanc-
tioned experimental mechanism [AFP98].

Our second set of experiments involved a slightly mod-
ified algorithm for increasing cwnd during slow start. As
outlined in section 2, cwnd is increased by 1 segment
for each ACK received during slow start. Many TCP
receivers employ the delayed acknowledgment algorithm
[Bra89, APS99]. That is, receivers are allowed to refrain
from sending an ACK for each incoming segment. How-
ever, an ACK must be sent for every second full-sized
segment received. Furthermore, an ACK can not be de-

4



layed for more than 500 ms. By reducing the number of
ACKs sent to the data originator, the receiver is slowing
the growth of cwnd. We introduced an algorithm called
byte counting which allows the sender to increase cwnd
based on the number of new segments acknowledged by
each incoming ACK, rather than on the number of ACKs
received.

File Size Throughput
Improvement (%)

30 KB 9.4
100 KB 16.9
200 KB 15.3
1 MB 8.5
5 MB 9.5

Table 1: Throughput improvement when using byte
counting rather than ACK counting to increase cwnd.

Table 1 shows the performance improvement of using
byte counting as opposed to traditional ACK counting
[All97]. As shown, the improvement for short transfers
is better than for long transfers (even though the improve-
ment is good for long transfers, as well). This shows that
byte counting is important in slow start, but is also im-
portant during congestion avoidance (the phase whereby
TCP probes for additional network capacity by increasing
cwnd linearly).

Byte counting has been adopted by the IETF as a pro-
posed standard during the congestion avoidance phase of
TCP connections [APS99]. Further refinements to byte
counting have been suggested since the above ACTS ex-
periments [All98, All99]. Our hope is to develop an ex-
perimental document within the IETF to allow some form
of byte counting during slow start in addition to its already
sanctioned use during congestion avoidance.

6 HTTP Experiments

The next set of ACTS experiments we conducted
employed the HyperText Transfer Protocol (HTTP)
[BLFN96, FGM 97], the application layer protocol used
for World-Wide Web (WWW) transfers. HTTP uses TCP
for reliable transport of its data. Two versions of HTTP
have been defined and are in widespread use on the In-
ternet. HTTP/1.0 [BLFN96] transfers a single WWW
“object” (HTML document, image file, etc.) per TCP
connection. Oftentimes, WWW browsers open multi-
ple HTTP/1.0 connections simultaneously to decrease the
time required to transfer all objects necessary to render
a web page. HTTP/1.1 [FGM 97] allows a TCP connec-

tion to be re-used for transfering multiple WWW objects2.
In addition, HTTP/1.1 provides a “pipelining” mecha-
nism, whereby a WWW browser can request any number
of objects as soon as possible, rather than waiting until
the previous object has been transfered to request the next
object.

2

4

6

8

10

12

14

16

18

acts LeRC oufr Test

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

WWW Page

1.0/C=4/4K=no
1.0/C=1/4K=yes
1.1/C=1/4K=no

1.1/C=1/4K=yes

Figure 5: Comparison of HTTP variants.

Figure 5 shows the results of our ACTS experiments
with both versions of HTTP. The labels along the x-axis
represent different WWW pages. The WWW pages used
in our study have differing characteristics (number of ob-
jects, size of objects, etc.). See [KAGT98, KAGT00] for
a description of the page characteristics. Each line on the
plot is labeled with three settings used for the particular
experiment, as follows.

1. The version of HTTP used (“1.0” or “1.1”).

2. The number of parallel TCP connections employed
to transfer the WWW objects (“C ” where is
the number of connections used).

3. Whether the underlying TCP stack used a larger
initial cwnd, per the proposal outlined in [AFP98]
(“4K ” where is “yes” when using a larger initial
cwnd or “no” when using the standard initial cwnd).

The following are the key results from our study of
HTTP transfers over ACTS.

HTTP/1.1 generally outperforms HTTP/1.0, even
when HTTP/1.0 is used in conjunction with multiple
simultaneous TCP connections.

