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Abstract For a large-scale quadratic programming problem with separable objective function, a variant 
of the conjugate gradient method can effectively be applied to  the dual problem. In this paper, we consider 
a block-parallel modification of the conjugate gradient method, which is suitable for implementation on 
a parallel computer. More precisely, the method proceeds in a block Jacobi manner and executes the 
conjugate gradient iteration to solve quadratic programming subproblems associated with respective blocks. 
We implement the method on a Connection Machine Model CM-5 in the Single-Program Multiple-Data 
model of computation. We report some numerical results, which show that the proposed method is effective 
particularly for problems with some block structure. 

1. Introduction 
In recent years, much effort has been made in the design of parallel algorithms for solving 

various optimization problems [2,3,4,6, 7,8,9, 10, 11, 12, 13, 14,22, 23,24,28, 291. Many of 
those algorithms are of the data parallel type, which execute identical or similar operations on 
numerous data concurrently using many processors. The two concepts that play an important 
role in designing such parallel algorithms are the duality in mathematical programming and 
the splitting of operators or matrices involved. For example, Fukushima et al. [14] have 
developed a descent type algorithm for solving general convex programming problems, using 
a dual optimization approach incorporating the idea of operator splitting. Another useful 
idea from the duality theory is the alternating direction method of multipliers [7, 8, 9, 121, 
which is considered an ingenious dual method combined with operator splitting. On the 
other hand, Mangasarian and De Leone [22, 231 propose parallel successive over-relaxation 
(SOR) methods for solving the symmetric linear complementarity problem. Those methods 
exploit a matrix splitting that uses block diagonal parts of the matrix involved. More 
recently, multisplitting has turned out to be a potential idea in developing effective parallel 
algorithms [ll, 201. Practical large-scale problems often possess some special structure, 
which can be exploited in designing a variety of parallel algorithms. Zenios [28] discusses 
basic issues in the design and implementation of data level parallelism for problems with 
network structure. For problems with certain block structure, parallelizable decomposition 
algorithms are proposed in [3, 101, which may effectively be realized in the Single-Program 
Multiple-Data (SPMD) model of computation. 

In this paper, we propose an algorithm, particularly suited for parallel computation, to 

'This work was done while the  first author was with ATR Human Information Processing Research 
Laboratories and the second author was with Nara Institute of Science and Technology. 
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solve the following separable quadratic programming problem: 

1 
QP : minimize - xT D x + cTx 

2 
subject to aTx = b,, z E E, 

a'x < b,, i E I, 

where E and I are finite index sets, D is an n x n positive diagonal matrix, c and a, are 
vectors in Rn, b, are real numbers and the superscript T denotes transposition. Note that, 
if problem QP is feasible, it has a unique solution because of the strong convexity of the 
objective function. Quadratic programming problems with a separable objective function 
arise in various network flow problems [28]. 

Let A and b denote the matrix whose 4-th row is a L  i E E U I, and the vector whose z-th 
element is b,, i E E U I, respectively. The dual of problem QP can be defined as 

1 
DQP : minimize - zTM z + qTz 

2 
subject to 3 > 0, i â I, 

From the standard duality theory [21], we can easily verify that the optimal solution x* of 
problem QP is related to an optimal solution z* of problem DQP by 

Let r denote the negative gradient of the dual objective function at z, that is, 

Then the Karush-Kuhn-Tucker conditions for problem DQP may be written as 

Since M is positive sernidefinite, conditions (1.3) are not only necessary but also sufficient 
for optimality of problem DQP. Finding a z satisfying (1.3) is in general a mixed linear 
complementarity problem. In particular, when the index set E is empty, (1 -3) becomes the 
symmetric linear complementarity problem 

while, in the case where the index set I is empty, (1.3) reduces to the system of linear 
equations 

M z + q = O .  

