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TWISTED ACTIONS OF CATEGORICAL GROUPS

SAIKAT CHATTERJEE, AMITABHA LAHIRI, AND AMBAR N. SENGUPTA

Abstract. We develop a theory of twisted actions of categorical groups using a notion
of semidirect product of categories. We work through numerous examples to demonstrate
the power of these notions. Turning to representations, which are actions that respect
vector space structures, we establish an analog of Schur’s lemma in this context. Keeping
new terminology to a minimum, we concentrate on examples exploring the essential new
notions introduced.

1. Introduction

A categorical group is comprised of a pair of groups, one of which serves as the set of
objects of a category and the other as the set of morphisms. Categorical groups reflect
symmetries of geometric structures that also have fruitful formulations in the language
of objects and morphisms. Such geometric structures are the subject of study in a large
and growing body of literature [Abbaspour and Wagemann, 2012, Baez, 2002, Baez and
Schreiber, 2007, Baez and Wise, 2012, Bartels, 2004, Chatterjee et al., 2010, Chatterjee et
al., 2014, Pfeiffer, 2003, Martins and Picken, 2010, Schreiber and Waldorf, 2007, Schreiber
and Waldorf, 2008, Viennot, 2012], to name a few. A natural direction of inquiry is the
theory of representations of these structures; works in this direction include [Baez et al.,
2012, Barrett and Mackaay, 2006, Crane and Sheppeard, 2003, Elgueta, 2007, Yetter,
2003]. However, the theory is at an early enough stage that even what should constitute
a representation of a categorical group is not definitively settled.

In this paper we proceed in a flexible way, focusing more on actions of categorical
groups and exploring numerous examples, many of which involve some vector space struc-
ture as well. We introduce a key procedure: forming a semidirect product of two given
categories using a certain twisting map and we present numerous examples of this con-
struction. We then explore actions of categorical groups that involve a twisting in the way
morphisms are composed. Again we work through several examples, devoting section 7
entirely to a detailed development of an example that is motivated by the physical context
of fields transforming under the Poincaré group. Finally, turning to the narrowest sense
of a representation of a categorical group on a categorical vector space, we prove results
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showing that such representations have very special properties that uniquely determine
them from their behavior on some subspaces.

A categorical group G, as we explain in greater detail in section 2, is comprised
of an object group Obj(G), a morphism group Mor(G), along with source and target
homomorphisms s, t : Mor(G) //Obj(G). Thus in Mor(G) there is both a multiplication
operation (k2, k1) 7→ k2k1 and a composition of morphisms (k′, k) 7→ k′ ◦k (when defined).
In our point of view an action of G on a category C should involve both an action of
Obj(G) on Obj(C) and an action of Mor(G) on Mor(C). Thus, in particular,

(k2k1)f = k2(k1f) (1.1)

for all k1, k2 ∈ Mor(G) and f ∈ Mor(C). One might further specify a behavior of the
compositions

(k2f2) ◦ (k1f1), (1.2)

for f1, f2 ∈ Mor(C). The simplest such specification would be to require that this be
equal to

(k2 ◦ k1)(f2 ◦ f1). (1.3)

A richer extension of this idea is to require that the composition (1.2) be equal to(
η(k2, f1) ◦ k1

)
(f2 ◦ f1), (1.4)

where η(k2, f1) reflects a twisting of k2 with respect to f1. Alternatively, one could require
that the twisting act on f2, with (1.2) being equal to

(k2 ◦ k1)
(
η(k1, f2) ◦ f1). (1.5)

We will explore the choices (1.3) and (1.4). The η-twist in (1.4) is easier to understand
when the k’s are written on the right:

(f2k2) ◦ (f1k1) = (f2 ◦ f1)
(
η(k2, f1) ◦ k1

)
, (1.6)

where the η-twist shows up as a price to pay for moving f1 to the left past k2, there being
no ‘price’ in the case (1.3). For consistency of conventions we write the k’s to the left
of the f ’s and then (1.6) becomes (1.4). This simple extension of (1.3) leads to some
remarkably rich examples.

We begin in section 2 with a summary of categorical groups, including some examples
of interest for us. In section 3 we introduce the notion of action of a categorical group
on a category (following up on the requirement (1.3) mentioned above); no vector space
structure is involved in this. We show how a double category arises from such an action.
In section 4 we use crossed modules, which are more concrete renditions of categorical
groups, to explore an example of an action arising from a traditional representation of the
object group on a vector space. Next, in section 5, we introduce a central notion of this
work: the semidirect product of two categories obtained by using a map η (motivated by
(1.4) above). We present several examples in detail. In section 6 we turn to the study of
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twisted actions, these being actions that satisfy the η-twist condition (1.4) for the behavior
of composition; we prove a double category result. Section 7 is devoted to a detailed study
of a complex example that involves more than one twist and is motivated by the context
of fields transforming under a symmetry group that is a semidirect product (such as
the Poincaré group). In section 8 we study twisted representations, by which we mean
twisted actions on vector categories, these being categories that involve some vector space
structure and linearity; we introduce a notion of irreducibility for such representations in
this context and prove an analog of Schur’s Lemma (Theorem 8.1). Finally, in section 9
we study representations on categorical vector spaces, these being the vector space analogs
of categorical groups, and show that they have very special properties.

In the course of developing our theory we obtain several categories, constructed from
familiar settings involving groups or function spaces, that have interesting structure and
where even the fact that they form categories is sometimes unexpected. We have kept
new terminology to a minimum, focusing on the essential new ideas which we develop
through detailed examples.

2. Categorical groups in summary

In this section we summarize some essential facts about categorical groups. The reader
may consult our earlier work [Chatterjee et al., 2014, sec. 4] for a more systematic
presentation that includes proofs. Other works include [Awody, 2006, Baez and Schreiber,
2007, Barrett and Mackaay, 2006, Bartels, 2004, Forrester-Barker, 2002, Kamps et al.,
1982, Kelly, 1982, Mac Lane 1971, Porter, 1981, Whitehead, 1949].

By a categorical group we mean a category K along with a bifunctor

⊗ : K×K //K (2.1)

such that both Obj(K) and Mor(K) are groups under the operation ⊗ (on objects and on
morphisms, respectively). The term strict 2-group is also widely used instead of categorical
group.

Sometimes we shall write ab instead of a ⊗ b. The functor ⊗ carries the identity
morphism (1a, 1b), where 1x : x // x denotes the identity morphism at x, to the identity
morphism 1ab:

1a1b = 1ab.

Taking a to be the identity element e in Obj(K), it follows that

1e is the identity element in the group Mor(K). (2.2)

As a very special case of this we see that if Obj(K) and Mor(K) are additive abelian
groups then

10 = 0, (2.3)

where 0 on the left is in Obj(V) and the 0 on the right is in Mor(V).
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The functoriality of ⊗ implies the ‘exchange law’:

(g′f ′) ◦ (gf) = (g′ ◦ g)(f ′ ◦ f) (2.4)

for all f, f ′, g, g′ ∈ Mor(K) for which the composites g′ ◦ g and f ′ ◦ f are defined.
Furthermore, for any morphisms f : a // b and h : b // c in K, the composition h ◦ f

can be expressed in terms of the product operation (written as juxtaposition) in K:

h ◦ f = f1b−1h = h1b−1f. (2.5)

For a proof see, for example, [Chatterjee et al., 2014, Prop. 4.1]. In particular,

hk = h ◦ k = kh if t(k) = s(h) = e. (2.6)

There is a useful alternative formulation [Chatterjee et al., 2014, Prop. 4.2] of the
notion of categorical group. If K, with operation ⊗, is a categorical group then the
source and target maps

s, t : Mor(K) //Obj(K)

are group homomorphisms, and so is the identity-assigning map

Obj(K) //Mor(K) : x 7→ 1x.

Conversely, if K is a category for which both Obj(K) and Mor(K) are groups, s, t, and
x 7→ 1x are homomorphisms, and the exchange law (2.4) holds then K is a categorical
group.

An even more concrete formulation is obtained by realizing that for a categorical group
G, the morphism group Mor(G) is isomorphic to a semidirect product:

Mor(G) ' H oα G : φ 7→
(
φ1s(φ)−1 , s(φ)

)
, (2.7)

where
G = Obj(G) and H = ker (s : Mor(G) //Obj(G)), (2.8)

and
α : G // Aut(H)

is the homomorphism given by

α(g)(h) = 1gh1g−1 . (2.9)

The target map t : Mor(G) //Obj(G) is given by

t(h, g) = τ(h)g, (2.10)

where τ : H // G is a homomorphism, corresponding to the restriction of t to ker s.
Multiplication in Mor(G) corresponds to the semidirect product group product on HoαG
given by:

(h2, g2)(h1, g1) =
(
h2α(g2)(h1), g2g1

)
(2.11)



TWISTED ACTIONS OF CATEGORICAL GROUPS 219

and composition corresponds to the operation

(h′, g′) ◦ (h, g) = (h′h, g), if g′ = τ(h)g. (2.12)

The homomorphisms α and
τ : H //G : φ 7→ t(φ),

satisfy the Peiffer identities [Peiffer, 1949]:

τ
(
α(g)h

)
= gτ(h)g−1 (2.13)

α
(
τ(h)

)
(h′) = hh′h−1

for all g ∈ G and h ∈ H. These conditions ensure that the crucial exchange law (2.4)
holds. A system

(G,H, α, τ),

where G and H are groups, α : G // Aut(H) and τ : H // G are homomorphisms
satisfying (2.13), is called a crossed module [Whitehead, 1949, sec 2.9] and [Peiffer, 1949].
Conversely, a crossed module (G,H, α, τ) gives rise to a categorical group G with

Obj(G) = G and Mor(G) = H oα G, (2.14)

and
s(h, g) = g and t(h, g) = τ(h)g for all h ∈ H and g ∈ G. (2.15)

When working with Lie groups, it is natural to require that the source, targets, and
identity-assigning maps are smooth. Thus a categorical Lie group is a category K along
with a functor ⊗ as above, such that Mor(K) and Obj(K) are Lie groups, and the maps
s, t, and x 7→ 1x are smooth homomorphisms. The corresponding crossed module involves
Lie groups and smooth homomorphisms.

Example CG1. For any group K we can construct a categorical group K0 by taking
K as the object set and requiring there be a unique morphism a // b for every a, b ∈ K.
At the other extreme we have the discrete categorical group Kd whose object set is K
but whose morphisms are just the identity morphisms.