2HTTP/1.0 also has a “keepalive” option for using persistent con-
nections. Use of this option in HTTP/1.0 implementations is limited and
the mechanism is equivalent to the base HTTP/1.1 persistent connection
mechanism. Therefore, we do not present any results using HTTP/1.0
with keepalives, as our experiments indicated the HTTP/1.1 (without
pipelining) case is roughly equivalent.

5



When using only one TCP connection, HTTP/1.0
performs quite badly, even when using a larger ini-
tial congestion window. This happens because each
object must endure TCP’s slow start phase. When
using a single connection with HTTP/1.1, the effects
of slow start are diminished because the TCP con-
nection is reused a number of times. Therefore, the
small objects that make up the WWW page are com-
bined to behave more like a bulk transfer and there-
fore improve network utilization (as discussed in the
previous sections).

As outlined in the previous section, using a larger ini-
tial value for the congestion window improves per-
formance for short transfers (which are characteristic
of WWW traffic).

Kruse [KAGT00] defines a model for HTTP trans-
fers that accurately predicts the transfer time of web
pages of various size.

These experiments aided the IETF in deciding to make
the use of a larger initial value for cwnd an experimen-
tal mechanism [AFP98]. In addition, these experiments
highlight the importance of carefully designing applica-
tion protocols such that the interactions between the ap-
plication and the underlying transport do not hinder per-
formance.

7 Representative Network Traffic

Up to this point our experiments have involved a single
file transfer over an otherwise unloaded network path. In
our next set of ACTS experiments, we strive to assess
the ability of a realistic group of TCP transfers to utilize
the available bandwidth across a network path contain-
ing a satellite channel [KAG 99]. As shown in the pre-
vious sections, short TCP transfers can underutilize the
available bandwidth when no competing traffic is present.
However, our previous experiments have not assessed the
ability of a group of TCP connections to utilize the full
capacity of a long-delay network path. We developed a
traffic generator called trafgen [Hel98], based on tcplib
[DJ91] for these experiments. First, we take a packet-level
trace of network traffic from a production network (e.g.,
the network connecting NASA GRC to the Internet). The
trace is then analyzed using tcptrace [Ost97] for traffic
characteristics. Finally, these characteristics are imported
into trafgen, which then generates a realistic mix of TCP
connections based on the particular production network
that produced the original trace.

Figure 6 shows the results of a trafgen experiment over
a T1 ACTS circuit between NASA GRC and Ohio Univer-
sity. As illustrated, the network is fully utilized in many
instances, while a large number of TCP connections (or

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000 10000

U
til

iz
at

io
n 

(b
yt

es
/s

ec
on

d)

Time (seconds)

(a) Aggregate throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000

A
ct

iv
e 

C
on

ne
ct

io
ns

Time (seconds)

(b) Number of active connections.

Figure 6: Behavior of a realistic mix of traffic as a func-
tion of time over an ACTS T1 circuit.

users) is easily supported. This indicates that a represen-
tative group of TCP connections can utilize the available
bandwidth. While the long RTT may increase the transfer
time of some individual TCP transfers (when compared to
the same transfer over a network with a shorter RTT), it
does not prevent the sum of the transfers from fully utiliz-
ing the satellite channel.

8 The Impact of Bit-Errors

The final experiment we conducted over ACTS attempts
to quantify the impact of non-zero bit-error rates (BER)
on TCP performance. An outline of this experiment and
some preliminary results are given in [KOA00]. These ex-
periments were conducted by adjusting the Earth-station
at Ohio University such that it did not track the inclined-

6



orbit ACTS satellite. As the satellite moved with respect
to the dish, the BERs observed varied. We ran long-lived
(1 hour) TCP flows through the network during this time
and measured the bit-error rate using an out-of-band chan-
nel. Further details can be found in [KOA00]. The TCP
stack employed in this set of experiments used a 512 KB
advertised window (via the high performance TCP op-
tions outlined in section 4). This allows the network path
to determine the performance of a TCP connection, rather
than having the performance dictated by a limit on the
sending or receiving host (this situation simulates socket
buffer autotuning [SMM98]). In addition, the stack em-
ployed the TCP SACK option with the rate-halving algo-
rithm [MSML99].