The algorithm proposed in this paper is a block-parallel modification of the conjugate 
gradient method applied to the mixed linear complementarity problem (1 -3). More pre- 
cisely, the algorithm exploits a splitting of matrix M such that M = G + H with G being 
a block diagonal matrix. Thus the algorithm may be regarded as a block Jacob! method. 
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The resulting subproblems involving matrix G are decomposed into small mixed linear com- 
plementarity problems, which can be solved independently from each other. Those mixed 
linear complementarity problems are solved using a conjugate gradient method, which is 
a modification of the one given in 1161 and is extended to deal with simple bounds. This 
approach is particularly effective when the problem is sparse, because it only requires sim- 
ple operations on the vectors a,. In the special case where the block diagonal matrix G 
is actually a diagonal matrix, the proposed algorithm reduces to the classical point Jacobi 
method. Although the point Jacobi method is suited for massively parallel computations, 
but often suffers slow convergence because of small steps. The block Jacobi modification 
usually leads to larger steps and hence accelerated convergence is expected. To examine the 
practical efficiency of the proposed algorithm, it is implemented on a Connection Machine 
Model CM-5 in the SPMD model of computation. Particular attention will be paid on the 
efficiency of the algorithm on problems with block angular structure. 

This paper is organized as follows. A splitting method for problem DQP is presented and 
its convergence properties are discussed in Section 2. A block-parallel algorithm for problem 
QP is then developed in Section 3. Implementation strategies for the proposed algorithm in 
the SPMD model of computation are described in Section 4. Some computational results on 
the Connection Machine Model CM-5 are reported in Section 5. Conclusions are given in 
Section 6. 

Throughout the paper we shall adopt the following notation. Let J be an index set. For 
a vector u, U j  denotes the subvector of u with components u^ z J. For matrix A, AJ 
denotes the submatrix of A consisting of the rows a:, z 6 J. 

2. Basic Splitting Method 
In this section, we describe a splitting method for solving problem DQP, which is a natural 

modification of that for the symmetric linear complementarity problem [5]. A pair (G, H) 
of matrices is called a splitting of matrix M if 

A splitting (G, H) is said to be regular if G - H is positive definite [5, p. 4001. Since M is 
positive semi-definite (see (1. I)), G = ( M  + G - H) / 2 is positive definite for any regular 
splitting (G, H). 

Using a regular splitting (G, H) of M, a splitting method for the mixed linear comple- 
mentarity problem (1 -3) generates a sequence {z^} 

Splitting Method (Prototype) : 

Given z^, find a solution z^^ of 

where 

(2.3) 

the mixed linear 

by the following iterative process. 

complementarity problem 

i â ‚ ¬  

dk)) . z, = 0, i e I ,  

If G is symmetric, then subproblem (2.2) is equivalent to the following quadratic pro- 
gramming problem: 

1 
DSP(*) : minimize - Z^G z + (dk))^ z 

2 
subject to % 2 0, z G I. 
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Since G is positive definite as noted above, subproblem DSP^ has a unique solution for 
each k. 

General convergence results of the splitting method for symmetric linear complementarity 
problems have recently been obtained by Luo and Tseng [la] and Iusem [17]. Moreover, 
Luo and Tseng [19] have established the convergence of the splitting method for symmetric 
affine variational inequality problems, which contain as special cases various optimization 
problems. In particular, the mixed linear complementarity problem (1.3) can be represented 
as the affine variational inequality problem of finding a z* E Z such that 

where Z is the polyhedral convex set in ~ l ^ l + l ' I  defined by 

Z = { z \ z m ,  Z E E ,  and zi>O, Z E I } .  

Moreover, the solution z^^ of the mixed linear complementarity problem (2.2) is the vector 
in Z that satisfies the variational inequality 

Therefore, the convergence of the splitting method for solving the mixed linear complemen- 
tarity problem (1.3) can be deduced from the general results established in [19]. 

Theorem 1. If problem QP is feasible, then the sequence {z^} generated by the 
splitting method converges to an optimal solution of problem DQP at least linearly in the 
root sense. 

Proof : Under our blanket assumptions, if problem QP is feasible, it has a unique 
solution. Then, from the standard duality theory [21], problem DQP also has a solution and 
hence the objective function of problem DQP is bounded from below on 2. Consequently 
the assumptions of Theorem 3.2 in [19] are satisfied and the desired results follow. 

3. Block-Parallel Algorithm 
By appropriately choosing matrix G involved in subproblem DSP^, a block-parallel 

algorithm for problem QP is derived from the splitting method described in the previous 
section. To see this, let Je; C = 1, + - - , L, be index sets such that 

L 

l ) J e = E U I  and JenJe ,=O,  C # P .  
e==l 

Suppose that we have a regular splitting (G, H) of matrix M such that, by reordering the 
rows and the columns if necessary, G is a 

0 

block diagonal matrix of the form 

0 ... 

