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Notation and Terminology

Notation

Rd The d-dimensional Euclidean space

B(Rd) The Borel σ-algebra of subsets of Rd

B(Rd) The set of bounded B(Rd)-measurable functions on Rd

Cb(Rd) The set of bounded continuous on Rd

Ck(Rd) The set of continuous functions on Rd with compact support

‖ f ‖ The sup norm of f ∈ B(Rd), ‖ f ‖ , supx∈Rd | f (x)|

MF(Rd) The set of finite measures over B(Rd)

P(Rd) The set of probability measures over B(Rd)

µ f The integral of f ∈ B(Rd) w.r.t. µ ∈ MF(Rd), µ( f ) =
∫

Rd f (x)µ(dx)

E The expectation operator

‖ f ‖1 The L1 norm, ‖ f ‖1 = E| f |

‖ f ‖2
2 The L2 norm, ‖ f ‖2

2 = E[ f 2]

ηt The prediction measure conditioned on Y0:t−1, ηt( f ) , E[ f |Y0:t−1 = y0:t−1]

η̂t The update measure conditioned on Y0:t, η̂t( f ) , E[ f |Y0:t = y0:t]

We endow MF(Rd) and P(Rd) with the weak topology (Royden, 1988, page 236-237), saying
that if (µn)∞

n=1 is a sequence of finite measures, we have the following types of convergence to
µ ∈ MF(Rd).

µn
w−→
n

µ if µn f −→
n

µ f ∀ f ∈ Cb(Rd)

µn
a.s.w−−→

n
µ if µn f a.s−→

n
µ f ∀ f ∈ Cb(Rd)

µn
Elim−−→

n
µ if µn f L1

−→
n

µ f ∀ f ∈ Cb(Rd)

We also denote by D−→ the convergence in distribution and by δa(x) the delta-Dirac mass located
in a.
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Markov Chains and Transition Kernels

Let (Ω,F ,P) be a probability space and X = {Xt, t ∈ N} be a stochastic process defined on
(Ω,F ,P) taking it’s values in Rd, where d is the dimension of each variable X(t). Let FX

t be the
σ-algebra generated by the process up to time t i.e. FX

t = σ(Xs, s ∈ [0, t]). Then Xt is a Markov
chain if, for all t ∈N and A ∈ B(Rd),

P(Xt+1 ∈ A|FX
t ) = P(Xt+1 ∈ A|Xt) a.s..

The transition kernel of the Markov chain X is the function Qt(·, ·) defined on Rd ×B(Rd) such
that for all t ∈N and x ∈ Rd,

Qt(x, A) = P(Xt+1 ∈ A|Xt = x).

The transition kernel Qt satisfies the following properties

• Qt(x, ·) is a probability measure on Rd for all t ∈N and all x ∈ Rd

• Qt(·, A) ∈ B(Rd) for all t ∈N and all A ∈ B(Rd).

The distribution of X is uniquely determined by its initial distribution and its transition kernel.
If we denote by qt the marginal distribution of Xt

qt , P(Xt ∈ A),

then we can deduce from the previous that qt satisfies the recurrence formula qt+1 = qtQt where
qtQt is the measure defined as

(qtQt)(A) ,
∫

Rd
Qt(x, A)qt(dx).

Hence, qt = q0Q0Q1...Qt−1.
We say that the transition kernel Qt satisfies the (weak) Feller property (Meyn and Tweedie,

1993) if, for all t ≥ 0 the function Qt f : Rd → R defined as

Qt f (x) ,
∫

Rd
f (y)Qt(x, dy)

is continuous for every f ∈ Cb(Rd). If Qt satisfies the Feller property, then Qt f ∈ Cb(Rd) for all
f ∈ Cb(Rd).

2



1
Bayesian Filtering

Many data analysis problems within science or engineering involve estimation of unknown
quantities based on some given observations. Very often we have some prior knowledge about
the phenomenon being modelled. This will allow us to formulate Bayesian models based on
prior distributions for the unknown quantities and likelihood functions relating these to the
observations. All inference in this setting will then be based on the posterior distribution obtained
from Bayes’ theorem. In many settings the observations arrive sequentially in time and it is therefor
necessary to update the posterior distribution in order to perform on-line inference.

In the situation when the data are modelled as a linear Gaussian state-space model, it is
possible to obtain an exact analytic expression for the posterior distribution from the well known
Kalman equations. There are other situations where it is possible to derive analytical solutions,
however in most situations, where we have neither linearity nor Gaussian processes we cannot
derive analytical expression due to complex high order integrals. In these settings we have to use
approximating solutions.

In this thesis we will mainly focus on the approximations obtained from Sequential Monte Carlo
methods (SMC). The SMC are simulation based methods which provide an easy-to-implement
approach to compute the posterior distribution. These methods are usually based on two models,
the first describing the evolution of the unknown quantities and the second relating these quantities
to the observations. Over the past years, several closely related algorithms has been proposed
under different names such as the bootstrap filter, particle filters, Monte Carlo filters, interacting
particle approximations etc.

This thesis will mainly focus on the theoretical aspects of the filter methods, however we will
present a few trivial examples.

3



1.1 Problem statement and its conceptual solution

To define the nonlinear filtering problem we introduce the target state vector and the observed
state vector. The unobserved signal {Xt}t∈N, Xt ∈ Rd, is modelled as a (possible) nonlinear
Markov process with initial distribution p(x0) and 1-step transitions p(xt|xt−1). The observation
process {Yt}t∈N, yt ∈ Rq are assumed to be conditionally independent given the process {Xt},
with marginal distribution p(yt|xt), where we denote p(·) as the probability density function with
the argument of the function indicating the random variables under consideration, at least when
there is no danger of confusion, i.e p(xt|yt) , pXt|Yt(xt|yt).

In other words, the entire model is described by

p(x0)

p(xt|xt−1) , for t ≥ 1

p(yt|xt) , for t ≥ 0.

Let us denote X0:t , (X0, ..., Xt) and Y0:t , (Y0, ..., Yt), the signal and the observations up to
time t

We are interested in estimating recursively in time the posterior distribution p(x0:t|y0:t) (or
p(xt|y0:t)), and the expectations

p f = E [ f (X0:t)|Y0:t] ,
∫

f (x0:t)p(dx0:t|y0:t)

and its marginal E [ f (Xt)|Y0:t], for some function f integrable with respect to the density of X0:t.
The problems and solutions in Chapter 1 and 2 are discussed in Doucet, de Freitas and Gordon

(2001) and Ristic, Arulampalam and Gordon (2004)
Very often such a model is described by the state and observation equations

Xt = kt−1(Xt−1, Vt−1) Yt = ht(Xt, Wt) (1.1)

for some nonlinear functions k and h, where we assume that Vt−1 and Wt are independent. The
model is fully described by the densities, p(x0), p(xt|xt−1) and p(yt|xt). The posterior pdf is given
by Bayes’ theorem at any time t,

p(x0:t|y0:t) =
p(y0:t|x0:t)p(x0:t)∫

p(y0:t|x0:t)p(x0:t) dx0:t
. (1.2)

4



It is possible to obtain a recursive formula for this joint distribution.

p(x0:t+1|y0:t+1) =
p(x0:t+1, y0:t+1)

p(y0:t+1)

=
p(xt+1, yt+1|x0:t, y0:t)p(x0:t, y0:t)

p(yt+1|y0:t)p(y0:t)

=
p(yt+1|x0:t+1, y0:t)p(xt+1|x0:t, y0:t)p(x0:t, y0:t)

p(yt+1|y0:t)p(y0:t)

=
p(yt+1|xt+1)p(xt+1|xt)p(x0:t|y0:t)p(y0:t)

p(yt+1|y0:t)p(y0:t)

= p(x0:t|y0:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y0:t)
.

(1.3)

We also have some recursive formulae for the marginal distribution p(xt|y0:t)

prediction : p(xt|y0:t−1) =
∫

p(xt, xt−1|y0:t−1) dxt−1

=
∫

p(xt|xt−1, y0:t−1)p(xt−1|y0:t−1) dxt−1

=
∫

p(xt|xt−1)p(xt−1|y0:t−1) dxt−1

(1.4)

updating : p(xt|y0:t) =
p(xt, y0:t)

p(y0:t)

=
p(yt|xt, y0:t−1)p(xt|y0:t−1)p(y0:t−1)

p(yt|y0:t−1)p(y0:t−1)

=
p(yt|xt)p(xt|y0:t−1)∫

p(yt|xt)p(xt|y0:t−1) dxt
.

(1.5)

The problem with these equations are the calculation of the normalising constant p(y0:t) and
the marginals of p(x0:t|y0:t) since these may require the evaluation of complex high-dimensional
integrals. To solve these problems we need to use numerical approximation methods. Throughout
this thesis we will study some of the Monte Carlo approximations proposed over the years.
However, there are certain cases where it is possible to obtain optimal algorithms for recursive
Bayesian state estimation.

1. In the linear-Gaussian case the functional recursions becomes the Kalman filter.

2. If the state space is discrete-valued with a finite number of states. This is called grid-based
method.

3. For a certain class of nonlinear problems, discovered by Beneš (1981) and Daum (1986), it is
possible to formulate exact analytical solutions, but these will not be discussed in this thesis.
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The Kalman Filter

The Kalman filter is a recursive algorithm for finding the best (in terms of mean square error)
linear estimates of the state-vector Xt in terms of the observations Y0:t (or Y0:t−1) To apply the
Kalman filter to our problem, we must assume that the posterior density at each time step is
Gaussian and therefor completely characterised by it’s mean and covariance. If p(xt−1|y1:t−1) is
Gaussian, it can be proved that p(xt|yt) is Gaussian, provided that certain assumptions hold:

K.1 Vt−1 and Wt are Gaussian.

K.2 kt−1(Xt−1, Vt−1) is a linear function of Xt−1 and Vt−1.

K.3 ht(Xt, Wt) is a linear function of Xt and Wt.

In other words (1.1) can be written as

Xt = Kt−1Xt−1 + Vt−1 Yt = HtXt + Wt

where Kt−1 and Ht are matrices defining the linear functions. The noise Vt−1 and Wt are mutually
independent zero-mean Gaussian with covariances Qt−1 and Rt. The Kalman filter will then
consist of the following recursive relationship

p(xt−1|y0:t) = N (xt−1; X̂t−1|t−1, Pt−1|t−1)

p(xt|y0:t−1) = N (xt; X̂t|t−1, Pt|t−1)

p(xt|y0:t) = N (xt; X̂t|t, Pt|t),

where X̂t|t is the filter estimate of Xt given Y0:t, and Pt|t is the error covariance matrix

E
[(

Xt − X̂t|t
) (

Xt − X̂t|t
)T
]
. We will not go into details here, but present the recursions for

computing the mean and covariances:
Start by the initial condition X̂0 = EX0 and P0 = E

[(
X0 − X̂0

) (
X0 − X̂0

)]
and then continue by

induction on t.
X̂t|t−1 = Kt−1X̂t−1|t−1

Pt|t−1 = Qt−1 + Kt−1Pt−1|t−1KT
t−1

X̂t|t = X̂t|t−1 + Dt(Yt −HtX̂t|t−1)

Pt|t = Pt|t−1 −DtStD
T
t ,

where
St = HtPt|t−1HT

t + Rt

is the covariance of the innovation term It = Yt −HtX̂t|t−1, and

Dt = Pt|t−1HT
t S−1

t

6



is the Kalman gain. This algorithm is a combination of the Kalman prediction and Kalman filter
equations (Brockwell and Davis, 2002). Under the assumptions K.1-3, the Kalman filter provides
the best linear prediction/update in terms of Y0:t−1 and Y0:t.

Proof: see Brockwell and Davis (2002, page 271-277).

1.1.1 Grid-based methods

If the state space is discrete and consists of a finite number of states, then grid-based methods
provide the optimal solution of the filtering density p(xt|y0:t). Let {s(i)}N

i=1 be the states of the
state space. Given the measurements up to time t− 1, let us denote ω

(i)
t−1|t−1 = p(xt−1 = si|y0:t−1).

The posterior pdf at time t− 1 can now be written as

p(xt−1|y0:t−1) =
N

∑
i=1

ω
(i)
t−1|t−1δs(i)(xt−1). (1.6)

Substituting (1.6) into (1.4) and (1.5) we get the following equations for the prediction and
updating.

p(xt|y0:t−1) =
N

∑
i=1

ω
(i)
t|t−1δs(i)(xt)

p(xt|y0:t) =
N

∑
i=1

ω
(i)
t|t δs(i)(xt),

where

ω
(i)
t|t−1 ,

N

∑
j=1

ω
(j)
t−1|t−1 p(xt = s(i)|xt−1 = s(j))

ω
(i)
t|t ,

ω
(i)
t|t−1 p(yt|xt = s(i))

∑N
j=1 ω

(j)
t|t−1 p(yt|xt = s(j))

.

Now if the density and likelihood functions p(xt = s(i)|xt−1 = s(j)) and p(yt|xt = s(i)) are
known, we have the optimal solution to our problem

7



1.1.2 Multiple switching dynamic models

Nonlinear dynamic systems that are characterised by some modes or regimes of operation is very
common in engineering. These problems are often referred to as jump Markov or hybrid-state
estimation problems. They involve a continuous-valued target state and a discrete-valued regime
model. The system is described by the following

Xt = kt−1(Xt−1, rt, Vt−1)

Yt = ht(Xt, rt, Wt),

where rt is the effective regime during the period (tt−1, tt]. Usually the regime is modelled as an
s-state time-homogeneous Markov chain with transition probabilities

pij , P(rk = j|rt−1 = i) (i, j ∈ S),

where S , (1, 2, ..., s). The corresponding transition probability matrix (TPM) P = [pij] is an s× s
matrix with elements satisfying

pij ≥ 0 and
s

∑
j=1

pij = 1

for each i, j ∈ S. We also denote µi = p(r1 = i) as the initial regime probabilities, such that

µi ≥ 0 and
s

∑
i=1

µi = 1.

(Notice that if s = 1 we are back to our intital problem in equation (1.1)).
By conditioning on Xt−1 and rt and using the law of total probability we have the following

generalisation of (1.4);
Prediction:

p(xt, rt = j|y0:t−1) = ∑
i

pij

∫
p(xt|xt−1, rt = j)p(xt−1, rt−1 = i|y0:t−1) dxt−1. (1.7)

Update:

p(xt, rt = j|y0:t) =
p(xt, rt = j, y0:t)

p(y0:t)

=
p(yt|xt, rt = j, y0:t−1)p(xt, rt = j, y0:t−1)

p(yt|y0:t−1)p(y0:t−1)

=
p(yt|xt, rt = j)p(xt, rt = j|y0:t−1)p(y0:t−1)

p(yt|y0:t−1)p(y0:t−1)
.

8



Again conditioning on xt−1 and rt and using the law of total probability we obtain a generalisation
of (1.5)

p(xt, rt = j|y0:t−1) =
p(yt|xt, rt = j)p(xt, rt = j|y0:t−1)

∑i
∫

p(yt|xt, rt = i)p(xt, rt = i|y0:t−1) dxt
. (1.8)

In the next chapter we will discuss numerical solutions to these filtering problems but our main
focus will be on the problem stated by (1.1).

9



2
Particle filters

2.1 Monte Carlo methods

With the increasing computational power since the late 80’s, there has been devoted a great effort
to approximate integrals with Monte Carlo methods. These methods do not require any linearity
or Gaussian constraints on the model and have nice convergence properties. (Unlike numerical
methods, the rate of convergence does not depend on the dimension of the integrand, although
methods like importance sampling are usually inefficient in high-dimensions).

In this section we start by showing that if one has a large number of samples from the posterior
distribution of interest, it is not difficult to approximate the desired expected value.

2.1.1 Perfect Monte Carlo sampling

Assume now that we are able to draw N independent and identically distributed (iid) ran-
dom samples, called particles, {X(i)

0:t}N
i=1 according to pt(x0:t|y0:t). An empirical estimate of this

simultaneous distribution is given by

pN(dx0:t|y0:t) =
1
N

N

∑
i=1

δ
x(i)

0:t
(dx0:t).

From this, a natural estimate of pt f is

pN
t f =

∫
f (x0:t)pN(dx0:t|y0:t) =

1
N

N

∑
i=1

f (x(i)
0:t).

10



This estimate is unbiased, and if the posterior variance σ2
f < ∞, the variance of p̂N

t ( f ) is equal to
σ2

f /N. From the strong law of large numbers we have

pN
t f a.s.−−−→

N→∞
pt( f ). (2.1)

Also if σ2
f < ∞, then the central limit theorem holds and

√
N [pN

t f − pt f ] D−→ N(0, σ2
f ). (2.2)

This procedure is however very troublesome. Since p(x0:t|y0:t) is multivariate and known only
up to a multiplicative constant (see 1.3), it will be almost impossible to draw from. One can apply
MCMC methods, but they are unsuited for recursive estimation procedures.

2.1.2 Importance sampling

An alternative solution to our estimation problem is the classical method of importance sampling.
For a given distribution function q(x0:t|y0:t)

(or possibly q(x0:t)) with supp(q) ⊇ supp(pt) we have the identity

pt f =
∫

f (x0:t)p(x0:t|y0:t) dx0:t

=
∫

f (x0:t)w(x0:t)q(x0:t|y0:t) dx0:t∫
w(x0:t)q(x0:t|y0:t) dx0:t

where

w(x0:t) =
p(x0:t|y0:t)
q(x0:t|y0:t)

. (2.3)

This can be written as

pt f = Ep f = Eq

[
f wt

wt

]
.

An estimator for pt f is given by

pN
t f =

1
N ∑N

i=1 f (X(i)
0:t)w(X(i)

0:t)
1
N ∑N

i=1 w(X(i)
0:t)

=
N

∑
i=1

f (X(i)
0:t)w̃(i)

t ,

11



where

X(i)
0:t ∼ q(x0:t|y0:t), i = 1, . . . , N

w(i)
t , w(X(i)

0:t)

w̃(i)
t ,

w(X(i)
0:t)

∑N
j=1 w(X(j)

0:t )
.

The distribution function q, which we draw our sample from, is called the importance function
and the sample (X(i)

0:t , i = 1, ...N) we will be our particles. The estimator in (2.1.2) is biased (the
ratio of two estimators), but asymptotically (2.1) and (2.2) holds. Also we only need to know
p(x0:t|y0:t) up to a normalising constant. Although this method is simple with nice convergence
properties it is not recursive. In general at time t + 1, yt+1 becomes available, then we have to
recalculate all the importance weights over the entire state sequence. This is time demanding and
becomes more and more complex as time increases.

Sequential Importance sampling

We will now try to modify the importance sampling method in such a way that we can compute
the estimate at time t without modifying the particles and weights obtained at time t− 1. That is,
we want to compute our estimate at time t with the help of the particles (X(i)

0:t−1, i = 1, ..., N) and

the importance weights (w̃(i)
0:t−1). If we can choose the importance function in such a way that we

may draw new particles at time t from the particles at the previous step, then we can simple set
(X(i)

0:t , i = 1, ..., N) = (X(i)
0:t−1, X(i)

t ). This can be done by choosing q(x0:t|y0:t) so that it satisfy the
following recursion

q(x0:t|y0:t) = q(xt|x0:t−1, y0:t)q(x0:t−1|y0:t−1). (2.4)

This will allow us to evaluate the weights recursively in time. From (1.3), (2.3) and (2.4) we have

wt , w(x0:t) =
p(x0:t|y0:t)
q(x0:t|y0:t)

∝
p(x0:t−1|y0:t−1)p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y0:t)q(x0:t−1|y0:t−1)

= wt−1
pt(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y0:t)
.

(2.5)

If q(xt|x0:t−1, y0:t) = q(xt|xt−1, yt) then the importance density depend only on xt−1 and yt. This
case is very useful when we are interested in the filter estimate p(xt|y0:t). Algorithm 2.1 gives a
description for carrying out an SIS system.
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Algorithm 2.1: The SIS algorithm
Initialisation t = 0;
for i = 1 : N do

Sample X(i)
0 ∼ p(x0);

end
for t = 1 : T do

for i = 1 : N do
Sample X(i)

t ∼ p(xt|X(i)
t−1) ;

Evaluate the importance weights w(i)
t = p(yt|X(i)

t ) ;
end

Normalise the importance weights w̃(i)
t =

w(i)
t

∑N
j=1 w(j)

t

;

end

2.1.3 Selecting importance density

The most critical issue in constructing a sequential importance sampling design, or even an
ordinary importance sampling, is the choice of the importance density q(x0:t|y0:t) In view of (2.4)
we want the optimal choice of q(xt|x0:t−1, y0:t).

Optimal choice

If we choose the importance function q such that q(xt|x0:t−1, y0:t) = q(xt|xt−1, yt), (this is a smart
choice since we only have to store one set of variables) then the optimal choice of importance
density function, the one that minimises the variance of the importance weights conditioning
upon X(i)

t−1 and yt, is

q(xt|X(i)
t−1, yt)opt = p(xt|X(i)

t−1, yt)

=
p(yt|xt)p(xt|X(i)

t−1)

p(yt|X(i)
t−1)

.
(2.6)

13



Proof: From (2.5) we have

Varq(w(i)
t ) ∝ Varq

(
w(i)

t−1
p(yt|Xt)p(Xt|X(i)

t−1)
q(Xt|Xi

t−1, yt)

)

= (w(i)
t−1)

2

[∫ (p(yt|xt)p(xt|X(i)
t−1))

2

q(xt|x(i)
t−1, yt)

dxt −
(∫

p(yt|xt)p(xt|Xi
t−1) dxt

)2
]

= (w(i)
t−1)

2
[∫

p(yt|xt)p(xt|Xi
t−1) dxt p(yt|Xi

t−1)− [p(yt|Xi
t−1)]

2
]

= (w(i)
t−1)

2([p(yt|Xi
t−1)]

2 − [p(yt|Xi
t−1)]

2) = 0.

�

Substituting (2.6) into (2.5) yields

w(i)
t ∝ w(i)

t−1 p(yt|X(i)
t−1)

saying that the importance weights can be computed before the particles are propagated to time t.
However, as often, the optimal solution is rarely possible. In order to use the optimal importance
density we have to be able to;

1. Sample from p(xt|Xi
t−1, yt)

2. Evaluate p(yt|Xi
t−1) =

∫
p(yt|xt)p(xt|Xi

t−1) dxt up to a normalising constant.

Generally (1) is not straightforward, and (2) may be difficult to compute.
However, in certain special cases, it is possible to use the optimal importance density, an example

is when p(xt|Xi
t−1, yt) is Gaussian.

Suboptimal choice

A particular case arise when we use the prior distribution as importance function.

q(x0:t|y0:t) = p(x0:t) = p(x0)
t

∏
k=1

p(xk|xk−1). (2.7)

This is an important case that satisfies (2.4). The importance weights now satisfy
w(i)

t ∝ w(i)
t−1 p(yt|X(i)

t ). The problem now is that as t increases, the distribution of the weights
becomes more and more skewed. It can be shown (Doucet et al., 2000) that the variance of the
weights is non-decreasing over time. After a few time steps most particles will have zero weight.
To avoid this problem and still use (2.7), we introduce the SIR(bootstrap) filter, in this procedure
all the particles will have uniform weights after a resampling step.
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2.2 The SIR filter

The SIR filter is an easy way to avoid the problem with skewness of the importance weights. We
want to multiply the particles with large weights and get rid of the ones with small weights. The
idea is to attach to each set of particles X(i)

0:t (or X(i)
t ) a random number N(i)

t such that ∑N
i=1 N(i)

t = N
and then use as an empirical estimate of the posterior distribution

p̂N(dx0:t|y0:t) =
1
N

N

∑
i=1

N(i)
t δ

X(i)
0:t

(dx0:t)

so that the new set of particles have weights equal to 1/N To obtain this we introduce the
resampling step.