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1e-09 1e-08 1e-07 1e-06 1e-05 0.0001

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Bit-Error Rate

Figure 7: Throughput as a function of bit-error rate.

Figure 7 shows the throughput obtained by a TCP con-
nection as a function of the bit-error rate of the satel-
lite channel with 90% confidence intervals. The figure
shows that with no bit-errors (denoted on the plot as 1e-
09) the TCP connection is able to fully utilize the T1 ca-
pacity of the satellite channel. However, as expected, as
the BER increases the throughput obtained by TCP de-
creases. The root of this problem is the fact that TCP
cannot determine why a particular segment was dropped.
Therefore, in an effort to behave conservatively, TCP in-
terprets all segment loss as an indication of network con-
gestion and reduces cwnd accordingly. Therefore, when
a segment is lost due to corruption, TCP mistakenly de-
creases the sending rate. Research into protocol mech-
anisms that allow TCP to determine the true cause of a
segment loss is ongoing. RFC 2760 [ADG 00] contains
a discussion of several of these mechanisms. Our results
are consistent with analytical models of TCP performance
that show throughput is indirectly proportional to the loss
rate [MSMO97, PFTK98].

9 Conclusions and Future Work

Over the last six years, our ACTS experiments have shed
light on the performance of the Internet protocol suite over
networks containing long-delay links. Table 2 gives a
summary of each of our experiments, the papers written
about the experiments and the IETF standards influenced
by our results. The following are the key results from our
experiments.

TCP can fully utilize the capacity of a satellite link
when transfering large amounts of data.

Short transfers often underutilize the capacity of
the network, especially in long-delay environments.
While we have introduced mechanisms that may mit-
igate this problem, more research in this area would
be useful.

Application layer protocols can have a large influ-
ence on the performance of a data transfer. For
instance, using better application level mechanisms
drastically decreased the transfer time required to
load WWW pages. Careful attention to the design
of future application protocols is required to avoid
poor interactions between the transport and applica-
tion layers.

A realistic mix of network traffic can fully utilize the
available bandwidth in a satellite network.

As the BER of a channel is increased the TCP
throughput decreases. Future research is needed into
ways to distinguish between congestion-based seg-
ment loss and corruption-based segment loss.

These key results have been influential in several Inter-
net Engineering Task Force Working Groups. In particu-
lar, the results aided the TCP Over Satellite WG in pro-
ducing RFC 2488 [AGS99] that describes which standard
TCP mechanisms should be used when transfering data
over satellite channels and RFC 2760 [ADG 00] which
describes some of the open research topics in this area.
Additionally, our ACTS experiments helped the IETF de-
cide to increase the initial value of cwnd to 2 segments in
RFC 2581 [APS99] and more experimentally to 3–4 seg-
ments in RFC 2414 [AFP98].

Acknowledgments

We would like to thank all our colleagues at NASA GRC
and Ohio University, whose help was invaluable during
our experiments. We would like to especially thank Bob
Bauer, Kul Bhasin, Dan Glover, Jim Griner, Chris Hayes,
Eric Helvey, Will Ivancic, Paul Mallasch, Cindy Tran and
Mike Zernic. In addition, these experiments simply would

7



Experiment Outcome Papers Standards
Contributions

Preliminary FTP Larger effective advertised windows are needed. [Kru95] RFC 2488 [AGS99]
Experiments Slow start decreases performance for short transfers.
xftp Experiments While throughput improves when using multiple [AOK95] RFC 2760 [ADG 00]

parallel connections, choosing the right number [AKO96]
of connections is difficult. [All97]

High Performance Large windows help performance but lead to a [AHKO97] RFC 2488 [AGS99]
TCP Extensions higher probability of dropping multiple packets

from a window of data and thus causing a drastic
reduction in the transmission rate.