Example CG2. Let H be an abelian group, G any group, and α : G // Aut(H)
is a homomorphism. Then a categorical group is obtained using the crossed module
(G,H, α, τ) where τ : H // G : v 7→ e is the constant map carrying all elements of H
to the identity element of G. A useful if somewhat trivial case is when G is the trivial
group. A case of greater interest is obtained from the group of affine automorphisms of
a vector space V . For this we take G to be GL(V ), the usual group of invertible linear
maps V // V , and H to be V itself, viewed as the group of translations on V . We take

α : G = GL(V ) // Aut(V )

to be the inclusion map in the sense that for every g ∈ G we take α(g) : V // V to be
the mapping g itself (with V being viewed just as an abelian group under addition, the
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elements of Aut(V ) are the addition-preserving bijections V // V and so, for a general
field of scalars, an element of Aut(V ) might not preserve multiplication by scalars). Then
the group of morphisms of this categorical group is

V oα GL(V ),

which is the group of affine automorphisms of the vector space V . In the case where the
field is R or C, and V is equipped with a metric, we also have the categorical group for
which H = V and G is the orthogonal or unitary group for V . More generally, let R be a
representation of a group G on a vector space V . Taking α : G //Aut(V ) to be given by
R we obtain a categorical group whose object group is G and morphism group is V oRG.
Since τ is trivial, the source and target maps coincide:

s(h, g) = t(h, g) = g. (2.16)

We note that the group product on the morphisms is given by

(v2, g2)(v1, g1) =
(
v2 + g2v1, g2g1) (2.17)

which is the same as composition of the affine transforms of V given by x 7→ giv + vi (in
other words, the group product on the morphisms is the same as the group product in
Aut(V )). Categorical groups of this type have been used widely in the literature; see for
example [Baez et al., 2012, Crane and Sheppeard, 2003, Pfeiffer, 2003].

3. Actions and Double Categories

A representation of a group G on a finite-dimensional vector space V is given by a mapping

ρ : K × V −→ V : (k, v) 7→ ρ(k, v) = ρ(k)v,

such that each ρ(k) ∈ End(V ), and ρ(kk′) = ρ(k)ρ(k′) for all k, k′ ∈ K. On what
type of object should a categorical group be represented? A natural choice would be a
categorical vector space (defined analogously to a categorical group). We will study such
representations in section 9 and show that they have very special features.

Let us note also a more abstract view of representations. Instead of the group K let
us consider the category G(K), which has just one object and the morphisms are the
elements of the group K, with composition being given by the binary group operation.
Instead of the vector space V let us consider a category Vec(V ) which, again, has just
one object, and whose morphisms are the endomorphisms of V , with composition being
given by the usual composition of endomorphisms. Then the representation ρ of K on V
is equally well described by a functor

G(K) //Vec(V ).
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An extension of this point of view leads to a notion of representations of 2-groups on
2-categories; for this see, for example, [Baez et al., 2012]. Our approach will be quite
different.

By an action of a categorical group G on a category V we mean a functor

ρ : G×V −→ V, (3.1)

such that
ρ (k′, ρ(k, f)) = ρ(k′k, f) (3.2)

for all k, k′ ∈ Mor(G) and all f ∈ Mor(V), and

ρ(1e, f) = f (3.3)

for all f ∈ Mor(V), with 1e ∈ Mor(G) being the identity morphism of the identity element
e ∈ Obj(G). We will often write the effect of applying ρ simply by juxtaposition:

ax
def
= ρ(a, x). (3.4)

Let us now unravel the details of the structure that lies behind the compact description
of an action we have just seen.

Using the fact that ρ is a functor we have

ρ (s(1e), s(1v)) = s (ρ(1e, 1v)) = s(1v) for all v ∈ Obj(V),

which means
ρ(e, v) = v for all v ∈ Obj(V). (3.5)

Taking k′ = 1a, k = 1b and f = 1v, where a, b ∈ Obj(G) and v ∈ Obj(V), in (3.2) we
have

ρ (1a, ρ(1b, 1v)) = ρ(1ab, 1v),

and then considering the sources of both sides we conclude that

ρ (a, ρ(b, v)) = ρ(ab, v). (3.6)

Thus the conditions on ρ imply that ρ gives an action of the group Mor(G) on the set
Mor(V) and also of the group Obj(G) on the set Obj(V).

The conditions on ρ go well beyond simply the requirement that it specify actions
of the groups Obj(G) and Mor(G). That ρ is a functor also says something about the
interaction of compositions of morphisms:

ρ(k2 ◦ k1, f2 ◦ f1) = ρ(k2, f2) ◦ ρ(k1, f1) (3.7)

for all k2, k1 ∈ Mor(G) for which the composition k2◦k1 is defined and all f2, f1 ∈ Mor(V)
for which f2 ◦ f1 is defined. Stated in simpler notation this reads

(k2 ◦ k1)(f2 ◦ f1) = (k2f2) ◦ (k1f1). (3.8)
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A special case of interest is when V is a category whose object set is equipped with a
vector space structure. In this case we might be interested in the case where the map

ρ(a, ·) : Obj(V) //Obj(V) : v 7→ ρ(a, v)

is linear for each a ∈ Obj(G). When Mor(V) is also equipped with a vector space
structure the corresponding condition would be linearity of

ρ(k, ·) : Mor(V) //Mor(V) : f 7→ ρ(k, f)

for all k ∈ Mor(G). Needless to say other structures may also be incorporated; for
example, if Obj(G) is a Lie group and Obj(V) is a Hilbert space we might require that
ρ be continuous.
Example RG1. Let G be any group, and let G0 be the categorical group with object set
G, with a unique morphism a // b, written as (b, a), for every a, b ∈ G. Let V be a vector
space and V0 the category whose object set is V , with a unique arrow from v1 to v2, for
every v1, v2 ∈ V . The law of composition is the natural one: (v3, v2) ◦ (v2, v1) = (v3, v1).
We note that Mor

(
V
)
' V 2 is a vector space. Now if ρ is a representation of G on V ,

then it defines a representation of G0 on V0 by

(a, v) 7→ ρ(a, v) (3.9)(
(b, a); (v2, v1)

)
7→

(
ρ(b, v2), ρ(a, v1)

)
,

for any a, b ∈ G and v1, v2 ∈ V .
Our objective in the remainder of this section is to show that an action of a categorical

group gives a ‘double category’ over V. Terminology and description of this notion,
originally introduced by Ehresmann, varies in the literature; a very compact, if somewhat
opaque, definition is provided in [Mac Lane 1971, p. 44]: a double category is a set that
is the set of morphisms of two categories such that the two composition laws obey an
exchange law of the form given below in (3.13).

By a double category C(2) over a category C we mean a category for which:

(a) the objects of C(2) are the morphisms of C:

Obj(C(2)) = Mor(C);

(b) the morphisms of C(2) are the arrows of a second category Ch
(2):

Mor(C(2)) = Mor(Ch
(2));

and

(c) the composition operation in the category Ch
(2) and the composition operation in

the category C(2) satisfy the conditions (h1) and (h2) stated below.
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Before stating conditions (h1) and (h2) we adopt some notational and terminological
conventions:

(i) a morphism of C(2) will be displayed as a ‘vertical’ arrow

u1 s(F )

F
��

// u2

u′1 t(F ) // u′2,

(3.10)

where the source s(F ) and the target t(F ), both being objects of C(2), are morphisms
of C;

(ii) the composition of morphisms in C(2) will be denoted

(G,F ) 7→ G ◦ F

and may be called vertical composition in light of the display convention in (i);

(iii) the composition of morphisms in Ch
(2) will be called horizontal composition and

denoted
(G,F ) 7→ G ◦h F.

The two composition laws, vertical and horizontal, are required to satisfy the following
conditions:

(h1) The horizontal composite G ◦h F is defined if and only if both the composites
s(G) ◦ s(F ) and t(G) ◦ t(F ) are defined in Mor(C) and then the source and target
of G ◦h F in C(2) are:

s(G ◦h F ) = s(G) ◦ s(F ) and t(G ◦h F ) = t(G) ◦ t(F ), (3.11)

as illustrated by the diagram:

u1 s(F )

F
��

// u2 s(G)

G
��

// u3

=

u1 s(G ◦h F )

G◦hF
��

// u3

u′1 t(F ) // u′2 t(G) // u′3 u′1 t(G ◦h F ) // u′3
(3.12)

(h2) The exchange law

(G′ ◦G) ◦h (F ′ ◦ F ) = (G′ ◦h F ′) ◦ (G ◦h F ) (3.13)
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holds in the diagram

u1 f

F
��

// u2 g

G
��

// u3

u′1 f ′

F ′

��

// u′2 g′

G′

��

// u′3

u′′1 f ′′ // u′′2 g′′ // u′′3

(3.14)

for all morphisms F , G, F ′, and G′ in C(2) for which the sources and targets are
related as illustrated.

3.1. Proposition. An action ρ of a categorical group G on a category V yields a double
category over V whose morphisms are the elements

(k, f) ∈ Mor(G)×Mor(V),

with source and target being given by:

s(k, f) = f and t(k, f) = ρ(k)f. (3.15)

Composition of morphisms is given by

(k′, f ′) ◦ (k, f) = (k′k, f), (3.16)

whenever f ′ = kf , and horizontal composition is given by

(k2, f2) ◦h (k1, f1) = (k2 ◦ k1, f2 ◦ f1), (3.17)

whenever the compositions on the right are defined.

Proof. The horizontal composition specified by (3.17) is a genuine composition law for
morphisms in the sense that it is the composition law in the product category G × V,
where source and target maps given by

sh(k, f) =
(
s(k), s(f)

)
and th(k, f) =

(
t(k), t(f)

)
.

It is readily checked that the composition (3.16) has the correct behavior with regard
to source and target maps, and is associative. Furthermore, for each f ∈ Mor(V), the
element (1e, f) is the identity morphism f //f , where 1e ∈ Mor(G) is the identity element
in the morphism group.

It remains only to verify the exchange law. On one hand we have(
(k′2, f

′
2) ◦ (k′1, f

′
1)
)
◦h
(
(k2, f2) ◦ (k1, f1)

)
(3.18)

= (k′2k
′
1, f

′
1) ◦h (k2k1, f1)

=
(
(k′2k

′
1) ◦ (k2k1), f

′
1 ◦ f1

)
=
(
(k′2 ◦ k2)(k′1 ◦ k1), f ′1 ◦ f1

)
(using the exchange law (2.4)),
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and on the other(
(k′2, f

′
2) ◦h (k2, f2)

)
◦
(
(k′1, f

′
1) ◦h (k1, f1)

)
= (k′2 ◦ k2, f ′2 ◦ f2) ◦ (k′1 ◦ k1, f ′1 ◦ f1)
=
(
(k′2 ◦ k2)(k′1 ◦ k1), f ′1 ◦ f1

)
,

in agreement with the last line in (3.18).