-. 0 
... 0 GL 

where Ge are 1 Jel x 1 Jel symmetric matrices whose rows and columns correspond to the indices 
in Jt . Then, subproblem DSP^ can be decomposed into L independent subproblems DSP/, 
C = 1, - - - , L, as follows: 

1 T 
D S P ~ )  : minimize 5 z;/;e zJt + ( u y )  z4 

subject to 3 > 0, z ?  I n  Jt, 
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where v? is the subvector of v^ given by (2.3). Since G is positive definite, matrices G, 

are also positive definite. Thus, each subproblem D S P ~ )  always has a unique solution. 
Note that the vector V? involved in each subproblem D S P ~ )  is calculated in the following 

way. For the current dual estimate ẑ , let 

(3-1) a ; k  := -D-I ( ~ ~ ~ ( ~ 1  + c )  . 

Then, x^f can be regarded as an estimate of the optimal solution of problem QP (see (1.2)). 
The residual vector r^) at for the constraints of problem QP is defined by 

Since (3.1) and (3.2) together with (1.1) imply 

it follows from (2.1) that 
v(k) := H ~ ( ~ 1  + q 

= ( M - G ) z ^ + q  
= _ G f l - # l .  

Since G is block diagonal, we have 

which means that each subproblem D S P ~  is completely defined using the data available 
within block H. 

Let I^ denote the index set of active constrains of problem DQP at z^ such that 

:= { i ~ l  1 z y ) =  0 and r,'*" 5 0 ) .  

Then, it is easy to see that ẑ  and r^ satisfy conditions (1.3) if and only if 

(3.4) r . ^ ) = ~ ,  ~ E E U J ^ ,  

Thus, we may terminate the iteration of the splitting method when conditions (3.4) hold. 
To summarize, we obtain the following block-parallel algorithm for problem QP. 

Algorithm BP : 

Step 1. Choose an initial dual estimate z^ with components z j l  â R, i E E, and z i l  > 0, 
z E I. Set k := 1. 

and let 

If $) = 0, i E E u T ( ~ ) ,  then stop. (comment: z(k) and are optimal solutions of 
problem DQP and problem QP, respectively.) 



Step 3. For k' = 1, - - , L, find the solutions z y  of subproblems D S P ~ '  . 

Step 4. Set k := k + 1 and go to Step 2. 0 

Step 3 of Algorithm BP can be executed in parallel for Je , k' = 1, - - - , L. We solve 
each subproblem DSP' by applying a slight modification of the conjugate gradient (CG) 
method [16], which uses an active set strategy to deal with simple bounds. 

Let the objective function of subproblem DSP{ be denoted by 

The steepest descent direction of ipf at z g  is then calculated as 

where the last equality follows from (3.3). Thus, we can execute the CG iterations using zf' 

and r as an initial estimate of a solution and an initial search direction, respectively. In 

particular, there is no need to calculate the vector v y  explicitly. 
To improve the speed of convergence, we precondition Ge as 

where We is a nonsingular matrix chosen so that the condition number of Ge is smaller than 
that of Ge [15, $9.21. Assuming that the diagonal elements of G are all positive, we adopt 
here the simple preconditioning called diagonal scaling that uses 

where gii are the diagonal elements of G. Then, since We is positive and diagonal, subprob- 
lem D S P ~  is equivalent to the problem 

1 
minimize - 2 J~ G I 2 J,+ ( ~ ( ~ ' 1  UJ, 2 Je 
subject to 4 > 0, i â ‚ ¬ I n J  

where 2 = W'''zJe and C? = ~ ~ u f .  The preconditioned conjugate gradient (PCG) 
Je 

method stated below is in essence a CG method applied to this problem. Now let de- 
(k) note the objective function of the latter problem. Then, since v4F)(zJe) = WeV</'I (zJe), 

(k' the initial search direction r y  is in particular modified as Y(rJ , where Y{ = = 

diag{ 1 / gii }ic J, - 
Now we state the preconditioned CG procedure to find a solution of subproblem D S P ~ ) .  
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Procedure PCG : 

Step 1. Let y( ( = diag { yi },̂  ) := diag { 1 / S% }-- Set 

Step 2. Set 
Ie := { i â ‚ ¬ I f ~ J  zi=O and r i s O } ,  - 
& := ( I n J e ) \ I e .  

