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quisition greatly changes some of the cherished results in that theory:

in particular, the first-best might not be implementable. Moreover,

it might not even be possible to implement the second-best through

trade. In addition, the paper highlights the use of randomness in set-
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1 Introduction

The central question of allocation theory is how goods and services should

be assigned to people. The answer depends on people’s valuations for these

goods and services. If people know these valuations, the only question is

whether this information can be used in an incentive-compatible way. The

subfield of allocation theory that is concerned with the design of mechanisms

that match indivisible goods to agents has been particularly successful in

that respect. For such allocation problems, there is a large class of efficient

and incentive-compatible matching mechanisms. However, in many cases,

the requisite information cannot be taken as given, but must be acquired at

a cost. Whether kidneys, school slots or medical residency programmes need

to be matched to agents, it always holds that agents spend time and money

to learn about the available options before announcing their choices to the

designer. This article is concerned with the design of matching mechanisms

when the agents’ information is endogenously acquired.

Matching mechanisms specify rules according to which agent choices are

mapped to matchings of objects to agents. In the standard case of agents

knowing their own preferences, mechanisms implement social choice functions

that map profiles of preferences to allocations via the equilibrium behavior

of agents. When information acquisition is costly, agents face two kinds of

strategic choices. They have to decide on their information acquisition, as

well as on the actions to take in the mechanism. Just as in the case with

known preferences, mechanisms incentivize the behavior of agents for their

ex post preferences. However, in the case of costly information acquisition,

these ex post preferences are - to some extent - endogenous to the agents’

behavior, since they depend on the agents’ learning choices. Mechanisms do

set the incentives for learning choices, as the value an agent assigns to some

particular piece of information depends on the usefulness of that information

in the mechanism.

In a nutshell: in an environment of endogenous learning, mechanisms im-

plement the learning behavior of agents, as well as social choice functions

for ex post preferences. Given that these purposes potentially conflict not all

ex-ante Pareto optima are implementable. The trade-off between the efficient

2



elicitation of information and the efficient usage of this information has gar-

nered interest in the nascent literature on mechanism design with endogenous

information acquisition1: Gerardi and Yariv (2008) illustrate this trade-off

by showing that welfare-optimal voting rules might not efficiently use all

available information, since such a voting rule not only serves to aggregate

information, but also to elicit the acquisition of this information. Berge-

mann and Valimaki (2007) discuss this same trade-off within a framework of

auctions.

I show that first-best learning in matching allocation problems is gener-

ally sequential. This stands in contrast with the mechanisms that are used

in practice to match kidneys or school slots. These mechanisms typically re-

quire agents to submit their preferences simultaneously. This suggests that

sequential forms of these mechanisms might lead to welfare improvements.

The sequentiality of optimal information acquisition has also been featured in

the literature on mechanism design with endogenous information acquisition.

Gershkov and Szentes (2009) as well as Smorodinsky and Tennenholtz (2006)

present voting models in which the voters’ optimal acquisition of informa-

tion is sequential. Similarly, for auctions, Compte and Jehiel (2007) find that

ascending price auctions dominate sealed bid auctions in terms of expected

welfare and, for a sufficiently large set of bidders, in terms of expected seller

revenue.

Trade plays a major role in allocation theory: in matching allocation

problems with exogenous information, any one of the plethora of “trading

mechanisms” can be used to implement any Pareto-optimal allocation (see

for instance Papai (2000)). The result that ex-ante Pareto optima are not

always implementable with endogenous information, of course, prevents us

from obtaining such a far-reaching result for the present framework. However,

one might ask whether the second-best (namely the ex-ante Pareto optima

among the implementable set) are implementable through trade. The answer

is negative. I provide cases of matching allocation problems, in which some

mechanisms yield strictly higher ex ante welfare than the maximal ex-ante

welfare that is implementable through trade. The designer can generally

improve welfare by retaining more control over the available options than

1a review of this literature can be found in Bergemann and Valimaki (2007)
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any trading mechanism would permit.

There are some similarities and differences between the present paper and

the existing literature on endogenous information acquisition in markets (see

Grossman and Stiglitz (1980), Verrecchia (1982), and more recently Dang

(2008)).2 One of the main findings of that literature is that the first-best

outcome is generally not achievable through trade in the presence of endoge-

nous information acquisition. Here I show that even the second-best might

not be implementable through trade in the context of matching problems with

endogenous information acquisition. Different externalities generate the dif-

ferent sub-optimalities: in the literature on markets it is generally assumed

that agents can acquire information on some common value. So there is an

informational externality. Very differently in my model, the different agents’

values of the same house are independent draws. So there is no informational

externality. A different kind of externality is present in my model: the fact

that mechanisms need to determine matchings implies an interdependency

of the assignments to the different agents. This, in turn, means that if some

house h∗ is offered to some agent to give him the incentive to acquire a signal

on yet another house, the same house cannot be offered to a different agent

at the same time.

There is another feature of optimal matching mechanisms for housing

problems with endogenous information acquisition that I wish to highlight:

their use of randomness. On the one hand, the observation that randomness

aids implementation could count as a stylized fact of the theory of mecha-

nism design. On the other hand, there is a perfectly non-random mechanism

that can be used to implement any Pareto optimum in a matching allocation

problem with exogenous information: serial dictatorship. In a serial dicta-

2One of the basic tenets of this literature is that the equilibrium price does not per-

fectly aggregate the available information when agents can endogenously decide whether

to acquire costly information about the values of the traded assets. If prices perfectly ag-

gregated this information, no agent would have any incentive to acquire information. For

such incentives to exist, the agents who choose to obtain (costly) information must end

up better informed than those who choose not to acquire information. As a consequence,

markets with endogenous information acquisition are inefficient. These results are driven

by the assumption that information concerns the common value of some asset; conversely,

the present paper concerns purely idiosyncratic values.
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torship, a first agent (the first dictator) gets to choose one house out of the

grand set, a next agent (the second dictator) gets to choose one house out of

the remainder. This process goes on until no houses are left. Observe that

any action an agent takes in this mechanism has a non-random outcome.

Once again, the case of matching allocation problems with endogenous

information acquisition differs starkly from the standard case: I provide ex-

amples of housing problems in which the second-best cannot be implemented

through mechanisms in which each action corresponds to the deterministic

appropriation of some house. Instead, there have to be some actions with

uncertain outcomes. Randomness is a valuable tool to incentivize learning.

Moreover, randomness is useful to attenuate the clash between the objec-

tives of efficient learning and efficient allocations. Since randomness can be

generated via simultaneous learning, it might well be that agents need to

learn simultaneously according to the second-best mechanism - even if the

first-best strategy always prescribes sequential learning.

I frame all these questions in a very simple environment of “house alloca-

tion problems”, in which some objects, henceforth called houses, need to be

(bijectively) matched to some agents. The model deviates as parsimoniously

as possible from the model of exogenous information inasmuch as as that

agents are able to learn the value of at most one house each. To avoid the

issue of informational externalities, the values of the houses are assumed to

be independently distributed. I assume, moreover, that agents are ex-ante

identical in the sense that they all assign the same expected values to houses

that they have not investigated. This assumption of ex-ante identity makes

it reasonable to focus on mechanisms that maximize ex-ante welfare (as op-

posed to ex-ante Pareto optimality). In the given model, the maximization

of ex-ante welfare corresponds to the maximization of expected individual

utility if each agent has an equal chance to obtain any role within the mech-

anism. Since ex-ante welfare optima are also ex-ante Pareto optima, the

results on welfare optima not being implementable directly imply that some

ex-ante Pareto optima are not implementable.

The paper is structured as follows: first, I discuss the main concepts and

findings at the hand of an introductory example (Section 2). In Section 3, I

formally define the model and the important concepts of the paper. I go on to
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characterize first-best behavior within the model (Section 4). In the following

Section 5, I show that some learning and allocative behavior in a matching

allocation problem is implementable, if and only if it is implementable by a

suitably defined “sequential revelation mechanism”. Building on the results

from the prior two sections, Section 6 provides a sufficient and necessary

condition for the implementablitiy of the first-best. In Section 7, I show

that the second-best need not be implementable through trade. Section 8 is

devoted to the trade-offs between efficient learning and efficient allocations

and between the sequential and the simultaneous elicitation of preferences.

Section 9 concludes.

2 An Introductory Example

2.1 The Housing Problem

Consider a housing problem with three houses h1, h2 and h3 and three agents.

Assume that the agents’ true valuations of h1 and h2 are drawn from binary

distributions (p1, A1, a1) = (3
4
, 8, 0) and (p2, A2, a2) = (1

2
, 3,−2) (with the

interpretation that h1 is of high value A1 = 8 with probability p1 = 3
4
, and

of low value a1 = 0 otherwise, ditto for h2). These draws are independent

across houses and agents. The value of house h3 is known to be α3 = −1.

Consequently, each agent has the same a priori ranking h1 ≻ h2 ≻ h3 over the

three houses. Agents 1 and 2 can each investigate one house of their choosing.

Agent 3 evaluates h1, h2 and h3 by their expected values α1 = 6, α2 = .5 and

α3 = −1 in turn.

In terms of substance, these assumptions can be interpreted as follows.

The agents agree on an a priori ranking that depends on publicly known

aspects of the houses, such as whether a house is large or small, whether it

lies right by the highway or not, etc. A priori (before any investigations have

taken place) all agents rank the houses by their agreed expected values of

αi = piAi + (1 − pi)ai. The independence assumption implies that agents

value the initially unknown features of houses in a truly idiosyncratic manner:

the walls of a house might, for example, be painted in a shade of blue that

to some appears “fresh”; they would assign value Ai to the house, whereas
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Figure 1: Serial Dictatorship

to others the same shade would just appear “icy”.

2.2 Serial Dictatorship

To get a grasp on the effects that mechanisms may have on information ac-

quisition as well as on allocations, consider serial dictatorship. In a serial

dictatorship with three houses, some agent (the first dictator) gets to choose

a house out of the set {h1, h2, h3}, then another agent (the second dictator)

gets to pick a house out of the remainder. Figure 1 graphically represents

serial dictatorship. The tree in Figure 1 is considered a rule-tree, since it

summarizes the rules set by the mechanism designer. The nodes are labeled

with the agents, the vertices represent actions. The outcome vectors repre-

sent allocations, where the top (bottom) element represents agent 1’s (3’s)

assignment.