At each time step we resample N new particles with replacement from the particles (X(i)
0:t , i =

1, ..., N) with weights w(i)
t ∝ p(yt|x(i)

t ) to obtain a new set of particles (X̂(i)
0:t)

N
i=1 This will give

us two sets of random samples, (X̂(i)
0:t−1, X(i)

t )N
i=1 who’s empirical distributions will approximate

p(x0:t|y0:t−1) and a second set (X̂(i)
0:t)

N
i=1 that will approximate p(x0:t|y0:t) (or their marginals).

In other words we simulate sequentially in time particles according to the law of the process
{Xt} conditional on the sequence {X0:t−1, y0:t−1} and at each time t we introduce the resampling
intermediate step to select the particles that fit our new observation yt. This will give us both
marginal and simultaneously solutions to the filtering problem. Details about convergence of the
algorithm is discussed in Chapter 4. Algorithm 2.2 describes how to implement the SIR filter, note
that if we are only interested in Xt we do not have to store the variables X̂(i)

0:t−1. In the rest of this
chapter we will focus only on filtering Xt.

Algorithm 2.2: The SIR algorithm
Initialisation t = 0;
for i = 1 : N do

Sample X(i)
0 ∼ p(x0);

end
for t = 1 : T do

for i = 1 : N do
Sample X(i)

t ∼ p(xt|X(i)
t−1) ;

Set X(i)
0:t = (X̂(i)

0:t−1, X(i)
t ) Evaluate the importance weights w(i)

t = p(yt|X(i)
t ) ;

end

Normalise the importance weights w̃(i)
0 =

w(i)
t

∑N
j=1 w(j)

t

;

Resample with replacement N particles {X̂(i)
t }N

i=1 from the set {X(j)
t }N

j=1 with propabilities

{w̃(j)
t }N

j=1

end
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Example 2.1

In the first example we present, we want to estimate EXt of a stationary AR(1) model

Xt = θXt−1 + Vt, Vt ∼ N (0, σ2
v ), |θ| < 1

where the observed process {Yt} is given by the equation

Yt = Xt + Wt, Wt ∼ N (0, σ2
w).

In this example we let σ2
v = 1 and σ2

w = 0.6 and φ = 0.7. Using R we have carried out a filter
scheme according to algorithm 2.2 for t = 1 : 50. First using N = 30 and then N = 1000 particles.
Since this model is linear and Gaussian we have also run the Kalman filter to compare with the
SIR filter. Figure 2.1 and 2.3 show the filter update and Kalman update for the state process X
compared with the value for the ‘true’ X process. while in figure 2.2 and 2.4 we have used kernel
estimation in R to estimate the posterior densities for t = 1 : 15 in the SIR filter. As we see from
figure 2.1 and 2.2 the the SIR filter performs well and is close to the optimal solution attained
from the Kalman filter (in the limit they will be the same). Not surprisingly the density estimates
are quite poor when we use only 30 particles, but when we increase the number of particles to
1000, the estimated densities looks more Gaussian, as they should be.
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Figure 2.1: SIR filter with N=30 particles

Figure 2.2: Density estimation for N=30
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Figure 2.3: SIR filter with N=1000 particles

Figure 2.4: Density estimation with N=1000
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2.2.1 Improving diversity

The SIR filter was introduced to avoid the degeneracy problem in SIS method with a simple
resampling step. However, we may encounter a different problem if the importance weights are
skewed before the resampling step. The particles with high importance weight are statistically
selected many times. If only a few particles have importance weight that is significantly different
from zero we may have a rapid loss of diversity in our particles. Another problem is that due
to the mixture form of the approximation, we need outliers to well approximate the tail of the
posterior density function, no matter how large we choose N. One way of dealing with these
problems is to introduce a regularisation step.

The regularised Particle filter

In the filters described above, our resample comes from a discrete approximation of the posterior
density. Our aim is to draw from a continuous approximation to avoid the degeneracy problem.
The regularised particle filter (RPF) is a method based on regularisation of an empirical measure,
so before we dive in to the RPF we need the following.

Regularisation of an empirical measure

Regularisation of an empirical measure is a method that approximates a discrete measure by
a continuous one. Let ν be an empirical measure, ν = ∑N

i=1 w̃(i)δX(i)(x) on Rd, where w̃(i) are
normalised weights, and let κ be a continuous function on Rd. We say that κ a regularisation
kernel if

•
∫

κ(x) dx = 1

•
∫

xκ(x) dx = 0

•
∫
‖x‖κ(x) dx < ∞.

For any x ∈ Rd and any h > 0 we define the rescaled kernel

κh(x) =
1
hd κ

( x
h

)
.

Definition: For any empirical measure ν on Rd, where d is the dimension of the X vector, the
regularisation of ν is the absolutely continuous probability distribution κh ∗ ν with probability
distribution

d(κh ∗ ν)
dx

(x) =
∫

κ′h(x− u)ν(du),

where ∗ is the convolution operator. The raw filter estimate of p(xt|y0;t) given by

=
N

∑
i=1

w̃(i)
t δ

X(i)
t

(x)
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should be smoothed if the intention is to estimate the density function. The new estimate

p̂N(xt|y0:t) =
N

∑
i=1

w̃(i)
t κh(x− X(i)

t ) (2.8)

is a weighted kernel estimate based on the observations {X(i)
t }, where h is chosen to minimise the

mean integrated square error between the posterior density and the corresponding regularised
empirical representation in (2.8)

MISE( p̂) = E

[∫
[ p̂N(xt|y0:t)− p(xt|y0:t)]

2 dxt

]
.

It is worth noting that the approximation becomes increasingly less appropriate as d, the dimension
of the state, increases. It can be shown (Wasserman, 2006) that under the special case of an equally
weighted sample, the optimal choice of the kernel is the Epanechnikov kernel

κopt =

 d+2
2cd

(1− ‖x‖2) if ‖x‖ < 1

0 otherwise,
(2.9)

where cd is the volume of the unit hypersphere in Rd. In the case where the underlying density is
Gaussian with unit covariance matrix, the optimal choice if the bandwidth is (Wasserman, 2006)

hopt = AN−
1

d+4 with A =
[
8d−1(d + 4)(2

√
π )d

] 1
d+4 . (2.10)

The results of (2.9) and (2.10) are optimal only under some very special cases, however, these
results can be used in more general cases to obtain a suboptimal filter. Generating particles from
the Epanechnikov kernel (2.9) consists of generating

√
β T where β follows a beta distribution

with parameters (d/2, 2) and T is uniformly distributed over the unit sphere in Rd. This is
computationally expensive so it is common to generate samples from a Gaussian kernel to reduce
the cost. The optimal bandwitch in this case is (Wasserman, 2006)

hopt = AN
1

d+4 with A = [4/(d + 2)]
1

d+4 .

The RPF differs from the SIR filter only in additional regularisation after the resampling step.
We also compute the empirical covariance matrix St of the particles prior to the resampling, so
that St is a function of both {X(i)

t }N
i=1 and {w(i)

t }N
i=1 The main step is then to move the resampled

values by

X?(i)
t = X(i)

t + hoptDtξ
(i), (2.11)

where DtD
T
t = St (Cholesky decomposition) and ξ(i) follows the Epanechnikov/Gaussian kernel.

This will lead to diversion in our particle, but we are no longer guaranteed that these will
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asymptotically approximate those from the posterior. Another way of improving the diversity
is to perform an MCMC step. Under certain conditions the new particles will converge to the
posterior distribution of interest. The MCMC step will be discussed in Chapter 5. The algorithm
for the RPF differs from the SIR only by an additional step as described in algorithm 2.3

Algorithm 2.3: The RPF algorithm
Initialisation t = 0;
for i = 1 : N do

Sample X(i)
0 ∼ p(x0);

end
for t = 1 : T do

for i = 1 : N do
Sample X(i)

t ∼ p(xt|X?(i)
t−1) ;

Calculate w(i)
t = p(yt|X(i)

t ) ;
end

Normalise the importance weights w̃(i)
t =

w(i)
t

∑N
j=1 w(j)

t

;

Compute the empirical covariance matrix St of {X(i)
t , w̃(i)

t }N
i=1;

Compute Dt such that DtD
T
t = St ;

Resample with replacement N particles {X̂(i)
t }N

i=1 from the set {X(j)
t }N

j=1 with propabilities

{w̃(j)
t }N

j=1;
for i = 1 : N do

Sample ξ(i) from the Epanechnikov/Gaussian kernel;
Set X?(i)

t = X̂(i)
t + hoptDtξ

(i);
end

end
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2.3 The ASIR filter

Another way to avoid degeneracy is the Auxiliary SIR (ASIR) filter introduced by Pitt and Shephard
(1999) as a variant of the standard SIR filter. The idea is to use the measurement available at time t
to perform resampling at time t-1, before the particles propagate to time t.

The ASIR filter introduce an importance density q(xt, i|y0:t) which samples the pair {X(j)
t , i(j)}N

j=1

where i(j) refers to the index of the particle at time t− 1 (note that p(i|y0:t−1) = w̃(i)
t ).

From Bayes rule

p(xt, i|y0:t) ∝ p(yt|xt)p(xt, i|y0:t−1)

= p(yt|xt)p(xt|i, y0:t−1)p(i|y0:t−1)

= p(yt|xt)p(xt|x(i)
t−1)w̃(i)

t−1.

(2.12)

If we now obtain a sample from the joint density p(xt, i|y0:t) and omit the i in each of the
pairs (X(j)

t , i(j)) we are left with a sample {X(j)
t }N

j=1 from the marginal distribution p(xt|y0:t). The

importance density used to draw the sample (X(j)
t , i(j))N

j=1 in the ASIR filter is defined to satisfy

q(xt, i|y0:t) ∝ p(yt|µ(i)
t )p(xt|x(i)

t−1)w(i)
t−1, (2.13)

where µ
(i)
t is a characteristic of Xt given X(i)

t−1, for example the mean E[Xt|X(i)
t−1] or a sample

µ
(i)
t ∼ p(xt|x(i)

t−1). We may also write

q(xt, i|y0:t) = q(i|y0:t)q(xt|i, y0:t) (2.14)

and defining

q(xt|i, y0:t) , p(xt|x(i)
t−1) (2.15)

we have, according to (2.13), (2.14) and (2.15),

q(i|y0:t) ∝ p(yt|µ(i)
t )w(i)

t−1.

The ASIR filter evolves by sampling the set {i(j)}N
j=1 from the set {i}N

i=1 with probabilities

p(yt|µ(i)
t ) and then drawing X(j)

t according to q(xt|i(j), y0:t) = p(xt|)X(ij)
t−1 The weight of the

sample {x(j)
t , i(j)}N

j=1 is according to (2.5) proportional to the ratio of the right hand side of (2.12)
and (2.13):

w(j)
t ∝ w(ij)

t−1
p(yt|X(j)

t )p(X(j)
t |X

(ij)
t−1)

q(X(j)
t , i(j)|y1:t)

=
p(yt|X(j)

t )

p(yt|µ(ij)
t )

.

Compared to the SIR, the ASIR filter has the advantage that it naturally generates points from the
sample at time t-1, which conditioned on the current measurement yt, are most likely to be in a
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region of high likelihood. The ASIR resamples at the ‘previous’ time step based on some point
estimate µ

(i)
t that characterise p(xt|X(i)

t−1). This works really well if p(xt|X(i)
t−1). is well characterised

µ
(i)
t , that is if the process noise is small. If the process noise is large, however, the ASIR filter can

in fact degrade the performance, but this may be corrected with a final resampling step, as in the
SIR filter, to obtain a final equally weighted sample.

Algorithm 2.4: The ASIR algorithm
Initialisation t = 0;
for i = 1 : N do

Sample X(i)
0 ∼ p(x0);

end
for t = 1 : T do

for i = 1 : N do
Calculate µ

(i)
t ;

Calculate w(i)
t = p(yt|µ(i)

t );
end

Normalise the importance weights w̃(i)
t =

w(i)
t

∑N
j=1 w(j)

t

;

Sample N integers {i(j)}N
j=1 with replacement from the set {i}N

i=1 with probabilities w̃(i)
t ;

for j = 1 : N do

Sample X(j)
t ∼ p(xt|x(ij)

t−1);

Calculate w(j)
t =

p(yt|x(j)
t )

p(yt|µ(j)
t )

;

end

Normalise the weights w̃(j)
t =

w(j)
t

∑N
i=1 w(i)

t

;

(Optional)
Sample {X̂(j)

t }N
j=1 with replacement from the set {X(j)

t }N
j=1 with probabilities {w(j)

t }N
j=1

end
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2.4 Multiple model particle filters

The MM particle filters are sequential Monte Carlo approximation of the conceptual solution
given by 1.7 and 1.8 to solve the problem given by

xt = kt−1(Xt−1, rt, Vt−1)

yt = ht(Xt, rt, Wt),

where rt is assumed to be discrete with Markov transitions pij = P{rt = j|rt−1 = i} i, j = 1, ..., s.
Let us then define the augmented state-vector Zt = [XT

t , rt]T. We assume that the initial densities
p(x0) and p(r1) = ∑s

i=1 µiδ(r1 − i) are known. We denote by {Z(j)
t , w(j)

t }N
j=1 a random measure

that characterises the posterior density p(zt|y0:t) such that each particle Z(j)
t consists of the two

components, X(j)
t and r(j)

t . The first step of the MMPF is to generate a random set {r(j)
t }N

j=1 based

on the set {r(j)
t−1}N

j=1 and the transition probability matrix P = [pij], (i, j) ∈ S. The next step of
the MMPF is to perform a regime conditioned SIR filter described below. The optimal regime
conditional density (Ristic, Arulampalam and Gordon (2004)) is given by

q(xt|X(i)
t−1, r(i)

t , yt)opt = p(xt|X(i)
t−1, r(i)

t , yt),

but the most popular choice appears to be the transition prior

q(xt|X(i)
t−1, r(i)

t−1, yt) = p(xt|X(i)
t−1, r(i)

t ).

Algorithm 2.5: Regime conditioned SIR algorithm
Initialisation t = 0;
for i = 1 : N do

Sample X(i)
0 ∼ p(x0);

end
for t = 1 : T do

for i = 1 : N do
Sample r(i)

t according to P (p(r1) for t = 1);
Sample X(i)

t ∼ p(xt|X(i)
t−1, r(i)

t );

Set Z(i)
t = (X(i)

t , r(i)
t );

Calculate w(i)
t = p(yt|X(i)

t , r(i)
t );

end

Normalise the importance weights w̃(i)
t =

w(i)
t

∑N
j=1 w(j)

t

;

Sample {Ẑ(i)
t }N

i=1 with replacement from the set {Z(i)
t }N

i=1 with probabilities w̃(i)
t ;

end
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Example 2.2

In the second example we study a regime model, the signal process {Xt} evolves according to

Xt = rtXt−1 + Vt, Vt ∼ N (0, 1)

and the observation process {Yt} is given by the equation

Yt = Xt + Wt, Wt ∼ N (0, 1)

where {rt} is a discrete Markov chain with states s = 0, 1, 2, transition probability matrix P

P =

1/2 1/2 0
1/3 1/3 1/3
1/4 1/2 1/4


and with initial probabilities p0 = (1/3, 1/3, 1/3). We have then carried out a particle filter
according to algorithm 2.5 with T = 50 and N = 1000. The results are shown in figure 2.5

Figure 2.5: Multiple model particle filter
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We will also include a regularisation step (as described in algorithm 2.3) at time t = 50. However,
in this case we will re-run the algorithm with only 100 particles to see the effect. Figure 2.6 shows
the histograms of X̂[50] from the regime filter and the regularised particles from equation 2.11
where ξ(i) is drawn from a Gaussian kernel and the bandwith h is chosen as in equation 2.10

Figure 2.6: Histograms of the particles

26



2.5 Combined parameter and state estimation

Throughout this chapter we have studied simulation-based methods for filtering time-varying state
vectors, however, in many situations we need more general algorithms that deal simultaneously
with both fixed model parameters and state variables. West (1993a) presents an algorithm that
solves this problem.

2.5.1 Framework

Consider again a Markovian dynamic model for sequentially observed data vectors Yt, (t =
0, 1, . . . ) (again with y0 = 0) in which the state vector at time t is Xt, and the fixed parameter
vector is θ. As we have seen before, the state dynamics evolves according to the density p(xt|xt−1, θ)
and the observation according to p(yt|xt, θ), where Yt is conditionally independent of the past
states and observations given Xt and θ, and Xt is conditionally independent of past states and
observations given Xt−1 and θ. The aim is to use Monte Carlo methods to sequentially update
Monte Carlo sample approximations of sequences of posterior distributions p(xt, θ|y0:t), where
y0:t = (y0, . . . , yt) is the available information at time t. The case where θ is known, or when there
is no fixed parameters in the model, has already been discussed in this chapter. In this section we
will use the ASIR filter (algorithm 2.4) developed by Pitt and Shephard (1999)

2.5.2 Filtering for states and parameters

In the general model with fixed parameters, we extend the sample-based framework developed
for state filtering to both state and parameter. At time t, we then have a sample {X(j)

t , θ
(j)
t }N

j=1

with associated weights {w̃(j)
t }N

j=1 representing an importance sample approximation to the time
t posterior p(xt, θ|y0:t) for both parameters and state. Note that the index t on the parameter
indicates that it comes from time t posterior, not that it is time-varying. As time evolves to t + 1,
yt+1 becomes available, and we want to generate a sample from p(xt+1, θ|y0:t+1). Bayes theorem
gives us that

p(xt+1, θ|y0:t+1) ∝ p(xt+1, θ, y0:t+1)

∝ p(yt+1|xt+1, θ, y0:t)p(xt+1|θ, y0:t)p(θ|y0:t)

= p(yt+1|xt+1, θ)p(xt+1|θ, y0:t)p(θ|y0:t).

(2.16)

As we see from equation (2.16), the density p(θ|y0:t) is an important ingredient in the update.
There are several historical approaches to address this problem, we will review two of them.

Artificial evolution of parameters

In dealing with time-varying states, one approach to reducing degeneracy in the sample, as we
have seen, is to add small noise disturbance to state particles between time steps (Gordon, 1993).
This idea has later been extrapolated to the fixed model parameters. One version of these methods
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has the interpretation of an extended model in which the model parameters are viewed as if they
were in fact time-varying, -an ‘artificial evolution’. In other words, we consider a different model
where θ is replaced by θt at time t, and simply include θt in the augmented state vector. Then we
add an independent zero mean Gaussian increment to the parameter at each time t i.e

θt+1 = θt + ξt+1

ξt+1 ∼ N (0, Wt+1)

for some specified covariance matrix Wt+1 and where θt and ξt+1 are conditionally independent
given Y0:t. With the model recast we can now carry out filtering methods such as the ASIR filter.
However, as stated in the beginning, the fixed model parameters are fixed. Pretending that they
are time-varying implies an artificial loss of information between time points.

An inherent interpretation in terms of kernel smoothing of particles leads to a modification
of this artificial evolution method in which the problem of information loss is avoided. We first
discuss the basic form of the kernel smoothing.

Kernel smoothing for parameters

To approximate the required density p(θ|y0:t) in (2.16), West (1993b) developed kernel smoothing
methods that provided basis for rather effective adaptive importance sampling techniques.

At time t, suppose that we have current posterior parameter samples θ
(j)
t and weights w̃t(j),

(j = 1, . . . , N) providing a discrete Monte Carlo approximation of p(θ|y0:t). Define θ̄t and St as
the Monte Carlo posterior mean and covariance matrix of p(θ|y0:t), computed from the sample
θ
(j)
t with weights w̃(j)

t , that is

θ̄t =
N

∑
i=1

w̃(i)
t θ

(i)
t

St =
N

∑
i=1

w̃(i)
t (θ

(i)
t − θ̄t)(θ

(i)
t − θ̄t)T.

The smooth kernel density is then given by

p(θ|y0:t) ≈
N

∑
i=1

w̃(i)
t N (θ|m(j)

t , h2St), (2.17)

where we define the following components: N (·|m, S) is the multivariate normal density with
mean m and covariance matrix S, h is chosen as a slowly decreasing function of N such that
the kernel components become more and more concentrated about their location m(j)

t as N
increases. The kernel locations m(j)

t are specified using a shrinkage rule introduced by West
(1993a), West (1993b). Standard kernel methods would suggest m(j)

t = θ
(j)
t so that the kernels are

located about existing sample values. Assume now that we choose to approximate p(θ|y0:t) by

28



∑N
i=1 w̃(i)

t N (θ|θ(j)
t , h2St), then, if we denote fi = N (θ|θ(i)

t , h2St) we see that

E[θ|y0:t] =
∫

θ
N

∑
i=1

w̃(i)
t fidθ

=
N

∑
i=1

w̃(i)
t

∫
θ fidθ =

N

∑
i=1

w̃(i)
t θ

(i)
t = θ̄t.

However,

Var[θ|y0:t] =
∫

(θ − θ̄t)(θ − θ̄t)T
N

∑
i=1

w̃(i)
t fidθ

=
N

∑
i=1

w̃(i)
t

∫
(θθT − 2θθ̄T

t + θ̄t θ̄
T
t ) fidθ

=
N

∑
i=1

w̃(i)
t

(
Ei[θθT]− 2Ei[θ]θ̄T

t + θ̄t θ̄
T
t

)
=

N

∑
i=1

w̃(i)
t

(
h2St + θ

(i)
t θ

(i)T
t − 2θ

(i)
t θ̄T

t + θ̄t θ̄
T
t

)
= h2St +

N

∑
i=1

w̃(i)
t (θ

(i)
t − θ̄)(θ

(i)
t − θ̄t)T

= (1 + h2)St > St,

and we see that the resulting mixtures of Normal densities leads to an over-dispersed approx-
imation of p(θ|y0:t). If we instead take m(i)

t = aθ
(i)
t + (1− a)θ̄t, where a =

√
1 + h2 , the same

calculations as above shows that the resulting normal mixtures retains the mean θ̄t but the variance
is now trivially corrected to St.

A general algorithm for state and parameter estimation

If we now return to the filter problem in (2.16) we have available the Monte Carlo sample
(X(j)

t , θ
(j)
t ) with corresponding weights w̃(j)

t , (j = i, . . . , N) representing the discrete approximation
of the posterior p(xt, θ|y0:t). we use the kernel from equation (2.17) as the marginal density for
the parameter. We can now apply an extended version of the auxiliary particle filter algorithm,
incorporating the parameter with the state.