SACK The SACK option significantly improves throughput [AHKO97] RFC 2488 [AGS99]
Experiments throughput over satellite channels. [Hay97]
Larger Initial cwnd Using a larger initial cwnd improves throughput, [All97] RFC 2414 [AFP98]
Experiments especially for short transfers. RFC 2581 [APS99]
Byte Counting Using a modified cwnd increase algorithm [All97] RFC 2581 [APS99]
Experiments increases throughput, especially for short transfers
HTTP Experiments Using old versions of HTTP increases WWW response [KAGT98]

time significantly. Using HTTP/1.1 with pipelining [KAGT00]
provides significant benefits over satellite links.

Experiments with a The Internet protocol suite is able to fully utilize [Hel98]
Realistic Traffic Mix the capacity provided by satellite channels when a [KAG 99]

representative traffic load is used.
Bit-Error Rate Tests As the BER increases the throughput obtained by [KOA00]

TCP decreases due to the mistaken assumption
that lost segments indicate network congestion.

Table 2: Summary of key results.

not have been possible without a great deal of help from
the ACTS operations team. We especially thank Terry
Bell, John Diamond, Peter Harbath and Paul McMas-
ters. Finally, we’d like to thank the many colleagues with
whom we have discussed our experiments for their com-
ments and suggestions over the years. While there are too
many people to list, the input we have received from the
research community has been invaluable. Our thanks to
all!

References

[ADG 00] Mark Allman, Spencer Dawkins, Dan Glover, Jim
Griner, John Heidemann, Tom Henderson, Hans
Kruse, Shawn Ostermann, Keith Scott, Jeff Semke,
Joe Touch, and Diepchi Tran. Ongoing TCP Re-
search Related to Satellites, February 2000. RFC
2760.

[AFP98] Mark Allman, Sally Floyd, and Craig Partridge. In-
creasing TCP’s Initial Window, September 1998.
RFC 2414.

[AGS99] Mark Allman, Dan Glover, and Luis Sanchez. En-
hancing TCP Over Satellite Channels Using Stan-

dard Mechanisms, January 1999. RFC 2488, BCP
28.

[AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and
Shawn Ostermann. TCP Performance Over Satel-
lite Links. In Proceedings of the 5th International
Conference on Telecommunication Systems, pages
456–469, March 1997.

[AHO98] Mark Allman, Chris Hayes, and Shawn Ostermann.
An Evaluation of TCP with Larger Initial Win-
dows. Computer Communication Review, 28(3),
July 1998.

[AKO96] Mark Allman, Hans Kruse, and Shawn Ostermann.
An Application-Level Solution to TCP’s Satellite
Inefficiencies. In Proceedings of the First Inter-
national Workshop on Satellite-based Information
Services (WOSBIS), November 1996.

[All97] Mark Allman. Improving TCP Performance Over
Satellite Channels. Master’s thesis, Ohio Univer-
sity, June 1997.

[All98] Mark Allman. On the Generation and Use of TCP
Acknowledgments. Computer Communication Re-
view, 28(5), October 1998.

[All99] Mark Allman. TCP Byte Counting Refinements.
Computer Communication Review, 29(3), July
1999.

8



[AO97] Mark Allman and Shawn Ostermann. Multiple
Data Connection FTP Extensions. Technical Re-
port TR-19971, Ohio University Computer Sci-
ence, February 1997.

[AOK95] Mark Allman, Shawn Ostermann, and Hans Kruse.
Data Transfer Efficiency Over Satellite Circuits
Using a Multi-Socket Extension to the File Trans-
fer Protocol (FTP). In Proceedings of the ACTS
Results Conference. NASA Lewis Research Cen-
ter, September 1995.

[APS99] Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April 1999.
RFC 2581.

[BLFN96] Tim Berners-Lee, R. Fielding, and H. Nielsen. Hy-
pertext Transfer Protocol – HTTP/1.0, May 1996.
RFC 1945.

[Bra89] Robert Braden. Requirements for Internet Hosts –
Communication Layers, October 1989. RFC 1122.

[DJ91] Peter Danzig and Sugih Jamin. tcplib: A Library
of TCP/IP Traffic Characteristics. Technical Report
CS-SYS-91-01, University of Southern California,
October 1991.

[FF96] Kevin Fall and Sally Floyd. Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP.
Computer Communications Review, 26(3), July
1996.