4. Crossed modules and representations

In this section we will use the crossed module (G,H, α, τ) structure for a categorical
group G (as discussed for (2.8)) to construct an action of a categorical group G from a
representation of the underlying object group G = Obj(G).

Let V be a vector space and End(V ) be the set of endomorphisms of V . Let us define
a category V, whose object set is V and a morphism is given by an ordered pair (f, v),
where f ∈ End(V ) and v ∈ V . Source and targets are given by

s(f, v) = v and t(f, v) = f(v), (4.1)

and composition of morphisms is given by

(f ′, v′) ◦ (f, v) = (f ′ ◦ f, v), (4.2)

defined when v′ = f(v).
Let D be a representation of G on a vector space V :

D : G // End(V ) : g 7→ Dg.

Composing with the homomorphism τ : H −→ G gives a representation T of H on V ,
given by

Th = Dτ(h), (4.3)

for every h ∈ H. Now we construct a functor

ρ : G×V //V.

On objects it is given by
ρ(g)u = Dg(u).

On morphisms it is given by

ρ : Mor
(
G
)
×Mor

(
V
)
−→ Mor

(
V
)

(4.4)(
(h, g), (u, f)

)
7→

(
ThDgfD−1g , Dg(u)

)
=
(
Dg′fD−1g , Dgu

)
,
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for all g ∈ G, h ∈ H, u ∈ V and f ∈ End(V ), with g′ = τ(h)g = t(h, g); we have used

ThDg = Dg′ . (4.5)

Diagrammatically put, the action of ρ(h, g) on (u, f) may be described by

u1 f

ρ(h,g)
��

// u2

Dgu1 Dg′fD−1g // Dg′u2

(4.6)

We show now that ρ is indeed a functor and provides an action of G.

4.1. Proposition. Let G be the categorical group associated with a crossed module
(G,H, α, τ). Let V be the category with Obj

(
V
)

= V , a vector space, and for which
a morphism u1 // u2 is given by (u1, f), where f ∈ End(V ) and u2 = f(u1). The com-
position is as in (4.2). Let D be a representation of G on V . Then (g, u) 7→ Dgu and ρ
as defined in (4.4) give an action of G on V.

Proof. For notational simplicity we shall write a · x for ρ(a)x, where a and x may be
objects or morphisms. Moreover, composition of endomorphisms of V will also be written
as juxtaposition, as already done in (4.4). The arguments below can be understood by
consulting the diagram:

u1 f1

(h1,g1)
��

// u2 f2

(h2,g2)
��

// u3

Dg1u1 Dg2f1D−1g1 // Dg2u2 Dg3f2D−1g2 // Dg3u3

(4.7)

Using (2.11), (2.12) and (4.2) it is a straightforward verification that, whenever well
defined,(

(h2, g2) ◦ (h1, g1)
)
·
(
(f2, u2) ◦ (f1, u1)

)
= (h2h1, g1) · (f2 ◦ f1, u1) from (2.12) and (4.2)

=
(
Th2h1Dg1f2f1D−1g1 ,Dg1(u1)

)
, by (4.4),

which agrees with(
(h2, g2) · (f2, u2)

)
◦
(
(h1, g1) · (u1, f1)

)
=

(
Th2Dg2f2D−1g2 ,Dg2u2

)
◦
(
Th1Dg1f1D−1g1 ,Dg1u1

)
=

(
Th2Dg2f2D−1g2 Th1Dg1f1D

−1
g1
,Dg1u1

)
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because

Th2Dg2f2D−1g2 Th1Dg1f1D
−1
g1

= Th2Dg2f2D−1g2 Dτ(h1)g1f1D
−1
g1

= Th2Dτ(h1)g1f2f1D−1g1
= Th2h1Dg1f2f1D−1g1 .

Hence ρ is a functor. Next, we check that ρ is a representation. Consider (h1, g1), (h2, g2) ∈
H ×G that are composable as elements of Mor(G); this means

g2 = τ(h1)g1.

Then

(
(h2, g2)(h1, g1)

)
· (f, u) =

(
h2α(g2)(h1), g2g1

)
· (f, u)

=
(
Th2α(g2)(h1)Dg2g1fD−1g2g1 , Dg2g1u

)
which agrees with

(h2, g2) ·
[
(h1, g1) · (f, u)

]
= (h2, g2) ·

(
Th1Dg1fD−1g1 , Dg1u

)
=

(
Th2Dg2Th1Dg1fD−1g1 D

−1
g2
, Dg2Dg1u

)
,

on using the Peiffer identity τ(α(g2)(h1)) = g2τ(h1)g
−1
2 noted earlier in (2.13).

5. Twists and semidirect products of categories

In this section we introduce the notion of semidirect product or η-twisted product of cate-
gories. It should be noted here that the namesake of semidirect product of categories was
introduced in [Steinberg, 1999]. However our definition of semidirect product is different
both in approach and motivation. Our primary motivation comes from the discussion in
the Introduction in the context of (1.4).

Let A and B be categories. Let

η : Mor
(
A
)
×Mor

(
B
)
−→ Mor

(
A
)

be a map satisfying the following conditions:

1. For any k ∈ Hom(a1, a2) and f ∈ Hom(b1, b2) ,

η(k, f) ∈ Hom(a1, a2), (5.1)

where a1, a2 ∈ Obj
(
A
)
, b1, b2 ∈ Obj

(
B
)
.
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2. The map η behaves as a right action: for any k ∈ Mor
(
A
)

and composable f2, f1 ∈
Mor

(
B
)
:

η
(
k, f2 ◦ f1

)
= η

(
η(k, f2), f1

)
(5.2)

η(k, 1b) = k

where 1b is the identity morphism b // b for any b ∈ Obj(B).

3. For any f ∈ Mor
(
B
)

and composable k1, k2 ∈ Mor
(
A
)

η
(
k2 ◦ k1, f

)
= η

(
k2, f

)
◦ η
(
k1, f

)
(5.3)

η(1a, f) = 1a

for every object a ∈ Obj(A).

5.1. Proposition. Let A and B be categories and η : Mor
(
A
)
×Mor

(
B
)
−→ Mor

(
A
)

satisfy conditions 1− 3 listed above. Then η specifies a category A oη B that has the
following description:

Obj(A oη B) := Obj(A)×Obj(B) (5.4)

Mor(A oη B) := Mor(A)×Mor(B), (5.5)

target and source maps are the obvious ones, and the composition law is given by

(k2, f2) ◦η (k1, f1) :=
(
η(k2, f1) ◦ k1, f2 ◦ f1

)
. (5.6)

We call A oη B the semidirect product of the categories A and B with respect to η.
In the special case η : (k, f) 7→ k the semi-direct product reduces to the ordinary (direct)
product.

Proof. Condition (5.1) ensures that composition in the right hand side of (5.6) is well
defined. To verify associativity, consider composable morphisms (k3, f3), (k2, f2) and
(k1, f1) in A oη B; then(

(k3, f3) ◦η (k2, f2)
)
◦η (k1, f1) =

(
η(k3, f2) ◦ k2, f3 ◦ f2

)
◦η (k1, f1) (5.7)

=
(
η
(
η(k3, f2) ◦ k2, f1

)
◦ k1, f3 ◦ f2 ◦ f1

)
and

(k3, f3) ◦η
(

(k2, f2) ◦η (k1, f1)
)

= (k3, f3) ◦η
(
η(k2, f1) ◦ k1, f2 ◦ f1

)
=

(
η
(
k3, f2 ◦ f1

)
◦ η(k2, f1) ◦ k1, f3 ◦ f2 ◦ f1,

)
.

Conditions (5.2) and (5.3) imply that the right hand sides of (5.7) and (5.8) are equal.
These conditions also clearly imply that (1a, 1b) : (a, b) // (a, b) is the identity morphism
associated with (a, b) ∈ Obj

(
A×B

)
, where a ∈ Obj

(
A
)

and b ∈ Obj
(
B
)
.
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Example SD1. A homomorphism α : G2 −→ Aut(G1) : b 7→ αb, where G1 and G2

are groups, specifies a semidirect product group G1 oα G2 given by the group product

(a2, b2)(a1, b1) =
(
a2αb2(a1), b2b1

)
,

for any a1, a2 ∈ G1, b1, b2 ∈ G2. Let G1 be the usual single-object category associated with
the group G1, and G2 be likewise for G2; in particular, Mor(Gj) = Gj. Then G1 oα G2

naturally defines the semidirect product category G1 oηα G2, where

ηα : G1 ×G2
//G1 : (a, b) 7→ αb(a).

Conversely, given a semidirect product between two single object categories we recover
the semidirect product of groups.

Example SD2. Let us again consider the crossed module (G,H, α, τ) and the cor-
responding categorical group G. Suppose morphisms (h, g), (h′, g) have the same source
and target elements. Thus τ(h)g = τ(h′)g; hence h and h′ must be related as h′ = ah,
for some a ∈ ker (τ). Now let V be a vector space. Define a single object category C(V ),
the single object being V and a morphism of C(V ) being any element of Aut(V ), the set
of all invertible endomorphisms of V ; thus:

Obj
(
C(V )

)
= {V }, Mor

(
C(V )

)
= Aut(V ).

Let µ : Aut(V ) −→ Ker(τ) ⊂ H be a homomorphism. Then we obtain a homomorphism
Aut(V ) −→ Aut(H) given by conjugation(

µ(f)
)
(h) := µ(f)−1hµ(f) := µ(h, f),

where µ(f) ∈ Ker(τ). We will now define a semidirect product between the categories G
and C(V ). Define a map

η : Mor
(
G
)
×Mor

(
C(V )

)
−→ Mor

(
G
)

given by (
(h, g); f

)
7→
(
µ(h, f), g

)
∈ H oα G ' Mor(G),

where g ∈ G, h ∈ H and f ∈ Mor
(
C(V )

)
= Aut(V ). Both

(
µ(h, f), g

)
and (h, g) have

source g; they also have a common target:

τ (µ(h, f)) g = τ
(
µ(f)−1

)
τ(h)τ

(
µ(f)

)
g = τ(h)g

because µ(f) is assumed to be in ker τ . Next we check that

η
(
(h, g); f2 ◦ f1

)
=
(
µ(f2f1)

−1hµ(f2f1), g
)

agrees with

η
(
η
(
(h, g); f2

)
, f1

)
= η

((
µ(f2)

−1hµ(f2), g
)
; f1

)
(5.8)

=
(
µ(f1)

−1µ(f2)
−1hµ(f2)µ(f1), g

)
,
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and, with g′ = τ(h)g, we have

η
(
(h′, g′) ◦ (h, g); f

)
= η

(
(h′h, g); f

)
(using (2.12)) (5.9)

=
(
µ(f)−1h′hµ(f), g

)
= η

(
(h′, g′); f

)
◦ η
(
(h, g); f

)
.