If r, = 0, z 6 Ee uTe, then stop. (comment: Z J  is an optimal solution of subproblem 

D S P ~ . )  

Step 3. Let p J  be the vector such that 

Step 4. Compute 

If zJe + a e p J  > 0, then go to Step 5. Otherwise, go to Step 6. 

Step 5. Set 

If ri = 0, 8 â Ee U Je, then go to Step 2. Otherwise, let 

and go to Step 4. 

Step 6. Calculate 

Set 

If ri = 0, i â E e U T e ,  then go to Step 2. Otherwise, go to Step 3. 
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In the remainder of this section, some examples of splitting (G, H) are described. The 
simplest choice is to let Ge be a scalar multiple of the block diagonal part of matrix M, 
that is, 

(3.5) Ge := w- 'M~,  
where w > 0 is a relaxation parameter and Me, denotes the submatrix of M consisting of the 
elements a,'D1aj, (i, j )  E Je x Je. Clearly G is positive semi-definite. In addition, if the 
constraint matrix A of problem QP has some block structure, the off-block-diagonal parts of 
matrix A4 are supposed to be highly sparse. Then, a relatively large value of the relaxation 
parameter w can be chosen and hence fast convergence is expected. Moreover, since each 
element of Ge is of the form w - ~ u , ' D - ~ ~ ~ ,  the matrix-vector multiplications involving Ge in 
Procedure PCG can effectively be executed using only simple operations on the rows of A. 

If matrices Me are positive definite (they are positive semi-definite by construction), 
then the splitting (G, H) given by (3.5) is regular, provided that parameter w is chosen 
sufficiently small. On the other hand, when Me are not positive definite, the splitting (G, H) 
is not necessarily regular. In such a case, by choosing Ge as 

where E ~ 1 ~ e 1 ~ 1 ~ e 1  is the identity matrix, the splitting (G, H) becomes regular for suffi- 
ciently small w > 0. 

The above-mentioned choices of G yield sparsity-preserving CG iterations, and hence 
enable us to deal effectively with large-scale problems. 

4. Implementation Strategy 
Algorithm BP is of the control parallel type in the sense that multiple quadratic pro- 

gramming subproblems may be solved concurrently. This type of parallel algorithms can 
be implemented on Multiple-Instruction Multiple-Data (MIMD) systems, where individual 
processors run under the control of their own program. For the proposed algorithm, how- 
ever, the programs in the individual processors are nearly identical because we solve each 
subproblem D S P ~  by applying Procedure PCG. In such a case, the SPMD model of com- 
putation is convenient, in which a single program is written and all processors execute this 
program on their own data independently. It is also appropriate that the proposed algo- 
rithm is implemented on a distributed memory system, in which processors communicate by 
exchanging messages through an interconnecting network. 

Now we describe the implementation strategy for the proposed algorithm. Under the 
multi-processor environment, one processor, which we refer to as the master node, controls 
major iterations, while the remaining processors called worker nodes concentrate on inner 
iterations. More precisely, subproblems D S P ~  are solved using Procedure PCG on worker 
nodes in parallel. Then, making use of message passing primitives, their solutions zy+ll are 
transmitted to the master node, which executes Step 2 of Algorithm BP. If conditions (3.4) 
are satisfied, the master node broadcasts the termination of the algorithm. Otherwise, the 
master node transmits the subvectors r }  to the corresponding worker nodes. Then, using 

r^+ll together with the previous solution <+'I, each worker node again executes Procedure 
Je 

PCG to solve subproblem D S P ~ " ,  and so forth. 
The above mentioned strategy, which naturally follows from the construction of Algo- 

rithm BP, is slightly inefficient because each worker node remains idle while the master node 
executes Step 2 of Algorithm BP. In fact, the most time consuming part of the algorithm 
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Calculate d l )  