Also we may add a final resampling step to obtain an unweighted sample, this is smart if the
observation noise is quite large.
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Algorithm 2.6: Combined parameter and state estimation
Initialisation t = 0;
for i = 1 : N do

Sample θ
(i)
0 ∼ p(θ);

Sample X(i)
0 ∼ p(x0);

end
for t = 0 : T − 1 do

for j = 1 : N do
evaluate the prior point estimates of (X(j)

t , θ
(j)
t ) given by (µ

(j)
t+1, m(j)

t ) where

µ
(j)
t+1 = E[Xt+1|X

(j)
t , θ

(j)
t ]

may be computed from the state evolution density and m(j)
t = aθ

(j)
t + (1− a)θ̄t is the jth

kernel location from equation (2.17);
Calculate g(j)

t+1 = w(j)
t p(yt+1|µ

(j)
t+1, m(j)

t );
end

Normalise the importance weights g̃(j)
t =

g(j)
t

∑N
i=1 g(j)

t

;

Sample N integers {ij}N
j=1 with replacement from the set {i}N

i=1 with probabilities w̃(i)
t ;

for j = 1 : N do

Sample θ
(ij)
t+1 from kernel component number ij,

θ
(j)
t+1 ∼ N (·|m(ij)

t , h2S);

Sample X(j)
t+1 ∼ p(xt+1|X(ij)

t , θ
j
t+1);

Calculate w(j)
t ∝

p(yt+1|X
(j)
t+1, θ

(j)
t+1)

p(yt+1|µ(ij)
t+1, m(ij)

t )
;

end

Normalise the weights w̃(j)
t =

w(j)
t

∑N
i=1 w(i)

t

;

end
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Example 2.3

In example 3 we present the following scenario

Xt = sin (Xt−1) + Vt, Vt ∼ N (0, 1), ;

and the observation process {Yt} is given by the equation

Yt = φXt + Wt, Wt ∼ N (0, 1),

where φ ∼ N (0.5, 0.12) is unknown and needs to estimated along with the X process. Figure 2.7
shows the results with N = 500.

Figure 2.7: Combined parameter and state, phi unknown

Next we assume that the variance of Wt is an unknown parameter σ2 with initial condition
N (2, 0.32). φ is still unknown. From figure 2.8 we see that uncertainty in φ increases over time.
In figure 2.9 we have increased the number of particles from 500 to 5000 and we see that the
uncertainty in φ has decreased.
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Figure 2.8: Combined parameter and state, phi and sigma unknown, N = 500
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Figure 2.9: Combined parameter and state, phi and sigma unknown, N = 5000
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3
Posterior Cramèr-Rao bounds

If we are interested in solving the filter problem E[xt|y0:t] we will also be interested in computing
the information matrix. In this chapter we will derive at a formula to compute the information
matrix for the particle filter sequentially, that is we, compute the prediction error recursively. This
method is presented by Tichavsky, Muravchik and Nehorai (1998) and also discussed in Ristic,
Arulampalam and Gordon (2004). The prediction error matrix is the right lower block of the
information matrix for the whole trace (X̂i

0:t)i=1:N .

3.1 General case

Let X represent a vector of measured data and let Θ be an r-dimensional estimated random
parameter. Denote by pX,Θ(x, θ) the joint probability density of the pair (X, Θ) and let g(X) be the
function of the measurements X that estimates Θ. The Posterior Cramèr-Rao bounds (PCRB) is

P , E
[
(g(X)−Θ) (g(X)−Θ)T

]
≥ J−1, (3.1)

where J is the r× r Fisher information matrix with elements

Jij = E

[
−∂2 log pX,Θ(x, θ)

∂θi∂θj

]
i, j = 1, ..., r

(assuming that the expectations and derivatives exists). The inequality in (3.1) means that the
matrix P− J−1 is a positive semidefinite matrix, saying that there exist at least one x such that
xT(P− J−1)x = 0.
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Let ∇ and ∆ be operators of the first and second order partial derivatives.

∇θ =
[

∂

∂θ1
, ...,

∂

∂θr

]T

∆θ
Ψ = ∇Ψ∇T

θ .

With this notation we can write J as

J = E
[
−∆θ

θ log pX,Θ(x, θ)
]

. (r× r)

By re-writing pX,Θ(x, θ) as pX|Θ(x|θ)pΘ(θ), we can decompose J as JD + JP where

JD = E
[
−∆θ

θ log pX|Θ(x, θ)
]

(r× r)

and
JP = E

[
−∆θ

θ log pΘ(θ)
]

. (r× r)

The interpretation is that we have decomposed the information into two blocks, the data informa-
tion from JD and the a priori information from JP.

On the other hand we also have pX,Θ(x, θ) = pΘ|X(θ|x)pX(x). Since pX(x) is an integral of
pX,Θ(x, θ) over θ, it does not depend on θ so

J = E
[
−∆θ

θ log pΘ|X(θ|x)
]

.

For example, in the linear Gaussian case, when the posterior distribution of Θ conditioned on
the data vector X is Gaussian with mean θ̄x and a covariance matrix Σx then the information
matrix is given by

J = EΣ−1
x .

If g(X) = E [Θ|X] is used to estimate Θ we have equality in (3.1). This is exactly the case of the
Kalman filter.

Let us now assume that Θ is decomposed into two parts, Θ = [ΘT
α , ΘT

β ]T with the corresponding
decomposition of the information matrix J[

Jαα Jαβ

Jβα Jββ

]
.

In this case the covariance, Pβ, of the estimation of Θβ is bounded by the right lower block of J−1.
To derive at the expression for this matrix we need to solve[

Jαα Jαβ

Jβα Jββ

] [
A B

BT C

]
=

[
I 0
0 I

]
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w.r.t. C. The solution is well known from general matrix theory

C = [Jββ − JβαJ−1
αα Jαβ]−1. (3.2)

Analog to (3.1) we now have an expression for the lower bound of the covariance of the estimation
of Θβ

Pβ , E
[(

g(X)−Θβ

) (
g(X)−Θβ

)T
]
≥
(

J − JβαJ−1
αα Jαβ

)−1
.

3.2 PCRB for the nonlinear filter problem

Let us now consider the nonlinear filtering problem

Xt = kt−1(Xt−1, Vt−1) (3.3)

Yt = ht(Xt, Wt), (3.4)

where Vt and Wt are independent white processes. Let d be the dimension of the state vector Xt

We also assume that X0 has a known probability density function p(x0). (3.3) and (3.4) together
with p(x0) will determine the joint probability density of X0:t and Y0:t

p(x0:t, y0:t) = p(x0)
t

∏
j=1

p(yt|xt)
t

∏
k=1

p(xt|xt−1) (3.5)

The information of X0:t, J(X0:t), is the (td× td) matrix derived from the joint probability density
function (3.5) However we are interested in the information submatrix for estimating Xt, denoted
Jt, which is given as the (d× d) inverse of the right-lower block of J−1. The matrix J−1

t will give
us a lower bound for the mean square error of estimating Xt.

In the following we will denote p(x0:t, y0:t) as pt for brevity.
If we decompose X0:t as X0:t = (X0:t−1, Xt) with the corresponding decomposition of J(X0:t)

J(X0:t) =

[
At Bt

BT
t Ct

]
,

[
E
[
−∆x0:t−1

x0:t−1 log pt
]

E
[
−∆xt

x0:t−1 log pt
]

E
[
−∆x0:t−1

xt log pt
]

E [−∆xt
xt log pt]

]
.

From (3.2) we have

Jt = Ct −BT
t A−1

t Bt. (3.6)

If we want to compute Jt at each time step t we would have to compute the inverse of the
(t− 1)r× (t− 1)r matrix At (or J(X0:t)). We now present the main result of this chapter, which
will allow us to evaluate the information matrix sequentially in time.
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Proposition 3.1

In the filter problem described by (3.3), the information submatrix Jt for estimating the state
vector Xt satisfy the following recursions

Jt+1 = D22
t −D21

t (Jt + D11
t )−1D12

t ,

where

D
ij
t =

E[−∆xt+i−1
xt+j−1 log p(xt+1|xt)] if 2 ≤ i + j < 4

E[−∆xt+i−1
xt+j−1 log p(xt+1|xt)] + E[−∆xt+1

xt+1 log p(yt+1|xt+1)] if i + j = 4.

Proof: The key is to re-write the joint probability density function of (X0:t+1, Y0:t+1) as

pt+1 , p(x0:t+1, y0:t+1)

= p(yt+1|xt+1, x0:t, y0:t)p(xt+1|x0:t, y0:t)p(x0:t, y0:t)

= p(yt+1|xt+1)p(xt+1|xt)pt.

Now if we decompose X0:t+1 into X0:t+1 = (X0:t−1, Xt, Xt+1), J(X0:t+1) can be decomposed as

J(X0:t+1) =

At+1 Bt+1 Lt+1

BT
t+1 Ct+1 Gt+1

LT
t+1 GT

t+1 Ft+1

 .

Let us analyse each submatrix.

At+1 = −E
[
∆x0:t−1

x0:t−1 log pt+1
]

= −E
[
∆x0:t−1

x0:t−1(log pt + log p(xt+1|xt) + log p(yt+1|xt+1))
]

= −E
[
∆x0:t−1

x0:t−1 log pt
]
+ 0 + 0

= At.

Bt+1 = −E
[
∆xt

x0:t−1
(log pt + log p(xt+1|xt) + log p(yt+1|xt+1))

]
= −E

[
∆xt

x0:t−1
log pt

]
+ 0 + 0

= Bt.

This implies that BT
t+1 = BT

t .
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Ct+1 = −E
[
∆xt

xt
(log pt + log p(xt+1|xt) + log p(yt+1|xt+1))

]
= −E

[
∆xt

xt
log pt

]
−E

[
∆xt

xt
log p(xt+1|xt)

]
+ 0

= Ct + D11
t .

Lt+1 = −E
[
∆xt+1

x0:t−1(log pt + log p(xt+1|xt) + log p(yt+1|xt+1))
]

= 0.

Again this implies that LT
t+1 = 0

Gt+1 = −E
[
∆xt+1

xt (log pt + log p(xt+1|xt) + log p(yt+1|xt+1)
]

= −E
[
∆xt+1

xt log p(xt+1|xt)
]

= D12
t

and GT
t+1 = D21

t .

Finally

Ft = −E
[
∆xt+1

x0:t+1(log pt + log p(xt+1|xt) + log p(yt+1|xt+1))
]

= −E
[
∆xt+1

xt+1 log p(xt+1|xt)
]
−E

[
∆xt+1

xt+1 log p(yt+1|xt+1)
]

= D22
t .

We have now derived at an expression for J(X0:t+1)

J(X0:t+1) =

At Bt 0
BT

t Ct + D11
t D12

t

0 D21
t D22

t

 .

From (3.6) we get

Jt+1 = D22
t − [0 D21

t ]

[
At Bt

BT
t Ct + D11

t

]−1

[0 D12
t ]T.

Since the right lower block of[
At Bt

BT
t Ct + D11

t

]−1

= [Ct + D11
t −BT

t AtBt]−1,
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also remembering that Jt = [Ct + BT
t A−1

t Bt]−1 we finally arrive at

Jt+1 = D22
t −D21

t [Jt + D11
t ]−1D12

t

with initial matrix
J0 = E

[
−∆x0

x0
log p(x0)

]
.

�

3.3 Special Cases

The first case is when the initial distribution is Gaussian, that is p(x0) = N(x0; µ0, P0) Then

∇x0 log p(x0) = ∇x0

{
c− 1

2
[(x0 − µ0)TP−1

0 (x0 − µ0)]
}

= −P−1
0 (x0 − µ0)

where c is a constant. Now straightforward matrix algebra and using the fact that the covariance
matrix P0 and it’s inverse are symmetric matrices, we deduce that

J0 = E
[
P−1

0 (X0 − µ0)(X0 − µ0)T[P−1
0 ]T

]
= P−1

0 E
[
(X0 − µ0)(X0 − µ0)T

]
P−1

0

= P−1
0 P0P−1

0 = P0.

The next special case is for the additive Gaussian noise case.

3.3.1 Additive Gaussian noise

Let us once again consider the filtering problem

Xt+1 = k(Xt) + Vt

Yt+1 = h(Xt+1) + Wt+1,

and let us now assume that the noise sequences Vt and Wt+1 are mutually independent , zero
mean Gaussian variables with covariances Qt and Rt+1. We also add an additional condition that
the matrices are nonsingular such that there exist a unique inverse. Under these assumptions we
have

∇xt log p(xt+1|xt) = ∇xt

[
−1

2
(xt+1 − k(xt))

T
Q−1

t (xt+1 − k(xt))
]

=
[
∇xt k

T(xt)
]

Q−1
t [xt+1 − k(xt)] ,
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and in the same way

∇xt+1 log p(yt+1|xt+1) =
[
∇xt+1 hT(xt+1)

]
R−1

t+1 [yt+1 − ht+1(xt+1)] .

Matrix D11
t simplifies as follows

D11
t = −E

[
∇xt [∇xt log p(xt+1|xt)]T

]
= E

[
[∇xt log p(xt+1|xt)][∇xt log p(xt+1|xt)]T

]
= E

[
[∇xt k

T(Xt)]Q−1
t [Xt+1 − k(Xt)][Xt+1 − k(Xt)]TQ−1

t [∇xt k
T(Xt)]T

]
= E

[
E
[
[∇xt k

T(Xt)]Q−1
t [Xt+1 − k(Xt)][Xt+1 − k(Xt)]TQ−1

t [∇xt k
T(Xt)]|Xt

]]
= E

[
[∇xt k

T(Xt)]Q−1
t [∇xt k

T(Xt)]T
]

= E
[
K̃T

t Q−1
t K̃t

]
,

where
K̃t = [∇xt k

T(xt)]T

is the Jacobian of k(xt) evaluated at the true value of xt. In much the same way one can show that

D12
t = −E

[
K̃T

t

]
Q−1

t (3.7)

D22
t = Q−1

t + E
[
H̃T

t+1R−1
t+1

˜Ht+1

]
, (3.8)

where
H̃t+1 = [∇xt+1 hT

t+1(xt+1)]T

is the Jacobian of ht+1(xt+1) evaluated at the true value of xt+1.
Usually it is the expectation operator E that causes problems in the calculation of the PCBR. A

Monte Carlo approximation can be applied to address this problem. One creates an ensamble of
state realisations and use the average over these ensambles as an estimate for the theoretical value.
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4
Convergence

4.1 Introduction

In this chapter we will look at some of the theoretical aspects of particle filters. We start with
some convergence theorems under the assumption that both X and Y take values in the Euclidean
space, and that the joint and conditional densities exists at each time step t. Further on we deduce
some convergence properties in a more general situation. We will need some properties of the
conditional expectations and probabilities (Appendix). This surrey is based on Crisan (2001) and
Del Moral and Jacod (2001)

4.2 The filtering problem

Let X = {Xt, t ∈N} be an Rd-valued hidden Markov process with a Feller transition Qt.
(Qt is the transition from Xt−1 to Xt). The observed process, Y = {Yt, t ∈ N} is an Rq-valued
stochastic process and defined by,

Yt , h(t, Xt) + Wt, t > 0 (4.1)

with Y0 = 0.
In (4.1), h : N×Rd → Rq is a Borel-measurable function with the property that h(t, ·) is continuous
on Rd for all t ∈ N. The noise process {Wt} is independent of {Xt} and for each t, Wt has a
bounded continuous density ḡt.

Our aim is to compute sequentially in time the conditional distribution of the signal given
the σ-algebra, FY

t , generated by the observation process up to the current time. That is, we are
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interested in the random probability measure η̂Y0:t
t ,

η̂Y0:t
t ( f ) , E

[
f (Xt)|FY

t

]
(4.2)

for all f ∈ B(Rd), and the deterministic probability measure η̂
y0:t
t

η̂
y0:t
t ( f ) , E [ f (Xt)|Y0:t = y0:t] (4.3)

which we from now will denote only as η̂t. In the same way we introduce the prediction distribu-
tion for t > 0 by η

Y0:t−1
t and η

y0:t−1
t .

η
Y0:t−1
t ( f ) = E

[
f (Xt)|FY

t−1

]
η

y0:t−1
t ( f ) = E [ f (Xt)|Y0:t−1 = y0:t−1] .

We have a recursion formula, analog to (1.3) and (1.5), for these probability measures in the
following lemma

Lemma 4.1

The probability measures introduced satisfies the following recursionsη̂Y0:t
t (dx) = =

gYt
t (x)

ηtgYt
t

ηY0:t
t (dx)

ηt+1 = η̂tQt+1

η̂t(dx) =
gyt

t (x)
ηtg

yt
t

ηt(dx)

ηt+1 = η̂tQt+1,

where gyt
t is defined by gyt

t = ḡt(yt − h(t, ·)) and since Y0 = 0, η0 is the law of X.

Proof: for proof see Appendix.

4.3 Convergence of measure-valued random variables

When we consider algorithms with sequential Monte Carlo methods that solves the filtering
problem, the result is essentially a random measure which approximates η̂t. In order to establish
any results about the convergence of the algorithms, we must define in what way a sequence of
random measures can approximate another measure.

Let (Ω,F ,P) be a probability space and (µN)∞
N=1 a sequence of random measures, µN : Ω→

MF(Rd) and µ ∈ MF(Rd) is deterministic. (N will typically denote the number of particles in
the algorithm). We will study two types of convergence

1. limN→∞‖µN f − µ f ‖1 = 0 ∀ f ∈ Cb(Rd)

2. limN→∞ µN = µ, P − a.s.,
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where ‖µN f − µ f ‖1 , E
∣∣µN f − µ f

∣∣. The first type we will denote by Elim. If |µN1| is dominated
by an integrable random variable Z, (2.) implies (1.) by the dominated convergence theorem. This
condition is trivially satisfied if (µN)∞

N=1 is a sequence of random probability measures since
µN1 = 1 for all N.

Example
Suppose that X1, . . . , XN is a sample from F with empirical distribution FN , then

FN
Elim−−→

N
F

by Chebyshev, and
FN

a.s.−→
N

F.

Suppose that X?
1 , . . . , X?

N is a bootstrap sample from X1, . . . , XN , then

F?
N

Elim−−→
N

F F− a.s.

where ‘Elim’ is with respect to the sampling.

Theorem 4.2

If µN Elim−−→ µ then there exists a subsequence Nk such that µNk
a.s.−→ µ.

Proof: :

Since Rd is a locally compact separable metric space, there exists a countable set Y ⊂ Cb(Rd)
which is dense. I.e. if νN , N = 1, 2.... and ν are finite measures and limN→∞ νN f = ν f for all
f ∈ Y then limN→∞ νN = ν. Since E limN→∞ µN = µ for all f ∈ Y and Y is countable there
exists a subsequence N1 such that with probability 1, limN1→∞ µN1 f1 = µ f1. Also there exists
a subsequence N2 of N1 such that µN2 f2 converges P- a.s to µ f2. However, this subsequence
will also converge almost surely for f1 being a subsequence of N1. Continuing this way we
get the following scheme

µ11 µ21 µ31 ... converges a.s for f1

µ12 µ22 µ32 ... converges a.s for f1, f2

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
µ1k µ2k µ3k ... converges a.s for f1, f2, ... fk

... ... ... ... ...

The diagonal process µkk will converge almost surely for all f ∈ Y . �

If the rate of convergence of ‖µN f − µ f ‖1 is known the sequence can be explicitly specified.
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Example

Assume that for all f ∈ Y , E
∣∣µN f − µ f

∣∣ ≤ c f N−
1
2 . Then by Markov’s inequality for any given

ε > 0
∞

∑
N=1

P
(
|µN4

f − µ f | ≥ ε
)
≤

∞

∑
N=1

c f (N4)−
1
2

ε
=

c f

ε

∞

∑
N=1

N−2.

Since this series converges, a Borel-Cantelli argument (Williams, 1991) assures us that

lim
N→∞

µN4
= µ, P-a.s.

If Y is the set defined above then

dY (µ, ν) , |µ1− ν1|+ ∑
fk∈Y

|µ fk − ν fk|
2k‖ fk‖

(4.4)

is a metric onMF(Rd) (orP(Rd)) which generates the weak topology

lim
N→∞

νN = ν⇔ lim
N→∞

dY (νN , ν) = 0.

Using dY , the almost sure convergence (2.) is equivalent to

2.′ lim
N→∞

dY (µN , µ) = 0, P − a.s..

Also, if |µN1| is dominated by an integrable random variable Z then (1.) implies

1.′ lim
N→∞

E
[
dY (µN , µ)

]
= 0.

A stronger condition (such as tightness) is needed in order to ensure that (1.) is equivalent to
(1.′). The same definitions are valid in the case when the limiting measure µ is a random measure
µ : Ω→MF(Rd). The same implications are valid under the same assumptions as before.

The limiting measures in the filtering problem is η̂Y0:t
t and η̂t (with the observations fixed), hence

we have one random and one deterministic probability measure, however we will only focus on
the deterministic one.

4.3.1 Convergence theorems for the fixed observation case

We now assume that we have observed values of the observation process up to time T, that is we
have y0:T where T is finite but large. We also assume that all the recurrence formulae in lemma
4.1 holds true for this particular value for all 0 ≤ t ≤ T. Based on lemma 4.1 we see that in any
algorithm we need an intermediate prediction step.

η̂t−1 −→ ηt −→ η̂t.
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Let us denote by (η̂N
t )∞

N=1 and (ηN
t )∞

N=1 the approximating sequence for η̂t and ηt and assume
that η̂N

t and ηN
t are random measures (not necessarily probability measures) and non-trivial i.e.

η̂N
t 6= 0, ηN

t 6= 0 and ηN
t gyt

t 6= 0, for all N > 0 and 0 ≤ t ≤ T. Let us define by η̌N
t a random

probability measure absolutely continuous w.r.t. ηN
t for t ∈N and N ≥ 1 such that for A ∈ B

(
Rd)

η̌N
t (A) = ηN

t

(
gt

ηN
t gt

1A

)
, (4.5)

where gt = gyt
t and 1A is the indicator function for the set A.

We are now able to state the following theorem which gives us necessary and sufficient
conditions for the convergence of ηN

t and η̂N
t to ηt and η̂t

Theorem 4.3

The sequence ηN
t and η̂N

t ,defined by (4.2) and (4.3), converge to ηt and η̂t, with convergence
taken to be of type 1. if and only if the following three conditions are satisfied.

a1. For all f ∈ Cb(Rd), lim
n→∞
‖ηN

0 f − η0 f ‖1 = 0

b1. For all f ∈ Cb(Rd), lim
n→∞
‖ηN

t f − η̂N
t−1Qt f ‖1 = 0

c1. For all f ∈ Cb(Rd), lim
n→∞
‖η̂N

t f − η̌N
t f ‖1 = 0.