To comprehend the game that is being played under a given set of rules,

we also need to consider the learning decisions of agents. To this end, I

assume that, right before choosing, agents 1 and 2 may investigate any house.

The information whether and which house an agent investigates is private,

just like the outcome of that investigation. The induced game tree is large,

Figure 2 provides a partial sketch of it. Any node in this tree that is not

explicitly labeled with payoffs is to be considered a non-terminal node. Note
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Figure 2: Sketched Game Tree: Serial Dictatorship

that the game starts with a move of nature, in which the agents’ valuations

of the houses are determined. I only sketched the subtree following the draw

of the state ω, in which every agent values every house highly. The initial

node N of the (full) tree has a branch for every possible profile of the agents’

preferences.

Any one of nature’s moves is followed by a decision node for agent 1,

in which he has to choose whether and which house to investigate (actions:

l : h1, l : h2 and ∅). All these “learning” nodes of agent 1 belong to the same

information set. Any one of these learning choices is followed by another

node for agent 1; in each of these, agent 1 can choose one out of the 3 houses.
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I chose to only sketch the subtree according to which agent 1 investigates

house h1 and chooses that same house. Once agent 1 has chosen a house, it

is up to agent 2 to decide whether and which house to investigate. Each of

these possible choices of an investigation is followed by the choice of a house

that is still available (h2 or h3 in the subtree I chose to draw).

The payoffs reflect the knowledge of agents right before they move into

their respective houses. Consider the case in which agent 2 is assigned h2.

If he did investigate h2, he obtains A2 for the given state ω; if not, he just

obtains α2. To complete the tree information-sets would have to be drawn as

well. They are such that learning is private. When agent 2 decides whether

and which house to investigate, he knows which house agent 1 has chosen; he

does, however, not know anything about agent 1’s preceding investigation.

To find the unique perfect Bayesian equilibrium, observe that there is

only one case in which h1 is not agent j’s most preferred house: agent j did

investigate h1 and found it to be of low value. In this case, agent j ranks h2 at

the top. It is therefore optimal for the first dictator to investigate h1, to keep

it if he finds it of high value and to keep h2 otherwise. Consequently, there

are only two choice sets on the equilibrium path for the second dictator:

if the first dictator has chosen to keep h1, the second gets to choose from

{h2, h3}, otherwise the second dictator gets to choose from {h1, h3}. In the

latter case, the second dictator will choose h1 without any investigation, since

he prefers h1 to h3, no matter whether the value of h1 is high or low (since

a1 = 0 > −1 = α3). In the first case, it is best for the second dictator to

learn his valuation of h2 and to choose it, if and only if it is of high value

(since A2 = 3 > α3 = −1 > a2 = −2).

It is useful to separate the agents’ learning choices analytically from the

choices that matter for the allocation. This allows me to consider separately

efficient allocations for given ex post preferences and efficient learning. It

also facilitates the use backwards induction of determine first-best behavior.

The learning choices are represented by learning trees, which specify

follow-up investigations for any history of outcomes of preceding investiga-

tions. In the case under discussion, the learning tree starts with agent 1’s

investigation of h1. Learning continues with agent 2’s investigation of h2,

if and only if agent 1 has found h1 to be of high value; otherwise agent 2
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Figure 3: Learning Tree, Serial Dictatorship

will not investigate any house. The choices that matter for the allocation of

the houses are summarized by an allocation function which maps any (fea-

sible) a posteriori preference profiles to an allocation. Figure 3 illustrates

the learning tree and allocation function implemented by serial dictatorship:

nodes correspond to investigations, branches to values, and outcomes to the

allocations prescribed for the different a posteriori preference profiles.

2.3 First-Best Learning and Allocations

Serial dictatorship is but one example of a mechanism. In this subsection,

I investigate the question whether there is some learning behavior and allo-

cation functions that yield higher ex ante welfare than the learning behavior

and allocation function implemented by serial dictatorship. To determine

first-best learning behavior and allocation functions, abstract away from any

incentive constraints. Start by fixing some profile of a posteriori preferences.

If possible, h1 should be assigned to someone who values it highly. If no one

values h1 highly, it should be assigned to someone who did not investigate

it. The same holds for h2. Since agent 3 cannot investigate any house, such

an allocation is always feasible.

This description of efficient allocations has two immediate implications
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for first-best learning: firstly, if an agent found some house to be of high

value, it makes no sense to let the other agent investigate the same house.

Secondly, both options to investigate a house should always be used. These

two preliminary observations leave us with just three candidates for the first-

best learning tree. Either one agent investigates h1 and the other investigates

h2. Or one agent investigates h1 and the next agent investigates h1, if and

only if the first found h1 to be of low value. Exchanging h1 and h2, one obtains

the third alternative. The welfare of three learning trees is O1 + O2 + B,

O1+(1−p1)O1+p1O2+B, and O2+(1−p2)O2+p2O1+B, with B : α1+α2+α3

and Oi : pi(Ai − ai) for all i. The term B can be interpreted as a base

value of welfare which arises when randomly assigning houses. Next, Oi is

called option value of hi. To gain some intuition for this statistic, consider

a hypothetical choice problem in which an agent gets to choose one of two

houses with identically and independently distributed values. The option

value of a house is the agent’s maximal willingness to pay for the right to learn

the value of one of these two houses. Intuitively, the option value summarizes

the value of learning. In this particular case, p1(A1 − α1) = 1.5 and p2(A2 −

α2) = 1.25 hold, and therefore the optimal learning tree prescribes that

agent 1 investigates house h1 and agent 2 conditions his investigation on

the outcome of that first investigation. This observation is generalized in

Lemma 1 in Section 4, which shows that according to the first-best learning

tree and allocation function houses should be investigated in order of their

option value.

2.4 Revelation Principle

In the standard case, without endogenous learning, the search for an opti-

mal mechanism is greatly simplified by the revelation principle, which states

that any social choice function that can be implemented by some mechanism

can also be implemented by a direct revelation mechanism. How does this

principle translate to the environment with endogenous learning? Can any

implementable learning tree and allocation function also be implemented by

a mechanism in which the designer simultaneously and truthfully elicits the

agents’ types? The preceding discussion of the first-best learning tree imme-
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Figure 4: Rule Tree of Sequential Revelation Mechanism

diately yields a negative answer to this question. According to the first best

learning tree, agent 2 conditions his investigation of a house on the outcome

of the first investigation. Consequently, there exists no mechanism which,

on the one hand, implements the first best learning tree and, on the other

hand, has simultaneous announcements of preferences. In Section 5, I show

a dynamic version of the revelation principle, according to which a learning

tree and allocation function are implementable if and only if they are imple-

mentable by a mechanism according to which the designer truthfully elicits

the agents’ types in the proper sequence. The following subsection illustrates

the principle of sequential truthful revelation.

2.5 Implementation of the First-best

The following mechanism implements the first-best learning tree and alloca-

tion function by sequential truthful implementation: if agent 1 declares A1,

he gets h1; if not, he is wait-listed. In the first case, agent 2 gets house h2,

if he declares A2, and h3 otherwise. In the second case, the allocation is

(h2, h1, h3) if agent 2 declares A1, and (h3, h2, h1) otherwise. The mechanism

is illustrated by the rule-tree in Figure 4.
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To see that truthful revelation is equilibrium behavior consider the de-

cision problems of the two agents. If agent 1 did announce A1, agent 2’s

announcement of A2 or a2 effectively corresponds to a choice between h2 and

h3. I already observed in the discussion of serial dictatorship (Section 2.2)

that an agent who faces this choice maximizes utility by investigating h2 and

keeping it, if and only if he finds it to be of high value. Similarly, if agent 1

has announced a1, the choice of agent 2 is effectively one between h1 and h2,

which implies that investigating h1 and telling the truth is a best reply for

agent 2 in this node.

Now let us consider agent 1’s decision whether to announce A1 or a1. If

he announces A1, he is being assigned h1; if he announces a1, his assignment

depends on the decision of agent 2. If agent 2 announces A1, agent 1 is

assigned h2; otherwise he is assigned h3. But we just showed that agent 2

best responds by announcing A1, if and only if he finds h1 to be of high value,

which in turn happens with a probability of 3
4
. Given the choice between h1

and the lottery according to which he obtains h2 with probability 3
4
and h3

otherwise, an investigation of h1 is strictly preferable to no investigation, as

the expected value of the lottery lies strictly between the two possible values

of h1. Investigating h1 is preferable to investigating h2, since knowing the

value of h2 has no impact on the agent’s preference among h1 and h2 (h1 is

preferable to the lottery no matter whether the value of h2 is high or low).

Observe that the learning tree implemented by the mechanism is indeed

the first-best learning tree. To see that the mechanism also implements a

first-best allocation function, observe that any agent who claims to have

found a house to be of high value obtains that house, and no agent who

claims to have found a house to be of low value obtains this house.

Note that agent 1 faces some randomness in the sequential revelation

mechanism: If he claims that he found h1 to be of low value, his assignment

depends on the action of agent 2. In equilibrium agent 2 investigates h1

and truthfully declares the result of his investigation. Consequently, agent

1 faces some randomness on the equilibrium path. I argue in Section 7

that such randomness is actually necessary for the implementation of the ex

ante welfare optimum in the present example. Also note that the sequential

revelation mechanism is not a trading mechanism. In Section 7 I argue
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that there is no trading mechanism which would also implement the ex-ante

welfare optimum in the present example.

3 The Model

3.1 Agents, Houses, Values

There are finite sets of agents N : = {1, · · · , n} and of houses H : =

{h1, · · · , hn}. Agent j values house hi at ωj
i . The goal of the designer is

to maximize welfare by matching houses to agents; formally, the objective is

to find a bijection µ : H → N such that
∑

i ω
µ(i)
i is maximized. This prob-

lem is easily solved, if all values ωj
i are known to the designer. If this is

not the case, the question is whether the designer has any means of learning

the values ωj
i . If this information is available to the individual agents, the

question is how he can get them to reveal it. This is the standard problem

of mechanism design. If the information is not exogenously given to the in-

dividual agents, but must be acquired by them at a cost, there is the added

issue of their incentives for information acquisition. The present paper posits

that - initially at least - neither the designer nor the agents know the values

of ωj
i . The agents may learn some of their own valuations ωj

i . Therefore a

mechanism sets incentives not only for the allocation of houses for given (ex

post) preferences, but also for the acquisition of information on houses.

