H.S. Manohar, N.Chikkanna, B.Uma Maheswar Gowd / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 5, September- October 2012, pp.1360-1370 Effect of Addition of Nanoclay on Machinability of Al/Nanoclay Metal Matrix Composites

H.S. Manohar¹, N.Chikkanna², B.Uma Maheswar Gowd³

¹ (Asst. Professor, Dept. of Mech. Engg. CMR Institute of Technology- Bangalore-560037). ² (Principal, Government Engineering College Hoovinahadagali, Bellary-583219) ³ (Rector (I/C) Jawaharlal Nehru Technological University- Anantapur-515002).

ABSTRACT

In this study, machinability test was Al-Nanoclav metal matrix conducted on composites using lathe tool dynamometer. Composites were prepared with aluminium as the matrix and nanoclay particles with 2, 4, 6 percentage by weight as reinforcement. The effect of clay particles and machining parameters such as cutting speed, feed rate and depth of cut on tangential force and chip formation was studied. From the results it is observed that the tangential force applied by the tool on MMC, facilitate chip breaking and the generation of chips significantly depends on feed but almost independent of speed. These results reveal the roles of the nanoclay reinforcement particles on the machinability of MMCs and provide a useful guide for a better control of their machining processes.

Keywords –Cutting Speed, Chip breaking, Depth of Cut, Feed rate, Machinability

I. INTRODUCTION

Amongst the material variables, the mechanical properties of fiber and matrix, particularly the failure strains, interface properties and fiber configuration play important role in determining fracture resistance and damage tolerance of the composites[1-2]. Nanostructure materials such as nanocomposites provide opportunities to explore new fracture behavior and functionality beyond those found in conventional materials. The presence of small amounts of nanoparticles in metal matrix can improve the wear resistance and hardness of composites. Obviously, the higher the hardness of the material, the more the abrasive wear experienced by the cutting tool in addition. Nevertheless the incorporation of the microsize hard particles makes the machining of MMCs difficult [3], and diamond tools are often necessary [4]. There have been some investigations on the machining of MMCs, dealing with tool wear [5], surface / subsurface quality [6] and chip formation [7]. However until now, no particular work is done exclusively to assess the importance of nanoclay content on the machinability parameters. The objective of the present research is to gain a

deeper understanding of the effects of nanoclay particles on machinability forces and Chip formation with varied machining parameters when cutting nanoclay / Al MMC specimens.

II. EXPERIMENTAL DETAILS

The matrix material used for the MMCs in this study, Al, has excellent casting properties and reasonable strength. This alloy is best suited for mass production of lightweight metal castings. chemical composition of Al6061 shown below

- Silicon minimum 0.4%, maximum 0.8% by weight
- Iron no minimum, maximum 0.7%
- Copper minimum 0.15%, maximum 0.40%
- Manganese no minimum, maximum 0.15%
- Magnesium minimum 0.8%, maximum 1.2%
- Chromium minimum 0.04%, maximum 0.35%
- Zinc no minimum, maximum 0.25%
- Titanium no minimum, maximum 0.15%
- Other elements no more than 0.05% each, 0.15% total
- Remainder Aluminum

The nanoclay of 10-60 nm size were used reinforcement and the nanoclay content in as the the composites was varied from 2 to 6% in steps of 2% by weight. Liquid metallurgy technique was used to fabricate the composite materials in which the clay particles were introduced into the molten metal pool through a vortex created in the melt by the use of an alumina-coated stainless steel stirrer. The coating of alumina on the stirrer is essential to prevent the migration of ferrous ions from the stirrer material into the molten metal. The depth of immersion of the stirrer was about two-thirds the depth of the molten metal. The stirrer was rotated at 550 rpm. The pre-heated (500 °C) nanoclay particles were added into the vortex of the liquid melt which was degassed using pure nitrogen for about 3 to 4 min. The resulting mixture was tilt poured into preheated permanent moulds.

III. MACHINABILITY TEST

Fig. 1. Experimental set up

Machinability test was carried out by turning the specimens in a CNC lathe. The cutting speeds selected were 200, 315, 400 and 500 rpm. The depth of cut was 0.2, 0.5, 0.8 and 1 mm and the feed-rates were 0.1, 0.2, 0.32 and 0.4 mm/rev. The cutting forces (namely, the tangential, axial and radial forces) in three perpendicular directions were measured by means of a computer interfaced dynamometer on which cutting tool was mounted. The cutting tool material was high-speed carbide tool. The tool signature is follows

Brake rake angle	8°,
Side rake angle	20.5°
End clearance angle	12°
Side cutting angle	10°
Slide cutting angle	75°
End cutting angle	80°
Nose radius	1 mm

The number of chips produced per gram of the material removed was counted.