Hence η satisfies conditions (5.1)–(5.3). By Proposition 5.1 it defines a semidirect
product category G oη C(V ). The composition, stated explicitly, is(

(h2, g2); f2
)
◦η
(
(h1, g1); f1

)
=

(
η
(
(h2, g2), f1

)
◦ (h1, g1); f2 ◦ f1

)
(5.10)

=
((
µ(f1)

−1h2µ(f1)h1, g1
)
; f2 ◦ f1

)
.

Example VGG. Let α : G // End(V ) be a representation of a group G on a vector
space V over some field. Then, with V viewed as an additive group, we have a crossed
module

(G, V, α, τ),

where the target map τ is the constant map τ : V //G : v 7→ e. We have discussed this
in Example CG2 in section 2. The object group of this categorical group is G and the
morphism group is the semi-direct product V oα G. There is another example we can
construct out of this. Consider the category V, whose object set is the one-element set
{V } and whose morphism set is V , with composition being given by addition of vectors.
Next consider the categorical group G0, whose object group is G and a unique morphism
(b, a) goes from each (source) a ∈ G to each (target) b ∈ G. Consider next the map

η : V × (G×G) // V :
(
v, (g2, g1)

)
7→ α(g1g

−1
2 )v = g1g

−1
2 v.

We write α(g)w as gw, and verify that

η
(
η
(
v, (g3, g2)

)
, (g2, g1)

)
= η

(
g2g
−1
3 v, (g2, g1)

)
= g1g

−1
2 g2g

−1
3 v = g1g

−1
3 v

= η
(
v, (g3, g2) ◦ (g2, g1)

)
and

η
(
v′, (g2, g1)

)
◦ η
(
v, (g2, g1)

)
= g2g

−1
1 v′ + g2g

−1
1 v

= g2g
−1
1 (v′ + v)

= η
(
v′ ◦ v, (g2, g1)

)
,
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for all g1, g2, g3 ∈ G and all v, v′ ∈ V . Moreover,

η
(
v, (g, g)

)
= v

η
(
0, (g2, g1)

)
= 0

for all v ∈ V and all g, g1, g2 ∈ G. Thus η satisfies the conditions (5.1), (5.2),(5.3). The
composition law of morphisms for the semidirect product category V oη G0 is

(
w, (g3, g2)

)
◦
(
v, (g2, g1)

)
=

(
η
(
w, (g2, g1)

)
+ v, (g3, g1)

)
(5.11)

=
(
g1g
−1
2 w + v, (g3, g1)

)
.

Example 1D. Let G be a group, α : G // End(H) a representation on a finite
dimensional complex vector space H, and λ0 a one-dimensional representation of H; we
write α(g)h simply as gh. Let G be the categorical group whose object group is G, the
morphism group is H ×α G, source and targets are given by

s(h, g) = t(h, g) = g

and composition by
(h2, g) ◦ (h1, g) = (h1 + h2, g). (5.12)

Consider
η0 : V × (H oα G) // V : (v;h, g) 7→ λ0(g

−1h)v. (5.13)

We note that η0(0;h, g) = 0 and η0(v; 0, e) = v. Working with g2 = g1,

η0
(
η0(v;h2, g2); (h1, g1)

)
= η0

(
λ0(g

−1
2 h2)v;h1, g1

)
= λ0(g

−1
1 h1)λ0(g

−1
2 h2)v

= λ0
(
g−11 (h1 + h2)

)
v

(using g1 = g2)

= η0
(
v; (h2, g2) ◦ (h1, g1)

)
and

η0(v2;h, g) ◦ η0
(
v1;h, g

)
= λ0(g

−1h)v2 + λ0(g
−1h)v1

= λ0(g
−1h)(v2 + v1)

= η0(v2 ◦ v1;h, g).

Thus η0 specifies a semidirect product Voη0 G, where V is the category with one object
and with morphism group being the additive group of V .

It has been pointed out to us by the referee that in the preceding example λ0 need not
be 1-dimensional.
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6. Semidirect products and twisted actions

In this section we develop a notion of a ‘twisted action’ of a categorical group on a category,
the twist arising from an η-map as discussed in the preceding section.

Let V be a category, G a categorical group, and suppose

η : Mor
(
G
)
×Mor

(
V
)
−→ Mor

(
G
)

satisfies conditions (5.1)–(5.3). By Proposition 5.1 there is a semidirect product category
G oη V. The composition law for morphisms is

(k2, f2) ◦η (k1, f1) = (η(k2, f1) ◦ k1, f2 ◦ f1) (6.1)

whenever the right side is well-defined. In this section we will assume, furthermore, that

η(k1a, f) = η(k, f)1a (6.2)

η(1ck, f) = 1cη(k, f)

for all k ∈ Mor(G), a, c ∈ Obj(G), and f ∈ Mor(V). Then for any k1 : a // b and
k2 : c // d in Mor(G) and any f ∈ Mor(V),

η(k2k1, f) = η ((k2 ◦ 1c)(1b ◦ k1), f) (6.3)

= η ((k21b) ◦ (1ck1), f)

= η(k21b, f) ◦ η(1ck1, f) (using (5.3))

= [η(k2, f)1b] ◦ [1cη(k1, f)]

= [η(k2, f) ◦ 1c][1b ◦ η(k1, f)]

= η(k2, f)η(k1, f).

Thus η respects not only the composition law in Mor(G) but also the group product
operation.

By an action of G associated to η, or an η-twisted action of G, we mean a functor

ρ : G oη V −→ V (6.4)

for which
ρ(1e, f) = f (6.5)

for all f ∈ Mor(V), with e being the identity element in Obj(G), and

ρ (k2, ρ(k1, f)) = ρ(k2k1, f) (6.6)

for all k1, k2 ∈ Mor(G) and f ∈ Mor(V). As seen earlier in the context of (3.5) and (3.6)
we then have

ρ(e, v) = v

ρ (a, ρ(b, v)) = ρ(ab, v)
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for all a, b ∈ Obj(G) and all v ∈ Mor(V).
The key new idea built into this notion is encoded in the requirement that ρ be also a

functor; this implies that

ρ(k2, f2) ◦ ρ(k1, f1) = ρ (η(k2, f1) ◦ k1, f2 ◦ f1) (6.7)

for all k1, k2 ∈ Mor(G), and f1, f2 ∈ Mor(V) for which the composites k2 ◦ k1 and f2 ◦ f1
are defined. Dropping the explicit reference to ρ, this becomes:

(k2 · f2) ◦ (k1 · f1) =
(
η(k2, f1) ◦ k1

)
·
(
f2 ◦ f1

)
, (6.8)

where a · x means ρ(a, x).
For the special case η = Pr1 : (k, φ) 7→ k we recover actions as defined in (3.1. The

distinction between this simplest case and the general semidirect product is expressed in
the functoriality of ρ, as explicitly given through (6.7).

The following is the analog of Proposition 3.1:

6.1. Proposition. Suppose ρ : G oη V //V is an action associated to η, where G is
a categorical group, V is a category, η satisfies the relations (6.2) as well as

η(k, k′f) = η(k, f) (6.9)

for all k, k′ ∈ Mor(G) and all f ∈ Mor(V). Then there is a double category over V whose
arrows are the elements (k, f) ∈ Mor(G)×Mor(V), with source and target given by

s(k, f) = f and t(k, f) = ρ(k, f), (6.10)

composition given by
(k′, f ′) ◦ (k, f) = (k′k, f), (6.11)

whenever f ′ = ρ(k′)f , and horizontal composition given by the semidirect product compo-
sition

(k2, f2) ◦h (k1, f1) = (k2, f2) ◦η (k1, f1) (6.12)

whenever the composition on the right is defined.

We note that ◦h is a genuine composition law in a category, and source and target
maps in this category are given by

sh(k, f) =
(
s(k), s(f)

)
and th(k, f) =

(
t(k), t(f)

)
,

as in (3.1). We shall denote the double category specified in this Proposition by

∆η
ρ(V).

The relation (6.9) expresses an invariance of η with respect to ρ.
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Proof. First let us check that the source and target of horizontal composition ◦h behave
correctly. We have

sh[(k2, f2) ◦h (k1, f1)] = sh (η(k2, f1) ◦ k1, f2 ◦ f1)
=

(
s(k1), s(f1)

)
= sh(k1, f1)

and

th
[
(k2, f2) ◦h (k1, f1)

]
= th (η(k2, f1) ◦ k1, f2 ◦ f1)

=
(
t
(
η(k2, f1

)
◦ k1

)
, t(f2 ◦ f1)

)
=

(
t(k2), t(f2)

)
= th(k2, f2).

The source and target maps for the composition law ◦ also behave correctly as we now
verify. We have

s[(k′, f ′) ◦ (k, f)] = s(k′k, f)

= f

= s(k, f)

and

t[(k′, f ′) ◦ (k, f))] = ρ(k′k)f

= ρ(k′)
(
ρ(k)f

)
= ρ(k′)f ′

= t(k′, f ′).

We need now only verify the exchange law. On one hand we have

[(k′2, f
′
2) ◦ (k2, f2)] ◦h [(k′1, f

′
1) ◦ (k1, f1)] (6.13)

= (k′2k2, f2) ◦h (k′1k1, f1)

= (η(k′2k2, f1) ◦ (k′1k1), f2 ◦ f1)

and on the other(
(k′2, f

′
2) ◦h (k′1, f

′
1)
)
◦
(
(k2, f2) ◦h (k1, f1)

)
=
(
η(k′2, f

′
1) ◦ k′1, f ′2 ◦ f ′1

)
◦
(
η(k2, f1) ◦ k1, f2 ◦ f1

)
=
((
η(k′2, f

′
1)η(k2, f1)

)
◦ (k′1k1), f2 ◦ f1

)
,

and so, noting that f ′1 = k1f1 and using the identities (6.3) and (6.9) satisfied by η and
comparing with (6.13), we see that the exchange law holds.
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Let (η1, ρ1,V1) and (η2, ρ2,V2) be actions of a categorical group G on categories V1

and V2, respectively. By a morphism

F : (η1, ρ1,V1) −→ (η2, ρ2,V2)

we mean a functor F : V1 −→ V2 that intertwines both ηj and ρj in the sense that the
following two diagrams commute:

Mor(G)×Mor(V1)

IdG×F
��

η1 //Mor(G)

IdG
��

Mor(G)×Mor(V2) η2
//Mor(G)

(6.14)

and

G oη1 V1

IdG×F
��

ρ1 //V1

F
��

G oη2 V2 ρ2
//V2

(6.15)

In (6.14) arrows are set maps, and in (6.15) arrows are functors. Thus the functor
F must be ‘compatible’ with maps η1 and η2. In this context we make the following
observation.