The values of ωj
i are assumed to be drawn from binary distributions that

are identical across agents. The draws are independent across agents and

across houses. Formally, for any agent any house hi has high value Ai with

probability pi and low value ai with the complementary probability. This

assumption of independent draws is essential to rule out informational exter-

nalities.

Agents 1 through n − 1 can learn their (idiosyncratic) value of exactly

one house each (investigate one house). There is no explicit cost of learning

in the model. An agent who opts to learn the value of some house hi only

faces the opportunity cost of not being able to investigate any other house.
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The nth agent cannot investigate any house.3

Formally, an agent’s type is identified with the vector of values he assigns

to the houses ωj = (ωj
i )i=1,...,n. The set of all possible types of agent j is

denoted by Ωj . The underlying state space of the model is Ω = Ω1×·· ·×Ωn,

the space of all possible profiles of values ω = (ω1, · · ·, ωn) = (ωj
i )i,j=1,···,n.

The distribution of states is denoted by P , and can be constructed from the

assumptions on the distributions of the separate values ωj
i . The space of a

posteriori preference profiles Ω is defined as the space of all n × n matrices

ω with the feature that ωj
i = Ai, or ω

j
i = ai for at most one i for each j < n,

and ωj
i = αi for all other i, j. If house hi was investigated by agent j then

ωj
i 6= αi.

4

3.2 Allocation Mechanisms

A mechanism Γ = (R, g) is a collection of n strategy sets

R := (R1, . . . , Rn) and an outcome function g : R → M that maps every

strategy profile r := (r1, · · ·, rn) to an allocation in M . While this definition

of a mechanism is standard, the function that such a mechanism serves in

the context of the present setup differs from the standard case. In the stan-

dard case, agents know their types ωj and condition their strategies on these.

In the present case, types arise endogenously out of learning choices. Said

differently: the same mechanism Γ = (R, g) induces different games in cases

where agents know their types and the alternative cases, in which types can

be learned at a cost. In the latter case, the extensive form game induced by

Γ = (R, g) needs to be augmented by nodes that reflect the learning decisions

of agents.

In the case of endogenous information acquisition, a mechanism Γ =

(R, g) induces an extensive form game (T, j,D, I) where T denotes the set of

3The significantly more complicated case, in which all n agents can investigate a house

is discussed in the Appendix (Section 10.2).
4This notion of a posteriori preferences corresponds to the moment right after the

investigations. Of course, once the agents occupy houses, they will find out whether they

like their respective houses. If one was to study re-trading of houses, one would probably

want to detail more stages information acquisition, assuming always that an occupant of

a house would learn the value of the house he is living in.
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nodes, j and D are functions such that j(t) is the agent who gets to choose

from a action sets D(t) at node t and I describes the information sets as

follows:

The game tree starts off with a move of nature in which the state ω

is drawn from P . The remaining nodes T can be partitioned into set of

learning nodes Tl, rule nodes TR, and terminal nodes Tτ . At any learning

node t ∈ Tl, agent j(t) gets to choose whether and which house to investigate,

so D(t) = {∅, l : h1, l : h2, · · · , l : hn} for t ∈ Tl, where the l : hi stands for the

choice to investigate house hi, and ∅ stands for the choice not to investigate

a house. The set of rule nodes TR is determined by the mechanism Γ. The

game is structured such that rule node t is prefaced with a learning node

for agent j(t), if j(t) has not yet investigated a house on the path leading

up to t and if j(t) < n. It is useful to go back to the sketch of the game

tree induced by serial dictatorship in Figure 2. Agent 1’s first node after the

draw of nature is a learning node. Any learning node is succeeded by three

rule nodes tα, tβ, and tγ for agent 1 (note that due to restrictions of space I

only drew the subtree following agent 1’s choice to investigate h1). In each of

these three rule nodes, agent 1 faces the same decision (D(t) = {h1, h2, h3}

for t = tα, tβ and tγ) as prescribed by the mechanism of serial dictatorship.

Some information sets I are directly determined by Γ = (R, g): if the rules

set by the mechanism designer are such that agent 3 knows which action agent

2 chose at some preceding rule node, the information sets need to reflect this

knowledge. In addition, information sets I are such that learning is private,

in the sense that only an agent knows whether or which house he investigated,

and he is also the only one to know the outcome of that investigation.5

The terminal nodes specify the payoffs of agents, which are calculated

as follows. The decisions in the rule nodes of the path leading up to some

terminal node t ∈ Tτ determine a matching µ of houses to agents. The

payoff to agent j is the a posteriori value he assigns to the house he has been

allocated. The a posteriori value that agent j assigns to house hi at some

5This assumption implies that the placement of the learning nodes directly before the

relevant rule nodes is without loss of generality. Given that agents can communicate

only through the channels given by the mechanism, there is no strategic benefit to the

anticipation of learning decisions.
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terminal node t ∈ Tτ is αi, if the agent did not investigate that house on the

path leading up to t. If j did investigate his assigned house, his value is ωj
i ,

where the first branch of the tree leading up to t is ω.

Consider the left-most terminal node in the sketch in Figure 2. The

allocation in this terminal node is determined through agents 1’s choice of

h1 and agent 2’s choice of h2 in their respective rule nodes. According to the

state of nature ω, each agent values each house highly. However, according

to the learning decisions, only agent 1 knows the value of the house he is

being assigned. So the vector of a posteriori values is (A1, α2, α3).

A strategy of agent j in the given extensive form game is denoted by sj ∈

Sj, where Sj denotes the set of his strategy profiles. Strategy profiles and sets

of strategy profiles are denoted by s = (s1, · · · , sn) and S := (S1, · · · , Sn),

respectively.

3.3 Learning Trees and Allocation Functions

For any mechanism Γ = (R, g) and the corresponding game with endogenous

information acquisition, I define two functions describing the learning and

allocations for given states and strategy profiles: gl : S × Ω → Ω and gF :

S × gl(S × Ω) → M . The function gl : S × Ω → Ω maps strategy profiles

and states to a posteriori preference profiles. For a house hi that has been

investigated by some agent j under some strategy profile at state ω, we have

that ωj
i = ωj

i ; for all other pairs of agents and houses, we have that ωj
i = αi.

The function gF describes the allocation determined by the mechanism for

given a posteriori preferences ω ∈ gl(S × Ω) ⊂ Ω and given strategy profiles

s.6

To analyze the learning behavior and allocations implemented by mech-

anisms, I next define learning trees and allocation functions.

Definition 1 For a given housing problem, a learning tree and allocation

function (l, F ) is defined as follows:

A learning tree is a function l : Ω → Ω whose values are determined us-

6Since allocations can only depend on the known values, the allocation function gF

maps gl(S × Ω) ⊂ Ω instead of Ω to M .
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ing a rooted binary tree with house-agent-pairs (hi, j) as the nodes and values

Ai and ai as the edges with the following properties. The root node (hir , jr)

prescribe agent jr to start off the learning process with an investigation of

hir . From then on, learning follows (*)

(*) If the value is high and the node has an edge representing the high

value, learning continues with the house-agent-pair prescribed by that node.

and (∗) is repeated. If the node has no such edge, learning terminates. The

same holds for low values.

The tree has the property that there is no path on which the same agent

appears twice. Agent n never appears on the tree. The a posteriori profile of

preferences l(ω) = ω is such that ωj
i = ωj

i holds for any node (hi, j) that is

visited for ω; otherwise we have ωj
i = αi.

Any function F : l(Ω) → M is called an allocation function.

The procedural description reflects the fact that the choice to investigate

some house can only depend on the outcomes of prior investigations. The

assumptions that no agent can investigate two houses and that agent n can-

not investigate any house are reflected in the condition on the paths of the

tree. The condition that agents can only learn true values determines the

calculation of the values of l. Note that the domain of the allocation func-

tion depends on the learning tree; learning trees and allocations functions

are therefore defined as pairs. House hi is assigned to agent j = F (l(ω))(hi)

at state ω, if the learning tree and allocation function are (l, F ).

From now on, I restrict attention to learning trees l, according to which

agents move in the order of their index. This makes sense, since the iden-

tity of the agents who learn houses has no relevance for total welfare.7 All

uniqueness results in the sequel are understood modulo renaming of agents.

Any mechanism Γ together with a strategy profile s can be associated

with a learning tree l and an allocation function F , through l(ω) = gl(s, ω)

and F (ω) = gF (s, ω). For the particular case that the strategy profile under

7This is implied by the assumption that agents are a priori identical, in the sense that

their preferences are independent draws from identical distribution, together with the

assumption that each agent can investigate at most one house.
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consideration is a perfect Bayesian equilibrium, we say that the associated

(l, F ) are implemented by Γ.

Definition 2 The mechanism Γ implements (l, F ) (via se) if the game

induced by Γ has a perfect Bayesian equilibrium strategy profile se, such that

l = gl(se, ·) and F = gF (se, ·) on gl(·,Ω).

Note that Γ might have multiple equilibria. Therefore, one can use the same

mechanism Γ to implement different learning trees and allocation functions.

At times, it is useful to single out the equilibrium strategy profile se for which

l = gl(se, ·) and F = gF (se, ·) holds, in which case Γ is said to implement

(l, F ) via se. Also note that a concept of equilibrium in pure strategies is

used.

The designer’s goal to choose a mechanism that maximizes welfare can

now be expressed as:

maxW (l, F )

s.t. ∃Γ : Γ implements (l, F ).

where

W (l, F ) : =
∑

ω∈Ω

P (ω)

(
n∑

i=1

ω
F (l(ω))(hi)
i

)

is defined as total expected welfare for the given learning tree l and allocation

function F . The first best learning tree and allocation function (l∗, F ∗)

is defined as the learning tree and allocation function that maximize social

welfare W (l, F ), ignoring implementability. The second best learning

tree an allocation function (l◦, F ◦) is defined as the learning tree and

allocation function that maximize social welfare, conditional on (l◦, F ◦) being

implementable.

4 The First-Best Learning Process and Allo-

cation Function

The main statistic needed to characterize the first best learning tree and

allocation function (l∗, F ∗) is the expected increase in welfare associated with
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the investigation of a house when the designer is free to allocate that house

at its expected value or at its observed value. Formally, the option value

Oi of house hi is defined as Oi : = pi(Ai − αi). I assume from now on that

there are no two houses with the same option value: Oi 6= Oi′ for all i 6= i′. 8

I assume, in addition, that houses are indexed in terms of their option value

such that Oi > Oi+1 for all i.