IV. RESULTS

Because of the large volume of results obtained, only the values of the tangential cutting force for various cutting speeds, federates and depth of cut are presented. The axial and radial cutting forces were consistently more or less proportional to the tangential cutting force and are therefore not reported.

Fig.2. shows the results for the machining of plain aluminium at depths of cut of 0.2, 0.5, 0.8 and 1 mm respectively. It can be seen that there is a general trend of increase in tangential cutting force with increase in cutting Speed. The cutting force also tends to increase as federate or depth of cut is increased.

The few anomalous cases can be attributed to experimental error. The same trend can be seen in Figs.3, 4,and 5 for composites with 2, 4 and 6% nanoclay reinforcement. i.e tangential cutting force increases with increase in cutting speed, federate and depth of cut.

The number of chips produced per gram when machining the composites under specified conditions, increases with the increase of amount of nanoclay in the composites as shown in the Fig. 6 The nanoclay particulate apparently introduces discontinuities in the material and act as stress raisers, There by resulting in the frequent fracture of chips during machining.

The production of small chips is one of the criteria of good machinability since very long chips have a tendency to wrap around the tool at high machining speeds limiting the rate of machining; the aluminum industry is constantly in need of fast machining alloys.

Fig. 2. Typical plot of tangential force vs. feed rate for Al matrix alloy.

Fig. 3. Typical plot of tangential force vs. feed rate for Al/2% nanoclay

Composites.

Fig. 4. Typical plot of tangential force vs. feed rate for Al/4% nanoclay

Composites.

Feed rate in mm/rev

Fig. 5. Typical plot of tangential force vs. feed rate for Al/6% nanoclay composites.

function of speed.

Table 1. Experimentally obtained machining force (Tangential force) for Al matrix and Al/nanoclay MMCs																
Specimen	Al matrix alloy				Al/2% nanoclay				Al/49	% nanc	oclay		Al/6% nanoclay			
Feed rate mm/sec	0.1	0.2	0.32	0.4	0.1	0.2	0.32	0.4	0.1	0.2	0.32	0.4	0.1	0.2	0.32	0.4
Speed, rpm	Dept of cut = 0.2 mm															
200	29	69	78	108	39	78	88	117	42	82	92	125	52	89	98	132
315	39	69	98	128	49	73	113	142	53	78	125	154	62	90	135	164
400	79	88	98	108	81	93	101	112	91	104	125	135	102	113	132	148
500	88	98	103	111	93	103	105	113	97	108	109	119	105	125	148	160
Dept of cut = 0.5 mm																
200	39	59	98	122	42	62	102	132	50	84	112	148	62	95	121	170
315	59	88	108	124	62	94	112	132	71	95	120	135	80	102	140	183
400	88	108	112	126	94	112	121	136	101	119	131	145	101	119	131	145
500	108	110	118	134	109	112	121	145	111	121	131	152	125	142	178	188
Dept of cut	= 0.8	mm														
200	49	88	108	141	52	92	109	145	59	102	112	152	68	103	125	163
315	69	108	125	157	72	108	132	161	74	112	138	178	98	125	141	179
400	108	128	137	15 <mark>4</mark>	109	132	143	167	111	138	154	171	123	141	163	178
500	108	128	19 <mark>5</mark>	231	112	132	203	245	121	142	204	254	132	154	205	255
Dept of cut = 1 mm																
200	88	89	110	117	93	98	121	132	101	102	132	142	111	121	135	154
315	108	119	132	144	115	125	136	154	121	142	158	181	128	154	162	198
400	128	137	225	261	132	145	234	275	142	158	178	270	154	163	197	281
500	147	164	271	318	156	175	284	325	188	195	281	332	198	205	298	354

