
International Association of Scientific Innovation and Research (IASIR)
(An Association Unifying the Sciences, Engineering, and Applied Research)

 International Journal of Emerging Technologies in Computational

and Applied Sciences (IJETCAS)

www.iasir.net

IJETCAS 13-218; © 2013, IJETCAS All Rights Reserved Page 615

ISSN (Print): 2279-0047

ISSN (Online): 2279-0055

Verilog Implementation of a System for Finding Shortest Path by Using

Floyd-Warshall Algorithm
1
Sachin Awasthi,

2
Vijayshri Chaurasia,

3
Ajay Somkuwar

Department of Electronics and Communication Engineering

Maulana Azad National Institute of Technology, Bhopal

 INDIA

Abstract: There are several applications in VLSI technology that require high-speed shortest-path

computations. The shortest path is a path between two nodes (or points) in a graph such that the sum of the

weights of its constituent edges is minimum. Floyd-Warshall algorithm provides fastest computation of shortest

path between all pair of nodes present in the graph. With rapid advances in VLSI technology, Field

Programmable Gate Arrays (FPGAs) are receiving the attention of the Parallel and High Performance

Computing community. This paper gives implementation outcome of Floyd-Warshall algorithm to solve the all

pairs shortest-paths problem for directed graph in Verilog.

Keywords: shortest path; vertex; all pairs shortest-paths; Floyd-Warshall algorithm ; FPGA; Xilinx ISE;

Verilog; running efficiency.

I. Introduction

In graph theory, the shortest path problem is the problem of computing a path between two vertices (or nodes)

such that the sum of the weights of its constituent edges is minimized. Shortest path algorithms are applied to

many fields, such as operations research, plant and facility layout, robotics, transportation, logistics, VLSI

design etc [2]. There are many shortest path finding algorithms: the most widely used are Dijkstra, Floyd-

warshall and bellman ford algorithms, all the three algorithms having different area of applications. For finding

shortest path between any one pair of nodes in the graph Dijkstra algorithm is best suitable, for finding shortest

path from one node to remaining all other nodes in a graph Bellman Ford algorithm is preferred and for

computation of shortest path between all possible node pairs in the graph Floyd-Warshall algorithm (FWA) is

fastest among all. The all-pairs shortest paths (APSP) problem is to find shortest paths between all-pairs of

vertices in a weighted graph, and it is usually equivalent to make a table of minimum distances for every pair

[3]. The problem is one of the most fundamental graph problems. We can find applications of the APSP

problem in bioinformatics, social networking, traffic routing, etc. Moreover, the APSP problem can be

generalized to the algebraic path problem [4-5] which covers several basic graph problems. A well-known

solution of the APSP problem is to apply FWA algorithm which requires operations on memory

space, where is the number of vertices in the graph.

Applications of Shortest-path algorithm-

• Maps

• Robot navigation.

• Texture mapping.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Subroutine in advanced algorithms.

• Telemarketer operator scheduling.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, and RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.

II. Floyd-Warshall algorithm

Floyd-Warshall algorithm is a dynamic programming formulation, to solve the all-pairs shortest path problem

on directed graphs[1]. It finds shortest path between all nodes in a graph. The algorithm considers the

intermediate vertices of a simple path are any vertex present in that path other than the first and last vertex of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24061406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S Awasthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 4(6), March-May, 2013, pp.615-

620

IJETCAS 13-218; © 2013, IJETCAS All Rights Reserved Page 616

that path. Before 1960 it was tough task to find all pair shortest path. Warshall was interested to determine

shortest path between each pair of vertices u and v, whether u can reach v. The Floyd-Warshall algorithm is the

improvement of this algorithm, running in O time. The intelligence of the Floyd-Warshall algorithm is in

finding a different formulation for the shortest path sub-problem than the path length formulation. At first the

formulation may seem most unnatural, but it leads to a faster algorithm [9]. We will compute a set of matrices

whose entries are

. We will change the meaning of each of these entries. For a path we

say that the vertices are the intermediate vertices of this path. Note that a path consisting of a

single edge has no intermediate vertices. We define

 to be the shortest path from to such that any

intermediate vertices on the path are chosen from the set . In other words, we consider a path from
to which either consists of the single edge , or it visits some intermediate vertices along the way, but these

intermediate vertices can only be chosen from . The path is free to visit any subset of these vertices,

and to do so in any order. Thus, the difference between Floyd’s formulation and the previous formulation is that

the superscript restricts the set of vertices that the path are allowed to pass through, and the superscript
restricts the number of edges the path allowed to use. For example, in the digraph shown in figure 1, notice how

the value of

 changes as varies. We compute

 assuming that we have already computed the previous

matrix . As before, there are two basic cases, depending on the ways that we might get from vertex to

vertex , assuming that the intermediate vertices are chosen from .
Figure 1

4

1

2

3

1
4

2

8

9 1

Any graph (directed or undirected) where V is the no. of vertices and E is the no. of edges. with

weight function find for all pairs of vertices the minimum possible weight for path from to

 .

 Finding the shortest path between all pair of vertices in a graph.