Lemma 1 Any first-best learning tree and allocation function (l∗, F ∗) can be

described as follows:

• after any history of investigations, l∗ prescribes to investigate a house

with maximal option value among all houses which have not yet been

found to be of high value in some prior investigation. This process

continues until agent n− 1.

• F ∗ : l∗(Ω) → M matches hi with agent j, if agent j found house hi to

be of high value. All other houses are assigned to agents who evaluate

them at their expected values.

According to l∗, agents should investigate h1 as long as no one has found

it of high value. Once this happens they should move on to the h2 and so

forth. Observe that F ∗ is well-defined, since for any ω ∈ l∗(Ω) at most one

agent knows a particular house to be of high value. If we drop the assumption

that no two houses have the same option value, there are as many optimal

learning trees as there are ways to order the houses according to their option

value.9 The set of efficient allocation functions is large, since there are many

different ways to assign houses to agents who did not investigate them.

Here I just discuss some of the main features of the proof, which can be

found in the Appendix. In the proof, I define a set of learning processes

and allocation functions (l̃, F̃ ) that prescribe continuation strategies for

8This assumption is not without loss of generality. However, while the results only

change slightly, the notation becomes significantly less cumbersome. Throughout the

text, I will point out how the results need to be amended to account for the case that

Oi 6= Oi′ holds for some i 6= i′.
9This presumes, of course, that agents move in order of their index, as discussed at the

end of Section 3.
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all histories of investigations. The upshot is that backward induction can

be used to characterize the welfare-optimal learning process and allocation

function (l̃∗, F̃ ∗).

I start by showing that F̃ ∗(ω) =
∑

i∈N ω
µ(i)
i with µ(i) = F̃ ∗(ω)(hi) maxi-

mizes welfare if each house hi is matched to an agent µ(i) who assigns value

maxj{ω
j
i} to this house - conditioning on ω being the profile of a posteriori

preferences.

To prove the optimality of l̃∗ by backwards induction, consider the n−1st

learner. Observe that the assumption that the n’th agent cannot investigate

any house and therefore evaluates all houses at their expected value implies

that no matter which house the n − 1st agent investigates the designer is

free to allocate each house either at its expected value or to some agent who

investigated it.10 Therefore, the n − 1st agent should learn the house with

the highest option value that has not yet been found to be of high value by

any agent. The inductive step follows from similar arguments.

5 Sequential Revelation Mechansims

The original version of the revelation principle as formulated by Myerson

(1982, 1985) does not apply to games of endogenous sequential learning.11 I

therefore start this section with the statement of a version of the revelation

principle that applies to the present case of sequential learning. To this end,

I define a mechanism as a sequential revelation mechanism if each agent

has at most one rule node on any path of the corresponding game tree, if

each rule node has two edges and if these edges correspond to the messages

“Ai” and “ai”. Formally, we have that D(t) = {Ai(t), ai(t)} for some house

i(t) for any t ∈ TR, where the set D(t) is to be interpreted as the set of

10The assumption that only n − 1 agents can investigate a house is essential for this

argument. This problem renders the extension to the case of n learners non-trivial. Since

the terminology developed in the proof Lemma 1 turns out to be useful in the discussion

of the n-learner case, this discussion is relegated to the Appendix (Section 10.2).
11To see this, consider the welfare-optimal mechanism as defined in the introductory

example (Section 2.5). There is no normal form game in which agents 1 and 2 simultane-

ously announce their types to the designer, while at the same time agent 2 conditions his

learning about his own type on his knowledge of the type of agent 1.
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possible messages that can be sent to the mechanism designer. A strategy

profile in the corresponding game with endogenous information acquisition

st is considered truthful if the following two conditions hold: firstly, in any

learning node t ∈ Tl, agent j(t) investigates house hi, if the choices in the

succeeding rule nodes t′ are D(t′) = {Ai, ai}. Secondly, an agent who has

investigated the house prescribed by st announces Ai if and only if he found

hi to be of high value.

Observe that in the context of endogenous learning truthfulness not only

requires that agents report their types. Agents are, in addition, required to

obtain the information that they are supposed to report truthfully. If an

agent investigates some house hi′ before a rule node t with D(t) = {Ai, ai},

he cannot possibly report his type truthfully. In that case, he evaluates hi

at αi /∈ {Ai, ai}.
12

A sequential revelation mechanism Γ = (R, g) truthfully implements a

learning tree and allocation function (l, F ) if the truthful strategy profile st

is an equilibrium in the induced game and if gl(·, st) = l and gF (·, st) = F .

Example 1 Reconsidering the housing problem defined in Section 2, observe

that serial dictatorship is not an sequential revelation mechanism, as the

first dictator can choose from three houses. However, the learning tree and

allocation function (l, F ) that are implemented by serial dictatorship can

be implemented by the following sequential revelation mechanism: first, the

mechanism designer asks the first agent whether he values h1 highly or not.

If the first agent has claimed to value h1 highly, the designer asks the second

agent for his valuation of h2. Allocations are such that agent 1 is assigned

h1 if he claims to value it highly. In that case, house h2 is assigned to agent

2, if and only if he claims to value it highly; otherwise he is assigned h3. If

agent 1 claims a1, agents 1,2 and 3 are allocated h2, h1, and h3 in that order.

Another example of a sequential revelation mechanism was already discussed

12Of course, sequential revelation mechanisms could also have been defined using larger

sets of announcements D(t) = {A1, a1, A2, a2, · · · , An, an}. In such mechanisms agents

can truthfully report their type after any learning decision. The upshot of “tailoring”

sequential revelation mechanism for particular learning trees is that smaller strategy sets

facilitate implementation: with larger strategy sets, more deviations need to be considered

to establish that a particular strategy profile is an equilibrium.
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in Section 2.5.

The example is generalized in the next theorem on sequential revelation

mechanisms.

Theorem 1 A learning tree and allocation function (l, F ) are implementable

by some mechanism Γ, if and only if they are truthfully implementable by

some sequential revelation mechanism Γ′.

Proof Let (l, F ) be implemented by Γ via se. Prune the game tree, so

that all edges that correspond to actions never chosen according to se are

deleted. Next, drop all remaining rule nodes with only one edge and observe

that the surviving rule nodes have the feature that the action chosen in these

nodes depends on the investigation of a house. Consequently, there is at

most one rule node remaining per path and player. All these rule nodes have

exactly two branches, since the state variable on which the choice is based

is binary and since only pure strategies are considered. The suitably pruned

strategy profile sep is also an equilibrium in the pruned tree and corresponding

mechanism Γ′ and implements (l, F ). Now construct a mechanism Γ′′ that

has the same set of nodes T as Γ′. Construct Γ′′ through a relabeling of the

actions in Γ′ such that for any rule node t ∈ TR at which sep prescribes that

j(t) learn hi before t let D′′(t) = {Ai, ai} with the interpretation that D′′(t)

is the set of possible messages to the designer at node t in mechanism Γ′′.

The designer reveals information in Γ′′ according to the information sets in

Γ′ and determines outcomes in Γ′′ as if the agents had played according to

sep in the game induced by Γ′. Observe that (l, F ) is implemented in Γ′′ via

the strategy profile that corresponds to sep. The reverse conclusion is trivial,

since sequential revelation mechanisms are mechanisms, too. �

Theorem 1 can easily be extended to distributions with more than two

values: the number of available messages simply needs to be adjusted to the

number of relevant states. Furthermore, the assumption that values of all

houses are distributed independently and identically across agents did not

enter the proof. Similarly, the theorem can be amended to multiple learning

23



decisions. The main difference with respect to the standard revelation prin-

ciple is that in the present case, it is not possible to elicit the agents’ types

simultaneously. In the present case, types are endogenous and some agents

might condition their learning on the actions of others. Consequently, some

agents might have to wait for the revelation of some other agents’ types to

base their endogenous learning decision on this information. Furthermore,

the designer not only has to provide proper incentives to reveal the truth but

he also has to provide the incentive to learn according to his desired learning

tree.

6 Implementation of the First-Best

Lemma 1 and Theorem 1 lead up to Corollary 1 on the set of cases in which

the first best is implementable. To understand the problems associated with

the implementation of the first-best learning tree and allocation function,

consider a sequential revelation mechanism Γ that implements (l∗, F ∗). The

learning tree l∗ prescribes the order in which agents are supposed to learn

houses. Since Γ is a sequential revelation mechanism, the choice offered to

agent j at a node where he is supposed to investigate house hi must be

a choice between declaring Ai or ai. Next, F ∗ prescribes that the agent

obtains hi if he (truthfully) declares Ai. The fall-back option, that is, the

lottery over houses that declaring ai corresponds to, must satisfy the following

(potentially conflicting) three conditions. The probability that the agent

obtains hi if he announces ai, must first of all, be zero; otherwise F ∗ would

be violated. Secondly, for truth-telling to be equilibrium behavior, agent j

must find it in his best interest to investigate hi and to report the true value

when given the choice between obtaining hi and the fall-back option. Thirdly,

the fall-back options must be consistent in the sense that the mechanism

terminates with allocations.

From this discussion it can already be gleaned that the designer’s ability

to design fall-back options is of essence for the implementation of the first-

best. To grasp the requirement better that an agent should find it in his

best interest to investigate hi when l∗ prescribes for him to investigate hi,

some more definitions are needed. Lotteries on houses are defined as π :=
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(π1, . . . , πn), where πi stands for the probability that the agent obtains hi.

Degenerate lotteries π with πi = 1 for some i are denoted by hi. The expected

value of the lottery π is denoted by E(π).

Definition 3 A lottery π is said to incentivize (the learning of) hi if given

the choice between hi and π, the investigation of hi is strictly preferable to no

investigation and weakly preferable to the investigation of any other house.