[FF99] Sally Floyd and Kevin Fall. Promoting the Use
of End-to-End Congestion Control in the Internet.
IEEE/ACM Transactions on Networking, 7(6), Au-
gust 1999.

[FGM 97] R. Fielding, Jim Gettys, Jeffrey C. Mogul,
H. Frystyk, and Tim Berners-Lee. Hypertext Trans-
fer Protocol – HTTP/1.1, January 1997. RFC 2068.

[Hay97] Chris Hayes. Analyzing the Performance of New
TCP Extensions Over Satellite Links. Master’s the-
sis, Ohio University, August 1997.

[Hel98] Eric Helvey. Trafgen: An Efficient Approach
to Statistically Accurate Artificial Network Traffic
Generation. Master’s thesis, Ohio University, June
1998.

[IBF 99] William Ivancic, David Brooks, Brian Frantz,
Doug Hoder, Dan Shell, and David Beering.
NASA’s Broadband Satellite Network Research.
IEEE Communications Magazine, July 1999.

[Jac88] Van Jacobson. Congestion Avoidance and Control.
In ACM SIGCOMM, 1988.

[JBB92] Van Jacobson, Robert Braden, and David Borman.
TCP Extensions for High Performance, May 1992.
RFC 1323.

[KAG 99] Hans Kruse, Mark Allman, Jim Griner, Shawn Os-
termann, and Eric Helvey. Satellite Network Per-
formance Measurements Using Simulated Multi-
User Internet Traffic. In Proceedings of the Sev-
enth International Conference on Telecommunica-
tion Systems, March 1999.

[KAGT98] Hans Kruse, Mark Allman, Jim Griner, and
Diepchi Tran. HTTP Page Transfer Rates Over
Geo-Stationary Satellite Links. In Proceedings of
the Sixth International Conference on Telecommu-
nication Systems, March 1998.

[KAGT00] Hans Kruse, Mark Allman, Jim Griner, and
Diepchi Tran. Experimentation and Modeling of
HTTP Over Satellite Channels. International Jour-
nal of Satellite Communication, 2000. To appear.

[KOA00] Hans Kruse, Shawn Ostermann, and Mark Allman.
On the Performance of TCP-based Data Transfers
on a Faded Ka-Band Satellite Link. In Proceedings
of the Ka-Band Utilization Conference, June
2000.

[Kru95] Hans Kruse. Performance of Common Data Com-
munications Protocols Over Long Delay Links: An
Experimental Examination. In 3rd International
Conference on Telecommunication Systems Model-
ing and Design, 1995.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and
Allyn Romanow. TCP Selective Acknowledge-
ment Options, October 1996. RFC 2018.

[MSML99] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and
Kevin Lahey. The Rate-Halving Algorithm for
TCP Congestion Control, August 1999. Internet-
Draft draft-mathis-tcp-ratehalving-00.txt (work in
progress).

[MSMO97] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and
Teunis Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. Computer Com-
munication Review, 27(3), July 1997.

[Ost97] Shawn Ostermann. tcptrace, 1997. Available from
http://jarok.cs.ohiou.edu/.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and
Jim Kurose. Modeling TCP Throughput: A Sim-
ple Model and its Empirical Validation. In ACM
SIGCOMM, September 1998.

[PN98] Kedarnath Poduri and Kathleen Nichols. Simula-
tion Studies of Increased Initial TCP Window Size,
September 1998. RFC 2415.

[Pos81] Jon Postel. Transmission Control Protocol,
September 1981. RFC 793.

[PR85] Jon Postel and Joyce Reynolds. File Tranfer Proto-
col (FTP), October 1985. RFC 959.

[SMM98] Jeff Semke, Jamshid Mahdavi, and Matt Mathis.
Automatic TCP Buffer Tuning. In ACM SIG-
COMM, September 1998.

[SP98] Tim Shepard and Craig Partridge. When TCP
Starts Up With Four Packets Into Only Three
Buffers, September 1998. RFC 2416.

[Ste94] W. Richard Stevens. TCP/IP Illustrated Volume I:
The Protocols. Addison-Wesley, 1994.

9