Table 2. Number of chips/gram formation during machining of Al matrix and Al/nanoclay MMCs																
Specimen	Al matrix alloy				Al/2% nanoclay				Al/49	% nano	oclay		Al/6% nanoclay			
Feed rate mm/sec	0.1	0.2	0.32	0.4	0.1	0.2	0.32	0.4	0.1	0.2	0.32	0.4	0.1	0.2	0.32	0.4
Speed, rpm	Dept of cut = 0.2 mm															
200	222	160	142	59	303	228	202	101	<mark>5</mark> 71	421	375	192	756	562	510	298
315	139	106	75	42	252	201	130	87	413	335	209	142	669	551	367	253
400	59	53	48	43	101	91	84	73	136	126	105	92	302	269	230	208
500	33	31	29	26	72	67	65	59	52	47	47	42	248	230	194	163
Dept of cut = 0.5 mm																
200	250	201	121	80	342	264	161	109	677	512	384	229	974	693	544	355
315	135	117	95	64	234	199	167	110	362	322	255	190	747	571	416	326
400	69	61	59	48	123	109	101	85	147	132	120	102	296	267	243	206
500	40	35	33	32	92	77	71	69	66	57	52	48	292	276	220	194
Dept of cut	= 0.8	mm														
200	289	222	181	101	376	282	238	135	695	512	466	270	934	716	590	390
315	170	136	117	75	286	234	192	128	477	370	300	198	730	575	510	400
400	84	75	70	59	151	129	119	98	173	156	140	112	363	332	288	251
500	68	58	38	32	155	129	84	71	110	88	61	52	396	318	239	205
Dept of cut	x = 1 m	m														
200	240	226	183	181	342	313	254	241	649	603	466	462	883	774	693	636
315	156	143	129	117	273	241	222	204	485	423	380	324	808	661	628	522
400	142	123	75	70	248	211	131	119	273	180	160	144	573	402	332	314
500	94	80	49	44	206	180	111	99	144	122	84	81	550	463	318	307

V. DISCUSSION

It has been reported that no specific relationship exists between the cutting forces and cutting speed in the beginning of the machining process. It was found that the cutting forces increase with increasing cutting speed while machining the composites. This is due to increase in effective area of contact between the tool and the work piece which indirectly increases frictional forces at the tool-work piece interface [8]. The variation in the effective contact area at the toolcutting surface explains the high force components involved in machining.

The test results show that the magnitude of forces measured during the machining of composite material is more when compared to the base alloy. However, the increase in the amount of force is not too high in the case of matrix alloy but in the case of particulates reinforced composites it is very high [9]. The tool life is limited by the amount of wear the tool experiences.

Examination of the wear land on the tool tip showed significantly scratched grooves parallel to the direction of chip flow and work piece movement. Such grooves are usually found in Metal Matrix Composites (MMCs) reinforced with hard dispersoids like nanoclay and are formed by the mixture of two-body and three-body abrasion between the work piece and the tool which is mainly due to the hard nature and irregular shape of the reinforcement and the loose reinforcement found during machining. Since glass short particulate reinforcement is also a hard reinforcement, obviously grooves were found parallel to the direction of chip flow [10].

The cutting speed has a more dominant influence on the volume of the material removal rate. If maximum cutting time between the tool changes is needed, a lower feed rate is preferable. A better surface finish can also be obtained, under these conditions. On the other hand, if greatest amount of material removed per tool is desired, then the largest possible feed rate should be chosen after giving proper consideration towards surface finish [11].

The cutting forces involved in machining the composites with reinforcement were found to be greater than that of all other composites including unreinforced alloy. Examination of the cutting tools revealed that the chip/tool contact lengths were shorter with the MMCs than the parent alloy. Hence it appears that the increase in cutting forces is explained by the presence of reinforcement, which reduces chip/tool adhesion and shear at the interface.

The most significant finding from the cutting force measurements was their sensitivity to tool wear [12].

The nature of the chip formed during machining of the composite as well as the matrix alloy changes with extent of the tool wear. When the tool is sharp, long washer type helical chips are formed, sometimes accompanied by small amount of washer type helical chip flow by the tool holder. Once the tool starts getting blunt, chip formed changes into short washer helical type. It is mainly due to that Al alloy is relatively softer and tends to adhere to the face of the cutting tool during machining. The material begins to pile-up on the tool resulting in a longer chip [13]. The nanoclay reinforcement content in the composite probably avoids the occurrence of shearing ahead of the cutting tool continuously without fracture and causes rapture intermittently producing segments of chips with smaller lengths. Hence the composite material which produces shorter chips without chip breakers is well suited for industrial applications.