Worker Node 1 Master Node Worker Node 2 

-D-~AT z(l) 7 - 
, Ji J i y  D- AT fl-i , 

J2 Jz 

- 

^ <, 

, 
, , 
8 

Calculate r(') 
I 

/ 
\ 
Check conditions (3.4) \ Solve D S P ~  

I 

I 
( 2 )  (3) Solve DSP, for zJ2 

1 

(- : Busy - - - - - - - : Idle : Message Passing ) 

Figure 1 : Execution sequence for the proposed algorithm when L = 2. 
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is the matrix-vector multiplications ATz^ and Ax^\ To reduce the idle time, we modify 
the implementation strategy in the following way. Since Procedure PCG consists of simple 
operations on the rows of submatrix A J  , we replace the message z k +  from each worker 

Jf 

node to the master node by D - ~ A ; ~ J + .  Then, the master node calculates an estimate 

of the optimal solution of problem QP simply as 

and immediately broadcasts it to all worker nodes. Moreover, before solving subproblem 
DSP'', each worker node independently calculates the subvector of the residual r^^ as 

On the other hand, the residual r^^ is also calculated on the master node and the termi- 
(k+ 1) nation criterion (3.4) is checked while the worker nodes are solving subproblems DSPe . 

An example of the execution sequence for the proposed algorithm is illustrated in Figure 1. 
Finally, we briefly describe how matrix A, which is decomposable into smaller sparse 

blocks A J ,  is represented. On the master node and each worker node, all working variables 
used in Algorithm BP and Procedure PCG are stored in one-dimensional arrays whose 
lengths are equal to the number of non-zero elements of A and A J , respectively. Moreover, 
we store the non-zero elements of a, in a contiguous segment for each index z E Je. Then, 
the segmented scan operation [29, 53-21 enables us to perform matrix-vector multiplications 
associated with matrix A or its submatrices A J  effectively on their segments. If data level 
parallelism is available on the master node and each worker node, these multiplications are 
executed, in fact, in parallel. 

5. Numerical Results 
In this section, we report some numerical results with the proposed algorithm on the 

Connection Machine Model CM-5 at ATR Human Information Processing Research Lab- 
oratories. The particular configuration of the CM-5 is 32 processing nodes (PN7s). Each 
PN has 4 vector floating point units (VFPU7s) and 4 banks of 8 Mbytes local memories. 
The performance of each PN is estimated as 128 MFLOPS (peak) [26]. All PN's are super- 
vised by a control processor, which loads a program, broadcasts instructions and initiates 
execution. The processors of the CM-5 are interconnected by two types of communication 
networks; the control network for global operations such as synchronization, and the data 
network for bulk data transfers from one processor to another. On the CM-5, the SPMD 
model of computation is available, in which various algorithms of control parallel type as 
well as those of data parallel type can effectively be implemented. 

For the proposed algorithm, we coded the procedure to be executed on each PN in the 
data parallel language CM Fortran [25] together with the software library CMMD [27], which 
provides various routines for realizing control parallel primitives such as global synchroniza- 
tion and message passing. To operate the strategies described in the previous section, we 
assigned one PN to the master node, and the other PN7s to worker nodes. CM Fortran is 
an extended version of FORTRAN 77, which is specially designed for Connection Machine 
systems and equipped with array-handling facilities of Fortran 90. Array operations based 
on Fortran 90 map naturally onto the data parallel operations. In practice, array elements 
treated in each PN are automatically spread across the distributed memories attached to 
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the 4 VFPU's. Moreover, under the mechanism of virtual processors [29, $3.11, each VFPU 
operates in a serial fashion on multiple copies of data as if multiple processors operate on 
their own copy of data in parallel. Therefore, inner products of vectors and sparse matrix- 
vector multiplications involved in Algorithm BP and Procedure PCG may effectively be 
performed on each PN. On the other hand, communication between PN's has to be coded 
on the program explicitly. 

We tested the proposed algorithm on randomly generated sparse quadratic programming 
problems of the following form: 

1 
minimize - xT DX + cTx 

2 
subject to A x  < b, 

where D is an n x n positive diagonal matrix, c is a vector in Rn, A is an m x n matrix 
with some block structure and b is a vector in R"1. The non-zero elements of A and all 
elements of b, c and D were chosen uniformly from the intervals [-5,5], [I, 101, [-loo, 1001 
and [I, 101, respectively. Note that any problem thus generated is feasible, because b > 0 
implies that the origin x = 0 satisfies the constraints. We used two sets of test problems; 
one with staircase structure, the other with block angular structure. Each set consists of 
problems with various size. For each problem size, we generated five problem instances using 
different random number seeds. The results shown in the tables and figures below are the 
averages over the five test problems generated. 