Proof: The sufficiency is proved by mathematical induction. The theorem holds true for t = 0
by a1. Next we assume that ηN

t−1 and η̂N
t−1 converges to ηt−1 and η̂t−1. Then, since ηt = η̂t−1Qt

we have for all f ∈ Cb(Rd)

|ηN
t f − ηt f | ≤ |ηN

t f − η̂N
t−1Qt f |+ |η̂N

t−1Qt f − η̂t−1Qt f |. (4.6)

By taking expectations on both sides the first term on the right side converges to 0 by b1 and
the second term by the induction hypothesis since Qt f ∈ Cb(Rd) by the Feller property of
the kernel. Next we use lemma 4.1, (4.5) and the triangle inequality

∣∣η̌N
t f − η̂t f

∣∣ =
∣∣∣∣ηN

t f gt

ηN
t gt

− ηt f gt

ηtgt

∣∣∣∣
≤
∣∣∣∣ηN

t f gt

ηN
t gt

− ηN
t f gt

ηtgt

∣∣∣∣+ ∣∣∣∣ηN
t f gt

ηtgt
− ηt f gt

ηtgt

∣∣∣∣
=
∣∣∣∣ηN

t f gt · ηtgt

ηN
t gt · ηtgt

− ηN
t f gt · ηN

t gt

ηtgt · ηN
t gt

∣∣∣∣+ 1
ηtgt

∣∣ηN
t f gt − ηt f gt

∣∣
≤ ‖ f ‖

ηtgt

∣∣ηN
t gt − ηtgt

∣∣+ 1
ηtgt

∣∣ηN
t f gt − ηt f gt

∣∣
, (4.7)
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hence

‖η̌N
t f − η̂t f ‖1 ≤

‖ f ‖
ηtgt
‖ηN

t gt − ηtgt‖1 +
1

ηtgt
‖ηN

t f gt − ηt f gt‖1. (4.8)

Since gt and gt f are continuous and bounded both terms converge to zero from (4.6).
Finally ,

‖η̂N
t f − η̂t f ‖1 ≤ ‖η̂N

t f − η̌N
t f ‖1 + ‖η̌N

t f − η̂t f ‖1. (4.9)

The first term on the right hand side of (4.9) converges to 0 from c1. and the second term
converges to 0 from (4.8). �

Next we prove the necessity part.
Assume that for all t ≥ 0 and for all f ∈ Cb(Rd),

lim
N→∞
‖ηN

t f − ηt f ‖1 = 0

lim
N→∞
‖η̂N

t f − η̂t f ‖1 = 0.

Then a1 is trivially satisfied. Next, from (4.8) we have that ‖η̌N
t f − η̂t f ‖1 = 0, and since

‖η̂N
t f − η̌N

t f ‖1 ≤ ‖η̂N
t f − η̂t f ‖1 + ‖η̂t f − η̌N

t f ‖1,

c1 is obtained. Finally, using once again that ηt = η̂t−1Qt and the Feller property of Qt we have
for all f ∈ Cb(Rd)

‖ηN
t f − η̂N

t Qt f ‖1 ≤ ‖ηN
t f − ηt f ‖1 + ‖η̂t−1Qt f − η̂t−1Qt f ‖1

which implies b1. �

We also have a corresponding theorem for the almost sure convergence of ηN
t , η̂N

t to ηt and η̂t.

Theorem 4.4

Let t be fixed. The sequence ηN
t , η̂N

t converges almost surely (in the weak sense) to ηt and η̂t

if and only if the following three conditions are satisfied;

a2. lim
N→∞

ηN
0 = η0, P − a.s.

b2. lim
N→∞

dY (ηN
t , η̂N

t−1Qt) = 0, P − a.s.

c2. lim
N→∞

dY (η̂N
t , η̌N

t ) = 0, P − a.s..
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Proof: The sufficiency part is proved in the same way as Theorem 4.3.1 using mathematical
induction and inequalities (4.6), (4.8) and (4.9) (without the expectations). Now the necessity
part.

Assume that for all t ≥ 0 ηN
t and η̂N

t converges almost surely to ηt and η̂t. This implies
that η̂N

t−1Qt converges a.s. to η̂t−1Qt = ηt, and from (4.7) we get that η̌N
t converges a.s. to η̂t

According to 2.′ we then have almost surely limN→∞ dY (ηN
t , ηt) = 0, limN→∞ dY (η̂N

t , η̂t) = 0,
limN→∞ dY (η̂N

t−1Qt, ηt) = 0 and limN→∞ dY (η̃N
t , η̂t) = 0, where dY is defined as in (4.4). We

now obtain b.2 and c.2 by the triangleinequalities

dY (ηN
t , η̂N

t−1Qt) ≤ dY (ηN
t , ηt) + dY (ηt, η̂N

t−1Qt)

dY (η̂N
t , η̌N

t ) ≤ dY (η̂N
t , η̂t) + dY (η̂t, η̌N

t ).

�

Let us assume that we conduct a particle filter scheme for Xt according to algorithm 2.2, where we
use Qt as the importance function so that the weights are proportional to gt. We will now prove
the convergence of the random measures prodeuced by the algorithm

ηt ,
1
N

N

∑
i=1

δ
X(i)

t
η̂t ,

1
N

N

∑
i=1

δ
X̂(i)

t

to ηt and η̂t. First we need to introduce the following σ-algebras

F̂X
t = σ

(
X(i)

s , X̂(i)
s , s ≤ t, i = 1, . . . , N

)
FX

t = σ
(

X(i)
s , X̂(i)

s , s < t, X(i)
t i = 1, . . . , N

)
.

Theorem 4.5

Let
(
ηN

t
)∞

N=1 and
(
η̂N

t
)∞

N=1 be the measure valued sequences produced by algorithm 2.2 and
let T be a finite time horizon. Then, for all 0 ≤ t ≤ T, we have

ηN
t

E lim−−→
N

ηt η̂N
t

E lim−−→
N

η̂t.

Proof: We apply Theorem 4.3

Since a1. is clearly satisfied (X(i)
0 ∼ η0) we only need to show b1. and c1. If f ∈ Cb

(
Rd)

then,
E
[

f (X(i)
t )|F̂X

t−1

]
= Qt f (X̂(i)

t−1) =
∫

Qt(X̂(i)
t−1, dx) f (x), i = 1, . . . N,
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hence E[ηN
t f |F̂X

t−1] = η̂N
t−1Qt f , and using the independence of the particles,

E

[(
ηN

t f − η̂N
t Qt f

)2
|F̂X

t−1

]
= E

( 1
N

N

∑
i=1

(
f (X(i)

t )−Qt f (X̂(i)
t−1)

))2

|F̂X
t−1


=

1
N2

N

∑
i=1

(
E
[

f 2(X(i)
t )|F̂X

t−1

]
−
(

E
[

Qt f (X̂(i)
t−1)|F̂

X
t−1

])2
)

=
1
N

(
1
N

N

∑
i=1

(
Qt f 2(X̂(i)

t−1)−
(

Qt f (X̂(i)
t−1)

)2
))

=
1
N

η̂N
t−1

(
Qt f 2 − (Qt f )2

)
≤ ‖ f ‖2

N
.

Then, by taking the expectation on both sides we obtain

E

[(
ηN

t f − η̂N
t−1Qt f

)2
]
≤ ‖ f ‖2

N

and b.1 is satisfied. Next we have η̂N
t = 1

N ∑N
i=1 n(i)

t δ
X(i)

t
, where n(i)

t is the number of offsprings
produced by particle number i in the resampling step. Since the resampling step is carried
out using a multinomial model, we have E[n(i)

t ] = Nw̃(i)
t , such that

E
[
η̂N

t f |FX
t

]
=

1
N

N

∑
i=1

Nw̃(i)
t f (X(i)

t ) =
N

∑
i=1

w̃(i)
t f (X(i)

t ) = η̃N
t f .

Furthermore we have, using the property of the multinomial distribution,

E

[(
η̂N

t f − η̌N
t f
)2
|FX

t

]
= E

( 1
N

N

∑
i=1

(
n(i)

t f (X(i)
t )− Nw̃(i)

t f (X(i)
t )
))2

|FX
t


≤ ‖ f ‖2

N2 E

( N

∑
i=1

(
n(i)

t − Nw̃(i)
t

))2

|FX
t


=
‖ f ‖2

N2

(
N

∑
i=1

Nw̃(i)
t (1− w̃(i)

t )−∑
i 6=j

Nw̃(i)
t w̃(j)

t

)

≤ ‖ f ‖2

N2 N
N

∑
i=1

w̃(i)
t =

‖ f ‖2

N

since ∑N
i=1 w̃(i)

t = 1. Taking expectations on both sides c.1 is satisfied. �
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Theorem 4.6

Let
(
ηN

t
)

N = 1∞ and
(
η̂N

t
)∞

N=1 be the measure-valued sequence produced by
algorithm 2.2 and let T be a finite time horizon.
Then, for all 0 ≤ t ≤ T, we have

lim
N→∞

ηN
t = ηt P − a.s. lim

N→∞
η̂N

t = η̂t, P − a.s..

Proof: We apply Theorem 4.4.

LetM ∈ Cb
(
Rd) be the countable convergence determining set of functions described in

the previous section. Since E
[

f
(

X(i)
t

)
|F̂X

t−1

]
= Qt f

(
X̂t−1(i)

)
and {X(i)

t }N
i=1 are independent

given F̂X
t−1 we have

E

[(
ηN

t f − η̂N
t Qt f

)4
|F̂X

t−1

]
= E

( 1
N

N

∑
i=1

(
f
(

X(i)
t

)
−Qt f

(
X̂(i)

t−1

)))4

|F̂X
t−1

 .

Next, using the independence, all the crossproducts of the expectation involving first power
terms will be equal to zero and we are left with

E

[(
ηN

t f − η̂N
t Qt f

)4
|F̂X

t−1

]
=

1
N4

N

∑
i=1

E

[(
f (X(i)

t )−Qt f (X̂(i)
t−1)

)4
|F̂X

t−1

]
+

2
N4 ∑

1≤i<j≤N
E

[(
f (X(i)

t )−Qt f (X̂(i)
t−1)

)2 (
f (X(j)

t )−Qt f (X̂(j)
t−1)

)2
|F̂X

t−1

]

≤ 16‖ f ‖4

N3 +
32‖ f ‖4

N4
N(N − 1)

2

=
16‖ f ‖4

N3 +
16‖ f ‖4(N − 1)

N3 =
16‖ f ‖4

N2 .

By taking expectations on both sides we obtain E
[(

ηN
t f − η̂N

t Qt f
)4
]
≤ 16‖ f ‖4

N2 and via a

Borel-Cantelli argument we have that limN→∞|ηN
t f − η̂N

t−1Qt f | = 0 P − a.s. for all f ∈ M
so that limN→∞ dM(ηN

t , η̂N
t−1Qt) = 0 and b.2 is satisfied. In much the same way one can show

that, for all f ∈ M,

E

[(
η̂N

t f − η̌N
t f
)4
|FX

t

]
≤ ‖ f ‖4

N2

which implies that limN→∞ dM
(
η̂N

t , η̌N
t
)

= 0 and c.2 is satisfied. �

Note that the rate of convergence is N−
1
2 . We now turn our focus to a little more general particle

filter.
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4.4 Interacting particle filters with discrete observations

In this section we will consider a pair of processes ({Xt}, {Yt}), where {Xt} is the state of a
system and {Yt} is the observations. X take it’s values in an arbitrary measurable space (E, E)
while Y take it’s values in Rq for some q ≥ 1. We shall assume that the pair (X, Y) is Markov, and
the basic assumption is that the pair (Xt, Yt)t∈N is a (possibly non-homogeneous) Markov chain.
In the sections below, we will focus on the nonlinear filtering problem (NLF). In other words
we want to find the one step predictor conditional probability given for each t ∈ N and each
measurable function f on E such that f (Xt) is integrable by

ηt,Y f = E[ f (Xt)|FY
t ]

(where η0,Y is the law of X0) and the filter conditional distribution

η̂t,Y f = E[ f (Xt)|Y0:t]

With the notation Y0:k = (Y0, Y1...Yk). For fixed observations Yt = yt, t ∈ N we write ηt and η̂t

instead of ηt,y and η̂t,y. We want to investigate theoretical aspects of an interacting particle system
(IPS) for numerical computations of ηt and η̂t in two cases.

Assumptions A

In case A we consider the following system:

A.1 The state signal (Xt)t∈N is an E valued non-homogeneous Markov chain with 1-step
transition probabilities (Qt)t∈N (i.e. Qt is the law Xt−1 → Xt) with initial law η0.

A.2 The observations (Yt)t∈N is given by

Yt = ht(Xt, Wt)

for some measurable function Ht from E× F into Rq (with (F,F ) an auxiliary measurable
space).

A.3 For any x ∈ E and ∀t, the variable ht(x, Vt) admits a strictly positive density y→ ḡt(x, y)
w.r.t. the Lebesgue measure on Rq.
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Assumptions B

In case B we assume

B.1 The signal/observation pair (X, Y) is an E×Rq- valued non-homogeneous Markov chain
with 1-step transition probabilities (Pt)t≥1 and initial law µ0 on the form (dy denotes the
Lebesgue measure)

µ0(dx0, dy0) = η0(dx0)Ḡ0(y0|x0) dy0

Pt(x, y; dx′, dy′) = Qt(x, dx′)Ḡt(y′|x, y, x′) dy′,

where Qt is transition kernels and η0 is a probability. The conditional distribution of Xt

given Xt−1 is independent of Yt−1.

B.2
P
(
Yt ∈ dy′|

(
Xt, Xt−1, Yt−1 = (x′, x, y)

))
= Ḡt

(
y′|x, y, x′

)
dy′,

where Ḡt is bounded.

The simultaneous distribution is

P (X0:t ∈ dx0:t, Y0:t ∈ dy0:t) = P
(
∩t

k=0 ((Xk, Yk) ∈ (dxk, dyk))
)

= µ0(dx0, dy0)
t

∏
k=1

Pk ((xt−1, yt−1), (dxk, dyk))

= η0(dx0)Ḡ0 (y0|x0)
t

∏
k=1

Qt(xt−1, dxt)Ḡ(yk|xk−1, yk−1, xk) dyk

= P (X0:t ∈ dx0:t)
t

∏
k=0

Ḡk (yk|xk−1, yk−1, xk) dyk

= P (X0:t ∈ dx0:t) P (Y0:t ∈ dy0:t|X0:t ∈ x0:t) .

The first idea is to consider the equations that sequentially update the distribution ηt : t ≥ 0
which are of the form

ηt = Φt(ηt−1) (4.10)

with continuous mappings Φt on the set P(E) of all probability measures on E. The NLF problem
will then be reduced to the problem of solving a dynamical system taking values in the infinite
dimensional state-space P(E). In this sense it is natural to approximate ηt for t ≥ 1 by a sequence
of empirical measures

ηN
t =

1
N

N

∑
i=1

δXi
t

(4.11)
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, where δa is the Dirac measure at a ∈ E, associated with a system of N interacting particles
Xt = (X(1)

t , ....., X(N)
t ) moving in the set E. In view of (4.10) it is natural to construct the sequence

{X(i)
t }N

i=1 as a Markov chain taking values in EN , starting with the initial distribution η̃0 and
1-step probabilities Q̃t given by

η̃0(dx) =
N

∏
p=1

η0(dxp),

Q̃t(z, dx) =
N

∏
p=1

Φt(m(z))(dxp)

, where dx = dx(1) × ...× dxN is an infinitesimal neighbourhood of the point x = (x(1), ..., x(N)) ∈
EN , Z = (Z(1)...Z(N)) ∈ EN and where m(Z) = 1

N ∑N
i=1 δZ(i) is the empirical distribution associated

with the variable Z. The reason for this is that ηN
t is the empirical measure associated with N

independent variables with common law Φt(ηN
t−1), so as soon as ηN

t−1 is a good approximation of
ηt−1 then, by (4.10), ηN

t should be a good approximation of ηt.

4.4.1 General facts about nonlinear filtering

In this section we will give a quick introduction to some general facts about nonlinear filtering
that we will need in the following.

We use the traditional notation for transition kernels; if P and Q are two transition kernels, µ is
a measure and f is a measurable function (all on (E, E)) then we have another transition kernel
PQ (usually the product or composition), a function P f , a measure µP and a number µP f . Again
we denote P(E) the set of all probability measures on E.

Recall that the observations y0, y1... are given and fixed, and let

Gt(x, x′) , Ḡt(yt|x, yt−1, x′). (4.12)

(This is well defined even for t = 0 since Ḡ0(y′|x, y, x′) does not depend on y).
Let us start by studying the marginal distribution of Y0:t,

P (Y0:t ∈ dy0:t) =
∫

X
P (X0:t ∈ dx0:t, Y0:t ∈ dy0:t)

=
∫

X
P (X0:t ∈ dx0:t)

t

∏
k=0

Ḡk (yk|xk−1, yk−1, xk) dyk

=
∫

X
P (X0:t ∈ dx0:t)

t

∏
k=0

Gk (xk−1, xk) dyk

= E

[
t

∏
k=0

G (Xk−1, Xk)

]
dy0:t
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which has density

P (Y0:t ∈ dy0:t) = E

[
t

∏
k=0

G (Xk−1, Xk)

]
dy0:t.

Define

γ̂t f , E

[
f (Xt)

t

∏
k=0

Gk (Xk−1, Xk)

]
which could be seen as

E [ f (Xt)1(Y0:t = y0:t)]

so that
γ̂t( f )
γ̂t(1)

= E [ f (Xt)|Y0:t = y0:t] = η̂t( f ).

It follows that

γ̂t( f ) =
∫

η0(dx0)
t

∏
k=0

Qk(xk−1, dxk)Gk (xk−1, xk) f (xt).

In the same way we may define

γt( f ) = E

[
f (Xt)

t−1

∏
k=0

G (Xk−1, Xk)

]

so that for any t ≥ 0 and fixed observations y0:t we have (analog to (1.2) and (1.4))

ηt( f ) =
γt( f )
γt(1)

, η̂t( f ) =
γ̂t( f )
γ̂t(1)

(4.13)

for any measurable function f such that the following expression makes sense

γt( f ) = E

(
f (Xt)

t−1

∏
k=0

Gk(Xk−1, Xk)

)

γ̂t( f ) = E

(
f (Xt)

t

∏
k=0

Gk(Xk−1, Xk)

) (4.14)

with the convention ∏φ = 1. (Notice again that G0(x, x′) does not depend on x so X−1 does not
appear in the product.)

γt and γ̂t can be considered finite positive measures since Gt is bounded by hypothesis. Also
we have γ0 = η0 and we have seen that γ̂t(1)(y0:t) is the density of (Y0:t) w.r.t. to the Lebesgue
measure on Rq(t+1).

Let us now introduce the function L̂t f (x) =
∫

Qt(x, dz)Gt(x, z) f (z).
From this and (4.14) we get

γ̂t = γ̂t−1(L̂t f ). (4.15)
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Next we define the kernels for 0 ≤ p ≤ t

L̂p,t = L̂p+1 L̂p+2...L̂t

and then using standard Markov notation

γ̂t f = η0 IG0 L̂1 · · · L̂t f = η0(G0 L̂0,t f ) (4.16)

since γ̂0( f ) = η0( f G0). From above we then get

γ̂t( f ) = γ̂p(L̂p,t f ). (4.17)

It now follows from (4.13) and (4.15) that

η̂t( f ) =
γ̂t( f )
γ̂t(1)

=
γ̂t−1(L̂t f )
γ̂t−1(L̂t1)

again from (4.13) we get

η̂t( f ) =
η̂t−1(L̂t f )
η̂t−1(L̂t1)

.

In other words we have

η̂t = Ψ̂t(η̂t−1) where Ψ̂t(η)( f ) =
η L̂t f
η L̂t1

.

By the Markov property of X we obtain for t ≥ 1:

γt( f ) = E

[
f (Xt)

t−1

∏
k=0

Gk(Xk−1, Xk)

]

= E

[
E

[
f (Xt)

t−1

∏
k=0

Gk(Xk−1, Xk)|FX
t−1

]]

= E

[
t−1

∏
k=0

Gk(Xk−1, Xk)E
[

f (Xt)|FX
t−1

]]

= E

[
t−1

∏
k=0

Gk(Xk−1, Xk)Qt f (Xt−1)

]
= γ̂t−1Qt f ,

(4.18)

and by (4.16) we get
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γt( f ) =

η0( f ) if t = 0

η0(G0 L̂0,t−1Qt f ) if t ≥ 1.
(4.19)

More facts about case A

Clearly all the above remains true under case A with Ḡt = ḡt and we set

gt(x) = ḡt(x, yt)

(4.14) is now reduced to

γt( f ) = E

(
f (Xt)

t−1

∏
k=0

gk(Xk)

)

γ̂t( f ) = E

(
f (Xt)

t

∏
k=0

gk(Xk)

)
.

(4.20)

Next L̂k f of (4.15) becomes Qt Igk f . So that

γ̂ f =
∫

η0(dx0)g0(x0)Q1(x0, x1)g1(x1) · · ·Qt(xt−1, dxt)gt(xt)

= η0 Ig0 Q1 Ig1 · · ·Qt Igt f .

For γt we can set

Lp,t = Lp+1Lp+2...Lt, where Lt f (x) = gt−1(x)Qt f (x) (4.21)

for 0 ≤ p ≤ t with the convention Lt,t = Id, we get from (4.19) that γ0 = η0, and

γt( f ) = γt−1(Lt f ),

where Q0(x−1, dx0) = η0(dx0). We easily see that γt = γpLp,t. Also by the definition of γ̂t f and
γt f we have γ̂t f = γt( f gt) and we end up with

γ0 = η0

γt = γpLp,t

γ̂t f = γt( f gt).

(4.22)

55



Next we introduce the mappings (Ψt)t≥0 and (Φt)t≥1 from P(E) into itself by

Ψt(η)( f ) =
η( f gt)

ηgt
,

Φt(η)( f ) = Ψt−1(η)Qt f =
ηLt f
ηLt1

(4.23)

and we get the following lemma

Lemma 4.7

The prediction and filter measures ηt and η̂t satisfies the recursions

η̂t = Ψt(ηt)

ηt+1 = Φt+1(ηt)

Proof:

η̂t f =
γ̂t f
γ̂t1

=
γt( f gt)

γtgt
=

ηt( f gt)
ηtgt

= Ψt(ηt)( f ),

ηt+1 f = η̂t(Qt f ) = Ψt(ηt)Qt f = Φt+1(ηt)( f ).

�

Now in view of (4.18), (4.22), (4.13) and using that Qt1 = 1, we get

γt+11 = γ̂t1 = γtgt = ηtgtγt1,

and for ≥ 0 we finally have

γt1 =
t−1

∏
p=0

(ηpgp)

γt f = (ηt f )
t−1

∏
p=0

(ηtgp).

(4.24)
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4.5 An interacting particle system under case A

Subcase A1

We now turn to a special case of A, the one where we know all the densities ḡt (hence all functions
gt) as well as η0 and Qt, and we also assume that we now how to draw random variables according
to the laws η0 and Qt ∀x ∈ E and all t ≥ 1.

In this situation we actually have two particle systems, each of size N, at time t. First we have
the N random variables {Xi

t}N
i=1 to approximate ηt by means of the empirical measure ηN

t given
by (4.11). Next N random variables {X̂t}N

i=1 are used to approximate η̂t. The mechanism of these
particles can be decomposed into two separate mechanisms Xt −→ X̂t −→ Xt+1.

Let us also define, as before, FX
t to be the σ-field generated by the variables Xp, p ≤ t and X̂p

for p < t, while F̂X
t is the σ-field generated by Xp and X̂p for p ≤ t.

The first step is to draw the variables Xi
0 independently according to the initial law η0.The

mechanism then proceeds, for all t, according to the following two steps Markov rule.
Mutation/Prediction

P(Xt+1 ∈ dz1, ..., dzN |F̂X
t ) =

N

∏
p=1

Qt+1(X̂(p)
t , dzp).