VI. CONCLUSIONS

- The power consumed for machining the composite is higher than that of the unreinforced alloy.
- The work required for machining under similar cutting condition increases for the composite when compared to the unreinforced matrix.
- Frictional force is seen to increase in the case of the composite and to reduce it cutting conditions need to be optimized.
- Shear strain is minimum under the optimized cutting condition for the composites.
- Material removal rate increases with the depth of cut and speed for the composites when compared to the unreinforced alloy matrix.
- Power consumption and tool wear are higher for composites than that for the matrix alloy.

REFERENCES

- 1. C.Y.H. Lim, D.K. Leo, J.J.S. Ang, M. Gupta, Wear of magnesium composites reinforced with nano-sized alumina particulates *Wear*, *Volume 259*, (1–6) (2005), pp. 620-625
- 2. Chaojun Ouyang, Minsheng Huang, Zhenhuan Li, Lili Hu, Circular nanoindentation in particle-reinforced metal matrix composites: Simply uniformly distributed particles lead to complex nanoindentation response Computational Materials Science, Volume 47, (4), 2010, Pages 940-950
- A.R. Chambers, The machinability of light alloy MMCs, Composites Part A: Applied Science and Manufacturing, Volume 27, Issue 2, 1996, Pages 143-147.
- 4. Ibrahim Ciftci, Mehmet Turker, Ulvi Seker, CBN cutting tool wear during

machining of particulate reinforced MMCs, Wear, Volume 257, Issues 9–10, November 2004, pp. 1041-1046.

- N.P. Hung, F.Y.C. Boey, K.A. Khor, C.A. Oh, H.F. Lee, Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles, Journal of Materials Processing Technology, Vol. 48,(1–4), 1995, pp.291-297.
- Ram Naresh Rai, G.L. Datta, M. Chakraborty, A.B. Chattopadhyay, A study on the machinability behaviour of Al–TiC composite prepared by in situ technique, Materials Science and Engineering: A, Vol. 428, (1–2), (2006), pp. 34-40.
- 7. J.T. Lin, D. Bhattacharyya, C. Lane, Machinability of a silicon carbide reinforced aluminium metal matrix composite, Wear, vol 181–183, (1995), pp. 883-888
- 8. Tamer Ozben, Erol Kilickap, Orhan Çakır, Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC, Journal of Materials Processing Technology, vol.198, (1–3), (2008), pp.220-225.
- A. Manna, B. Bhattacharayya, A study on machinability of Al/SiC-MMC, Journal of Materials Processing Technology, Volume 140, Issues 1–3, 22 September 2003, Pages -711-716.
- 10. T. Sornakumar, A. Senthil Kumar, Machinability of bronze–alumina composite with tungsten carbide cutting tool insert,

Journal of Materials Processing Technology, vol.202, (1–3), (2008), pp. 402-40

- 11. N. Muthukrishnan, J. Paulo Davim, Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis, Journal of Materials Processing Technology, vol. 209,(1), (2009), pp. 225-232.
- A.Pramanik, L.C. Zhang, J.A. Arsecularatne, Machining of metal matrix composites: Effect of ceramic particles on residual stress, surface roughness and chip formation, International Journal of Machine Tools and Manufacture, vol. 48, (15), 2008, pp. 1613-1625
- A. Kremer, M. El Mansori, Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite, Surface and Coatings Technology, vol. 204, (6–7), (2009), pp. 1051-1055.

AUTHORS INFORMATION

H.S.Manohar, BE, M.Tech, Presently working as an Assistant Professor in the of Department Mechanical Engineering of CMR Institute of Technology-Bangalore. He possessed Ph.D degree. Holds o

Life Time Membership of Indian Society for Technical Education. Presented a Paper in National Level conference, and Published 1 in International Journal

Dr.N.Chikkanna ,BE, ME. M.I.S.T.E, Presently Ph.D, working as Principal in Government Engineering College Hoovina hadagali, Bellary, Karnataka, Seven Students are Persuing Ph.D under his

Guidance. Published 3 papers in International Journal and presented 22 papers in both National and International Conference Proceedings all in India and Singapore.

Dr.B.Uma Maheswar Gowd,

B.Tech, M.Tech, Ph.D, (IITR), F.I.E., M.I.S.T.E., Presently Working as Rector (I/C) Jawaharlal Nehru Technological University Anantapur, Andhra Pradesh, Eight Students are

Persuing Ph.D under his Guidance. Published 10 papers in International Journal. Holds Academic Fellowship FIE & MISTE.