Algorithm BP combined with Procedure PCG can be applied to problem (5.1) by setting 
E = 0. In Step 2 of Algorithm BP, we stop the iteration if the conditions 

or 
(k) $) = 0, r, 5 lo-' 11 t 11, 

hold for all z E {I, - - - ,  m}. On the other hand, we terminate Procedure PCG for solving 
subproblem D S P ~  when the current iterate satisfies either 

for all i E Jp , where E )  are sufficiently small positive numbers. It should be noted that 
the tolerances E )  have to be l o 7  or less at the final stage of the major iterations. From a 
practical viewpoint, however, it is often effective to truncate inner iterations using relatively 
loose convergence criteria when the current (major) iterate is far from the optimal solution. 
Thus, we introduce the following strategy: 

In practice, the termination criterion (5.2) determines a vector z^^ as an approximate solu- 
tion of subproblem DSP(~) ,  or equivalently, the affine variational inequality (2.5). Note that 
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Luo and Tseng [19] have shown that, under appropriate assumptions, the sequence {2^ }  

generated by approximately solving subproblems (2.5) converges linearly to an optimal so- 
lution of the symmetric affine variational inequality problem (2.4). 

Throughout the computational experiments, the initial point for Algorithm BP was al- 
ways chosen as z^ = 0, and the matrices Ge involved in subproblem D S P ~  were set to 
be the block diagonal part of matrix M as in (3.5). Moreover, we assume that each worker 
node can be assigned to solve its own subproblem D S P ~  exclusively. All computations were 
done in double precision arithmetic. 

5.1. Staircase constraints 
We first tested the proposed algorithm on problems of the form (5.1), in which matrix A 

has the staircase structure 

This type of problems often arise in multi-period planning and discrete-time dynamic control. 
Let the diagonal matrix D be symmetrically partitioned to conform with the column partition 
of A, i.e., 

Then, matrix M given by (1.1) is written as the block tri-diagonal matrix 

where 

with A1 = AQ Q+l = 0. When we can use as many worker nodes as the number Q of blocks, 
we simply determine Ge using the block diagonal part Mee of matrix M .  Otherwise, we set, 
for example, 

Since the block diagonal matrix G given by (3.5) does not differ so much from the block 
tri-diagonal matrix M of (5.3), we may expect that the proposed algorithm can effectively 
be applied to problems with staircase structure. 
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Table 1 : Characteristics of the test problems with staircase structure. 

Problem 
QP11 
QP12 
QP13 
QP14 
QP15 
QP16 
QP17 

^ The overlap of two consecutive blocks is about 10% in terms of the number of 
columns for problems QP11-QP13, and about 20% for problems QP14-QP17. 

Q 
4 
8 
16 
2 
4 
8 
16 

Now let A ? Rmqxnq denote the row block of matrix A such that 

Then a problem with staircase structure can be characterized by the number Q of blocks, 
the size ( m ,  nq) of each block and the size (m, n) of the whole matrix A. We generated test 
problems with various size, in which the ratio of m to n is fixed at 114, the size of row blocks 
Ay are identical and the number of non-zero elements in each matrix Aq is fixed a t  8192. The 
overlap of two consecutive blocks is either about 10% or about 20% in terms of the number 
of columns. The characteristics of the test problems are shown in Table 1. 

First of all, we made a preliminary experiment to verify the effects of the strategy based 
on (5.2). Test problem QP12 was used in this experiment. For comparison purposes, we 
also solved this test problem under the same termination criterion for inner iterations with 
the fixed tolerance $ = l o 7  for all i and k. Table 2 shows the performance of the two 
strategies when the number L of worker nodes is 2 and 8. Observe that the truncation 
strategy (5.2) for inner iterations increases the number of major iterations very little and, 
more importantly, reduces the total computation time significantly. 

