

ENABLING HIGH-PERFORMANCE APPLICATION OF MACHINE- Southampto LEARNING ON MIPS AND POWERVR

Max Barraclough (mhb2eo8@ecs.soton.ac.uk) - Supervisors: Dr Denis Nicole, Professor Steve Gunn - Sponsored by Imagination Technologies™

GOAL

- Research ways to efficiently implement machinelearning algorithms on MIPS/PowerVR
- Research possible extensions to MIPS

MOTIVATION

Consumer products applications:

- Product personalisation (e.g. musical preference analysis)
- Product tuning (e.g. voice recognition)

Case Study: Face-Detection with Features

BOOSTING

- Machine-learning strategy based on composing 'weak learners'
- Each weak learner has less-than-50% error-rate
- Face-detection uses features as weak-learners
- *Very* broadly applicable

Based on pixel-intensity-sum over rectangular regions of the subject image

Sum the pixel intensity values in the positive regions, subtract sum of the pixel intensity values in negative regions

Based on public domain image of Eben Moglen by Andrew McMillan

Eyes-detecting feature Dark regions are 'negative' (subtractive), light region is 'positive' (additive)

Features can be evaluated very efficiently using the 'integral image'

Feature 'shapes': Edge, Line, Chequer

Low-resolution images from

the CMU image database 25 rounds of boosting used

Low-resolution images rom the

CMU image database

Image from Imagination Technologies[™] web-site

THE MIPS ISA

- RISC
- Widely used in

POWERVR

• Leading mobile embedded-graphics

MACHINE LEARNING APPROACH

Offline machine learning: Training phase distinct from actual use *Online* machine learning: Learns 'in the field'

- Viola/Jones algorithm is *offline*
- Uses AdaBoost boosting meta-algorithm

embedded applications

• Multi-core & SIMD

product-line

- OpenCL conformant
- Potential for customisation

REFERENCES

A Short Introduction to Boosting, Freund & Schapire

Robust Real-Time Face Detection, Viola & Jones

A Novel SoC Architecture on FPGA for Ultra Fast Face Detection, He, Papakonstantinou & Chen