 For the general case negative edge is also allowed. The problem can be solved by running the Bellman-

Ford algorithm times, once for each vertex as the source.

Time complexity: If the graph is dense:
 The Floyd-Warshall algorithm solves the same problem in

 Competitive for dense graph.

 Use adjacency matrices, as opposed to adjacency list.

 Let the vertices of be and consider be a subset of vertices for some k.

For any pair of vertices consider all paths from to whose intermediate vertices are all drawn from

 and let be a minimum weight path among them. The Floyd-Warshall algorithm exploits a

relationship between path and a shortest path from to with all intermediate vertices in the set . The

relationship depends on whenever or not is an intermediate vertex of .

S Awasthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 4(6), March-May, 2013, pp.615-

620

IJETCAS 13-218; © 2013, IJETCAS All Rights Reserved Page 617

Figure 2 graph showing intermediate path

i jk
P

All intermediate vertices of {1,2,…..k}

From figure 2 If is not in , then the shortest path from to with all intermediate vertices in the set
is also a shortest path in the set . If is in , then we break down into and where,

 is the shortest path from to with all intermediate vertices in the set

 is the shortest path from to with all intermediate vertices in the set

III. Methodology

The methodology of Floyd-Warshall algorithm to find all pairs shortest paths is as follow:

Let be a weighted directed graph with an edge-weight function that assigns real-valued

weights to edges, where } is a set of vertices, and is a set of edges. We assume that

there are no negative-weight cycles in a graph though the presence of negative-weight edges is allowed. Let

us use an adjacency matrix representation for a graph . The input of the all-pairs shortest paths problem is an

 matrix where represents the edge weight from a vertex to a vertex in a graph

with vertices, i.e.

 ……………. (1)

Let a path be an arbitrary sequence of vertices. The distance of a path is the sum of lengths of all intermediate

edges in the sequence of vertices. If we denote a set of paths from to with , the shortest-path distance

between any pair of vertices can be defined as

 …………….. (2)

Where is the number of intermediate vertices. Then, the all-pairs shortest paths (APSP) problem is to find an

 matrix for a given matrix . We can define a recursive formulation to compute the

shortest-path distances. Let

 be the distance of a shortest path in which all the intermediate vertices

are in the set the recurrence is defined as

 .…………….(3)

The matrix gives an answer to the APSP problem, i.e. .

IV. Implementation and result

The Floyd-Warshall algorithm is implemented in Verilog by using Xilinx-13.2. By using this we can find all

pairs shortest path in any given graph having no. of nodes. The simulation results are given by implementing

it on graph shown in figure I.

S Awasthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 4(6), March-May, 2013, pp.615-

620

IJETCAS 13-218; © 2013, IJETCAS All Rights Reserved Page 618

Figure 3 Three node graph taken for testing of Floyd-Warshall algorithm

1

2

3

4

3

1 1

6

1

The graph is having three nodes in which we have computed all pairs shortest path. There are two input matrix

of size , one is cost matrix and other is adjacency matrix. In the cost matrix the actual weight is written and

in the adjacency matrix the connection is indicated whether the pair is connected or not. If connected then write

 if not connected then . Here one weight is indicated by three bits, so there will be maximum bits.

Figure 4 Top level schematic of Floyd-Warshall algorithm

The top level schematic diagram of Floyd-Warshall generated through implementation in Verilog is shown in

figure 4. It consists of six inputs and four outputs. The verilog has generated a pin diagram which defines input,

output, and clock etc. The top level schematic in figure 4 consists of 10 pins each pin having its own working.

Here input is taken as matrix i.e. adjacency matrix and cost matrix in adjacency matrix we define the direct

connection between two nodes whether these are connected or not and in cost matrix the actual weight is

written. The CLK pin is used to give clock. The EN_adjecency matrix and EN_cost matrix pin is given to enable

the matrices for operation. RST pin is to reset the previous result. Here the output will be taken by the pin

p(26:0) which is also in the matrix form. The final result obtained is shown in figure III.

Figure 5 Input-output waveform by simulation in verilog

S Awasthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 4(6), March-May, 2013, pp.615-

620

IJETCAS 13-218; © 2013, IJETCAS All Rights Reserved Page 619

 Here the generated output waveform showing the output of each pin of pin diagram shown in figure II.

Initially no input was there. After 400ns when input is applied in pin graph_in then corresponding output with

clock will be generated this is shown in figure III.

V. Timing Detail

While finding shortest path the timing is main aspect and it should be as low as possible. The time taken is

directly proportional to the total no. of nodes there in the graph. Here we have taken nodes graph and the

timing detail of that graph is given below. All values are displayed in nanoseconds

Timing constraint: Default OFFSET IN BEFORE for Clock 'CLK'

Total number of paths / destination ports: 757 / 22

Offset: 6.942ns (Levels of Logic = 5)

In the graph we have to move from source to destination. Here the source is cost matrix and the destination is

 . The total time is taken in the process is . Here the table given below defines the separate time

consume by each element and then total time.