Selection/Updating

P(X̂t ∈ (dx1, ..., dxN |FX
t ) =

N

∏
p=1

N

∑
i=1

gt(X(i)
t )

∑N
j=1 gt(X(j)

t )
δ

X(i)
t

(dxp).

In the selection step at time t, we update the positions of the particles according to the fitness
function gt. This is done by resampling, were we draw randomly from the set Xt = (X(1)

t , ...X(N)
t ),

with probability

P(X̂(k)
t = X(i)

t |FX
t ) =

gt(X(i)
t )

∑N
j=1 gt(X(j)

t )

for 1 ≤ i ≤ N. In other words we reproduce our sample by selecting the most fit individuals
corresponding to the observation yt.

In the mutation step we allow the particles to move according to the given transition probability
kernel.

The selection and mutation steps approximate the two step iterative structure of the conditional
distribution of Xt given Y0:t

ηt
updating−→ η̂t

prediction−→ ηt+1

by a two step Markov chain taking values in the set of finitely discrete probability measures

ηN
t =

1
N

N

∑
i=1

δ
X(i)

t

selection−→ 1
N

N

∑
i=1

δ
X̂(i)

t

mutation−→ ηN
t+1 =

1
N

N

∑
i=1

δ
X(i)

t+1
.
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In view of (4.23) and Lemma 4.7, we have

η̂N
t =

N

∑
i=1

gt(X(i)
t )

∑N
j=1 gt(X(j)

t )
δ

X(j)
t

= Ψt

(
1
N

N

∑
i=1

δ
X(i)

t

)
= Ψt(ηN

t ) ∈ FX
t , (4.25)

so conditional on FX
t the variables {X̂(i)

t }N
i=1 are iid with law Ψt(ηN

t ).

Lemma 4.8

In our sampling procedure we have the following expectation and variances with respect to
F̂X

t−1

i) E
[

f (X(i)
t )|F̂X

t−1

]
= Qt f (X̂(i)

t−1).

ii) Var
[

f (X(i)
t )|F̂X

t−1

]
= Qt f 2(X̂(i)

t−1)−
(
Qt f (X̂(i)

t−1)
)2.

iii) Var
[

∑N
i=1 f (X(i)

t )F̂X
t−1

]
= ∑N

i=1 Var
[

f (X(i)
t )|F̂X

t−1

]
.

Proof: By the sampling procedure X(i)
t ∼ Qt(X̂(i)

t−1, ·) given F̂X
t−1 and (1)-(ii) hold. Since the

particles at time t are conditionally independent given F̂X
t−1, (iii) is true. �

Also note that from (4.25) η̂t−1 is FX
t−1-measurable.

Lemma 4.9

In our sampling procedure we have the following expectation and variances with respect to
FX

t−1

i) E
[

f (X(i)
t )|FX

t−1

]
η̂N

t−1Qt f .

ii) Var
[

f (X(i)
t )|FX

t−1

]
= η̂N

t−1Qt f 2 −
(
η̂t−1Qt f

)2 = η̂N
t−1Qt

(
f − η̂N

t−1Qt f
)2.

iii) Var
[

∑N
i=1 f (X(i)

t )|FX
t−1

]
= ∑N

i=1 Var
[

f (X(i)
t )|FX

t−1

]
= Nη̂N

t−1Qt
(

f − η̂N
t−1Qt f

)2.

Proof: By the sampling procedure X(i)
t ∼ Qt(X̂(i)

t−1, ·) given F̂X
t−1 and

X̂(i)
t−1 ∼ η̂N

t−1

given FX
t−1. Thus

E
[

f (X(i)
t )|FX

t−1
]

= E
[
Qt f (X̂(i)

t−1)|F
X
t−1
]

= η̂N
t−1Qt f

so that (i)-(ii) hold.

Since the particles at time t are conditionally independent given FX
t−1, (iii) is true. �
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Lemma 4.10

The empirical measures ηN
t and η̂N

t satisfy

Φt+1
(
ηN

t
)

= η̂N
t Qt.

Proof:

Φt+1
(
ηN

t
)

=
ηN

t Igt Qt+1

ηN
t Igt 1

= ηN
t−1
[ Igt

ηN
t Igt 1

]
Qt+1

=
∫

ηN
t (dx)g̃(x)Qt+1(x, ·)

=
N

∑
i=1

w̃(i)
t δ

X(i)
t

Qt+1(X(i)
t , ·)

= η̂tQt+1,

where g̃(x) = gt(x)
ηN

t Igt 1 . �

Since ηt ∈ Ft we have using Lemma 4.10

E
[
ηN

t+1|FX
t
]

= E
[
Φ
(
ηN

t
)
|FX

t
]

= Φ
(
ηN

t
)
. (4.26)

The variables {Xi
t+1}N

i=1 are iid given FX
t with law Φt+1(ηN

t ), hence, if we define

δN
t+1 f = ηN

t+1 f −Φt+1(ηN
t ) f

we have from (4.26) and Lemma 4.9 for t ≥ 0:

E
[
δN

t+1 f |FX
t

]
= 0,
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E
[
(δN

t+1 f )2|FX
t

]
= E

[
(ηN

t+1 f −Φt+1(ηN
t ) f )2|FX

t

]
= E

( 1
N

N

∑
i=1

f (X(i)
t+1)−Φt+1(ηN

t ) f

)2

|FX
t


=

1
N

(
1
N

N

∑
i=1

E
[

f (X(i)
t+1)−Φt+1(ηN

t ) f |FX
t

])

=
1
N

η̂N
t Qt+1(( f −Φt+1(ηN

t ) f )2)

=
1
N

Φt+1(ηN
t )(( f −Φt+1(ηN

t ) f )2).

(4.27)

Similarly if we define δN
0 = ηN

0 f − η0 f we get:

E(δN
0 f ) = 0

E((δN
0 f )2) =

1
N

η0(( f − η0( f ))2)

Due to the linearity of γt, it is easier to study the behaviour of these as N → ∞,for the asymptotic
evaluation of our IPS.

Starting with ηN
t above, we can introduce a natural approximation of γt from (4.24)

γN
t ( f ) , ηN

t ( f )
t−1

∏
p=0

ηN
t (gp)

γN
t (1) =

t−1

∏
p=0

ηN
p (gp).

(4.28)

Recalling (4.22) for any bounded measurable function ϕ, with the conventions γN
−1 = γ0 = η0,

L0 = Id and Φ0(ηN
−1) = η0 we see that

γN
p ϕ− γp ϕ = {γN

p ϕ− γN
p−1Lp ϕ}+ {γN

p−1Lp ϕ− γp−1Lp ϕ}

= {γN
p ϕ− γN

p−1Lp ϕ}+ {γN
p−1Lp ϕ− γN

t−2Lp−1Lp ϕ}+ {γN
t−2Lp−1Lp ϕ− γt−2Lp−1Lp ϕ}

=
q

∑
p=0
{γN

p (Lp,q ϕ)− γN
p−1(LpLp,q ϕ)}.

Also from (4.28) we get γN
p (Lp,q)ϕ = ηN

p (Lp,q)ϕ)γN
p (1) using this along with Lemma 4.10 and

that Φt(ηN
−1) = η0 we have

γN
q (ϕ)− γq(ϕ) =

q

∑
p=0

γN
p (1)(ηN

p (Lp,q ϕ)−Φp(ηN
p−1)(Lp,q ϕ)).
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Now choosing ϕ = Lq,t f , we can define

MN
q ( f ) = γN

q (Lq,t f )− γq(Lq,t f )

=
q

∑
p=0

γN
p (1)(ηN

p (Lp,t f )−Φp(ηN
p−1)(Lp,t f )),

and from (4.27) we see that

E
[
γN

q f − γq f |FX
t

]
=

q

∑
p=0

E
[
γN

p (1)(ηN
p (Lp,t f )−Φp(ηN

p−1)(Lp,t f ))|FX
p−1

]
= 0 (4.29)

so that MN
q ( f ) is a martingale.

Anglebracket is the sum of successive conditional variance contribution and since

γN
p 1 =

t−1

∏
k=0

ηk(gk) ∈ FX
t−1,

we get

q

∑
p=0

E
[
γN

q (1)(ηN
p (Lp,t f )−Φp(ηN

p−1)(Lp,t f ))2|FX
p−1)

]
=

1
N

q

∑
p=0

(γN
p (1))2Φp(ηN

p−1)((Lp,t f −Φp(ηN
p−1)(Lp,t f ))2),

(4.30)

so that MN
q ( f ) is a martingale with anglebracket

〈MN( f )〉q =
1
N

q

∑
p=0

(γN
p (1))2Φp(ηN

p−1)((Lp,t f −Φp(ηN
p−1)(Lp,t f ))2).

Taking expectations on both sides of (4.29) and (4.30) with q = t we get

E
[
γN

t f
]

= γt f ,

E
[
(γN

t f − γt f )2]
=

1
N

t

∑
p=0

E
[
(γN

p (1))2Φp(ηN
p−1)((Lp,t f −Φp(ηN

p−1)(Lp,t f ))2)
]
.

(4.31)

Theorem 4.11

For any f ∈ B
(
E
)

the rate of convergence of γ̂N
t f to γt f is N−

1
2 .
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Proof: Denote at =supnorm of gt, and ‖ f ‖ to be the sup norm of f Then (4.21) gives us

‖Lp,t f ‖ ≤
t−1

∏
k=p

ak‖ f ‖

and (4.24) gives

γN
t (1) ≤

t−1

∏
k=0

ak

Finally we have

E
[
(γN

t ( f )− γt( f ))2
]
≤
(

1
N

t

∑
p=0

(
p−1

∏
k=0

ak)2‖ f ‖2(
t−1

∏
j=p

aj)2

)

=
1
N

(
t

∑
p=0

(
t−1

∏
k=0

ak)2‖ f ‖2)

=
1
N

(t + 1)(
t−1

∏
k=0

ak)2‖ f ‖2

= Ct
‖ f ‖2

N

(4.32)

where Ct = (t + 1)(∏t−1
k=0 ak)2. �

The above inequality can be used to prove the following results.

Proposition 4.12

There exist constants C1
t , C2

t , C3
t , which depend on t and on the observed values y0, ..., yt, such

that

E
∣∣ηN

t f − ηt f
∣∣ ≤ C1

t
‖ f ‖√

N

E
∣∣η̂N

t f − η̂t f
∣∣ ≤ C1

t
‖ f ‖√

N

P(|ηN
t f − ηt f | > ε) ≤ C2

t exp− Nε2

C3
t ‖ f ‖2

P(|η̂N
t f − η̂t f | > ε) ≤ C2

t exp− Nε2

C3
t ‖ f ‖2

.

Proof: see Del Moral and Guionnet (1998)

The constants above are important when we look at the rates of convergence. In (4.32) we have a
precise estimate of Ct, which is quite bad. Unfortunately the constants in proposition 4.12 are even
worse. However, these estimates were obtained using very course majorations The estimate of the
error may be better represented by central theorems. A full discussion will not be given here but
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in view of (4.31) it may be reasonable to assume that if we define UN
t ( f ) =

√
N (γN

t f − γt f ), the
sequence of random variables UN

t ( f ) converges in law, as N → ∞, to a centred Gaussian variable
Ut( f ) with variance

E
[
Ut( f )2] =

t

∑
p=0

(γp(1))2ηp
(
(Lp,t f − ηpLp,t f )2)

for any f ∈ Bb(E) (the set of all bounded measurable functions on (E, E ). However the errors of
ηN

t f − ηt f and η̂N
t f − η̂t f are of more interest to us. Therefor we can define a sequence of random

variables
WN

t ( f ) =
√

N (ηN
t − ηt).

Now by (4.13), (4.23), Lemma 4.7 and (4.22) , we have that

WN
t ( f ) =

1
γN

t (1)
UN

t ( f − ηt( f ))

and
ŴN

t ( f ) ,
√

N (η̂N
t ( f )− η̂t( f )) =

1
ηN

t (gt)
WN

t (gt( f − η̂t( f ))).

Since γN
t (1) and ηN

t (gt) converges in probability to γt(1) and ηt(gt) the above convergence of
UN

t ( f ) gives us the following central limit theorems.

Theorem 4.13

For any bounded measurable function f, the sequence of random variables WN
t ( f ) converges

in law to a centred Gaussian variable Wt( f ) whose variance is given by

EWt( f )2 =
t

∑
p=0

(
γp(1)
γt(1)

)2

ηp
(
(Lp,t( f − ηt( f )))2) . (4.33)

Also, the sequence of random variables ŴN
t ( f ) converges in law to the variable

Ŵt( f ) =
1

ηt(gt)
Wt(gt( f − η̂t( f ))). (4.34)

For more details see Del Moral, Jacod and Protter (2001) and Del Moral and Ledoux (2000) Now
let us try to present the variances of Wt( f ) and Ŵt( f ) in a more tractable way that will com in
handy when we study case B. First we recall (4.21). Then by (4.13) and (4.22) we have for 0 ≤ p ≤ t

γt(1)
γp(1)

=
γp(Lp,t1)

γp(1)
= ηp(Lp,t1)
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so that (4.33) may be written as

EWt( f )2 =
t

∑
p=0

ηp
(
(Lp,t( f − ηt( f )))2)(

ηp(Lp,t1)
) . (4.35)

Also from (4.23) and Lemma 4.7 we have that ηt(gt( f − η̂t( f ))) = η̂t( f − η̂t( f )) = 0. Now by (4.17)
and (4.21) we have Lp,t(gt f ) = gp L̂p,t( f ), thus

η̂(L̂p,t1) =
γp(gp L̂p,t1)

γp(gp)
=

ηp(Lp,tgt)
ηp(gp)

=
γt(gt)
γp(gp)

=
ηt(gt)γt(1)
ηp(gp)γp(1)

=
ηt(gt)
ηp(gp)

ηp(Lp,t1).

Finally we can deduce from (4.34) and (4.35) that

EŴt( f )2 = E

[(
1

ηt(gt)
Wt(gt( f − η̂t( f )))

)2
]

=
t

∑
p=0

1
ηt(gt)2

ηp
(

Lp,t(gt( f − η̂t( f )))2)
(ηp(Lp,t1))2

=
t

∑
p=0

ηp

((
gp L̂p,t( f − η̂t( f ))

)2
)

(ηp(gp))2
(
η̂p(L̂p,t1)

)2 .

(4.36)

4.5.1 Subcase A2

Subcase A2 is the situation in case A when all the main ingredients, gt, η0 and Qt are not known
and/or when we cannot simulate random variables exactly according to the laws η0 or Qt. It is
quite obvious that we in this situation will replace these with approximated quantities g(m)

t , η
(m)
0

and Q(m)
t such that these are known and we are able to simulate exactly from the laws η

(m)
0 and

Q(m)
t . The index m (integer) is a measure of the quality of the approximation. In the IPS below, m

will depend on the number of particles.
In this case we have to operate with two filter schemes. The first is related two the original setting

with our prediction and filtering measures ηt and η̂t. The other is related to the approximations
(g(m)

t , η
(m)
0 , Q(m)

t ) with corresponding prediction and filter measures η
(m)
t and η̂

(m)
t . We will not go

into the details of this case, so for a thourough investigation of this case see Del Moral and Jacod
(2001). However we will state a proposition under the following three assumptions.
Assumption C.1 There exist a finite signed measure η′0 and a constant C such that

‖ m(η
(m)
0 − η0)− η′0 ‖tv≤

C
m
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Assumption C.2 For all t there exist a measurable bounded function g′t on (E, ε) and a constant
Ct such that

| m(g(m)
t (x)− gt(x))− g′t(x) |≤ Ct

m
.

Assumption C.3 For all t there exist a finite signed transition measure Q′t from (E, E) into itself
and a constant Ct such that

‖ m(Q(m)
t (x, ·)−Qt(x, ·))−Q′t(x, ·) ‖tv≤

Ct

m
.

Proposition 4.14

Assume that C.1, C.2 and C.3 are satisfied and suppose that we conduct our IPS system with
the approximating quantities (η

(m(N))
0 , ḡ(m(N))

t , Q(m(N))
t ) where m(N) = [

√
N ], then there exist

a constant C(t) such that

E
∣∣ηN

t f − ηt f
∣∣ ≤ C(t)

‖ f ‖√
N

, E
∣∣η̂N

t f − η̂t f
∣∣ ≤ C(t)

‖ f ‖√
N

.

Proof: see Del Moral and Jacod (2001)
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4.6 An interacting particle system under Case B

4.6.1 Subcase B1

As in case A1 we introduce case B1, which means that we know the densities Ḡt (and all functions
Gt of (4.12)) as well as the initial conditions η0, µ0 and the transitions Pt and Qt, all connected
by assumption B1. Also we assume that we are able to simulate exactly according to η0 and
Pt(x, y; ·) for all x ∈ E, y ∈ Rq and t ≥ 0. In this section we will introduce a filtering scheme as
described in Del Moral and Jacod (2001). The main idea is to expand the state space and make
an approximation scheme that fits case A. That is, we want to reduce case B to case A. The IPS
system will then be easy to implement, and we will take advantage of the convergence properties
developed in the previous section. We start by looking at a a new variable Xt = (Ẋt, Ẏt) where Ẋt

has the same law as Xt and (Ẋt, Ẏt) the law of (Xt, Yt) conditioned on the observation yt−1. Then
we add some noise hνt to the process Ẏt that is independent of Xt, Yt = Ẏt + hνt, and assume that
our observations y0:t are realisations of the process {Yt}. We now carry out a particle scheme as
in case A. Then as h → 0 we have particles {X̂ (i)

t }N
i=1 with high weights given the observations

y0:t and the first component { ˆ̇X(i)
t }N

i=1 will then be set of particles with the same marginal law as
Xt and with high importance weights given our observations. In other words we will study the
filter scheme

the state process Xt = (Ẋt, Ẏt)

the observation process Y (h)
t = Ẏt + hνt,

(4.37)

where the νt’s are i.i.d. q-dimensional variables, independent of X and with distribution θ(y) dy.
Let us introduce some notation and explain mathematically the idea.

• Let us denote by Xt = (Ẋt, Ẏt), t ≥ 0 the time in-homogeneous Markov chain with product
state-space E×Rq, with initial law µ0 and transition kernels {Qt; t ≥ 1} given by

µ0(dx, dy) = η0(dx)Ḡ0(x, y) dy

Qt((x, y), d(x′, y′)) = Qt(x, dx′)Ḡt(y′|x, yt−1, x′) dy′.
(4.38)

Note that Qt(x, y; ·) does not depend on y.

• Let θ be a Borel-bounded function from Rq to (0, ∞) such that∫
θ(y) dy = 1,

∫
yθ(y) dy = 0,

∫
|y|3θ(y) dy < ∞.

Then we set for any h ∈ (0, ∞) and (x, y) ∈ E×Rq

g(h)
t (x, y) = h−qθ ((y− yt)/h) .
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Under some regularity conditions on the functions Ḡt, h-approximating measures for γt and γ̂t

of 4.20 are the marginals γ
(h)
t and γ̂

(h)
t on the first components of the measures ν

(h)
t and ν̂

(h)
t on

E×Rq defined for any ϕ ∈ Bb(E×Rq) by formulae

ν
(h)
t (ϕ) = E

[
ϕ(Xt)

t−1

∏
k=0

g(h)
k (Xk)

]
, ν̂

(h)
t (ϕ) = E

[
ϕ(Xt)

t

∏
k=0

g(h)
k (Xk)

]
, (4.39)

where ∏φ = 1. If we denote by ν( f ⊗ 1) the function evaluated on the first component of ν, we
have for any f ∈ Bb(E)

γ
(h)
t ( f ) = ν

(h)
t ( f ⊗ 1), γ̂

(h)
t ( f ) = ν̂

(h)
t ( f ⊗ 1).

Next we introduce the prediction and filtering measures associated with the scheme (4.37) with
respect to the observations y0, ..., yt for the true model, that is for any measurable function ϕ on
E×Rq, we set

µ
(h)
t (ϕ) = E

[
ϕ(Xt)

∣∣Y (h)
0:t−1 = y0:t−1

]
=

ν
(h)
t (ϕ)

ν
(h)
t (1)

,

µ̂
(h)
t (ϕ) = E

[
ϕ(Xt)

∣∣Y (h)
0:t = y0:t

]
=

ν̂
(h)
t (ϕ)

ν̂
(h)
t (1)

.

(4.40)

The first marginals of these measures, the ones that we are interested in, denoted by η
(h)
t and η̂

(h)
t ,

defined for any f ∈ Bb by

η
(h)
t ( f ) = µ

(h)
t ( f ⊗ 1) =

γ
(h)
t ( f )

γ
(h)
t (1)

η̂
(h)
t ( f ) = µ̂

(h)
t ( f ⊗ 1) =

γ̂
(h)
t ( f )

γ̂
(h)
t (1)

. (4.41)

Note that ν
(h)
0 = µ

(h)
0 = µ0 and η

(h)
0 = η0.

We will now proceed as in section 4.5, but we will only consider the marginals of E of the
various transition kernels and measures on (E×Rq). We remind the reader that if ϕ as function
on (E×Rq), then Qt ϕ can be considered a function on E as well as on (E×Rq).

As in (4.15) Del Moral and Jacod (2001), define the kernels on (E×Rq) by

L̂(h)
t f = Qt(g(h)

t ( f ⊗ 1)) =
∫

Qt(x, dx′)Ḡt(y′|x, yt−1, x′)g(h)
t (x′, y′) f (x′) dy′ (4.42)

and their iterates L̂(h)
p,t for 0 ≤ p ≤ t by

L̂(h)
p,t = L̂(h)

p+1...L̂(h)
t L̂(h)

t,t = Id. (4.43)
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Note that L̂(h)
t ϕ = Qt(g(h)

t (ϕ)). We also defined

Ĝ(h)
0 (x) =

∫
Ḡ0(x, y)g(h)

0 (x, y) dy.

Observe that

ν
(h)
0 (g(h)

0 ( f ⊗ 1)) = E
ν

(h)
0

[
g(h)

0 (x, y) f (x)
]

= Eη0

[∫
Ḡ0(x, y)g(h)

0 (x, y) f (x)
]

= η0(Ĝ(h)
0 f )

We can now deduce from (4.17) and (4.19)

νh
0 = law of X0 = law of (Ẋ0, Ẏ0) = µ0,

ν̂
(h)
0 (ϕ) = µ0(g(h)

0 ϕ),

ν
(h)
t (ϕ) = η0

(
Ĝ0 L̂(h)

0,t−1Qt ϕ
)

,

ν̂
(h)
t (ϕ) = ν

(h)
t (g(h)

t ϕ) = η0(Ĝ0 L̂(h)
0,t ϕ).

(4.44)

This gives us the marginals on E

γ
(h)
0 = η0,

η̂
(h)
0 ( f ) = µ0(g(h)

0 ( f ⊗ 1)) = η0(Ĝ(h)
0 f ),

γ
(h)
t ( f ) = η0(Ĝ(h)

0 L̂(h)
0,t−1Qt f ),

γ̂
(h)
t = η0(Ĝ(h)

0 L̂(h)
0,t f ).

(4.45)

We now study the convergence of this scheme, that is we evaluate the errors we get by replacing
the original scheme by (4.37) in terms of h. To do this we need some regularity assumptions on Ḡt.