If π incentivizes hi, I write hi %l π.
13

Observe that statements such as π′ %l hi or π′ % π are left undefined for

non-degenerate lotteries π′. For any h1 = (p1, A1, a1) and h2 = (p2, A2, a2)

the requirement of h1 %l h2 amounts to the following inequalities:

A1 > α2 > a1

p1A1 + (1− p1)α2 ≥ p2A2 + (1− p2)α1

The first inequality ensures that learning h1 is strictly preferred to choosing

without learning. The second inequality formalizes the requirement that

learning h1 is weakly preferred to learning h2. If an agent is given the option

to choose a house from a set {h1, h2} with h1 %l h2 it is optimal for him to

investigate h1 and to choose it, if and only if it has high value for him.

The relation between the learning order %l and the order by option values

describes the crux of the present design problem. If the two coincide the prob-

lem of the designer is straightforward, and agents are happy to investigate

houses in the order prescribed by the first-best learning tree. The problem lies

in the fact that these two relations do not generally coincide. It is convenient

to introduce further notation for sequential revelation mechanisms. Let dA(t)

be the number of high value statements in the history leading up to t. Define

a function i : TR → {1, · · · , n} such that at node t the designer asks agent j(t)

for the value of house hi(t). For any strategy profile s, any rule-node t ∈ TR

and the two possible announcements X ∈ {Ai(t), ai(t)} at t, let πi(t, s,X) be

defined as the probability with which agent j(t) obtains hi, given that he

13This is equivalent to demanding that the investigation of hi be strictly preferable to

no investigation and weakly preferable to the investigation of any house in the support of

π, as investigating a house not in the support of π corresponds to not investigating any

house.
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makes announcement X at node t, and given that all other agents follow the

strategy profile s. Let πi(t, s,X) = (π1(t, s,X), · · · , πn(t, s,X)) stand for the

corresponding lottery over houses.

Corollary 1 The first-best (l∗, F ∗) is implementable, if and only if there

exists a sequential revelation mechanism Γ, such that the following holds for

all rule-nodes t ∈ TR:

• i(t) = dA(t) + 1.

• π(t, st, Ai(t)) = hi(t) and πi(t, s
t, ai(t)) = 0.

• hi(t) %l π(t, s
t, ai(t)).

14

Proof By Theorem 1, (l∗, F ∗) can be implemented, if and only if it can

be implemented truthfully through a sequential revelation mechanism. Let

Γ = (R, g) be the sequential revelation mechanism that truthfully implements

(l∗, F ∗). Observe that l∗ = gl(·, st) holds, if and only if the first requirement

above holds. Next, observe that conditional on the first observation, F ∗ =

gF (·, st) holds, if and only if the second requirement holds. Finally st is a

perfect Bayesian equilibrium, if and only if the last requirement holds, since

π(t, st, Ai(t)) = hi(t) holds for all nodes t.
15 �

Observe that Corollary 1 can be split into a “mechanical” and an “artful”

part. The first two conditions straightforwardly determine some properties

of any sequential revelation mechanism that might implement (l∗, F ∗): the

designer has to offer the houses that should be learned according to l∗ in the

sequence prescribed by l∗. The art of mechanism design stands out when

considering the third requirement, which demands that there is a way to use

the houses that are not found to be of high value as fall-back options to

incentivize learning according to l∗. The following example defines a housing

problem in which the first best cannot be implemented.

14If some houses have the same option value, the statement has to hold for some index-

ation of the set of houses with Oi ≥ Oi+1 for all i.
15Note that all nodes are reached with positive probability; therefore, we need not be

concerned with out of equilibrium beliefs. If I had defined sequential revelation mechanisms

with message spaces large enough to allow for the announcement of any possible a posteriori

type, as suggested in footnote 12, this would not hold.
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Example 2 Define a housing problem with three agents through

h1 = (p1, A1, a1) = (1
2
, 70,−10), h2 = (p2, A2, a2) = (3

4
, 100, 0), and h3 =

α3 = −2. Observe that α1 = 30, α2 = 75, O1 = 20, and O2 = 75
4
, which

implies that houses are indexed by their option values. To see that the first-

best is not implementable, suppose it was. Let Γ = (R, g) be the sequential

revelation mechanism that implements it according to Theorem 1. Since h1

has the highest option value, the first agent needs to be given the choice to

announce either A1 or a1. Let us have a look at the node after a declaration

of A1 by the first agent. We must have that π(A1, s
t, A2) = h2, since agent 2

has to be allowed to keep h2, if he would like to do so. On the other hand,

we must have π(A1, s
t, a2) = h3, as h3 is the only other remaining house.

However, agent 2 is not willing to investigate h2 in this node, as h2 %l h3

does not hold (since a2 > α3).

What is important to note is that the inefficiency of the example is not one

of asymmetric information. To see this fix any knowledge structure consistent

with the example, meaning assume that agents 1 and 2 each privately know

the value of one house. For each of these 3 cases (either both know the value of

h1, or both know the value for h2, or each knows the value of a different house)

one can design mechanisms that implements a welfare maximal allocation.

With endogenous learning, though, it is not possible to design a mechanism

that achieves the first best ex ante welfare. The difference between the ex

ante optimal welfare and the welfare due to random assignment is p1O1 +

p1(1 − p1)O1 + (1 − p1)O2, I show in Section 8 that the difference between

the highest implementable ex ante welfare and the welfare associated with

random assignments is just p1O1 + p2O2.

7 Trading Mechanisms

Can all welfare optima of housing problems with endogenous information

acquisition be reached via markets? The second welfare theorem tells us that

in an environment with divisible goods, convex and non-satiated preferences

(and without endogenous information acquisition), any Pareto optimum can

be sustained as a market equilibrium with transfers. Similarly, for the case of
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housing problems (without endogenous information acquisition), any Pareto

optimum can be reached via the choice of some appropriate initial allocation

and free trade among agents (see, for instance, Abdulkadiroglu and Sonmez

(1998)). Here I will show that endogenous information acquisition breaks

this result. In fact, I show that not even the second best learning tree and

allocation function needs (l◦, F ◦) to be implementable through free trade.16

In this section, I identify “free trade” for the given environment with

Gale’s top trading cycles mechanism as defined by Shapley and Scarf (1974).

In this mechanism, each agent initially owns one house. In a first round,

all agents are invited to point to the owners of their most preferred houses.

Since there are only finitely many agents, at least one cycle forms. All agents

in these cycles are assigned the houses that they are pointing to. The same

procedure is repeated until all agents have been assigned a house. This

mechanism can be considered a “free-trade”mechanism, since property rights

for all houses are assigned to agents and since all exchanges are voluntary

(agents may always point to their own house and form a cycle of length one).

Theorem 2 The second-best learning tree and allocation function (l◦, F ◦)

might not be implementable through Gale’s top trading cycles mechanism.

Proof Reconsider the introductory example. I already showed in Section

2.5 that there exists a mechanism that does implement the first-best (l∗, F ∗).

Next, I show that this is the unique sequential revelation mechanism that

implements (l∗, F ∗). To see this, consider a sequential revelation mechanism

that does implement (l∗, F ∗) and observe that the designer has very little

leeway in designing F ∗. For the any a posteriori preferences profile ω with

ω1
1 = A1, agent 1 must be assigned h1. The welfare-optimal allocations are

then uniquely determined by the outcome of agent 2’s investigation of h2.

If he finds h2 of high value, then h2 and agent 2 must be matched; if not,

h3 must be allocated to agent 2. On the other hand, following agent 1’s

observation that he values house h1 at a1, agent 2 must investigate h1 to

follow l∗. To have an incentive to do so and to be in line with a welfare-

16Example 2 entails that we do not even need to bother with the implementation of the

first best through trade, as it was shown that no mechanisms whatsoever implements the

first best in that example.
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optimal allocation, agent 2 must be given a choice between h1 and h2. This

implies that the allocation must be such that agent 1 obtains h3 and agent 2

obtains h2 after both agent 1 and 2 found h1 to be of low value. Finally, to

give agent 1 an incentive to investigate h1, the fall-back option π he receives

when announcing a1 must be such that h1 %l π. This implies that the

allocation for the a posteriori preference profile, according to which agent

1 found h1 to be of low value, while agent 2 found the same house of high

value, must be such that agent 1 obtains h2 and agent 2 obtains h1. This

completes the proof that the mechanism described in Section 2.5 is the unique

sequential revelation mechanism that implements (l∗, F ∗).

Now suppose that there was an initial assignment of houses such that

Gale’s top trading cycles mechanism implemented (l∗, F ∗). By the above

arguments, the equivalent sequential revelation mechanism must be the one

described in Section 2.5. But we know that each agent has a positive chance

to be assigned h3 according this mechanism. But this stands in conflict with

the observation that there are no a posteriori preferences, under which the

initial owner of h1 would be willing to trade that house for h3. We can

conclude that in the introductory housing problem the second-best (l◦, F ◦)

(which is equal to the first-best (l∗, F ∗)) cannot be implemented through

Gale’s top trading cycles mechanism. �

One might criticize Gale’s top trading cycles mechanism as too limited

a notion of “free trade”. Gale’s mechanism does, for example, rule out that

some agents start out by owning multiple houses. The class of hierarchical

exchange mechanism as defined by Papai (2000) is not vulnerable to this

criticism. It turns out that Theorem 2 also holds true for this much larger

class of mechanisms. Since the definition of hierarchical exchange mecha-

nism is cumbersome I restrict myself to a rather informal discussion of this

result here. A mechanism is a hierarchical exchange mechanism if all

houses are initially owned by some agents and if the final allocation is deter-

mined through inheritance rules and voluntary trading. Initially some agents

might own more than one house; others might not own any houses. Most

importantly, though, each house starts out being owned by someone. The

mechanism requires that each agent points to some house and houses point

to their owners. Due to the finiteness of the problem, there is at least one
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group of agents and equally many houses that form a cycle. All agents and

houses in that cycle are assigned the house that they point to. If an owner

of several houses takes part in such an exchange ring, one of his houses will

be assigned through the cycle. All other houses are passed on to agents who

have not yet been assigned a house according to some fixed inheritance rule.

Then the procedure restarts with the remaining agents pointing to the re-

maining houses. The finiteness of the problem implies that all houses will be

assigned through this procedure.

Serial dictatorship and Gale’s top trading cycles are both examples of hi-

erarchical exchange mechanisms. According to serial dictatorship, all houses

are initially owned by the first dictator. The inheritance rule prescribes that

all houses that he does not choose (by forming a cycle of length one, by point-

ing to one of his houses) are inherited by the second dictator and so forth.

In Gale’s top trading cycles, each agent initially owns one house, inheritance

rules are consequently irrelevant.