We next examined the performance of the proposed algorithm under various choices of 
relaxation parameter w. In this experiment, test problems QP11-QP13 were solved using L 
worker nodes, where L varies from 2 to Q. The results are shown in Figure 2, in which both 
axes represent logarithmic scale. The symbol 0 in the figure indicates the total computation 

Each ~ l o c k t  
mq nq Density of An (%) 
128 554 11.55 
128 561 11.41 
128 564 11.35 
256 1138 2.812 
256 1204 2.658 
256 1241 2.579 
256 1264 2.538 

Table 2: Comparison of the truncation strategies for inner iterations. 

Total 
m n 

512 2048 
1024 4096 
2048 8192 
512 2048 
1024 4096 
2048 8192 
4096 16384 

Number of Iterations CPU 
Major / Inner set) 

19.2 / 124.0 30.74 

Number of Iterations CPU 
Major / Inner set) 
27.0 / 510.6 13.88 



Total time (sec) CO Total time (sec) a . .. 1000 r a 1 

Number L of worker nodes 

(a) Problem QP11 

Total time (sec) a 

2 4 8 
Number L of worker nodes 

(b) Problem QP12 

Number L of worker nodes 

(c) Problem QP13 

@ : Single P N  

- -  : CD = 0.6 

- -  : w = 0.8 

- : = 1.0 

- A  : CD = 1.2 

Figure 2: Performance of the proposed algorithm for problems with staircase structure under 
various choices of the relaxation parameter w. 
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Total time (sec) 

10 I 
2 4 8 16 

Problem size (Number Q of blocks) 

Figure 3: Performance of the proposed algorithm for problems QP 14-QP 17 with staircase 
structure. 

time in the case of L = 1 and UJ = 1.0, which means that problem DQP is not split into sub- 
problems and the whole problem is solved by the preconditioned conjugate gradient method 
(Procedure PCG) on a single PN. It is interesting to observe that the algorithm initially 
tends to converge faster as w increases, but it begins to slow down when w exceeds 1 .O, and 
eventually fails to converge when UJ becomes 1.4. 

Then some additional experiments were made to observe the behavior of the proposed 
algorithm for problems with various size. We solved problems QP14-QP17 by setting re- 
laxation parameter w = 1.0 . Figure 3 shows the total computation time for several choices 
of the number L of worker nodes. Note that, for problem QP17 with 16 blocks, the case 
L = 16 required more computation time than the case L = 8. To analyze this phenomenon, 
we measured the details of the computation time for problem QP17. Table 3 summarizes 

Table 3: Details of the computation time for problem QP17. 

1 Number L 1 Computation time (sec) 

worker nodes 
91.69 
53.81 
37.57 

16 46.66 

. . 

Calculating x̂  ̂ Busy 1 Communication 
(master) (the slowest worker) 

0.09 78.71 
(estimate) 

12.89 



the computation time to calculate x̂ at the master node and the busy time at  the slow- 
est worker node, together with the communication time estimated from thoqe data (see 
Figure 1). The table indicates that, when 16 worker nodes are used, the communication 
overhead between the master and worker nodes becomes relatively large in comparison with 
the computation time spent at each worker node executing Procedure PCG. 

5.2. Block angular constraints 
We also tested the proposed algorithm on problems of the form (5.1), in which matrix A 

has the block angular structure 

where A and A are matrices in mXnq and P x n 9 ,  respectively. A typical example of 
problems with block angular structure is a multi-commodity flow problem. Corresponding 
to the column partition of A, we may rewrite the diagonal matrix D as 

where D are n x n positive diagonal matrices. Then, the matrix M given by (1.1) is 
written as follows: 

where 
% = AqD^A7,  
- ^ q =  1 , - - ,Q ,  

M9 = A , D ~ ~ A ~ ,  (2- 1 , - - - , Q ,  
- Q 3 D-l^ 

MQ+l - Eq=l  q q q - 
When Q + 1 worker nodes are available, (3.5) naturally suggests the simple choice of matrix 
G such that 

G!= w-'Me, 1= I , - * -  7 L, 

where L = Q + 1. Otherwise, we set, for example, 
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Table 4: Characteristics of the test problems with block angular structure. 

Problem 

^ The number of non-zero elements in A is 4096 for problems QP21 and QP24, 
8192 for problems QP22 and QP25, and 16384 for problems QP23 and QP26. 