R.1 The function y 7→ Ḡ0(x, y) is three times differentiable, with partial derivatives of order 1,2
and 3 uniformly bounded in (x, y)

R.2 Setting L̃t f (x, y) =
∫

Qt(x, dx′) f (x′)Ḡt(y|x, yt−1, x′) for each t ≥ 1 and each bounded
measurable function f on E, ‖ f ‖ < 1, the function y 7→ L̃t f (x, y) is three times differentiable,
with partial derivatives of order 1, 2 and 3 uniformly bounded in (x, y).

R.2 is satisfied if the functions y 7→ Ḡt(y|x, yt−1, x′) are three times differentiable, with partial
derivatives of order 1, 2 and 3 uniformly bounded in (x, x′, y) for each t ≥ 1. We denote the
second order partial derivatives of the functions y 7→ Ḡ0(x, y) and y 7→ L̃t f (x, y) with respect to
the components yj and yk by Ḡ′′0,j,k(x, y) and L̃′′t,j,k f (x, y) the second order partial derivative of the
functions y 7→ Ḡ0(x, y) and y 7→ L̃t f (x, y) with respect to the components yj and yk and let us
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define the finite kernels L̂∗t and function G∗0 on E by

L̂∗t f (x) =
1
2

q

∑
j,l=1

L̃′′t,jl f (x, yt)
∫

θ(z)zjzl dz

G∗0 (x) =
1
2

q

∑
j,l=1

Ḡ′′0,l j(x, y0)
∫

θ(z)zjzl dz.

Now remembering that L̂t is defined by (4.15) We have the following lemma:

Lemma 4.15

Under the regularity assumptions R.1 and R.2 we have the following estimates, where Ct

denotes a constant that depends only on t and the observations y0:t, and f is a bounded
measurable function on E∣∣∣L̂(h)

t f (x)− L̂t f (x)− h2 L̂∗t f (x)
∣∣∣ ≤ Cth3‖ f ‖ (4.46)

∣∣∣Ĝ(h)
0 (x)− G0(x)− h2G∗0 (x)

∣∣∣ ≤ Cth3 (4.47)

∣∣∣hqQt((g(h)
t )2 f )(x)− uL̂t f (x)

∣∣∣ ≤ Cth‖ f ‖, (4.48)

where
u =

∫
θ(y)2 dy.

We will give the proof when q = 1 for simplicity.

Proof: Since
∫

θ(y) dy = 1 and

L̂t f (x) =
∫

Qt(x, dx′)Ḡt(yt|x, yt−1, x′) f (x′) = L̃t f (x, yt) =
∫

L̃t f (x, yt)θ(y) dy

we have

L̂(h)
t f (x)− L̂t f (x)

=
∫ ∫

f (x′)Qt(x, dx′)Ḡt(y|x, yt−1, x′)g(h)
t (x′, y) dy−

∫
L̃t f (x, yt)

=
∫ ∫

f (x′)Qt(x, dx′)Ḡt(y|x, yt−1, x′)h−1θ

(
y− yt

h

)
−
∫

L̃t f (x, yt)

=
∫ (∫

f (x′)Qt(x, dx′)Ḡt(yt + hy|x, yt−1, x′)
)

θ(y) dy

=
∫ (

L̃t f (x, yt + hy)− L̃t f (x, yt)

)
θ(y) dy.
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Next, by a third order Taylor expansion on the function y 7→ L̃t f (x, y) around yt.

L̃t f (x, y) ≈ L̃t f (x, yt) + L̃′t f (x, yt)(y− yt) +
1
2

L̃′′t f (x, yt)(y− yt)2 +
1
6

L̃′′′t f (x, yt)(y− yt)3

and from this we can deduce that∫ (
L̃t f (x, yt + hy)

)
θ(y) dy

≈
∫ (

L̃t f (x, yt) + L̃′t f (x, yt)(hy) +
1
2

L̃′′t f (x, yt)(hy)2 +
1
6

L̃′′′t f (x, yt)(hy)3
)

θ(y) dy

= L̄t f (x, yt) + h2 L̂∗t f (x) +
h3

6

∫
L̃′′′t f (x, yt)y3θ(y) dy

such that∫ (
L̃t f (x, yt + hy)− L̃t f (x, yt)

)
θ(y) dy ≈ h2 L̂∗t f (x) +

h3

6

∫
L̃′′′t f (x, yt)y3θ(y) dy,

so that ∣∣∣L̂(h)
t f (x)− L̂t f (x)− h2 L̂∗t f (x)

∣∣∣ ≤ ∣∣∣∣h3

6
L̃′′′t f (x, yt)

∫
y3θ(y) dy

∣∣∣∣
≤ h3Ct‖ f ‖

since L̃′′′t f (x, yt) is uniformly bounded and
∫

y3θ(y) dy < ∞.

The proof of (4.47) is similar since G0(x) = Ḡ0(x, y0) and

Ĝ(h)
0 (x)− G0(x) =

∫ (
Ḡ0(x, y0 + hy)h2 − Ḡ0(x, y0)

)
θ(y) dy

we get the result by a third order Taylor expansion.of Ḡ0(y|x, yt−1, x′) around yt.

Finally,

hQt((g(h)
t )2 f )(x)− uL̂t f (x)

= h
∫

Qt(x, dx′)Ḡt(y|x, yt−1, x′) f (x′)h−2θ

(
y− yt

h

)
dy− uL̂t f (x)

=
∫ (

Qt(x, dx′)Ḡt(yt + h|x, yt−1, x′y) f (x′)− L̃t f (x, yt)
)

θ(y)2 dy

=
∫ (

L̃t f (x, yt + hy)− L̃t f (x, yt)
)

θ(y)2 dy.
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So that (4.48) follows from a first order Taylor expansion of L̃t f (x, y) around yt,∣∣∣hQt((g(h)
t )2 f )(x)− uL̂t f (x)

∣∣∣ =
∣∣∣∣∫ (L̃′t f (x, yt)hy

)
θ(y)2 dy

∣∣∣∣
≤ h

∫ ∣∣L̃′t f (x, yt)yθ(y)2∣∣dy

≤ hCt‖ f ‖.

�

Next we define the kernels L̂∗p,t for 0 ≤ p ≤ t and the measures γ∗t , γ̂∗t , η∗t and η̂∗t on (E, E) by

L̂∗p,t =
t

∑
q=p+1

L̂p,q−1 L̂∗q L̂q,t

γ∗t ( f ) = η0

(
(G∗0 L̂(h)

0,t−1 + G0 L̂0,t−1)Qt f
)

, η∗t ( f ) =
γ∗t ( f )γt(1)− γ∗t (1)γt( f )

(γt(1))2 (4.49)

for t ≥ 1 and γ∗0 = 0 = η∗0 and for t ≥ 0

γ̂∗t ( f ) = η0

(
(G∗0 L̂(h)

0,t + G0 L̂0,t)∗ f
)

, η̂∗t ( f ) =
γ̂∗t ( f )γ̂t(1)− γ̂∗t (1)γ̂t( f )

(γ̂t(1))2 . (4.50)

We now have the following proposition

Proposition 4.16

Under the assumptions R.1 and R.2 we have the following estimates, where Ct denotes a
constant that depends only on t and the observations y0:t, and f is a bounded measurable
function on E: ∣∣∣L̂(h)

p,t f (x)− L̂p,t f (x)− h2 L̂∗p,t f (x)
∣∣∣ ≤ Cth3‖ f ‖ 0 ≤ p ≤ t (4.51)

‖γ(h)
t − γt − h2γ∗t ‖tv ≤ Cth3 ‖γ̂(h)

t − γ̂t − h2γ̂∗t ‖ ≤ Cth3 (4.52)

‖η(h)
t − ηt − h2η∗t ‖tv ≤ Cth3 ‖η̂(h)

t − η̂t − h2η̂∗t ‖ ≤ Cth3. (4.53)

Proof: For p = t the inequality in (4.51) is trivial by the definition of L̂(h)
p,t , L̂p,t and L̂∗t,p. Now

forward by induction, assume that the inequality holds for p + 1 that is

L̂h
p+1,t f = L̂p+1,t f + h2 L̂∗p+1,t f + O(h3),
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and by (4.46) we have L̂(h)
p+1 f = L̂p+1 f + h2 L̂∗p+1 f + O(h3) so by the definition of L̂(h)

p,t we have

L̂(h)
p,t f = L̂(h)

p+1 L̂(h)
p+1,t f

= L̂p+1 L̂(h)
p+1,t f + h2 L̂∗p+1 L̂(h)

p+1,t f + O(h3)

= L̂p+1 L̂p+1,t f + h2 L̂p+1 L̂∗p+1,t f + h2 L̂∗p+1 L̂p+1,t f + O(h3)

= L̂p+1 L̂p+1,t f + h2
(

L̂p+1 L̂∗p+1,t + L̂∗p+1 L̂p+1,t f
)

+ O(h3)

= L̂p,t f + h2 L̂∗p,t f + O(h3).

The first estimate of (4.52) is trivial for t = 0. For t ≥ 1, comparing with (4.19) and (4.45),
gives

γ
(h)
t ( f )− γt( f ) = η0(Ĝ(h)

0 L̂(h)
0,t−1Qt f )− η0(G0 L̂0,t−1Qt f )

= η0

(
(Ĝ(h)

0 − G0)L̂(h)
0,t−1Qt f

)
+ η0

(
G0(L̂(h)

0,t−1 − L̂0,t−1)Qt f
)

such that, by (4.46) and (4.47),

γ
(h)
t ( f )− γt( f )− h2γt( f )

= η0

(
(Ĝ(h)

0 − G0)L̂(h)
0,t−1Qt f

)
+ η0

(
G0(L̂(h)

0,t−1 − L̂0,t−1)Qt f
)

− h2η0

(
(G∗0 L̂(h)

0,t−1 + G0 L̂∗0,t−1)Qt f
)

= η0

(
(Ĝ(h)

0 − G0 − h2G∗0 )L̂(h)
0,t−1Qt f

)
+ η0

(
G0(L̂(h)

0,t−1 − L̂0,t−1 − h2 L̂∗0,t−1)Qt f
)

≤ Cth3‖ f ‖.

The second inequality in (4.52) is proved similarly using (4.17) instead of (4.19). For (4.53), in
view of (4.52), we assume that γt(1), γ

(h)
t (1), γ̂t(1) and γ̂

(h)
t (1) are bigger than some εt > 0
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and we prove the estimate for small enough h. From (4.13),(4.41),(4.51) and (4.52) we have

η
(h)
t ( f )− ηt( f )− h2η∗t ( f )

=
γ

(h)
t ( f )

γ
(h)
t (1)

− γt( f )
γt(1)

− h2

(
γ∗t ( f )γt(1)− γ∗t (1)γt( f )

(γt(1))2

)

=
1

γ
(h)
t (1) (γt(1))2

(
γ

(h)
t ( f ) (γt(1))2 − γt( f )γt(1)γ

(h)
t (1)

− h2γ∗t ( f )γt(1)γ
(h)
t (1) + h2γ∗t (1)γt( f )γ

(h)
t (1)

)
=

1

γ
(h)
t (1) (γt(1))2

(
(γt(1))2

(
γ

(h)
t ( f )− γt( f )− h2γ∗t ( f )

)
+ (γt(1))2γt( f ) + h2(γt(1))2γ∗t ( f )

− γt( f )γt(1)γ
(h)
t (1)− h2γ∗t ( f )γt(1)γ

(h)
t (1) + h2γ∗t (1)γt( f )γ

(h)
t (1)

)
=

1

γ
(h)
t (1) (γt(1))2

(
(γt(1))2

(
γ

(h)
t ( f )− γt( f )− h2γ∗t ( f )

)
− γt(1)γt( f )

(
γh

t (1)− γt(1)− h2γ∗t (1)
)

− h2 (γ∗t (1)γt( f )− γt(1)γ∗t ( f ))
(

γt(1)− γ
(h)
t (1)

) )
.

Finally, the second inequality in (4.53) is proved similar using the second inequality of (4.52)
and (4.50), (4.13) and (4.41). �
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4.6.2 The interacting particle system

We can now carry out an IPS for the scheme (4.37) for any given N and h ≥ 0. The problem of
choosing h = h(N) will be addressed later.
As in case A we now have two particle systems. First we have N particles Xt = (X (i)

t )N
i=1 at time t,

who’s empirical measure µN
t are used to approximate µ

(h)
t , then, after the next step we have N

particles X̂t = (X̂ (i)
t )N

i=1 which are used to approximate µ̂
(h)
t .All these particles take their values

in E×Rq and we single out their components X(i)
t and Y(i)

t for X (i)
t , and X̂(i)

t and Ŷ(i)
t for X̂ (i)

t ,
taking their values in E and Rq.
The motion of these particles are again defined on an auxiliary probability space, where we denote
by Gt the σ−field generated by the variables (X (i)

p )N
i=1 for p ≤ t and (X̂ (i)

t )N
i=1 for p < t and Ĝt the

σ−field generated by the variables (X (i)
p )N

i=1 and (X̂ (i)
t )N

i=1 for p ≤ t. At the initial step, t = 0, the

variables (X (i)
t )N

i=1 are drawn independently according to the initial law µ0 of (4.38). Then the
mechanism proceeds, by induction on t, according to the following two step Markov rule.

Mutation/Prediction

P
(
Xt+1 ∈ (dz1 . . . , dzN)|Ĝt

)
=

N

∏
p=1
Qt+1

(
X̂ (p)

t , dzp

)
. (4.54)

Selection/Updating

P
(
X̂t ∈ (dz1, . . . , dzN)|Gt

)
=

N

∏
p=1

N

∑
i=1

g(h)
t (X (i)

t )

∑N
j=1 g(h)

t (X (j)
t )

δX (i)
t

. (4.55)

For all t ≥ 0 we have approximating measures µN
t and ηN

t for µ
(h)
t and η

(h)
t ,

µN
t =

1
N

N

∑
i=1

δ
(X(i)

t ,Y(i)
t )

, ηN
t =

1
N

N

∑
i=1

δ
X(i)

t
.

And then, comparing with (4.25), we get the following approximating measures for µ̂
(h)
t and η̂

(h)
t

µ̂N
t =

N

∑
i=1

g(h)
t (X (i)

t )

∑N
j=1 g(h)

t (X (j)
t )

δX (i)
t

, η̂N
t =

N

∑
i=1

g(h)
t (X (i)

t )

∑N
j=1 g(h)

t (X (j)
t )

δ
X(i)

t
.

4.6.3 Convergence study

In Del Moral and Jacod (2001) we are presented with a central limit theorem to assert the quality
of the IPS system. For each h > 0 we have theorem 4.13, which we now recall for the marginals
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ηN
t and η̂N

t . Then we set
WN,(h)

t ( f ) =
√

N
(

ηN
t ( f )− η

(h)
t ( f )

)
and

ŴN,(h)
t ( f ) =

√
N
(

η̂N
t ( f )− η̂

(h)
t ( f )

)
.

If h > 0 is fixed, theorem 4.13 then assures us that as N → ∞ the sequences
(

WN,(h)
t ( f )

)
and(

ŴN,(h)
t ( f )

)
converge to centred Gaussian variables W(h)

t ( f ) and Ŵ(h)
t ( f ) with variances given by

(recall 4.35 and 4.36)

EW(h)
t ( f )2 =

t

∑
p=0

µ
(h)
p

(
(g(h)

p L̂(h)
p,t−1Qt( f − η

(h)
t ( f )))2

)
(

µ
(h)
p (g(h)

p (L̂(h)
p,t−1(1)))

)2 (4.56)

and

EŴ(h)
t ( f )2 =

t

∑
p=0

µ
(h)
p

(
(g(h)

p L̂(h)
p,t Qt( f − η̂

(h)
t ( f )))2

)
(

µp(g(h)
p )
)2 (

η̂
(h)
p (L̂(h)

p,t 1)
)2 . (4.57)

If we now let h→ 0, both quantities (4.56) and (4.57) increase in a way that is controlled by lemma
4.15 and proposition 4.16 , take for example the summon number p in (4.56). For the denominator,
we may wright according to (4.40),(4.42),(4.43),(4.44),(4.45) and (4.52)

µ
(h)
p (g(h)

p L̂(h)
p,t−11) =

ν
(h)
p (L̂(h)

p,t−11)

ν
(h)
p (1)

=
γ

(h)
t (1)

γ
(h)
p (1)

=
γt(1)
γp(1)

+ O(h2)

and the numerator may be written first as

1

ν
(h)
p (1)

η0

(
Ĝ(h)

0 L̂(h)
0,p−1Qp

(
(g(h)

p L̂(h)
p,t−1Qt( f − η

(h)
t ( f )))2

))
.

Next, by (4.47), (4.51) and (4.53), we can replace Ĝ(h)
0 , L̂(h)

0,p−1, L̂(h)
p,t−1 and η

(h)
t by G0, L̂0,p−1, L̂p,t−1

and ηt to obtain a relative error of size O(h).
Then using (4.48) we see that

hqµ
(h)
p

((
g(h)

p L̂(h)
p,t−1Qt( f − η

(h)
t ( f ))

)2
)

=
hq

γ
(h)
p (1)

η0

(
Ĝ(h)

0 L̂(h)
0,p−1Qp

(
g(h)

t L̂(h)
p,t−1Qt( f − η

(h)
t ( f ))

)2
)
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converges to
u

γp(1)
η0
(
G0 L̂0,p

(
(L̂p,t−1Qt( f − ηt( f )))2))

as h→ 0. From (4.13) and (4.17) we finally see that

lim
h→0

hqE
(

WN,(h)
t ( f )2

)
= u

t

∑
p=0

1(
γt(1)
γp(1)

)2
1

γp(1)
η0
(
G0 L̂0,p

(
(hatLp,t−1Qt( f − ηt( f )))2))

= u
t

∑
p=0

γp(1)
γt(1)2 γ̂p

(
(L̂p,t−1Qt( f − ηt( f )))2)

= u
t

∑
p=0

γp(1)γp+1(1)
γt(1)2 η̂p

(
(L̂p,t−1Qt( f − ηt( f )))2) .

(4.58)

In a similar way we may obtain

lim
h→0

hqEŴN,(h)
t ( f )2 = u

t

∑
p=0

γp(1)γp+1(1)
γ̂t(1)2 η̂p

(
(L̂p,tQt( f − η̂t( f )))2) . (4.59)

Also if we replace L̂(h)
0,t−1 and L̂(h)

0,t by L̂0,t−1 and L̂0,t in (4.49) and (4.50) we obtain the new measures
γ∗∗t ( f ), γ̂∗∗t ( f ), η∗∗t ( f ) and η̂∗∗t ( f ), all with a relative error of O(h2), and then by (4.53) we see that

ηN
t ( f )− ηt( f ) =

1√
N

WN,(h)
t ( f ) + h2η∗∗t ( f ) + O(h3) (4.60)

since h2η∗t ( f ) = h2η∗∗t ( f ) + O(h4), and a similar expression is valid for η̂N
t ( f )− η̂t( f ). Now it

is obvious h = h(N) should depend on N. The first term of the right hand of (4.60) is of order
1/
√

Nh(N)q by (4.58), such that the MSE is of order 1/
√

Nh(N)q + h(N)4 and optimising the
choice of h(N) then leads to

h(N) = O
(

N−
1

(4+q)
)

. (4.61)

Finally we have the following theorem by Del Moral, Jacod and Protter (2001).
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Theorem 4.6.1

Assume R.1 and R.2, and take h = h(N) as given by (4.61) in the procedure given by (4.55)
and (4.54). Let f be any bounded measurable function on E.

1. The sequence of variables

WN
t ( f ) = N

2
4+q
(

ηN
t ( f )− ηt( f )

)
converges in law to a Gaussian variable with mean η∗∗t and variance given by (4.58).

2. The sequence of variables

ŴN
t ( f ) = N

2
4+q
(

η̂N
t ( f )− η̂t( f )

)
converges in law to a Gaussian variable with mean η̂∗∗t and variance given by (4.59).
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5
A more general filter problem

In this section we will introduce a more general particle filter with corresponding convergence
theorems (Crisan and Doucet (2000)). We remove the Markov assumptions on the signal process
and the assumption that the observations are conditionally independent upon the signal. The
importance sampling step is done using a general transition kernel which can depend on both
the observations and the current MC approximation of the posterior distribution. The conditions
imposed on the resampling step are also less restrictive. . This method also includes an additional
MCMC step in order to address the problem of sample depletion. The convergence results are
given on the path space, that is, we prove the convergence to the posterior distribution of the
whole trajectory of the signal and not only to the posterior distribution of the current state of the
signal.

5.1 Problem statement

Let (Ω,F ,P) be a probability space where we define two vector-valued stochastic processes
X = {Xt, t ∈ N} and Y = {Yt, t ∈ N}. As before, the X process is the the signal process and Y
is the observation process. We also remember that d and q is the dimension of the state space X
and Y and that we denote by Xi:j and Yi:j the path of the signal and of the observation process
from time i to time j and by xi:j and yi:j generic points in the space of the paths of the signal and
observation process. The signal process X satisfies X0 ∼ η0 and evolves according to the equation

P (Xt ∈ A|Y0:t−1 = y0:t−1, X0:t−1 = x0:t−1) =
∫

A
kt(y0:t−1, x0:t−1, dxt)
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where kt is a probability transition kernel defined on
(

R(d+q)t,B
(
Rd)) .

kt : P
(

Rdt
)
→ P

(
Rd(t+1)

)
.

The observation process Y satisfies

P (Yt ∈ B|Y0:t−1 = y0:t−1, X0:t = x0:t) =
∫

B
gt(y0:t|x0:t) dyt,

where B ∈ B(Rq). We assume that Y0:t = y0:t is fixed and we let ηt and η̂t be the probability
measure of X0:t given Y0:t−1 = y0:t−1 and Y0:t = y0:t respectively. We also assume that the sequence
(ηt, η̂t) satisfies the following recurrence formula.

5.1.1 Bayes recursions

For all t ≥ 0 and Ai ∈ B(Rd), i = 1, ...t A0:t = A0 × A1 × ...× At, we have

Prediction ηt(A0:t) =
∫

A0:t−1

kt(y0:t−1, x0:t−1, At)η̂t−1(dx0:t) (5.1)

Updating η̂t(A0:t) = c−1
t

∫
A0:t

gt(y0:t, x0:t)ηt(dx0:t), (5.2)

where ct is the normalising constant

ct ,
∫

Rd(t+1)
gt(y0:t|x0:t)ηt(dx0:t).

Remembering the following notation
If µ is a measure, f is a function and K is a Markov kernel then,

µ f ,
∫

f dµ, µK(A) ,
∫

µ(dx)K(x, A), K f (x) ,
∫

K(x, dz) f (z).

Using this notation, if f : Rd(t+1) → R, then the recurrence formula (5.1) and (5.2) implies that,
for all t ∈N

Prediction ηt f = η̂tkt f

Updating η̂t f = ηt( f gt)(ηtgt)−1.