Now to see that Theorem 2 cannot be fixed using the larger class of hierar-

chical exchange mechanisms, meaning that also the much stronger statement

that the second-best learning tree and allocation function (l◦, F ◦) might not

be implementable through any hierarchical exchange mechanism, reconsider

the proof of Theorem 2. Observe that this proof revolved around the obser-

vation that the following three ingredients are incompatible: 1. according to

the unique first best learning tree and allocation function, any agent has a

positive chance to obtain h3 as his assignment. 2. Some agent owns h1 in

the initial period of the mechanism. 3. There are no ex-post preferences ac-

cording to which the owner of h1 would voluntarily accept being assigned h3.

The same incompatibility applies to any hierarchical exchange mechanism.

This extension of Theorem 2 makes it hard to think of a version of the

second welfare theorem that would hold for housing problems with endoge-

nous information acquisition. In the case of known types, all Pareto optima

can be reached through market mechanisms given suitable endowments: in

this case, control of the designer can at most be a hindrance to achieving

Pareto optima. Conversely, in the case of endogenous information acquisi-

tion, there are reasons to limit trading: such limits might be instrumental in

the provision of the proper incentives for learning.
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8 Trade-Offs: Simultaneous versus Sequen-

tial Learning; Efficient Learning versus Ef-

ficient Allocations

In this section, I show that the second-best learning tree and allocation func-

tion (l◦, F ◦) might only be implementable through a mechanism in which

agents acquire information simultaneously. Up to now, one might get the

impression that sequential learning is always a boon for the designer: as long

as all option values of the houses are different, the first-best learning tree

prescribes that the choice of the house to be investigated next should always

be conditioned on the outcomes of prior investigations. But this is just a

feature of the first-best learning tree. I get back to Example 2 to show that

for some housing problems it is strictly preferable to use a mechanism in

which agents cannot condition their choice to learn a house on the outcomes

of other investigations. Such simultaneity might be optimal, since it provides

the mechanism designer with a source of randomness, which is, in turn, an

important instrument to get agents to learn.

The same example can be used to illustrate the trade-off between effi-

cient learning and efficient allocations, if the first-best (l∗, F ∗) is not imple-

mentable. The search for the second-best (l◦, F ◦) can be structured as, first,

the calculation of a frontier in which more efficient learning trees are imple-

mented together with less efficient allocation functions. Then welfare for all

(l, F ) on the frontier can be calculated to determine the second-best (l◦, F ◦).

Example 3 Reconsider Example 2. Define a sequential revelation mech-

anism Γ′ = (R′, g′) through the rule-tree given in Figure 5. I show that

the mechanism Γ′ implements the first-best learning tree l∗ and achieves the

highest welfare among all mechanisms that do so, formally, Γ′ implements

(l∗, F ′) such that W (l∗, F ′) ≥ W (l∗, F ′′) for all implementable (l∗, F ′′).

Consider the truthful strategy profile st and observe that gl(·, st) = l∗.

To see that st is an equilibrium in Γ′, observe that, after the history A1,

agent 2 can choose between h2 and h1. Since h2 %l h1, it is in agent 2’s

best interest to learn the value of h2 and to reveal it truthfully. On the

other hand, after history a1 agent 2 faces a choice between h1 and h3. Since
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Figure 5: Rule-Tree for Γ′

h1 %l h3, the truthful strategy profile prescribes a best reply at this node.

To analyze agent 1’s decision, observe that the announcements of A1 and a1
correspond to the following lotteries over houses: π(∅, st, A1) = (3

4
, 1
4
, 0) and

π(∅, st, a1) = (0, 1
2
, 1
2
). The difference between the utility of investigating h1

and h2 can be expressed as follows:
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)
+

1

4

(
3

4
30 +

1

4
(−2)

)
> 0.

This implies, in turn, that learning h1 and truthfully revealing its value is a

best reply for agent 1.

It only remains to be shown that there exists no other mechanism Γ′′

that implements some (l∗, F ′′) such that W (l∗, F ′′) > W (l∗, F ′). To see this,

observe that to get agent 2 to investigate h2 he has to be offered a choice

between h1 and h2 (his choice has to be over deterministic outcomes, since

he is the last one to investigate any houses). This implies that agent 1 can

receive h1 at most with a probability of 3
4
if he finds it of high value. Next,

observe that the necessary inefficiency just described is the only inefficiency

in F ′. Therefore W (l∗, F ′) ≥ W (l∗, F ′′) holds for any implementable (l∗, F ′′).
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Now, of course, the second-best (l◦, F ◦) need not have the feature that

l◦ = l∗. The next mechanism Γ = (R, g) implements a less efficient learning

tree together with an efficient allocation function. Let R
j
= {hj, no thanks}

for j = 1, 2 and let allocations be determined by the following matrix. The

h2 no thanks

h1 (h1, h2, h3) (h1, h3, h2)

no thanks (h3, h2, h1) (h3, h1, h2)

action “hj” can be interpreted as a choice of hj, whereas the strategy “no

thanks” can be interpreted as declining hj . The mechanism has an equilib-

rium se which is such that agent j investigates hj and keeps it, if and only

if he found it of high value. To see that se is an equilibrium, observe that

agent 1’s choice amounts to a choice among h1 and h3. For agent 1’s fixed

strategy se1, agent 2 chooses from {h2,
(
1
2
, 0, 1

2

)
}, where h2 %l

(
1
2
, 0, 1

2

)
holds

as α2 >
1
2
70 + 1

2
(−2) and A2 > E

(
1
2
, 0, 1

2

)
> a2.

17

The learning tree l = gl(·, se) is such that agent j unconditionally inves-

tigates house hj for j = 1, 2, and therefore ω ∈ l(Ω), if and only if ωi
i 6= αi

for i = 1, 2. The allocation function gF (·, se) = F implemented by Γ is

such that any house that was found to be of high value by some agent is

assigned at high value and all other houses are assigned at their expected

values. Therefore, F is an efficient allocation function.

To find the second-best (l◦, F ◦) we do not need to look any further: we

already found that F ′ is the allocation function that maximizes W (l∗, F )

subject to (l∗, F ) being implementable. Next, observe that l differs from l∗

only insofar as that l∗ prescribes that h1 is investigated after h1 was found

of low value, whereas l prescribes that h2 is investigated in that same case.

This is smallest possible deviation from l∗. Given that this learning tree

l is implementable together with an efficient allocation function F , there

cannot possibly be another implementable pair (l̂, F̂ ) such that W (l̂, F̂ ) >

max(W (l∗, F ′),W (l, F )).

17Observe that this is the only strategy profile that survives the iterated elimination of

dominated strategies.
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So we are facing a trade-off between efficient allocations and efficient

learning here. We can either implement the efficient learning tree together

with a less than efficient allocation function, or we can implement a less than

efficient learning tree together with an efficient allocation function. In this

particular case, the latter is preferable: the difference between W (l∗, F ′) and

W (l, F ) can be expressed as the difference between

p1p2(A1 − α1) + p1p2(A2 − α2) + (1 − p1)p1(A1 − α1) + (α1 + α2 + α3)

and p1(A1 − α1) + p2(A2 − α2) + (α1 + α2 + α3) which comes down to

O1(p2 − p1)− O2(1− p1) = 20(3
4
− 1

2
)− 75

4
(1− 1

2
) < 0.

An important observation to carry away is that h1 and h2 are being

investigated simultaneously according to the second-best (l◦, F ◦). So while

the first-best always requires that agents learn sequentially, such sequentiality

might not be desirable to implement the second-best. In the present case,

h3 is unattractive in any which way: its expected value is so low as to make

it hard to use it to incentivize learning; moreover, its option value is zero.

Therefore, to incentivize learning of both h1 or h2, agents need to believe

that the probability that they will end up with h3 is low. When learning is

sequential, such belief cannot be generated.

In general there are two reasons why such randomness facilitates incen-

tivization. First of all, the attractiveness to investigate a house increases

with the probability that the agent would obtain this house if he found it if

high value. Consider an environment in which each house attains its high

value with probability 1
2
and in which house h1’s high and low value are

100 and 0 whereas house h2 and h3’s high and low value are 110 and −10

each. Observe that it is optimal to learn the value of h2 for an agent who

has the choice between h1 and h2. Conversely, for an agent who can choose

between h1 and an equal lottery on h2 and h3 it is optimal to learn the value

of h1. To understand the second reason, observe that a necessary condition

for hi % hi′ to hold is that Ai > αi′ > ai. So if we have three houses h1, h2

and h3 with α2 < a1 and α3 > A1 neither h2 nor h3 incentivize the learning

of h1. However, h1 %l π can hold for a lottery π over h2 and h3 such that

a1 < E(π) < A1. These two effects of randomization are summarized in

the more general statement that the relation %l is convex, in the sense that

34



h %l π together with h %l π
′ implies that h %l ρπ + (1− ρ)π′.18

Also note that the calculation of the second-best (l◦, F ◦) was broken down

into the following two steps: I first calculated a frontier of learning trees and

allocation functions that combined more efficient learning trees with less ef-

ficient allocation functions. I then compared the welfare achieved by the

different pairs (l, F ) on that frontier. Note that an application of this pro-

cedure to other problems requires a definition of the degree of efficiency of a

learning tree. In the present case, this was not necessary as the learning tree

l is “obviously” the second-most efficient learning tree in the given example

and as this second-most efficient learning tree is already implementable to-

gether with an efficient allocation function. In general, the notion of a more

efficient learning tree could be operationalized as l is more efficient than l′ if

W (l, F ) > W (l′, F ′) for F and F ′ efficient allocation functions.

9 Conclusion

The present paper points out some major differences between mechanism de-

sign for housing problems with and without endogenous information acqui-

sition. In the standard case, in which agents know their types, any desired

Pareto optimum in a housing problem can be achieved through a trading

18To see this, consider a house h = (p,A, a) and two lotteries π, π′ with h %l π

and h %l π′. Since A > EU(π) > a as well as A > EU(π′) > a, it follows that

A > EU(ρπ + (1− ρ)π′) > a for all ρ ∈ (0, 1). Moreover,

pA+ (1− p)EU(π) ≥ pi0(πi0Ai0 +
∑

i6=i0

πiαi) + (1 − pi0)α and

pA+ (1 − p)EU(π′) ≥ p′i0(π
′
i0
Ai0 +

∑

i6=i0

π′
iαi) + (1 − p′i0)α

∀i0 ∈ {1, ..., n}

Hence, for any convex combination π̃ = ρπ + (1− ρ)π′, ρ ∈ (0, 1) the following holds:

pA+ (1 − p)EU(π̃) ≥ p̃i0(π̃i0Ai0 +
∑

i6=i0

p̃iαi) + (1 − π̃i0)α

∀i0 ∈ {1, ..., n}.