6.2. Lemma. If diagram (6.14) commutes then IdG × F is a functor.

Proof. Let k ∈ Mor
(
G
)

and f ∈ Mor
(
V1

)
. Then the commutation of the diagram

(6.14) implies
η2
(
k,F(f)

)
= η1

(
k, f
)
. (6.16)

At the morphism and object level IdG × F is defined as usual:

IdG × F : (k, f) 7→
(
k,F(f)

)
IdG × F : (g, v) 7→

(
g,F(v)

)
.

For composable morphisms (k′, f ′) and (k, f) in G oη1 V1 we have, by the definition of
the semidirect product structure in (5.6),

(k′, f ′) ◦η1 (k, f) :=
(
η1(k

′, f) ◦ k, f ′ ◦ f
)
.

Then we have

(IdG × F)(k′, f ′) ◦η2 (IdG × F)(k, f) =
(
η2
(
k′,F(f)

)
◦ k,F(f ′) ◦ F(f)

)
= (η1(k

′, f) ◦ k,F(f ′ ◦ f))

(using (6.16))

= (IdG × F)
(
η1(k

′, f) ◦ k, f ′ ◦ f
)

= (IdG × F)
(
(k′, f ′) ◦η1 (k, f)

)
,

which shows that IdG × F is a functor.
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Recall the invariance relation (6.9):

η1
(
k, ρ1(k

′, f1)
)

= η1(k, f1),

for all k, k′ ∈ Mor(G) and all f1 ∈ Mor(V1), that was needed in the double category
result Proposition 6.1. We observe that this relation is preserved by morphisms; for, on
using the commutativity in the diagrams (6.14) and (6.15), we have then

η2
(
k, ρ2(k

′, f2)
)

= η2(k, f2), (6.17)

for all k, k′ ∈ Mor(G) and all f2 ∈ Mor(V2) in the image of F.
Representations of 2-groups on 2-categories are studied in [Baez et al., 2012]. Their

definitions and development are different from ours. However, similar considerations arise
there as well regarding relationships between different representations. In their framework
such relationships are expressed through 1-intertwiners and their higher counterparts,
called 2-intertwiners. In our framework, the corresponding notions are functors between
twisted actions and natural transformations between such functors.

Let F : (η1, ρ1,V1) −→ (η2, ρ2,V2) be a morphism between two actions of a cate-
gorical group G. Let ∆η

ρ

(
V
)

be the double category defined (in Proposition 6.1) by the

representation (η, ρ) on V. Then the morphism F :
(
η1, ρ1,V1

)
−→

(
η2, ρ2,V2

)
induces

a kind of functor between the double categories ∆η1
ρ1

(
V1

)
−→ ∆η2

ρ2

(
V2

)
. We explain this

fully in:

6.3. Proposition. Let F : (η1, ρ1,V1) −→ (η2, ρ2,V2) be a morphism between actions
(η1, ρ1) and (η2, ρ2) of a categorical group G on categories V1 and V2 respectively. Let
∆η1
ρ1

(
V1

)
and ∆η2

ρ2

(
V2

)
be the respective double categories over V1 and V2 defined by

(η1, ρ1) and (η2, ρ2) respectively. Then F induces a mapping F∗, both on objects and on
morphisms,

∆η1
ρ1

(
V1

)
−→ ∆η2

ρ2

(
V2

)
,

and F∗ carries vertical composition to vertical composition and horizontal composition to
horizontal composition.

Proof. Recall that F is a functor

F : V1
//V2.

An object of ∆η1
ρ1

(
V1

)
is a morphism f : v1 // v′1 in Mor(V1). We define F∗ on objects

by
F∗(f) = F(f).

Next consider a morphism of ∆η1
ρ1

(
V1

)
. This is of the form

(k, f1) ∈ Obj(G)×Mor(V1).

We define F∗ on morphisms by

F∗(k, f1) =
(
k,F(f1)

)
. (6.18)
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Then for vertical composition we have

F∗
(
(k′, f ′1) ◦ (k, f1)

)
= F∗(k

′k, f1)

=
(
k′k,F(f1)

)
= F∗(k

′, f ′1) ◦ F∗(k, f1),

where, for the last step, we note that the composition F∗(k
′, f ′1) ◦F∗(k, f1) is meaningful

because the target of F∗(k, f1) is
ρ2
(
k,F(f1)

)
,

which, by the commutative diagram (6.15), is equal to F
(
ρ1(k, f1)

)
, which is the same as

F(f ′1), the source of F∗(k
′, f ′1).

Next we consider the effect of F∗ on horizontal composition. Suppose (k, f) and (k′, f ′)
are morphisms of ∆η1

ρ1

(
V1

)
for which the composite (k′, f ′) ◦h (k, f) is defined; this means

that the composite f ′ ◦ f is defined and also k′ ◦ k is defined. (Our goal at this point is
to show first that the composite F(k′, f ′) ◦h F(k, f) is defined.) Hence F∗(f

′) ◦ F∗(f) is
defined and, moreover,

F
(
ρ1(k

′, f ′)
)
◦ F
(
ρ1(k, f)

)
= ρ2

(
k′,F(f ′)

)
◦ ρ2

(
k,F(f)

)
(6.19)

= ρ2
(
η2(k

′,F(f)) ◦ k,F
(
f ′ ◦ f)

)
is also defined since η2(k

′,F(f)), having the same source and target as k′, is composable
with k. Thus, both the composites

F(f ′) ◦ F(f)

and
F
(
ρ1(k

′, f ′)
)
◦ F
(
ρ1(k, f)

)
are defined. Hence the horizontal composite

F∗(k
′, f ′) ◦h F∗(k, f)

is defined. Computing the effect of F∗ on horizontal composition we have:

F∗(k
′, f ′) ◦h F∗(k, f) =

(
k′,F(f ′)

)
◦h
(
k,F(f)

)
(6.20)

=
(
η2
(
k′,F(f)

)
◦ k,F(f ′ ◦ f)

)
=

(
η1
(
k′, f

)
◦ k,F(f ′ ◦ f)

)
(using (6.16))

= F∗
(
(k′, f ′) ◦h (k, f)

)
.

Thus F∗ preserves both horizontal and vertical compositions.
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Let F1 : (η1, ρ1,V1) −→ (η2, ρ2,V2) and F2 : (η2, ρ2,V2) −→ (η3, ρ3,V3) be two
morphisms as described above. Then there is clearly a natural composition

F2 ◦ F1 : (η1, ρ1,V1) −→ (η3, ρ3,V3),

and it is readily checked that this composition is associative. The identity functor IdV :
V −→ V yields a morphism IdV : (η, ρ,V) −→ (η, ρ,V).

6.4. Proposition. There is a category Rep(G) whose objects are twisted actions of a
given categorical group G given by means of semidirect products with categories and whose
morphisms are the morphisms between such actions.

If F,F′,F′′ : (η1, ρ1,V1) −→ (η2, ρ2,V2) and ω : F ⇒ F′, ω′ : F′ ⇒ F′′ are natural
transformations then there is a composite natural transformation ω′ ◦ ω : F ⇒ F′′ given
by

(ω′ ◦ ω)(v) := ω′(v) ◦ ω(v) ∀v ∈ Obj(V1). (6.21)

Now suppose

F1,F
′
1 : (η1, ρ1,V1) −→ (η2, ρ2,V2),

F2,F
′
2 : (η2, ρ2,V2) −→ (η3, ρ3,V3)

are morphisms, and ω1 : F1 ⇒ F′1, ω2 : F2 ⇒ F′2 are a pair of natural transformations;
then a natural transformation ω2 ◦H ω1 : F2 ◦ F1 ⇒ F′2 ◦ F′1 is specified by

(ω2 ◦H ω1)(v) := F′2((ω1(v))) ◦ ω2(F1(v)) (6.22)

or equivalently

:= ω2(F
′
1(v)) ◦ F2((ω1(v))), ∀v ∈ Obj(V1).

7. An example with multiple twists

In this section we construct an example of twists and representations motivated by the
Poincaré group SO(1, 3) o R4. This group, being of great interest, has been studied by
others, for example [Baez, 2002, Baez et al., 2012, Baez and Wise, 2012, Baratin and
Wise, 2009, Crane and Sheppeard, 2003, Pfeiffer, 2003], in its role as a categorical group.
Our study is entirely different in substance and flavor, and our objective is primarily to
demonstrate how η-maps can be constructed in such natural but complex examples.

In what follows one could take G to be the universal cover SL(2,C) of the proper
orthochronous Lorentz group and H to be R4. The vector space V used below can be
thought of as a ‘spinorial’ space on which a representation S of SL(2,C) is given.

Let α : G //End(H) be a representation, where, as usual, G is the object group of a
categorical Lie group G, and H is a real vector space. We write α as juxtaposition:

gh
def
= α(g)h.
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Then (as in Example CG2) we can form a categorical Lie group G, associated with the
Lie crossed module

(G,H, α, τ),

where τ is trivial; thus the object group is Obj(G) = G and the morphism group is
Mor(G) = H oα G. Composition of morphisms is given by (5.12); explicitly,

(h2, g2)(h1, g1) = (h2 + g2h1, g2g1) (7.1)

(h2, g) ◦ (h1, g) = (h2 + h1, g).