Remark Let us assume that X is a Markov process with respect to the filtration FX,Y
t ,

σ(Xs, Ys, s ∈ {0, t}) with transition kernel

Qt(xt−1, A) , P(Xt ∈ A|Xt−1 = xt−1) A ∈ B(Rd), xt−1 ∈ Rd
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and that P(Yt ∈ dyt|FX
t ∨ FY

t−1) = P(Yt ∈ dyt|Xt), where FX
t ∨ FY

t , σ(Xs, Ys, s ∈ {0, t− 1}, Xt),
and for all xt ∈ Rd, the conditional distribution of Yt given the event {Xt = xt} is absolutely
continuous with respect to the Lebesgue measure, in other words there exists g(yt|xt) such that
for all xt−1 ∈ Rd

P(Yt ∈ dyt|Xt) = g(yt|xt) dyt,

then the sequence (ηt, η̂t) satisfies the Bayes’ recursions

5.2 Sequential MC methods

In this section we will present a sequential MC method that at each time t generates N particles
{X̂(i)

0:t}N
i=1 with an associated empirical measure η̂N

t ,

η̂N
t (dx0:t) ,

1
N

N

∑
i=1

δ
X̂(i)

0:t
(dx0:t)

that is close to η̂. The algorithm evolves sequentially in time, producing {X̂(i)
0:t} using the observa-

tions obtained at time t and the previous set of particles {X̂(i)
0:t−1}N

i=1 produced at time t− 1 that is
close to η̂t−1.

We also introduce a transition kernel Γt(y0:t, x0:t−1, η̂t−1, dx0:t) which is used to obtain an
intermediate set of particles {X̃(i)

0:t}N
i=1 and we denote by η̃t the resulting importance distribution

η̃t = η̂t−1Γt.

We assume that ηt << η̃t and let ht be the strictly positive Radon Nikodym derivative dηt
dη̃t

= ht,

where ht(·) = ht(y0:t, η̂t−1, ·). Since η̂t << ηt by (5.2), η̂t << η̃t and since (5.2) implies that dη̂t
dηt

∝ gt,
we have

dη̂t

dη̃t
=

dη̂t

dηt

dηt

dη̃t
∝ gtht. (5.3)

Another important assumption is that we now how to sample exactly according to η0 at time
t = 0. The algorithm then proceeds as described below.
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Algorithm 5.1: General particle filter algorithm
Initialisation t = 0;
for i = 1 : N do

sample X(i)
0 ∼ η0;

end
for t = 1 : T do

for j = 1 : N do
sample X̃(i)

0:t ∼ Γt(y0:t, X̂(i)
0:t−1, η̂N

t−1, dx̃0:t);

Compute w(i)
t ∝ gt(y0:t|X̃(i)

0:t)ht(y0:t, η̂N
t−1, X̃(i)

0:t);
end

Normalise the importance weights w̃(i)
t =

w(i)
t

∑N
j=1 w(j)

t

;

Sample {X̂(i)
t }N

i=1 from the set {X(i)
t }N

i=1 with probabilities {w̃(i)
t }N

i=1;
end

We will later on also include a MCMC step, but first we present an example and then we
discuss step 1 and step 2 more in detail and prove the convergence of this scheme to the posterior
distribution of the filtering problem.

Example 5.1

The dynamics of the system in this example will fit case b. We will use both the method described
by Del Moral and Jacod (2001) and the more general algorithm presented by Crisan and Doucet
(2000) where we use the laws of X as the importance function, and the selection step is performed
by resampling. The system {(Xt, Yt)} evolves simultaneously as a Markov chain, and {Xt} as a
marginal Markov chain according to

Xt = 0.5Xt−1 + Zt, Vt ∼ N(0, 1)

Yt = Xt |Xt−1|+ Yt−1Wt Wt ∼ N(0, 1).

In figure 5.1 we have plotted the results from the two particle filters and their difference for
N = 1000. We see that both algorithms seems to work well for this case.
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Figure 5.1: The particle filters, N=1000

5.2.1 Importance sampling step

In algorithm 5.1 we obtain our new set of paths by sampling from Γt(y0:t, X̂(i)
0:t−1, η̂N

t−1, dx̃0:t) which

depends on η̂N
t−1, the observations y0:t and the current paths {X̂(i)

0:t−1}i=1:N . The new paths {X̃0:t}N
i=1

are then distributed approximately as η̃t. The only restrictions on the choice of Γt is that the
weights w(i)

t are well defined and can be computed analytically.However, most algorithms that

are presented are such that Γt

(
y0:t, X̂(i)

0:t−1, η̂N
t−1, dx̃0:t

)
= δ

X(i)
0:t−1

(dx̃0:t−1)Γt

(
y0:t−1, x̂(i)

0:t−1, η̂N
t−1, dx̃t

)
,

that is we obtain the new path X̃(i)
0:t by keeping the current path X̂0:t−1 and adding a new particle

X̃t. We discussed earlier that a good choice for the importance function is the one that minimises
the conditional variance of the importance weights at time t given X̂(i)

0:t−1 and y0:t. Following this

strategy, the optimal choice is P(dx̃t|y0:t−1, x̂(i)
0:t−1) (Doucet et al., 2000) the proof is analog to the

one on page 14.
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Optimal sampling distribution

If we sample X̃(i)
0:t = (X̂(i)

0:t−1, X̃(i)
t ) according to

P(dx̃t|y0:t, X̂(i)
0:t−1) =

P(dx̃t, X̂(i)
0:t−1, y0:t)

P(y0:t, X̂(i)
0:t−1)

=
P(yt|X̂(i)

0:t−1, y0:t−1, dx̃t)P(dx̃t|y0:t−1, X̂(i)
0:t−1)P(X̂(i)

0:t−1, y0:t−1)

P(yt|y0:t−1, X̂(i)
0:t−1)P(y0:t−1, x̂(i)

0:t−1)

=
gt(y0:t, X̂(i)

0:t−1, x̃t)kt(X̂(i)
0:t−1, y0:t−1, dx̃t)

P(yt|y0:t−1, X̂(i)
0:t−1)

.

Since η̂t ∝ gtkt by (5.2) the importance weights are equal to

w(i)
t ∝

dη̂t

dη̃t
∝ P(yt|y0:t−1, X̂(i)

0:t−1)

=
∫

P(yt|X̂(i)
0:t−1, y0:t−1, x̃t)P(dx̃t|y0:t−1, X̂(i)

0:t−1)

=
∫

gt(y0:t, X̂(i)
0:t−1, x̃t)kt(y0:t−1, x̂(i)

0:t−1, dx̃t).

If this integral does not admit an analytical expression or if we are unable to sample from
P(dx̃t|y0:t, X̂(i)

0:t−1), one has to use other alternatives.

Prior distribution

A popular choice for the importance function is the prior distribution
kt(y0:t−1, x̂0:t−1, dx̃t). If we use this then ht ∝ 1 so the importance weight w(i)

t is proportional to
gt(y0:t|X̂(i)

0:t−1, X̃(i)
t ). The weakness of this method as discussed in (Pitt and Shephard, 1999) is

the sensitivity towards outliers. As an alternative one might use the Auxiliary particle filter in
algorithm 2.4, or as we now propose, the likelihood distribution.

Likelihood distribution

If we assume that the likelihood gt(y0:t|X̂(i)
0:t−1, x̃t) is integrable in the argument x̃t, that is if∫

gt(y0:t|X̂(i)
0:t−1, x̃t)dx̃t < ∞

then we can sample x̃t according to

Γt(y0:t, X̂(i)
0:t−1, η̂N

t−1, dx̃t) ∝ gt(y0:t|X̂(i)
0.t−1, x̃t)

83



and dη̂t
dη̃t

∝ η̂N
t−1ktgt

η̂N
t−1gt

so that the importance weights are proportional to kt,

w(i)
t ∝ kt(y0:t−1, X̂(i)

0:t−1, X̃(i)
t ).

This is method provides good results when the observation noise is very low as the likelihood is
then usually very peaked compared to the prior distribution.

There are several other alternative sampling distribution (Doucet, Godsill and Andrieu (2000),Pitt
and Shephard (1999)) but we will now turn our focus towards the resampling step of the algorithm.

5.2.2 Resampling step

As we have discussed earlier, the aim of the selection/resampling step is to multiply the particles
with large weight and get rid of those with small weights to obtain an ‘unweighted’ sample.
Next we present three different ways to perform this step, the first has already been discussed in
previous chapters.

Sampling Importance Resampling

The SIR or multinomial sampling procedure is the most popular one. We have already discussed
it in previous chapters. We sample N particles {X̂(i)

0:t} with replacement from the particles X̃(i)
0:t ,

that is we sample independently N times from η̃N
t (dx0:t). This is equivalent to jointly drawing

{N(i)
t }N

i=1 according to a multinomial distribution of parameters N and w̃(i)
t . In this case we have

EN(i)
t = Nw̃(i)

t and VarN(i)
t = Nw̃t(i)(1− w̃(i)

t ).

Residual Resampling

This method, discussed in Carpenter, Clifford and Farnhead (1999) and Higuchi (1997), starts
by setting Ń(i)

t = [Nw̃(i)
t ] (where [a] denotes the greatest integer smaller then a ∈ R) then

perform an SIR procedure to select the remaining N̄t = N −∑N
i=i Ń(i)

t samples with new weights
ẃ(i)

t =N̄−1
t (w̃(i)

t N− Ń(i)
t ) and add the result to the current Ń(i)

t . In this case EN(i)
t = Ń(i)

t + ẃ(i)
t N̄t =

Ń(i)
t + N̄tN̄

(−1)
t (w̃(i)

t N − Ń(i)
t ) = Nw̃(i)

t , but VarN(i)
t = N̄tẃ

(i)
t (1− ẃ(i)

t ).

Minimal variance sampling

In this procedure a set of U of N points is generated in the interval [0, 1], each of the points a
distance N−1 apart. The number N(i)

t is taken to be the number of points in U that lie between
∑i−1

j=1 w̃(j)
t and ∑i

j=1 w̃(j)
t . This method includes the Tree Based Branching algorithm presented in

Crisan (2001) If we denote {Nw̃(i)
t } , Nw̃(i)

t − [Nw̃(i)
t ], then the variance of all the algorithms in

this class is equal to {Nw̃(i)
t }(1− {Nw̃(i)

t }).
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5.3 Convergence study

In this section we first study the convergence of the mean square error of the sequential MC
algorithms described in the previous section. That is we will find the rate of which, for any
f ∈ B

(
Rd(t+1)

)
, ‖η̂N

t f − η̂t f ‖2
2 = E

[
(η̂N

t f − η̂t f )2] converges to zero under certain conditions
(where the expectation is over all realisations of the random particle methods).After that we focus
on the almost sure convergence of η̂N

t to η̂t under more restrictive conditions. (As before, the
almost sure convergence of a random measure µN to the measure µ means that for all f ∈ Cb(Rd),
limN→∞ µN f = µ f a.s.)

In the following we assume that the observation process is fixed to a given observation
Y0:t = y0:t, t > 0. All the convergence results will be proved under this condition.

5.3.1 Bounds for the mean square error

Let us consider the following assumptions.

Importance distribution and weights

i) ηt is absolutely continuous w.r.t η̃t , η̂tΓt,
and for all µ ∈ P(Rdt) the function gt(y0:t|x̃0:t)ht(x̃0:t, y0:t, µ) is a bounded function in
argument x̃0:t ∈ Rd(t+1).

The identity in equation (5.3) becomes for all f ∈ B(Rd(t+1))

η̂t f =
η̃t( f gtht)
η̃t(gtht)

,

where gt(·) = gt(y0:t|·) and ht(·) = ht(y0:t, η̂t−1, ·). If µ, ν ∈ P
(
Rdt), we define

Γµ
t , Γt(y0:t, x0:t−1, µ, dx̃0:t)

Γν
t , Γt(y0:t, x0:t−1, ν, dx̃0:t)

hµ
t (·) = ht(y0:t, µ, ·)

hν
t (·) = ht(y0:t, ν, ·).

ii) There exists a constant dt, such that, for all f ∈ B
(

Rd(t+1)
)

, there exists f ′ ∈ B
(
Rdt) with

‖ f ′‖ ≤ ‖ f ‖ such that ∀µ, ν,

‖(Γµ
t − Γν

t ) f ‖ ≤ dt|(µ− ν) f ′|.

iii) There exist f0 (independent of µ, ν) such that

‖gth
µ
t − gthν

t ‖ ≤ |µ f0 − ν f0|
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and a constant et such that for any x0:t ∈ Rd(t+1) and ∀t ≥ 0

|hµ
t (x0:t)− hν

t (x0:t)| ≤ et(hµ
t (x0:t) ∧ hν

t (x0:t)).

Resampling/selection scheme

iv) {N(i)
t }N

i=1 are integer valued random variables such that

‖
N

∑
i=1

(
N(i)

t − Nw̃(i)
t

)
q(i)‖2

2 ≤ CtN max
i=1,...,N

|q(i)|2

for all N-dimensional vectors q = (q(1), q(2), ..., q(N)) ∈ RN and ∑N
i=1 N(i)

t = N.

The first assumption states that the importance function should be chosen such that the corres-
ponding importance weights are bounded above and that the sampling kernel and importance
weights depend continuously on the measure variable. The second assumption ensures that the
selection step does not introduce to strong discrepancy. The following establishes, at each time
step, a mean square error of order 1/N between the empirical measure of the particle filter and
the posterior distribution.

Lemma 5.1

Assume that for any f ∈ B
(
Rdt),
‖η̂N

t−1 f − η̂t f ‖2
2 ≤ ct−1

‖ f ‖2

N
.

Then, after the first step of the algorithm, for any f ∈ B
(

Rd(t+1)
)

,

‖η̃N
t f − η̃ f ‖2

2 ≤ c̃t
‖ f ‖2

N
.

Proof: Let F̂X
t−1 be the σ-field generated by {X̂0:t−1}N

i=1, then

E
[
η̃N

t ft|F̂X
t−1

]
= η̂N

t−1(Γ
η̂N

t−1
t ft)
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and using the independence of the motion of the particles we have (analog to the proof of
theorem 4.5)

Var
[
η̃N

t f |F̂X
t−1

]
= E

[(
η̃N

t f − η̂N
t−1(Γη̂N

t
t f )

)
2|F̂X

t−1

]
=

1
N2 E

( N

∑
i=1

f (X̃(i)
0:t)− Γ

η̂N
t−1

t f (X̂(i)
0:t−1)

)2

|F̂X
t−1


=

1
N2

N

∑
i=1

E

[(
f (X̃(i)

0:t)− Γ
η̂N

t−1
t f (X̂(i)

0:t−1)
)2

|F̂X
t−1

]

=
1

N2

N

∑
i=1

(
Γ

η̂N
t−1

t f 2(x̂(i)
0:t−1)− (Γ

η̂N
t−1

t f (x̂(i)
0:t−1))

2
)

=
1
N

(
η̂N

t−1(Γ
η̂N

t−1
t f 2 − (Γ

η̂N
t−1

t f )2)
)

≤ ‖ f ‖2

N
.

From (ii)

∣∣η̂N
t−1Γ

η̂N
t−1

t f − η̂N
t−1Γη̂t−1

t f
∣∣ =

∣∣η̂N
t−1Γ

η̂N
t−1

t f − Γη̂t−1
t f

∣∣
≤ ‖(Γ

η̂N
t−1

t f − Γη̂t−1
t f )‖

≤ dt
∣∣(η̂N

t−1 − η̂t−1) f ′
∣∣,

hence

‖η̂N
t−1Γ

η̂N
t−1

t f − η̂N
t−1Γη̂t−1

t f ‖2
2 ≤ d2

t ‖η̂N
t−1 f ′ − η̂t−1 f ′‖2

2

≤ d2
t ct−1

‖ f ′‖2

N2 ≤ d2
t ct−1

‖ f ‖2

N2 .

Then, letting Γt , Γη̂t−1
t ,

∣∣η̃N
t f − η̃t f

∣∣ ≤ ∣∣η̃N
t f − η̂N

t−1Γ
η̂N

t−1
t f

∣∣+ ∣∣η̂N
t−1Γ

η̂N
t−1

t f − η̂N
t−1Γt f

∣∣+ ∣∣η̂N
t−1Γt f − η̂t−1Γt f

∣∣,
and from above we get

‖η̃N
t f − η̃t f ‖2 ≤ ‖η̃N

t f − η̂N
t−1Γ

η̂N
t−1

t f ‖2 + ‖η̂N
t−1Γ

η̂N
t−1

t f − η̂N
t−1Γt f ‖2 + ‖η̂N

t−1Γt f − η̂t−1Γt f ‖2

≤
√

c̃t
‖ ft‖√

N
,

where c̃t = (1 + dt
√

ct−1 +
√

ct−1 )2. �
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Lemma 5.2

Let us assume that for any f∈B
(
Rdt) and f ∈ B

(
Rd(t+1)

)
‖η̂N

t−1 f − η̂t−1 f ‖2
2 ≤ ct−1

‖ f ‖2

N
,

‖η̃N
t f − η̃t f ‖2

2 ≤ c̃t
‖ f ‖2

N
.

Then, for any f ∈ B
(

Rd(t+1)
)

,

‖η̄N
t f − η̂t f ‖2

2 ≤ c̄t
‖ f ‖2

N
.

Proof: Let hN
t = h

η̂N
t−1

t and gt = g for simplicity. Then using the fact that η̄N
t f =

η̃N
t ( f ghN

t )
η̃N

t (ghN
t )

and

defining

A =
∣∣∣∣ η̃N

t ( f ghN
t )

η̃N
t (ghN

t )
− η̃N

t ( f ghN
t )

η̃N
t (ght)

∣∣∣∣ ,

we have

A =

∣∣η̃N
t ( f ghN

t )
∣∣∣∣η̃N

t (g(hN
t − ht))

∣∣
η̃N

t (ghN
t )η̃N

t (ght)
≤ ‖ f ‖

∣∣η̃N
t (g(hN

t − ht))
∣∣

η̃N
t (ght)

≤ ‖ ft‖
∣∣η̃N

t (g(hN
t − ht))

∣∣ ∣∣∣∣ 1
η̃N

t (ght)
− 1

η̃t(ght)

∣∣∣∣+ ‖ f ‖
∣∣η̃N

t (g(hN
t − ht))

∣∣
η̃t(ght)

.

Then using (iii)

A ≤ ‖ f ‖etη̃
N
t (ght)

∣∣∣∣ 1
η̃N

t (ght)
− 1

η̃t(ght)

∣∣∣∣+ ‖ f ‖‖ghN
t − ght‖

η̃t(ght)

≤ ‖ f ‖etη̃
N
t (ght)

|η̃N
t (ght)− η̃t(ght)|
η̃N

t (ght)η̃t(ght)
+ ‖ f ‖

∣∣η̂N
t−1 f0 − η̂t−1 f0

∣∣
η̃t(ght)

≤ ‖ f ‖
η̃t(ght)

(
et
∣∣η̃N

t (ght)− η̃t(ght)
∣∣+ ∣∣η̂N

t−1 f0 − η̂t−1 f0
∣∣).

Hence,

‖A‖2 ≤
‖ f ‖

(
et
√

c̃t ‖ght‖+
√

ct−1 ‖ f0‖
)

η̃t(ght)
√

N
. (5.4)
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Again using (iii), ∣∣∣∣ 1
η̃N

t (ghN
t )
− 1

η̃N
t (ght)

∣∣∣∣ =

∣∣η̃N
t
(

g(hN
t − ht)

)∣∣
η̃N

t (ghN
t )η̃N

t (ght)

≤ etη̃t(ght)
η̃N

t (ghN
t )η̃N

t (ght)

=
et

η̃N
t (gthN

t )
,

and defining

B =
∣∣∣∣ η̃N

t ( f ghN
t )

η̃N
t ( f ght)

− η̃N
t ( f ghN

t )
η̃t( f ght)

∣∣∣∣ ,

we see that

B =

∣∣η̃N
t (ght)− η̃t(ght)

∣∣
η̃t(ght)

∣∣η̃N
t ( f ghN

t )
∣∣

η̃N
t (ght)

=

∣∣η̃N
t (ght)− η̃t(ght)

∣∣
η̃t(ght)

∣∣η̃N
t ( f ghN

t )
∣∣ ∣∣∣∣ 1

η̃N
t (ght)

− 1
η̃N

t (ghN
t )

+
1

η̃N
t (ghN

t )

∣∣∣∣
≤
∣∣η̃N

t (ght)− η̃t(ght)
∣∣

η̃t(ght)
∣∣η̃N

t ( f ghN
t )
∣∣ ∣∣∣∣ 1

η̃N
t (ght)

− 1
η̃N

t (ghN
t )

∣∣∣∣+
∣∣η̃N

t (ght)− η̃t(ght)
∣∣

η̃t(ght)η̃t(ght)
∣∣η̃N

t ( f ghN
t )
∣∣

≤
∣∣η̃N

t (ght)− η̃t(ght)
∣∣

η̃t(ght)
∣∣η̃N

t ( f ghN
t )
∣∣ et

η̃N
t (ghN

t )
+

∣∣η̃N
t (ght)− η̃t(ght)

∣∣
η̃t(ght)η̃t(ght)

∣∣η̃N
t ( f ghN

t )
∣∣

≤ (et + 1)‖ f ‖
∣∣η̃N

t (ght)− η̃t(ght)
∣∣

η̃t(ght)
.

We also have, again using (iii),∣∣∣∣ η̃N
t ( f ghN

t )
η̃t(ght)

− η̃N
t ( f ght)
η̃t(ght)

∣∣∣∣ ≤ η̃t(| f |
∣∣ghN

t − ght
∣∣)

η̃t(ght)

≤ ‖ f ‖
∣∣η̂N

t−1( f0)− η̂t−1( f0)
∣∣

η̃t(ght)
,

and since

∣∣∣∣ η̃N
t ( f ghN

t )
η̃t(ght)

− η̃t( f ght)
η̃t(ght)

∣∣∣∣ ≤
∣∣∣∣∣∣ η̃

N
t ( f gh

η̂N
t−1

t )
η̃N

t ( f ght)
− η̃N

t ( f ghN
t )

η̃t( f ght)

∣∣∣∣∣∣
+
∣∣∣∣ η̃N

t ( f ghN
t )

η̃t(ght)
− η̃N

t ( f ght)
η̃t(ght)

∣∣∣∣
+
∣∣∣∣ η̃N

t ( f ght)− η̃t( f ght)
η̃t(ght)

∣∣∣∣ ,

89



we finally arrive at

E

[(
η̃N

t ( f ghN
t )

η̃N
t (ght)

− η̃t( f ght)
η̃t(ght)

)2] 1
2

≤ E

[(
η̃N

t ( f ghN
t )

η̃t(ght)
− η̃N

t ( f ghN
t )

η̃t(ght)

)2] 1
2

+ E

[(
η̃N

t ( f ghN
t )

η̃t(ght)
− η̃N

t ( f ght)
η̃t(ght)

)2] 1
2

E

[(
η̃N

t ( f ght)− η̃t( f ght)
η̃t(ght)

)2] 1
2

≤ (et + 1)‖ f ‖
√

c̃t ‖ght‖√
N η̃t(ght)

+ ‖ f ‖
√

ct−1 ‖ f0‖√
N η̃t(ght)

+ ‖ f ‖ ‖ght‖
√

c̃t√
N η̃t(ght)

=
‖ f ‖

(
(et + 2)

√
c̃t ‖ght‖+

√
ct−1 ‖ f0‖

)
η̃t(ght)

√
N

.