Which shows that %l is convex.
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mechanism. In contrast, I showed that in the case in which agents need to

acquire information on their types, not such trading mechanisms need not

even implement the second best learning tree and allocation function. In the

case of endogenous information acquisition, a strong-handed mechanism de-

signer might be best. Free trade might simply not pose the correct incentives

for information acquisition.

I showed that first-best learning tree is such that agents investigate houses

in sequence of their option values (Lemma 1). I complemented this result on

the optimality of sequential learning with an example in which the second-

best can only be achieved through simultaneous learning (Section 8). Such

examples can exist, since simultaneous learning increases the scope of ran-

domness, which is, in turn, a powerful instrument to incentivize learning, as

I argued in Section 7.

To derive a characterization of all housing problems in which the first-best

is implementable I developed a dynamic version of the revelation principle:

I showed that some learning tree and allocation function are implementable

if and only if they are truthfully implementable by a mechanism in which

the designer asks agents for their types in the sequences mandated by the

learning tree to be implemented (Section 5).

It is hoped that further development of the theory would come up with

mechanisms that are robust to changes in the designer’s and the agent’s be-

liefs about the distribution of values and the learning technology. Of course,

starting with the results developed in the present paper, we already know

that there are no mechanisms that are ex ante welfare-optimal for any such

specification. We might, however, be able to characterize a set of mechanisms

that yield ex ante Pareto optima for some large set of assumptions on the

distribution of values and the learning technology.

10 Appendix

10.1 Proof of Lemma 1

Lemma 1 in Section 4 characterizes the first-best learning tree and allocation

function (l∗, F ∗). The present subsection gives a detailed proof via backwards
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induction. To be fully general I drop the assumption that no two houses share

the same option value, which implies that there might be multiple indexations

by option value.

Some more notation is needed to define an object to which backwards

induction can be applied. A sequence of values ω̃ = (ω1
i1 , ω

2
i2, · · · , ω

k
ik
) for

1 ≤ k < n is called a learning history, with the additional assumption

that ∅ denotes the initial history before any investigations.19 Observe that

the set of all learning histories Ω̃ is naturally embedded in the set of all

a posteriori preference profiles Ω, by identifying the learning history ω̃ =

(ω1
i1, ω

2
i2, · · · , ω

k
ik
) with the profile of a posteriori preferences ω according to

which ωl
il
= ωl

il
holds for all 1 ≤ l ≤ k, additionally the learning history

∅ is identified with the a priori profile of preference. The index k is called

the length of learning history ω̃ = (ω1
i1
, ω2

i2
, · · · , ωk

ik
). A learning history

ω̃′ is called a continuation of some learning history ω̃ of length k if ω̃′ =

(ω̃, ωk+1
ik+1

, · · · , ωl
il
) for some k < l < n.

A learning subtree ls is a subtree of a learning tree l. The set of

all learning subtrees which, of course, contains the set of learning trees, is

denoted by L. A learning process is a function that maps learning histories

to (feasible and consistent) continuations of learning. Formally, we have that

l̃ is a function l̃ : Ω̃ → L with the following two properties. The function is

feasible meaning that l̃(ω̃) = ls implies the existence of a learning tree l, in

which the learning history ω̃ is followed by the subtree ls. The function is

consistent in the following sense: for any continuation ω̃′ of a learning history

ω̃, the learning subtree l̃(ω̃′) is determined as the appropriate subtree of l̃(ω̃).

This latter requirement implies that a learning process cannot demand that

the first two agents should investigate h1 and h2, while at the same time

requiring that agent 2 should investigate h3 after agent 1 observed that h1

was of value.

The difference between learning trees and processes lies in the fact that

learning processes prescribe learning decisions for every possible learning his-

tory, whereas a learning tree only prescribes learning decisions for the learning

histories that are reachable via the tree. As an example, consider a learning

19In Section 4, I restricted attention to learning histories in which agents move in order

of their index. For this reason, I only consider such learning histories in the proof.
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process l̃ that prescribes h1 to be the first house to be investigated. Accord-

ing to this learning process, only two learning histories of length 1 might

occur; the first agent might find the house of high or low value. Still l̃ also

prescribes how learning is continued after the learning history, according to

which the first agent found h3 to be of high value. A learning process l̃ is

said to result in a learning tree l if this learning tree arises when all agents

follow the learning process, formally, l̃(∅) = l. Finally, F̃ : Ω → M denotes

an allocation function which is defined on the entire set of a posteriori pref-

erence profiles Ω. The welfare W̃ of a learning processes l̃ and allocation

functions F̃ is defined as follows:

W̃ (l̃, F̃ ) : = W (l̃(∅), F̃ |l̃(∅)(Ω)).

The strategy to prove that (l∗, F ∗) maximizes W (l, F ) is to construct a

learning process and an allocation function (l̃∗, F̃ ∗) that satisfy the following

two properties:

(A) l̃∗(∅) = l∗ as well as F̃ ∗|l∗(∅)(Ω) = F ∗

(B) W̃ (l̃∗, F̃ ∗) ≥ W̃ (l̃, F̃ ) for all (l̃, F̃ )

The two claims together imply W (l∗, F ∗) ≥ W (l, F ) for all (l, F ), as one

can find a (l̃, F̃ ) for any (l, F ), such that l̃(∅) = l as well as F̃ |l(∅)(Ω) = F .

The upshot of proving this more far reaching hypothesis is that backward

induction can be used to show the optimality of (l̃∗, F̃ ∗). But to start, (l̃∗, F̃ ∗)

first needs to be defined.

The learning process l̃∗ is defined such that the first house to be inves-

tigated according to learning subtree l̃∗(ω̃) has the minimal index among

the houses that have not yet been found to be of high value. The allo-

cation function F̃ ∗ : Ω → M is defined as follows: for every house hi,

let Ni(ω) be the set of all j that investigated hi and found it to be of

value Ai; formally, Ni := {j : ωj
i = Ai}. For all i with Ni(ω) 6= ∅, let

F̃ ∗(ω)(hi) = min{j ∈ Ni(ω)}. Note that these are feasible assignments,

since the condition that each agent can investigate at most one house implies

that the sets Ni(ω) ∩ Ni′(ω) for i 6= i′. Now take the agent with the lowest

index who has not yet received a house in the first step and assign him any
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house he did not investigate. Repeat this step with the reminder until no

houses and agents remain. Observe that such an assignment is always pos-

sible, since, on the one hand, no agent can investigate more than one house

and, on the other hand, the agent n cannot investigate any house.

The definitions of l∗, F ∗, l̃∗, and F̃ ∗ directly imply Claim (A). The proof

of Claim (B) needs some work.

To see the optimality of F̃ ∗, observe that for any a posteriori preference

profile ω and allocation µ the welfare
∑

i=1,...,n ω
µ(i)
i can not be higher than∑

i=1,...,nmaxj=1,...,nω
j
i , the sum of values of houses in which each house enters

at the maximal value it has for some agent according to ω. According to F̃ ∗,

each house does enter this sum at its maximal value: a house hi with ωj
i = Ai

for some j enters the sum at the highest possible value it can achieve (Ai).

For all other houses, it holds that maxj=1,...,nω
j
i = αi. The allocation function

F̃ ∗ assigns each of these houses to an agent who does not know its value.

To prove the claim that (l̃∗, F̃ ∗) maximizes the expected welfare for every

learning history, yet more notation is needed. The expected welfare of all

agents following the initial history ω̃ ∈ Ω̃ and then l̃, where allocations are

determined using F̃ ∗, is defined as W (ω̃, l̃, F̃ ∗). Note that in this definition

we do not consider different allocation functions, since we already established

above that there is no other allocation function that improves upon F̃ ∗.

Always denote the house with the lowest index that has not yet been found

to be of high value at ω̃ as hi∗ . The sets of agents and houses still awaiting

an assignment at the learning history λ, given that the allocation function

is F̃ ∗ are denoted by N(ω̃) and H(ω̃), respectively. So, hi /∈ H(ω̃) if one

component of ω̃ is Ai. Let WN(ω̃)(ω̃, l̃, F
∗) be the expected welfare for the

agents in N(ω̃) given the learning history ω̃ the learning process l̃ and the

allocation function F̃ ∗. So we have that

W (ω̃, l̃, F̃ ∗) =


 ∑

i:hi /∈H(ω̃)

Ai


+WN(ω̃)(ω̃, l̃, F̃

∗)

We use induction over the number of remaining learners to show that

W (ω̃, l̃∗, F̃ ∗) ≥ W (ω̃, l̃, F̃ ∗)
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holds for all learning processes l̃ and all learning histories ω̃. The inductive

proof only considers learning processes l̃ that prescribe to learn houses in

H(ω̃) at ω̃, since learning a house not in H(ω̃) does not increase expected

welfare (such a house already enters the welfare sum at its highest possible

value).

Start of Induction:

Let there be one learner remaining; i.e., let the length of ω̃ be n− 2. The

welfare of a learning process l̃ that prescribes learning hi′ ∈ H(ω) at ω can

be calculated as:

W (ω̃, l̃, F̃ ∗) =


 ∑

i:hi /∈H(ω̃)

Ai


+WN(ω̃)(ω̃, l̃, F̃

∗)

=


 ∑

i:hi /∈H(ω̃)

Ai


+

∑

i∈H(ω̃),i 6=i′

αi + pi′Ai′ + (1− pi′)αi′

=


 ∑

i:hi /∈H(ω̃)

Ai


+

∑

i∈H(ω̃)

αi + pi′(Ai′ − αi′)

≤


 ∑

i:hi /∈H(ω̃)

Ai


+

∑

i∈H(ω̃)

αi + pi∗(Ai∗ − αi∗) = W (ω̃, l̃∗, F̃ ∗)

since hi∗ is the house with maximal option value in H(ω̃).

Induction Step

Assume that the hypothesis holds for all learning histories of length ≥ k.