Some Look Up Tables are generated in the architecture the processing time of each LUT is given in the table I

Table I Timing detail

Gate Net

Cell: in->out fanout Delay Logical Name (Net Name)

IBUF: I->O 2 1.218 0.622 cost_matrix_y_4_IBUF (cost_matrix_y_4_IBUF)

LUT3:I0->O 1 0.704 0.424 p_cmp_eq00011_SW0 (N5)

LUT4:I3->O 2 0.704 0.622 p_cmp_eq00011 (N1)
LUT3:I0->O 8 0.704 0.932 p_cmp_eq000130 (p_cmp_eq0001)

LUT3:I0->O 1 0.704 0.000 p_mux0000<20>11 (p_mux0000<20>1)

FDS: D 0.308 p_6

Total 6.942ns (4.342ns logic, 2.600ns route)

 (62.5% logic, 37.5% route)

The table II gives the estimated value of Device Utilization. This table gives the total utilization of available

devices i.e. no. of slices, no. of look-up tables (LUTs), and no. of input output buses and in terms of clock used

with their % used
Table II Device Utilization summary (estimated value)

Logic utilization Used Available % Utilization

Number of slices 19 4656 0%

Number of 4 input LUTs 33 9312 0%

Number of bonded IOBs 100 232 43%

Number of GCLKs 1 24 4%

All pair shortest path may also be computed by Dijkstra and Bellman Ford algorithms but these algorithms are

the slower than that of Floyd-Warshall algorithm. Dijkstra algorithm is very much useful for finding the shortest

distance between any two nodes. If we want to find all pairs shortest paths than Dijkstra algorithm need to run

separately for all possible pairs in the graph. This process will consume large time. The Bellman Ford algorithm

is used to find the distance from one source to remaining node. To find all pairs shortest path by Bellman ford

algorithm needs to run separately for all nodes present in the graph. The Floyd-Warshall algorithm is the fastest

algorithm for computation all pair’s shortest paths in the graph, it provides all pairs shortest paths by running

only once and is the fastest one.

VI. Conclusion

In this paper we have presented implementation of Floyd-Warshall algorithm for finding all pairs shortest paths

in Verilog. To find all pairs shortest paths the Dijkstra algorithm need to run separately for each possible pair

this process consume more time and is the slowest process. The Bellman Ford algorithm needs to run for each

node and the Floyd-Warshall algorithm will provide all pairs shortest paths by running only once and is the

fastest algorithm. The Verilog is the Hardware Description Language which can be used to generate hardware

for any code. Verilog codes for Floyd-Warshall algorithm can be further used to burn Field Programmable Gate

Array (FPGA). Since FPGA based hardware for path solvers performs much faster as compared to general

purpose processor. The Floyd-Warshall algorithm can be efficiently applied to the systems of large node

S Awasthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 4(6), March-May, 2013, pp.615-

620

IJETCAS 13-218; © 2013, IJETCAS All Rights Reserved Page 620

number and it leads to a significant improvement in running efficiency. Xilinx ISE design suit is used with

device as SPARTEN3E XC3S250E for the work presented

References

[1] Weisstein, Eric. "Floyd-Warshall Algorithm" .Wolfram MathWorld. Retrieved 13 November 2009.

[2] Chen, Danney Z. "Developing algorithms and software for geometric path planning problems". ACM Computing

Surveys 28 (4es): 18. December 1996

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms,3rd ed. Massachusetts, USA: The MIT Press,2009.

[4] "Lecture 12: Shortest paths ". Network Flows and Graphs. Department of Industrial Engineering and Operations Research, University

of California, Berkeley. 7 October 2008.

[5] G.Rote. “Path problems in graphs,” Computing Supplementum, vol. 7, pp 155-198, 1990

[6] K. Matsumoto and S. G. Sedukhin, “The Algebraic Path Problem on the Cell/B.E. Processor,” The University of Aizu,Tech. Rep.

2010-002, 2010.

[7] Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L. Introduction to Algorithms (1st ed.). MIT Press and McGraw-Hill. "The

Floyd–Warshall algorithm", pp. 558–565,2009.

[8] Weisstein,Eric.”Floyd-Warshall Algorithm”.Wolfram Math World.

[9] Larson,R.and Odoni,A. “Shortest paths between All Pairs of Nodes.” Urban Operations Research.1981.

[10] Loerch, U "Floyd's Algorithm." Auckland, New Zealand: Dept. Computer Science, University of Auckland,2000.

[11] Pemmaraju, S. and Skiena, S. "All-Pairs Shortest Paths" and "Transitive Closure and Reduction."Computational Discrete Mathematics:

Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 330-331 and 353-356, 2003.

[12] Michalis Potamias , Francesco Bonchi, Carlos Castilloetal. Fast shortest path distance estimation in large networks, Proceeding of the

18th ACM conference on Information and knowledge management, 2009.

[13] R. Bellman, Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1957.

[14] Kazuya Matsumoto,Naohito Nakasato, and Stanislav G. Sedukhin Blocked “All-Pairs Shortest Paths Algorithm for Hybrid CPU-GPU

System”,IEEE International Conference on High Performance Computing and Communications,2011.

[15] Dijkstra E W. A note on two problems in connection with graphs. Numerische Math,1:269-271,1959