Let S : G // End(V ) be a representation of G on a complex vector space V , and M a
manifold on which there is a smooth left action of G (we can think of M as either R4

or a hyperboloid of the form {p ∈ R4 : 〈p, p〉L = E2} for some fixed E ∈ [0,∞), with
〈·, ·〉L being the Lorentz metric). Now suppose that we have a character (one-dimensional
representation) λp of H, such that (p, h) 7→ λp(h) is smooth and

λgp(h) = λp(g
−1h) (7.2)

for all p ∈M , h ∈ H and g ∈ G (we think of the case λp(h) = ei〈p,h〉L). Let

Ψ

be the vector space of all smooth maps M // V (in the physical context, such a map is
a matter field in momentum space). We define an action S̃ of H oα G on Ψ by:

[(h, g) · ψ](p)
def
= [S̃(h, g)ψ](p)

def
= λp(h)S(g)ψ(g−1p) (7.3)

for all (h, g) ∈ H oα G, p ∈ M , and ψ ∈ Ψ. We verify that this gives a representation:
for any (h1, g1), (h2, g2) ∈ H oα G and p ∈M we have

[(h2, g2)
(
(h1, g1) · ψ

)
](p) = λp(h2)S(g2)

(
(h1, g1) · ψ

)
](g−12 p) (7.4)

= λp(h2)S(g2)S(g1)λg−1
2 p(h1)ψ(g−11 g−12 p)

= λp(h2)λp(g2h1)S(g2g1)ψ
(

(g2g1)
−1p
)

= λp(h2 + g2h1)S(g2g1)ψ
(

(g2g1)
−1p
)

=
(

[(h2, g2)(h1, g1)]ψ
)

(p).

Restricting to G, viewed as a subgroup of H oα G, gives a representation of G on V
specified by (

S̃(g)ψ
)
(p) = (g · ψ)(p) = S(g)ψ(g−1p). (7.5)

We fix a basepoint
p0 ∈M.
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We now construct a category Ψp0 whose object set is V and whose morphisms (other than
the identities) are of the form (h, g;ψ) ∈ (H oα G)×Ψ, with source and target given by

s(h, g, ψ) = ψ(gp0) and t(h, g, ψ) = λgp0(h)ψ(gp0). (7.6)

We define composition of morphisms by

(h2, g2, ψ2) ◦ (h1, g1, ψ1) = (g1g
−1
2 h2 + h1, g1, ψ1), (7.7)

assuming that the source of (h2, g2, ψ2) is the target of (h1, g1, ψ1). The target of the
morphism on the right in (7.7) is

λg1p0
(
g1g
−1
2 h2 + h1

)
ψ1(g1p0) = λg2p0(h2)λg1p0(h1)ψ1(g1p0)

= λg2p0(h2)ψ2(g2p0)

= t(h2, g2, ψ2),

as it should be. For associativity we compute:

(h3, g3, ψ3) ◦
(
(h2, g2, ψ2) ◦ (h1, g1, ψ1)

)
= (h3, g3, ψ3) ◦ (g1g

−1
2 h2 + h1, g1, ψ1) (7.8)

= (g1g
−1
3 h3 + g1g

−1
2 h2 + h1, g1, ψ1),

and (
(h3, g3, ψ3) ◦ (h2, g2, ψ2)

)
◦ (h1, g1, ψ1) = (g2g

−1
3 h3 + h2, g2, ψ2) ◦ (h1, g1, ψ1)

=
(
g1g
−1
2 (g2g

−1
3 h3 + h2) + h1, g1, ψ1

)
,

which agrees with (7.8).
We introduce an identity morphism for each object by fiat. This makes Ψp0 a category.

We form the semidirect product

Ψ1 = V oη1 Ψp0 , (7.9)

where
η1 : Mor(V)×Mor(Ψp0) //Mor(V) : (v, h, g, ψ) 7→ λgp0(h)v, (7.10)

with p0 ∈ M being the fixed basepoint we have used above; we specify the action on
identity morphisms by

η1(v, 1w) = v (7.11)

for all v, w ∈ V . Before verifying that η1 has the required properties for an η-map let us
state the nature of the category Ψ1. The object and morphism sets for Ψ1 are

Obj(Ψ1) = {V } × V ' V. (7.12)

Mor(Ψ1)
′ = V × (H ×G×Ψ),
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where in the second line we have left out the identity morphisms. Source and targets are
given by

s(v;h, g, ψ) = s(h, g, ψ) = ψ(gp0) (7.13)

s(v; 1w) = w

t(v;h, g, ψ) = t(h, g, ψ) = λgp0(h)ψ(gp0)

t(v; 1w) = w.

Composition of morphisms is given by

(v2; f2) ◦ (v1; f1) =
(
η1(v2, f1) + v1; f2 ◦ f1

)
. (7.14)

More explicitly,

(v2;h2, g2, ψ2) ◦ (v1;h1, g1, ψ1) =
(
λg1p0(h1)v2 + v1; g1g

−1
2 h2 + h1, g1, ψ1

)
(7.15)

(v2; f2) ◦ (v; 1w) = (v2 + v; f2)

(v; 1w) ◦ (v1; f1) =
(
η(v, f1) + v1; f1

)
,

assuming that the compositions on the left have appropriate matching source and targets.
We turn now to verifying that η1 satisfies the required properties. We have

η1

(
η1
(
v, (h2, g2, ψ2)

)
, (h1, g1, ψ1)

)
= η1

(
λg2p0(h2)v, (h1, g1, ψ1)

)
= λg1p0(h1)

((
λg2p0(h2)v

))
= λg1p0(h1 + g1g

−1
2 h2)v

which agrees with

η1
(
v, (h2, g2, ψ2) ◦ (h1, g1, ψ1)

)
= η1

(
v, (g1g

−1
2 h2 + h1, g1, ψ1)

)
= λg1p0(h1 + g1g

−1
2 h2)v.

Next,

η1
(
v2, (h, g, ψ)

)
◦ η1

(
v1, (h, g, ψ)

)
= λgp0(h)v2 + λgp0(h)v1

= λgp0(h)(v2 + v1)

= η1 (v2 ◦ v1, (h, g, ψ)) .

As for the behavior of η1 with respect to identity morphisms we have, in addition to
(7.11),

η1(0, f) = 0

for all f ∈ Mor(Ψp0).
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We now work with the categorical group whose object set is G and whose morphism
set is V oS G, with source, target, and α-map given by

s(v, g) = t(v, g) = g

α(g)v = S(g)v.

Let us denote this categorical group by

V ×S Gd, (7.16)

where Gd is the discrete category with object set G. Product and composition are given
by

(v2; g) ◦ (v1; g) = (v2 + v1; , g) (7.17)

(v2, g2)(v1, g1) =
(
v2 + g2v1; g2g1

)
.

(Note that we are not viewing V ×S Gd as an η-twisted product.) We have

[(v′2, g2)(v
′
1, g1)] ◦ [(v2, g2)(v1, g1)] = (v′2 + g2v

′
1 + v2 + g2v1, g2g1)

and
(v′2 + v2, g2)(v

′
1 + v1, g1) = (v′2 + v2 + g2v

′
1 + g2v1, g2g1)

We define

η2 : Mor(V ×S Gd)×Mor (Ψ1) // Mor(V ×S Gd) (7.18)

((v′, g′), (v;h, g, ψ)) 7→
(
λgp0(h)v′, g′

)
and

η2
(
(v′, g′), 1a

)
= (v′, g′). (7.19)

Before proceeding further let us note the behavior of η2 with respect to the other identity
morphisms (0, g′):

η2
(
(0, g′), f

)
= (0, g′), (7.20)

for all g′ ∈ G and all f ∈ Mor(Ψ1).
We now check that η2 satisfies the conditions we have required of η-maps. Let

f1 = (v1;h1, g1, ψ1) and f2 = (v2;h2, g2, ψ2).

Then
f2 ◦ f1 =

(
λg1p0(h1)v2 + v1; g1g

−1
2 h2 + h1, g1, ψ1). (7.21)

We have

η2
(
η2 ((v, g), f2) , f1

)
= η2

((
λg2p0(h2)v, g

)
, (v1;h1, g1, ψ1)

)
=

(
λg1p0(h1)λg2p0(h2)v, g

)
=
(
λg1p0(h1 + g1g

−1
2 h2)v, g

)
= η2

(
(v, g),

(
λg1p0(h1)v2 + v1; g1g

−1
2 h2 + h1, g1, ψ1

))
= η2

(
(v, g), f2 ◦ f1

)
.
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Next, working with g′2 = g′1 ∈ G, we have

η2
(
(v′2, g

′
2), (v;h, g, ψ)

)
◦ η2

(
v′1, g

′
1), (v;h, g, ψ)

)
=

(
λgp0(h)v′2, g

′
2

)
◦
(
λgp0(h)v′1, g

′
1

)
=

(
λgp0(h)(v′2 + v′1), g

′
1

)
= η2

(
(v′2, g

′
2) ◦ (v′1, g

′
1), (v;h, g, ψ)

)
The condition (6.2) also holds for η2.
We are going to construct a representation ρ of the categorical group V×S Gd on Ψ1

with the twist η2:
ρ : (V ×S Gd) oη2 Ψ1

//Ψ1.

Recall that

Obj(V ×S Gd) = G

Obj(Ψ1) = V.

At the level of objects we specify ρ by

ρ : G× V // V : (g, v) 7→ gv. (7.22)

The morphisms of the two categories are

Mor(V ×S Gd) = V oS G

Mor(Ψ1)
′ = V × (H ×G×Ψ),

where, as before, we have omitted the identity morphisms in the second line. At the level
of morphisms we define first

ρ : (V oS G)×Mor(Ψ1) // Mor(Ψ1) (7.23)

((v′, g′), (v;h, g, ψ)) 7→
(
g′v − v′; g′h, g′g, g′ · ψ

)
,

where
g′ · ψ = S̃(g)ψ, (7.24)

as given in (7.5). Next for the action on morphisms of the type (v, 1w), where v, w ∈ V ,
we set

ρ(v′, g′)(v, 1w) = (g′v − v′, 1g′w) (7.25)

for all (v′, g′) ∈ V ×G. We will use the notation

ax
def
= ρ(a, x),

for a an object (or morphism) of V ×S Gd and x an object (or morphism) of Ψ1.
For Mor(V oS Gd) source and target are the same for each morphism (v, g), both

being g. The source of
(
g′v − v′; g′h, g′g, g′ · ψ

)
is

s
(
g′v − v′; g′h, g′g, g′ · ψ

)
= (g′ · ψ)(g′gp0) = g′ψ(g′

−1
g′gp0)

= s(v′, g′)s(v;h, g, ψ).
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For targets we have

t
(
g′v − v′; g′h, g′g, g′ · ψ

)
= g′λgp0(h)ψ(gp0)

= λg′gp0(g
′h)(g′ · ψ)(g′gp0)

= λgp0(h)g′ψ(gp0)

= t(v′, g′)t(v;h, g, ψ).