Q 
3 
7 
15 
3 
7 
15 

Now let A ? RSxn denote the coefficient matrix of the coupling constraints, i-e., 

We generated test problems with various size, in which m = m and n % for all q = 

1, - - - , Q, the ratio of m to is fixed a t  1/4 and the number of non-zero elements in each 
matrix A is fixed a t  8192. The characteristics of the test problems are shown in Table 4. 

The performance of the proposed algorithm under various choices of relaxation parameter 
w is examined. Figure 4 shows the results for problems QP21-QP23. The general feature of 
the results is similar to that for problems with staircase structure. Note that, when w > 1.4, 
the algorithm fails to solve all the test problems generated for any choice of L. 

We then solved problems QP24-QP26 to ascertain the effectiveness of the proposed 
algorithm for problems with various size. In this experiment, the relaxation parameter w is 
fixed at 1.0. Figure 5 shows the relationship between the computation time and the problem 
size measured in term of the number Q + 1 of blocks, for several choices of the number L of 
worker nodes. 

It  is well known that the concept of efficiency is useful to measure what is gained by 
parallel computation (see, for example, [I, p. 141 and [15, p. 651). We define the efficiency 
e of the proposed algorithm as follows: 

Each ~ l o c k t  
7% Density of An (%) 
128 512 12.5 
128 512 12.5 
128 512 12.5 
256 1024 3.125 
256 1024 3.125 
256 1024 3.125 

where T is the total computation time in the case of single PN, while T is the total com- 
putation time using p PN's. Since the algorithm is executed using L worker nodes and 
one master node, p is related to L by p = L + 1. Note that e may exceed 1, because T 
represents the computation time of the serial algorithm that does not utilize splitting but 
essentially applies Procedure PCG to problem DQP directly. Table 5 shows the efficiency of 
the proposed algorithm for problems QP24-QP26. It can be seen from the table that high 
efficiency is achieved, especially when the number of blocks is large. 

Tot a1 
m n 

896 1536 
1408 3584 
2432 7680 
1792 3072 
2816 7168 
4684 15360 

6. Conclusion 
We have presented a block-parallel modification of the conjugate gradient method for 

solving separable quadratic programming problems. As shown in the preceding sections, 
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To ta 1 time (sec) 

1 2 4 
Number L of worker nodes 

(a) Problem Q ~ 2 l t  

Total time (sec) 

Total time (sec) 

................................ - - - 

10 ' 
1 2 4 8 

Number L of worker nodes 

(b) Problem QP22 

Number L of worker nodes 

(c) Problem QP23 

0 : Single P N 

: a = 0.6 

t When u) = 1.2, the 
algorithm fails to 
solve problem QP21 
for any choice of L. 

Figure 4: Performance of the proposed algorithm for problems with block angular structure 
under the various choices of the relaxation parameter w.  
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Total time (sec) 

4 8 16 
Problem size (Number Q + 1 of blocks) 

Figure 5: Performance of the proposed algorithm for problems QP24-QP26 with block 
angular structure. 

the proposed algorithm can effectively be implemented on a parallel computer on which 
each processor can execute its own operations. The numerical results reported in Section 5 
indicate that the present approach is particularly effective when the problems to be solved 
have some block structure. In our experiments, the number of worker nodes was larger than 
that of decomposed subproblems, so that each worker node was in charge of one subproblem 
only. This is not an indispensable requirement, however. It is possible to implement the 
algorithm by assigning more than one subproblems to each worker node (see, e.g., [3]). 

The proposed algorithm is synchronous in the sense that each processor has to complete 
its conjugate gradient iterations before the algorithm proceeds to the next major iteration. 
Thus the performance of the algorithm could be seriously affected if the amounts of conjugate 

Table 5: Efficiency e,, of the proposed algorithm.* 

* For each problem, the number L of worker nodes varies from 2 to Q + 1. Note 
that p equals L + 1, because one master node is used besides L worker nodes. 
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gradient computations per major iteration significantly vary from one processor to another. 
De Leone and Mangasarian [6] have presented an asynchronous parallel SOR method for 
the linear complementarity problem. It is one of the interesting future topics to develop an 
asynchronous version of the algorithm proposed in this paper. 
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