Take a learning history ω̃ of length k−1 and assume that the welfare-optimal

learning process l̃′ differs from l̃∗. Since we know already from the induction

hypothesis that l̃∗ is optimal for learning histories that have at least length

k, it must be that l̃′ differs from l̃∗ in the house that is investigated directly

after ω̃, i.e., in stage k. Assume that l̃′ prescribes that hi′ 6= hi∗ is being
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learned after ω. An upper bound on WN(ω̃)(ω̃, l̃
′, F̃ ∗) is calculated as follows:

WN(ω̃)(ω̃, l̃
′, F̃ ∗)

=pi′Ai′ + pi′WN((ω̃,A
i′
))((ω̃, Ai′), l̃

∗, F̃ ∗) + (1− pi′)WN((ω̃,a
i′
))((ω̃, ai′), l̃

∗, F̃ ∗)

=pi′Ai′ + pi′(pi∗Ai∗ + pi∗WN((ω̃,A
i′
,Ai∗))((ω̃, Ai′ , Ai∗), l̃

∗, F̃ ∗)

+ (1− pi∗)WN((ω̃,A
i′
,ai∗))((ω̃, Ai′ , ai∗), l̃

∗, F̃ ∗))

+ (1− pi′)(pi∗Ai∗ + pi∗WN((ω̃,a
i′
,Ai∗))((ω̃, ai′ , Ai∗), l̃

∗, F̃ ∗)

+ (1− pi∗)WN((ω̃,a
i′
,ai∗ ))((ω̃, ai′, ai∗), l̃

∗, F̃ ∗))

=pi∗Ai∗ + pi∗(pi′Ai′ + pi′WN((ω̃,Ai∗ ,Ai′
))((ω̃, Ai∗ , Ai′), l̃

∗, F̃ ∗)

+ (1− pi′)WN((ω̃,Ai∗ ,ai′))
((ω̃, Ai∗ , ai′), l̃

∗, F̃ ∗))

+ (1− pi∗)(pi′Ai′ + pi′WN((ω̃,ai∗ ,Ai′
))((ω̃, ai∗ , Ai′), l̃

∗, F̃ ∗)

+ (1− pi′)WN((ω̃,ai∗ ,ai′ ))
((ω̃, ai∗ , ai′), l̃

∗, F̃ ∗))

≤pi∗Ai∗ + pi∗WN((λ,Ai∗ ))((λ,Ai∗), l̃
∗, F̃ ∗)

+ (1− pi∗)WN((λ,ai∗ ))((λ, ai∗), l̃
∗, F̃ ∗) = WN(λ)(λ, l̃

∗, F̃ ∗)

The first equality follows from the learning process l̃′ mandating that hi′

be learned after ω̃ and the observation that for any learning history of length

k, which includes (ω̃, Ai′) as well as (ω̃, ai′), we have by induction hypothesis

that l̃∗ is the optimal learning process. The second equality follows from l̃∗

mandating that hi∗ is being learned next, since it is the house with lowest

index in H((ω̃, Ai′)) as well as in H((ω̃, ai′)). The third equality is owed to a

rearrangement of terms together with the observation that an exchange of the

order in which houses hi′ and hi∗ are being learned in the preceding history

does not change the expected welfare in any of the four relevant cases. The

inequality follows from the assumption that the hypothesis of the induction

holds for learning histories of length k. Finally, the last equality follows from

the definition of i∗ and l̃∗.
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This implies that

WN(ω̃)(l̃
∗(ω̃), F ∗) =


 ∑

i:hi /∈H(ω̃)

Ai


+WN(ω̃)(ω̃, l̃

∗, F̃ ∗)

≥


 ∑

i:hi /∈H(ω̃)

Ai


+WN(ω̃)(ω̃, l̃, F̃

∗)

= WN(ω̃)(l̃(ω̃), F
∗)

holds for learning histories of length k − 1, which concludes the inductive

proof of the optimality of the learning process and allocation function l̃∗, F̃ ∗.

Remarks on Uniqueness

Any allocation function such that ω
µ(i)
i = maxj=1,···,nω

j
i is optimal. The

optimal learning process l̃∗ is unique up to the indexation of houses according

to their option value. Said differently: there are as many optimal learning

processes as there are indexations of H that have the feature of i ≤ i′ im-

plying that Oi ≤ Oi′. Since the indexation in the proof was arbitrary, we

know already that all of the resulting learning processes are welfare-optimal.

Observe that the crucial inequalities in the start of the induction as well

as the inductive step are strict if there is exactly one house in H(ω̃) with

maximal option value. At the start of the induction, we then have that

pi∗(Ai∗ −αi∗) > pi′(Ai′ −αi′) for all i
′ 6= i∗ with hi′ ∈ H(ω̃). Similarly, at the

step of the induction we have

pi′Ai′ + pi′WN((ω̃,ai∗ ,Ai′
))((ω̃, ai∗ , Ai′), l̃

∗, F̃ ∗)

+(1− pi′)WN((ω̃,ai∗ ,ai′ ))
((ω̃, ai∗ , ai′), l̃

∗, F̃ ∗) < WN((ω̃,ai∗ ))((ω̃, ai∗), l̃
∗, F̃ ∗)

for all i′ 6= i∗ with hi′ ∈ H(ω̃). So we can conclude that any learning process

that prescribes for houses to be learned in an order that is not consistent

with their option value order is suboptimal. This implies, in particular, that

there is a unique optimal learning process, and thereby an optimal learning

tree if all houses have different option values.
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10.2 The Problem with n learners

Observe that the above proof makes use of the assumption that only n − 1

agents can investigate houses in the definition of F̃ ∗, the optimal allocation

function. That function assigns every house that was found to be of high

value to some agent who did find it of high value; and no house that was

found to be of low value to an agent who did find this house of low value. If n

agents can investigate houses, such allocations might not be feasible. To see

this, consider a housing problem with three houses and assume that the first

two agents did find houses h1 and h2 of high value and agent 3 found h3 to

be of low value. Clearly, assigning every house that was found to be of high

value to agents who did find these houses of high value (houses h1 to agent

1 and h2 to agent 2) conflicts with avoiding to assign any house at low value

(not assigning h3 to agent 3). For such cases, the welfare-maximal allocation

depends on the specific parameters Ai and ai. To show that this observation

not only impacts the calculation of the first-best allocation function, but also

the first-best learning tree, I provide the following example.

Example 4 Let there be three houses (p1, A1, a1) = (1
2
, 400, 0) and (p2, A2, a2) =

(1
4
, 399,−129), (p3, A3, a3) = ( 1

1000
, 98000, 0). Observe that O1 = 100, O2 =

99, O3 ≈ 98, α1 = 3, α2 =
77
4
, and α3 = 98

I use backwards induction to show that the first-best learning tree for the

present example differs from the first-best learning tree l∗ as it was described

in Lemma 1. Let (l̃?, F̃ ?) be the first-best learning process and allocation

function in the given problem. To calculate F̃ ?, observe that as long as it

feasible to follow the prescription of F̃ ∗, as defined in the proof above, it is

optimal to do so. If, however, the first two agents found h1 to be of low value,

and agent 3 found h3 to be of high value, F̃ ∗ does not determine the welfare-

maximal allocation. In this case, we have the choice between allocating all

houses at their expected values, yielding an expected welfare of 3+ 77
4
+98, or

allocating h1 to one of the agents who do not like it and h3 to agent 3, yielding

0 + 77
4
+ 98000, which is higher. I show next that for the learning history

ω̃ = (a1, a1), the first-best (l̃
?, F̃ ?) prescribe that agent 3 should investigate h3

and that h3 should be assigned to 3 if he finds it of high value. The expected

welfare difference between this prescription and the prescription of assigning
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all houses at their expected value is p3(A3 + a1 − α3 − α1) > 0. Conversely,

the expected welfare difference between a prescription, according to which

houses h3 and h2 exchange roles, and assigning all houses at expected value

is p2(A2 + a1 − α2 − α1). The difference between these two expressions is

positive, so learning h3 implies a larger gain in expected welfare, and we have

that l̃?(ω̃) prescribes for agent 3 to investigate h3. So, which house should

be investigated at ω̃′ = (a1)? The difference between the welfare associated

with the second agent learning h1 or h2 can be calculated as follows.

p1(A1 − α1) + p1p2(A2 − α2) + (1− p1)p3(A3 + a1 − α1 − α3)−

p2(A2 − α2) + p2p3(A3 + a1 − α1 − α3) + (1− p2)p1(A1 − α1) =

p2p1(A1 − α1)− (1− p1)p2(A2 − α2) + (1− p1 − p2)p3(A3 + a1 − α1 − α3) =

1

4
100−

1

2
99 +

1

4

1

1000
(98000 + 0− 200− 98) = −

298

4000
< 0

Therefore l̃?(ω̃′) does not prescribe for agent 2 to investigate h1. This

yields the conclusion that the first-best learning tree for the given example

is not l∗. To see this, observe that the first-best learning tree is l̃?(∅). If l̃?(∅)

prescribes for agent 1 to initiate learning with an investigation of h1, then

l̃?(∅) does not prescribe for agent 2 to investigate h1 again if agent 1 found

it to be of high value, which is a difference from l∗, which would prescribe

exactly that. If, on the other hand, l̃?(∅) prescribes for agent 1 to initiate

learning with an investigation of a different house, we also established that

l̃?(∅) 6= l∗, as the latter requires for agent 1 to investigate h1.

The reason why the characterization of the first-best learning tree and

allocation function given in Lemma 1 fails in the case with n learners is that

the definition of the option value no longer applies to this case. The option

value was defined to capture the expected welfare increase from learning a

house. In the case with n − 1 learners, the option value of house hi turned

out to be pi(Ai − αi), reflecting the fact that with probability pi the house

would be found of high value and in this case the mechanism designer would

be able to allocate this house at a utility value of Ai − αi above the case

when no one would find this house to be of high value.

To see that this reasoning does not apply to the case with n learners,

consider the learning decision for the second agent after the first found h1 to
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be of low value. The relevant option value of learning h1 is not p1(A1 − α1),

as in the case of some agent finding h1 to be of low value, the house h1 might

end up being assigned to an agent who evaluates it at low value. This will

happen if the third agent finds h3 of high value. Therefore, in the case with

n learners, option values cannot be determined independently of the housing

problems that they belong to.
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