Applying (v′′, g′′) after applying (v′, g′) to (7.23) we obtain

(v′′, g′′)
[
(v′, g′)(v;h, g, ψ)

]
= (g′′g′v − g′′v′ − v′′; g′′g′h, g′′g′g, g′′g′ · ψ), (7.26)

which is the same as applying

(v′′, g′′)(v′, g′) = (v′′ + g′′v′, g′′g′)

to (v;h, g, ψ). The same holds for
[
(v′′, g′′)(v′, g′)

]
(v, 1w):[

(v′′, g′′)(v′, g′)
]
(v, 1w) = (v′′ + g′′v′, g′′g′)(v, 1w)

=
(
g′′g′v − v′′ − g′′v′, 1g′′g′w

)
(v′′, g′′)[(v′, g′)(v, 1w)] = (v′′, g′′)(g′v − v′, 1g′w)

=
(
g′′g′v − g′′v′ − v′′, 1g′′g′w

)
We continue with the notation

f1 = (v1;h1, g1, ψ1) and f2 = (v2;h2, g2, ψ2).

Then

ρ(v′2, g
′
2)f2 ◦ ρ(v′1, g

′
1)f1 (7.27)

= (g′2v2 − v′2; g′2h2, g′2g2, g′2 · ψ2) ◦ (g′1v1 − v′1; g′1h1, g′1g1, g′1 · ψ1)

=
(
λg′1g1p0(g

′
1h1)(g

′
2v2 − v′2) + g′1v1 − v′1;

(g′1g1)(g
′
2g2)

−1g′2h2 + g′1h1, g
′
1g1, g

′
1 · ψ1

)
Let us compare this with(
η2 ((v′2, g

′
2), f1) ◦ (v′1, g

′
1)
)
·
(

(v2, f2) ◦ (v1, f1)
)

=
(
λg1p0(h1)v

′
2 + v′1; g

′
1

)
·
(
λg1p0(h1)v2 + v1, g1g

−1
2 h2 + h1, g1, ψ1

)
=
(
g′1
(
λg1p0(h1)v2 + v1

)
− λg1p0(h1)v′2 − v′1;

g′1(g1g
−1
2 h2 + h1), g

′
1g1, g

′
1 · ψ1

)
.
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This is identical with the last expression in (7.27) except for one term but that term is
also in agreement upon noting that g′1 = g′2 in order for the composition η2 ((v′2, g

′
2), f1) ◦

(v′1, g
′
1) to be defined.

Next we work with (7.27) for the case f2 = (v; 1w) where v ∈ V and w ∈ V = Obj(Ψ1),
and

f1 = (v1;F1) = (v1;h1, g1, ψ1)

as before, with the composite f2 ◦ f1 defined. Then

f2 ◦ f1 =
(
λg1p0(h1)v + v1;h1, g1, ψ1

)
(7.28)

then, using the composition law from (7.14) and the obvious notation g′1F1,

ρ(v′2, g
′
2)f2 ◦ ρ(v′1, g

′
1)f1 = (g′2v − v′2; 1g′2w) ◦ (g′1v1 − v′1; g′1h1, g′1g1, g′1 · ψ1) (7.29)

=
(
η1(g

′
2v − v′2; g′1h1, g′1g1, g′1 · ψ1) + g′1v1 − v′1; g′1F1

)
=

(
λg′1g1p0(g

′
1h1)(g

′
2v − v′2) + g′1v1 − v′1; g′1F1

)
,

and, on the other hand,

ρ
(
η2(v

′
2, g
′
2; f1) ◦ (v′1, g

′
1)
)
(f2 ◦ f1) = ρ

(
λg1p0(h1)v

′
2 + v′1, g

′
1)(f2 ◦ f1) (7.30)

=
(
g′1λg1p0(h1)v + g′1v1 − λg1p0(h1)v′2 − v′1; g′1F1

)
,

which agrees with the last expression in (7.29) because g′1 = g′2, since the composition
(v′2, g

′
2) ◦ (v′1, g

′
1) is needed to be well-defined. We omit the lengthy but entirely routine

verifications of other similar conditions for the cases involving the identity morphisms.
The twist η2 satisfies the invariance relation (6.9) with respect to the representation

ρ, as may be verified by computation.

8. Twisted representations on vector categories

In this section we study actions on categories that have some vector space structure built
in.

By a vector category we mean a category whose object and morphism sets are equipped
with vector space structures in such a way that the source and target maps are linear, as is
the identity assigning map x 7→ 1x. (This is different from the notion of ‘linear category’
discussed in [Baez et al., 2012].)

By a representation ρ of G on a vector category V, associated with an η-map η :
Mor(G) ×Mor(V) //Mor(G), we mean an action ρ, associated with η, for which the
map

ρ(g) : Obj(V) //Obj(V) : v 7→ ρ(g, v)

and the map
ρ(k) : Mor(V) //Mor(V) : f 7→ ρ(k, f)
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are linear for every object g and every morphism k of G. We shall also call such a
representation an η-twisted representation, and refer to

(η, ρ,V)

as a twisted representation of G.
In developing the notion of irreducible representations of categorical groups we need

to be careful in handling the role of morphisms that have 0 as both target and source.
This issue is absent in traditional representation theory.

Let us define the trivial subcategory OV of a vector category V to be the vector
category whose only object element is 0 and the morphism set is Hom(0, 0):

Obj
(
OV

)
= {0} Mor

(
OV

)
= Hom(0, 0).

We define a proper vector subcategory of V to be a subcategory other than V, OV and O
(the trivial subcategory with only the 0 object and its identity morphism).

It is readily verified that an η-twisted representation ρ of a categorical group G on
V, restricts to yield a representation of G on OV. With this in mind, we formulate the
following definition of reducible representations. Let G be a categorical group and V
a vector category. Let ρ be an η-twisted representation of G on V. We say that ρ is
reducible if there exists a proper vector subcategory U of V such that the restriction of
(η, ρ) to U defines a representation of G on U. In this case,

ρ|U : G nη|U U −→ U (8.1)

is a representation, where η|U denotes the restriction of η to Mor
(
U
)
⊂ Mor

(
V
)
,

η|U : Mor
(
G
)
×Mor

(
U
)
−→ Mor

(
G
)
.

The representation ρ is irreducible if it is not reducible.
We say that a functor

F : V //W,

where V and W are vector categories, is linear if it induces linear maps both on the
object spaces and on the morphism spaces. A functor F : V −→ W is a zero functor
if Im(F) ⊂ OW. Note that the image of a zero functor at the level of morphisms is not
necessarily {0}.

Suppose V is a vector category, and V0 is a subcategory which is a subspace of V
both for objects and for morphisms. Then we would like to define a vector category

V/V0

whose object and morphism spaces are the corresponding quotient spaces. However,
composition of morphisms would fail to be well-defined since there is no reason why
(f + f0) ◦ (h+ h0) should equal f ◦ h modulo Mor(V0) when f0, h0 ∈ Mor(V0). However,
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as we shall see in our next result the quotient category is well-defined and useful in some
cases.

We turn now to Schur’s lemma for irreducible representations of categorical groups
on vector categories. There are subtle but important differences between this result and
the traditional Schur’s lemma for group representations, where the interaction between
morphisms and objects is absent.

8.1. Theorem. Suppose (η1, ρ1,V1) and (η2, ρ2,V2) are irreducible twisted representa-
tions of a categorical group G on vector categories V1 and V2, respectively. Let F :
(η1, ρ1,V1) −→ (η2, ρ2,V2) be a morphism of representations, given by a linear functor
F : V1 −→ V2. Then one of the following hold:

1. F is a zero functor, or

2. there is a well-defined quotient category V1/OV1 and F induces a functor

V1/OV1 −→ V2

that is an isomorphism both on objects and on morphisms, or

3. F is an isomorphism.

Proof. The functor F induces linear maps

Obj(V1) //Obj(V2) and Mor(V1) //Mor(V2).

Consider the category
L = ker F, (8.2)

whose objects are those objects in V1 that are mapped by F to 0 ∈ Obj(V2) and whose
morphisms are those morphisms in V1 that are mapped to the morphism 0 ∈ Mor(V2).
Let us verify that L is in fact a category: composites of morphisms in L are morphisms
in L and for each object a ∈ Obj(L) the identity morphism 1a is in Mor(L). Since, by
definition of a vector category, the mapping x 7→ 1x is linear, we have 0 = 10, the identity
map at the zero object 0 ∈ Obj(V2); so if f : a // b and g : b // c are morphisms in L
then

F(g ◦ f) = F(g) ◦ F(f) = 10 ◦ 10 = 10 = 0, (8.3)

and so g ◦ f ∈ Mor(L). Next, if a ∈ Obj(L) then

F(1a) = 1F(a) = 10 = 0, (8.4)

and so 1a ∈ Mor(L).
The map η1 restricts to a map

G× L //G.
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We will now show that ρ restricts to a functor

G oη1 L // L.

Since F is a morphism of representations we have

F ◦ ρ1 = ρ2 ◦ (IdG × F) (8.5)

(by the commuting diagram (6.15)). Applying this to the object (g, v) ∈ Obj(G) ×
Obj(V1), where F(v) = 0, we see that

F
(
ρ1(g, v)

)
= ρ2(g, 0) = 0,

and so the object space of L is stable under the action of Obj(G) through the representa-
tion ρ1. Similarly, ρ1(k) maps Mor(L) into itself, for every k ∈ Mor(G). Thus, ρ1 restricts
to an action of G on the subcategory L. Since ρ1 is irreducible it follows that L is V1 or
OV1 or the zero category O. In the first case the functor F would be a zero functor.

Let us assume then that F is not a zero functor. In this case L is the trivial subcategory
O in V1 or L = OV1 :

L = O or L = OV1 . (8.6)

Let f, h ∈ Mor(V1) for which the composite f ◦ h is defined. Let f0, h0 ∈ Mor(L).
Then f + f0 has the same source and target as f , and the same holds for h + h0 and h,
and so (f + f0) ◦ (h+ h0) is defined. Moreover,

F
(
(f + f0) ◦ (h+ h0)

)
= F(f + f0) ◦ F(h+ h0)

= F(f) ◦ F(h) (because f0, h0 ∈ Mor(L))

= F(f ◦ h),

and so
(f + f0) ◦ (h+ h0)− f ◦ h ∈ Mor(L).

Hence the composition of morphisms in V1 descends to a well-defined composition law on

Mor(V1)/Mor(L).

Furthermore, as is seen more easily, the source and target maps on V1 induce well-defined
corresponding maps

Mor(V1)/Mor(L) //Obj(V1) = Obj(V1)/Obj(L).

Thus we obtain a well-defined vector category

V1/L
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and a functor

F∗ : V1/L //V2 :

{
v 7→ F(v) for v ∈ Obj(V1)

f + Mor(L) 7→ F(f) for f ∈ Mor(V1)
, (8.7)

whose image is the same as Im(F). The latter is a ρ2-invariant subcategory of V2 and
therefore is either OV2 or V2 itself. Since we have assumed that the original functor F is
not a zero functor, its image is, in fact, all of V2. To conclude let us note that V1/L is
just V1 if L = O, and it is V1/OV1 if L = OV1 .

9. Representations on categorical vector spaces

The narrowest type of category of interest on which one might consider representations of
categorical groups is a categorical vector space. By this we mean a category V for which
both object set and morphism set are equipped with vector space structures over a given
field F, the target and source maps are linear as is the identity assigning map x 7→ 1x, and
the operations of addition and multiplication by scalar are functorial in the sense that if
f, f ′, g, g′ ∈ Mor(V), for which f ′ ◦ f and g′ ◦ g are defined then

(f ′ + g′) ◦ (f + g) = f ′ ◦ f + g′ ◦ g (9.1)

(λf ′) ◦ f = λ(f ′ ◦ f) = f ′ ◦ (λf)

for all λ ∈ F.
Thus a categorical vector space is a very special type of vector category: composition

and the vector operations are intertwined through the relation (9.1). In this section
we work out the structure of categorical vector spaces and the nature of (untwisted)
representations on them.

Our first result, formulated in a way that focuses only on the additive abelian group
structure of the object and morphism groups of a categorical vector space, demonstrates
how special the structure of a categorical vector space is.

9.1. Proposition. Suppose V is a categorical group for which both object and morphism
groups are abelian. Then Mor(V) is isomorphic to the ordinary product:

Mor(V) ' W × V, (9.2)

where V is the vector space Obj(V) and W = ker s is the kernel of the source homo-
morphism s : Mor(V) // Obj(V). The source and target maps are given on W × V
by

s(w, v) = v and t(w, v) = τ0(w) + v, (9.3)

where
τ0 : W // V (9.4)
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is a homomorphism. Moreover, composition of morphisms corresponds on W × V to the
operation

(w2, v2) ◦ (w1, v1) = (w2 + w1, v1), (9.5)

defined when v2 = τ0(w1) + v1. The identity morphism at any v ∈ V is given by (0, v),
and the inverse of a morphism (w, v) is

(
−w, τ0(w) + v

)
.

Proof. As discussed earlier in the context of (2.7),

Mor(V) ' W oα V (9.6)

where
α : V ×W //W : (v, w) // α(v)(w) = αv(w)

is a mapping for which each αv is an automorphism of the group W . Source and target
maps are given by

s(w, v) = v and t(w, v) = τ0(w) + v, (9.7)

where, as we saw in (2.10), τ0 is the restriction of t to W :

τ0 = t|W. (9.8)

The binary operation for the semidirect product W oα V is given by

(w2, v2)⊕ (w1, v1) = (w2 + αv2(w1), v2 + v1). (9.9)

Thus W oα V is abelian if and only if

(w2 + αv2(w1), v2 + v1) = (w1 + αv1(w2), v1 + v2)

for all v1, v2 ∈ V and w1, w2 ∈ W . Comparing the first components, and setting w2 = 0
and v1 = 0 we have as necessary condition:

αv(w) = w

for all v ∈ V and w ∈ W . This means that αv is the identity map on W for all v, which
is equivalent to the group operation (9.9) being given by

(w2, v2)⊕ (w1, v1) = (w2 + w1, v2 + v1). (9.10)

This condition is obviously also sufficient to ensure that W oα V is abelian. In this case
the semidirect product W oα V is just the ordinary product W × V :

W oα V = W × V.

We note that (0, v2) ◦ (w1, v1) = (w1, v1) when v2 = t(w1, v1), and (w2, v2) ◦ (0, v1) =
(w2, v1) when v2 = t(0, v1) = v1. It follows then that the identity morphism at any v is
(0, v). Next for a morphism (w1, v1) we have

(−w1, v
′
1) ◦ (w1, v1) = (0, v1),

where v′1 = τ0(w1) + v1, and

(w1, v1) ◦ (−w1, v
′
1) = (0, v′1)

because τ0(−w1) + v′1 = v1; thus the inverse of (w1, v1) is (−w1, v1).
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Now we specialize to a categorical vector space V. Writing the isomorphism (9.6) as
given in (2.7) explicitly, using the additive notation, we have

Mor(V) //W oα V : f 7→ (f + 1−s(f), s(f)
)
. (9.11)

Linearity of the source map s and of the identity-assigning map a 7→ 1a imply then that
the isomorphism in (9.11) is an isomorphism of vector spaces. The mapping τ0 given in
Proposition 9.1 above is then a linear map

τ0 : W // V.

Consider a representation (without any twist) ρ of G on V; we use notation G, H,
and V , W as above. Thus G is associated to the crossed module (G,H, α, τ). To keep
the notation simple, we denote the representation of K = Mor(G) on W as well as the
representation of G = Obj(G) on V by ρ. We also denote all target and source maps
by t and s, respectively, both as maps Mor(G) // Obj(G) and in their more concrete
renditions as maps GoαH //G. We will write ρ(k)f as kf when the intended meaning
is clear.

Let us first see how ρ introduces a representation of the group K on the vector space
W . To this end we observe that when an element k ∈ K acts on an element of the form
(w, 0) ∈ W × V , the source of the resulting element is

s[ρ(k)(w, 0)] = ρ
(
s(k)

)
s(w, 0) = ρ

(
s(k)

)
0 = 0.

This means that the subspace W × {0} of W × V is invariant under the representation ρ
of K. Thus ρ produces a representation, which we denote by ρ0, of K on W :

ρ(k)w = ρ0(k)w for all w ∈ W and k ∈ K. (9.12)

To see how this interacts with the representation ρ of G = Obj(G) on V we compute

t
(
ρ0(k)w

)
= t[ρ(k)w] = ρ

(
t(k)

)
t(w) = ρ

(
t(k)

)
τ0(w). (9.13)

For the interaction of ρ0 and the composition of morphisms in K, let us recall that

ρ : G×V //V

is a functor. Using this and the definition of ρ0 in (9.12) we have:(
ρ0(k2 ◦ k1)w, 0

)
= ρ(k2 ◦ k1)(w, 0) (9.14)

= [ρ(k2 ◦ k1)][(w, 0) ◦ (0, 0)]

= [ρ(k2)(w, 0)] ◦ [ρ(k1)(0, 0)]

=
(
ρ0(k2)w, 0

)
◦ (0, 0)

=
(
ρ0(k2)w, 0

)
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for any k1, k2 ∈ K = Mor(G) for which the composite k2 ◦ k1 exists and all w ∈ W . This
is a very strong restriction on ρ0. In fact, taking k1 = k : a // b and k2 = 1b, the identity
morphism at b, we have

ρ0(k) = ρ0(1t(k)). (9.15)

Thus ρ0 is completely determined by the representation of G on W given by

G // End(W ) : b 7→ ρ0(1b). (9.16)

We denote this representation of G by ρ0:

ρ0(b)
def
= ρ0(1b). (9.17)

To summarize, we have proved:

9.2. Proposition. Let G be a categorical group, with source map s and target map t,
and let (G,H, α, τ) be the associated crossed module. Suppose ρ is a representation of G
on a categorical vector space V. Let V = Obj(V), W = ker s, and τ0 : W // V be the
restriction of the target map to W . Then there is a representation ρ0 of G on W such
that

ρ(k)w = ρ0
(
t(k)

)
w for all w ∈ W and k ∈ K, (9.18)

and ρ0 intertwines with ρ|G through the map τ0 : W // V :

τ0
(
ρ0(k)w

)
= ρ(t(k)

)
τ0(w) for all k ∈ K and w ∈ W . (9.19)

The very special conditions that ρ must of necessity satisfy can be explored further.
Let us recall from (2.3) that the zero element in Mor(V) is 10:

0 = 10,

and that since ρ is a functor it carries identity morphisms to identity morphisms:

ρ(1g, 1v) = 1gv. (9.20)

for all g ∈ Obj(G) and v ∈ Obj(V). For any morphism f : v // w in Mor(V), ρ(1g, f)
has source gv and target gw while ρ(1g, f

−1) has source gw and target gv; then:

1gv = ρ(1g, f
−1 ◦ f) = ρ(1g ◦ 1g, f

−1 ◦ f) = ρ(1g, f
−1) ◦ ρ(1g, f) (9.21)

and
1gw = ρ(1g, f ◦ f−1) = ρ(1g ◦ 1g, f ◦ f−1) = ρ(1g, f) ◦ ρ(1g, f

−1). (9.22)

Hence
1gf

−1 =
(
1gf
)−1

. (9.23)

We can combine this with the very special relation (9.15 )

ρ0(k) = ρ0(1t(k))
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to extract more information on the nature of ρ.
If f = (w, v) ∈ W ⊕ V ' Mor(V) has source s(f) = v in the range of τ0 then we can

express f as a composite using two elements in W :

f = (f ◦ f0) ◦ f−10 ,

where f0 = (wv, 0) ∈ W and wv being such that τ0(wv) = v, and f ◦ f0 is also in W
because its source is 0. Then

ρ(k, f) = ρ(k, f ◦ f0) ◦ ρ(1b, f
−1
0 ) = ρ(k, f ◦ f0) ◦ [ρ(1b, f0)]

−1 (9.24)

where b = t(k). We recall from (9.15) that

ρ(k, f ◦ f0) = ρ(1t(k), f ◦ f0) = ρ0(b)(f ◦ f0).
ρ(1b, f0) = ρ0(b)f0.

Our conclusion then is:
the values ρ(k, f), when s(f) ∈ t(W ), are uniquely determined by the representation

ρ0 of G on W .
The value of ρ(k, f) for f : v // w is also uniquely determined by the restriction of

the representation ρ of G to Hom(0, 0) ⊂ Mor(V) and the value ρ(k, f ′) for any one f ′ ∈
Hom(v, w). This is seen by writing f as f ′+ (f − f ′) and noting that f − f ′ ∈ Hom(0, 0).

Thus categorical vector spaces and representations of categorical groups on them have
a very special structure.

10. Concluding summary

In this paper we have studied actions of categorical groups on categories. The distinction
between such actions and traditional group actions lies in the behavior of compositions
of morphisms, a structure not present in ordinary groups. We have introduced a notion
of a twisted action in this context, allowing for a richer range of behaviors of composition
in relation to the action. For linear actions on categories with vector space structures we
have proved a version of Schur’s lemma and studied representations on categorical vector
spaces. To illustrate the ideas we have developed several examples in detail.
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