(5.5)

Now combining (5.4) and (5.5),

E
[
(η̄t f − η̂t f )2

] 1
2
≤ E

[(
η̃N

t ( f ghN
t )

η̃N
t (ghN

t )
− η̃N

t ( f ghN
t )

η̃N
t (ght)

)2] 1
2

+ E

[(
η̃N

t ( f ghN
t )

η̃N
t (ght)

− η̃t( f ght)
η̃t(ght)

)2] 1
2

≤
‖ f ‖

(
et
√

c̃t ‖ght‖+
√

ct−1 ‖ f0‖
)

η̃t(ght)
√

N

+
‖ f ‖

(
(et + 2)

√
c̃t ‖ght‖+

√
ct−1 ‖ f0‖

)
η̃t(ght)

√
N

.

This is equivalent to

‖η̄N
t f − η̂t f ‖2

2 ≤ c̄t
‖ f ‖2

N

and the proof is complete with c̄t = (2(et+1)
√

c̃t ‖ght‖+
√

ct−1 ‖ f0‖)2

η̃t(ght)2 . �
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Lemma 5.3

Assume that for any f ∈ B
(
Rd)

‖η̄N
t f − η̂t f ‖2

2 ≤ c̄t
‖ f ‖2

N
.

Then, after the selection/resampling step of the algorithm

‖η̂N
t f − η̂t f ‖2

2 ≤ ĉt
‖ f ‖2

N
.

Proof: We have ∣∣∣η̂N
t f − η̂t f

∣∣∣ ≤ ∣∣∣η̂N
t f − η̄N

t f
∣∣∣+ ∣∣∣η̄N

t f − η̂t

∣∣∣
and

‖η̂N
t f − η̂t f ‖2 ≤ ‖η̂N

t f − η̄N
t f ‖2 + ‖η̄N

t f − η̂t f ‖2.

The last term is less or equal
√

c̄t
‖ f ‖√

N
by lemma 5.2 and from (iv) and then we have

‖η̄N
t f − η̂t f ‖2 = E

( 1
N

N

∑
i=1

(N(i)
t − Nw̃(i)

t ) f (i)

)2
 1

2

=
1
N

E

( N

∑
i=1

(N(i)
t − Nw̃(i)

t ) f (i)

)2
 1

2

1
N
≤
√

CtN ‖ f ‖ =
√

Ct
‖ f ‖√

N
,

hence

‖η̂N
t f − η̂t f ‖2

2 ≤ ĉt
‖ f ‖2

N
,

with ĉt =
(√

Ct +
√

c̄t
)2 . �

Now since we have assumed that at time t = 0 we are able to draw N iid particles according to
η0, we have

‖ηN
0 f − η0 f ‖2

2 ≤
‖ f ‖2

N
.

If we combine this with Lemma 5.1,Lemma 5.2 and Lemma 5.3, we have proved the following
theorem.
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Theorem 5.4

For any t ≥ 0 there exists a constant ct, independent of N, such that for all f ∈ B
(

Rd(t+1)
)

‖η̂N
t f − η̂t f ‖2

2 ≤ ct
‖ f ‖2

N
.

Next we turn our focus to the almost sure convergence

5.3.2 Almost sure convergence

In this section we present the proof of the almost sure convergence of η̂N
t to η̂t (Crisan and Doucet,

2000) under the following assumptions.

Importance distribution and weights

i) Γt(y0:t, x0:t−1, η̂t−1, dx̃0:t) is a Feller Kernel.

ii) ηt is absolutely continuous with respect to η̃t , η̂t−1Γt

and for any µ ∈ P
(
Rdt) ,

gt(x0:t, y0:t)ht(x0:t, y0:t, µ) is a bounded continuous function.

iii) If µ, ν ∈ P
(
Rdt), there exists a constant dt such that for all f ∈ B

(
Rd(t+1)

)
, there exists

f ′ ∈ B
(
Rdt) with ‖ f ′‖ ≤ ‖ f ‖ such that

‖Γµ
t f − Γν

t f ‖ ≤ dt
∣∣µ f ′ − ν f ′

∣∣.
iv) There exists f0 (independent of µ, ν) such that

‖gth
µ
t − gthν

t ‖ ≤
∣∣µ f0 − ν f0

∣∣.
Selection scheme

v) N(i)
t are integer valued random variables such that there exists p > 1 and h < p− 1 such that

E

[∣∣∣∣∣ N

∑
i=1

(
N(i)

t − Nw̄(i)
t

)
q(i)

∣∣∣∣∣
p]
≤ CNh max

1=1,...,N

∣∣∣q(i)
∣∣∣p

for all N-dimensional vectors q = (q(1), q(2), ..., q(N)) and ∑N
i=1 N(i)

t = N.
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Once again we let g = gt and hN
t = h

η̂N
t−1

t .

Lemma 5.5

Let η̂N
t−1 be a sequence of random approximations of η̂t−1 such that

η̂N
t−1

a.s.−→
N

η̂t−1.

Then, after step 1 of the algorithm,
η̃N

t
a.s.−→
N

η̃t.

Proof: Let F̂X
t−1 be the σ-field generated by {X̂(i)

0:t−1}N
i=1 and f ∈ C

(
Rd(t+1)

)
. Then,

E
[
η̃N

t f |F̂X
t−1

]
= η̂N

t−1Γ
η̂N

t−1
t f (5.6)

and using the independence of X̃(1)
0:t , X̃(2)

0:t , ..., X̃(N)
0:t given F̂X

t−1 we have

E

[(
η̃t f −E[η̃t f |F̂X

t−1]
)4
|F̂X

t−1

]

= E

( 1
N

N

∑
i=1

(
f (X̃(i)

0:t)− Γ
η̂N

t−1
t f (X̂(i)

0:t−1)
))4

|F̂X
t−1


=

1
N4

N

∑
i=1

E

[(
f (X̃(i)

0:t)− Γ
η̂N

t−1
t f (X̂(i)

0:t−1)
)4

|F̂X
t−1

]

+
2

N4 ∑
1≤i<j≤N

E

[(
f (X̃(i)

0:t)− Γ
η̂N

t−1
t f (X̂(i)

0:t−1)
)2 (

f (X̃(j)
0:t )− Γ

η̂N
t−1

t f (X̂(j)
0:t−1)

)2

|F̂X
t−1

]

≤ C
‖ f ‖4

N2 ,

(5.7)

for a constant C independent of N.

From (5.6) and (5.7), we get that

E

[(
η̃t f − η̂N

t−1Γ
η̂N

t−1
t f

)4
]
≤ C
‖ f ‖4

N2

and then using a Borel-Cantelli argument, we have

lim
N→∞

η̃N
t f − η̂N

t−1Γ
η̂N

t−1
t f = 0 a.s.. (5.8)
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From (iii), ∣∣∣∣∣∣∣∣η̂N
t−1Γ

η̂N
t−1

t f − η̂N
t−1Γt f

∣∣∣∣∣∣∣∣ ≤ ‖Γη̂N
t−1

t f − Γt f ‖

≤ dt

∣∣∣η̂N
t−1 f ′ − η̂t−1 f ′

∣∣∣ ,

and the inequality∣∣∣η̃t f − η̂N
t−1Γt f

∣∣∣ ≤ ∣∣∣∣η̃t f − η̂N
t−1Γ

η̂N
t−1

t f
∣∣∣∣+ ∣∣∣∣η̂N

t−1Γ
η̂N

t−1 f
t − η̂N

t−1Γt f
∣∣∣∣

together with the assumption that η̂N
t−1

a.s.−→
N

η̂t−1 gives us that almost surely

lim
N→∞

η̃t f − η̂N
t−1Γt f = 0.

for all f ∈ C
(

Rd(t+1)
)

.
From the Feller property of Γt, Γt f is a continuous function so
limN→∞ η̂t−1Γt f = η̂t−1Γt f a.s. and together with (5.8) we have

η̃t f a.s.−→
N

η̂t−1Γt f = η̃t f .

�

Lemma 5.6

Let η̃N
t be a sequence of random approximations of η̃t such that

η̃N
t

a.s.−→
N

η̃t.

Then, after the resampling/selection step of the algorithm, almost surely

η̂N
t

a.s.−→
N

η̂t.

Proof: Again we let hN
t = h

η̂N
t−1

t and gt = g. From our definition of η̄t we have that for any

f ∈ Cb

(
Rd(t+1)

)
η̄t f =

η̃t( f ghN
t )

η̃t(ghN
t )

.
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Since, limN→∞ η̃t = η̃t a.s. and by assumption (ii) ghN
t is a bounded continuous function we

have that

lim
N→∞

η̃N
t ( f ghN

t ) = η̃t( f ghN
t )

lim
N→∞

η̃N
t (ghN

t ) = η̃t(ghN
t ).

(5.9)

We also have the inequalities from (iv)∣∣∣∣∣∣η̃N
t ( f ghN

t )− η̃t( f ght)
∣∣∣∣∣∣ ≤ ‖ f ‖

∣∣∣η̂N
t−1 f0 − η̂t−1 f0

∣∣∣∣∣∣∣∣∣η̃N
t (ghN

t )− η̃t(ght)
∣∣∣∣∣∣ ≤ ∣∣∣η̂N

t−1 f0 − η̂t−1 f0

∣∣∣
and since limN→∞ η̂N

t−1 = η̂t−1 a.s. we then have

lim
N→∞

η̃t( f ghN
t ) = η̃t( f ght) a.s.

lim
N→∞

η̃t(ghN
t ) = η̃t(ght) a.s.

(5.10)

since ght is bounded and continuous by assumption. Combining (5.9) and (5.10) we have for
all f ∈ Cb

(
Rd(t+1)

)
lim

N→∞
η̄N

t f =
η̃t( f ght)
η̃t(ght)

= η̂t f

for all f ∈ Cb

(
Rd(t+1)

)
and therefor limN→∞ η̄N

t = η̂t. From (v) we have

E
[∣∣∣η̂N

t f − η̄t f
∣∣∣p] = E

[∣∣∣∣∣ 1
N

N

∑
i=1

(
N(i)

t f (X̃(i)
0:t)− Nw̃(i)

t ft(X̃(i)
0:t)
)∣∣∣∣∣

p]

≤ E

[∣∣∣∣∣ 1
N

N

∑
i=1

(
N(i)

t − Nw̃(i)
t

)
‖ ft‖

∣∣∣∣∣
p]

≤ 1
Np ‖ f ‖pCtNh =

Ct‖ f ‖p

N1+ε
,

(5.11)

where ε = p− h− 1 > 0.
From (5.11), again via a Borel-Cantelli argument, we have limN→∞ η̂N

t f − η̄N
t f = 0 a.s. for all

f ∈ Cb

(
Rd(t+1)

)
and since almost surely limN→∞ η̄N

t = η̂t we finally arrive at

lim
N→∞

η̂N
t = η̂t a.s.

�

If we combine Lemma 5.6 and Lemma 5.8 with the fact that almost surely limN→∞ ηN
0 = η0, we

have proved the following theorem.
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Theorem 5.7

For all t ≥ 0 we have
η̂N

t
a.s.−→
N

η̂t.

An additional MCMC step

We have already discussed the MCMC step in chapter 2 as a method to avoid degeneracy in
the particles. If the distribution of the importance wights is highly skewed then we will select
a few number of particles many times. To attain more diversity among the particles and still
have asymptotic convergence of the empirical measure to the posterior distribution, we apply
to each particle x̂(i)

0:t a Markov transition kernel Kt(x̂(i)
0:t , dẍ0:t) of invariant distribution η̂t(dx0:t),

that is
∫

Ktη̂t = η̂t. The new set of particle {ẍ(i)
0:t}N

i=1 are still distributed according to the posterior
distribution of interest, but will with probability one consist of N different paths in the state
space. One can allow the Markov transition kernel to depend on the whole population of particles
{x̂(i)

0:t}N
i=1 as long as it satisfies

∫
Kt({x̂(i)

0:t}
N
i=1, dx0:t)

N

∏
i=1

η̂t(dx̂(i)
0:t) = η̂t(dx0:t).

That is as long as η̂t is the invariant measure for Kt.

Algorithm 5.2: An additional MCMC step
At time t;
for i = 1 : N do

Sample Ẍ(i)
0:t ∼ Kt

(
{X̂(j)

0:t}N
j=1, dẍ0:t

)
;

Let η̈t denote the associated empirical measures;
end
Set t← t + 1;

We have already proved the mean square convergence of η̂N
t f to η̂t f and with the same

assumptions about the importance function and selection/resampling steps we will now prove
that this remains valid after the MCMC step.
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Lemma 5.8

Assume that for any f ∈ B
(

Rd(t+1)
)
‖η̂N

t f − η̂t f ‖2
2 ≤ ĉt

‖ f ‖2

N
.

Then, after the MCMC step of the algorithm

‖η̈N
t f − η̂t f ‖2

2 ≤ c̈t
‖ f ‖2

N
.

Proof: Let F̂X
t be the σ-field generated by {X̂(i)

0:t}N
i=1, then

E
[
η̈N

t f |F̂X
t

]
= η̂N

t Kt f ,

and we have using the same calculations as in the proof of lemma 5.1,

E
[(

η̈N
t f −E

[
η̈N

t f |F̂X
t

])
2|F̂X

t

]
= E

[(
η̈N

t f − η̂N
t Kt f

)
2|F̂X

t

]
=

1
N2 E

( N

∑
i=1

f (Ẍ(i)
0:t)− Kt f (X̂(i)

0:t)

)2

|F̂X
t


=

1
N2

N

∑
i=1

E

[(
f (Ẍ(i)

0:t)− Kt f (X̂(i)
0:t)
)2
|F̂X

t

]
=

1
N2

N

∑
i=1

(
Kt f 2(X̂(i)

0:t)−
(

Kt f (X̂(i)
0:t)
)2
)

=
1
N

(
η̂N

t−1(Kt f 2 − (Kt f )2)
)

≤ ‖ f ‖2

N
.

Then, using what we already know about η̂N
t and the fact that η̂tKt f = η̂t f , we have for all

f ∈ B
(

Rd(t+1)
)

‖η̈t f − η̂t f ‖2 ≤ ‖η̈N
t f − η̂N

t Kt f ‖2 + ‖η̂N
t Kt f − η̂tKt f ‖2

≤
√

c̈t
‖ f ‖√

N
,

with c̈t = (1 + ĉt)2. �

97



To prove the almost sure convergence of η̈N
t we need to add an extra assumption to the ones we

already have.
The MCMC step

i) Kt is a Feller kernel.

We are now ready to prove the following lemma.

Lemma 5.9

Let η̂N
t be a sequence of random approximations of η̂t such that almost surely

η̂N
t

a.s.−→
N

η̂t,

then after the MCMC step of the algorithm we have almost surely

η̈N
t

a.s.−→
N

η̂t

The proof of Lemma 5.9 is identical to the one in Lemma 5.5

Proof: Let Ĝt be as it was defined in the proof of Lemma 5.8, then

E
[
η̈N

t f |Ĝt

]
= η̂N

t Kt f . (5.12)

We have seen that there exists a constant C, independent of N, such that

E

[(
η̈N

t f − E
[
η̈N

t f |Ĝt

])4
|Ĝt

]
≤ C
‖ f ‖4

N2 . (5.13)

From (5.12) and (5.13) we then get

E

[(
η̈N

t f − η̂N
t Kt f

)4
]
≤ Ct

‖ f ‖4

N2 ,

and once again via Borel-Cantelli argument, we have, almost surely

lim
N→∞

η̈N
t f − η̂N

t Kt f = 0 P − a.s. (5.14)

for all f ∈ Cb

(
Rd(t+1)

)
. By the inequality

∣∣∣η̈N
t f − η̂tKt f

∣∣∣ ≤ ∣∣∣η̈N
t f − η̂N

t Kt f
∣∣∣+ ∣∣∣η̂N

t Kt f − η̂tKt f
∣∣∣ , (5.15)

and since Kt f is continuous by the Feller property of Kt and, almost surely, limN→∞ η̂N
t = η̂t

we have using (5.14) and (5.15)

lim
N→∞

η̈N
t f = η̂tKt f = η̂t f
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for all f ∈ Cb

(
Rd(t+1)

)
, hence

η̈N
t

a.s.−→
N

η̂t.

�
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6
Discussion

In chapter 4 and 5 we studied the convergence for different types of particle filters to the posterior
distribution. The rate of convergence is 1/

√
N however the constants we have to drag with us

are not always explicitly but even so they are obtained using very coarse majorations and will
necessarily give us a good indication on the prediction error. The constants also depend on t. (For
a uniform convergence theorem see Del Moral (1998)) However, as we discussed in Chapter 3 ,
we can estimate a lower bound for the prediction error recursively as we carry out one of the
algorithms. In our linear Gaussian examples, as we pointed out earlier, the PCRB is asymptotically
equal to the prediction error of the Kalman filter, which is optimal.

The most crucial choice of all these algorithms is the choice of the transition kernel. We pointed
out in Chapter 5 that most algorithms presented in literature are recursive, that is we use the
current particles {X(i)

0:t−1}N
i=1 and sample a set {X(i)

t }N
i=1 from our transition kernel to obtain the

new set {X(i)
0:t}N

i=1. If we choose the transition kernel such that we have to draw a whole new
set {X(i)

0:t}N
i=1 at time t, it will become too time demanding as t becomes large. We have seen

several proposals for the transition kernel, and although it is not optimal, using the marginal
distribution of Xt we get a system that is easy to implement and an approximation for the
prediction distribution, which may be of interest. In Chapter 5 we let the kernel Γt depend on
the previous measure Γt(·, ·, η̂N

t−1, ·). In my opinion this is just to make the theorems as general
as possible, and the algorithms will get overcomplicated when you try to implement it on your
computer. The proof of convergence in chapter 5 would be easier if we dropped this dependence
and we would also use fewer assumptions.

When it comes to the Case b situation in Chapter 4, where (X, Y) is Markov and X is a
Markov process itself, we have seen in example 5.1 that the h-approximation method proposed by
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Crisan (2001) and the more general scheme by Del Moral and Jacod (2001) worked well and gave
approximately the same results. According to Crisan (2001), reducing case b to case a leads to a
filter scheme which is easier to implement, that may very well be so, but in this algorithm one
also has to simulate the Y process and is more time demanding then the algorithm proposed by
Del Moral and Jacod (2001)

Tracking applications is perhaps the biggest area for particle filter methods. In these scenarios
we often have the situation where X is Markov, and the observation Y is a function of X with
some independent noise. Particle filters for this problem was the main focus in Chapter 2 and
4. From point of view, taking into account the problem of diversity and outliers, the ASIR filter
(Section 2.3) should be implemented, when possible, to solve this problem.
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A
Conditional expectations and probabilities

A.1 Conditional expectations and probabilities

In this section we study briefly some definitions and results that we need in the Chapter 4. The
results are taken from Crisan (2001). The section is included to justify why η̂

y0:t
t and η̂t as defined

in (4.2) and (4.3) are in fact probability measures and why we have η̂t( f ) = E[ f (Xt)|σ(Y0:t)] and
η̂

y0:t
t ( f ) = E[ f (Xt)|Y0:t = y0:t]. Also included are some results on conditional probabilities and

expectation that we need to prove the recurrence formula in lemma 4.1.
Let (Ω,F ,P) be a probability space and let G ∈ F be a sub-σ-algebra of F . The conditional

expectation of an integrable F -measurable random variable ξ given G is defined as the integrable
G-measurable random variable, denoted E[ξ|G], with the property∫

A
ξdP =

∫
A

E[ξ|G]dP , (A.1)

for all A ∈ G. Then E[ξ|G] exists and is almost surely unique. We now state some properties of
the conditional expectation.

1. If α1, α2 ∈ R and ξ1, ξ2 are F -measurable, then

E[α1ξ1 + α2ξ2|G] = α1E[ξ1|G] + α2E[ξ2|G], P − a.s..

2. If ξ ≥ 0 then E[ξ|G] ≥ 0, P − a.s..

3. If 0 ≤ ξn ↗ ξ then E[ξn|G]↗ E[ξ|G], P − a.s..
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4. If H is a sub-σ-algebra of G, then E [E[ξ|G]|H] = E[ξ|H], P − a.s..

5. If ξ is G-measurable, then E[ξτ|G] = ξE[τ|G], P − a.s..

6. If H is independent σ (σ(ξ),G), then E[ξ|σ(G,H)] = E[ξ|G] P − a.s..

The conditional probability of a set A ∈ F with respect to the σ-algebra G is the random
variable denoted by P(A|G) defined as P(A|G) , E[IA|G], where IA is the indicator function of
the set A. From (A.1) we deduce that

P(A ∩ B) =
∫

B
IAdP =

∫
B

E[IA|B]dP =
∫

B
P(A|G)dP

for all B ∈ G. Let τ1, τ2, . . . , τk be F - measurable random variables, then the conditional expectation
of ξ with respect to τ1, τ2, . . . , τk, E[ξ|τ1, τ2, . . . , τk], is the conditional expectation of ξ with respect
to the σ-algebra generated by τ1, τ2, . . . , τk, i.e, E[ξ|τ1, τ2, . . . , τk] = E[ξ|σ(τ1, . . . , τk)] and we have
the analogue definition of P(A|τ1, . . . , τk), the conditional probability of A with respect to τ1, . . . , τk.
The fact that P(A|G) is not pointwise uniquely defined, only almost surely, may be troublesome.
It implies that for all A ∈ B

(
Rd) η̂t(A) is not pointwise uniquely defined.

If A1, A2, · · · ∈ B
(
Rd) is a sequence of pairwise disjoint sets, then , by properties 1 and 3 ,

η̂t

(⋃
n

An|G
)

= ∑
n

η̂t(An|G), P − a.s..

Definition A.1.1

Let (Ω,F ,P) be a probability space, (E, E) a measurable space, X : Ω → E be an E/F -
measurable random element, and G s sub-σ-algebra of F . A function Q(ω, B) defined for all
ω ∈ Ω and B ∈ E is a regular conditional distribution/probability of X with respect to G if
(a) for each ω ∈ Ω, Q(ω, ·) is a probability measure on (E, E)
(b) for each B ∈ F , Q(·, B) is G-measurable and Q(·, B) = P(X ∈ B|G), P-a.s..

Definition A.1.2

A measurable space (E, E) is a Borel space if there exists a one-to-one mapping f : (E, E)→
(R,B (R)) such that f (E) ∈ B (R), f is E -measurable and f−1 is B (R) /E -measurable.

We state the following theorem without proof.

Theorem A.1

Let X = X(ω) be a random element with values in a Borel space (E, E). Then there exists a
regular conditional distribution of X with respect to G.
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Since
(
Rd,B

(
Rd)) is a Borel space, there exists a regular conditional distribution of Xt with

respect to σ(Y0:t). Therefor, if A ∈ B
(
Rd), we assign η̂t(A) the value Q(·, A) ,(since it is defined

only almost surely) where Q is the regular conditional distribution of Xt w.r.t. σ(Y0:t). Then η̂t is a
probability measure.

Remark If η̂t is defined as above, then the identity in (4.2) holds true , P-a.s., for all B
(
Rd)-

measurable functions f .

Proof: If f = IB where IB is the characteristic function of any Borel set, the required formula
holds by definition (A.1.2b). Consequently it holds for simple functions. Let f ≥ 0 be an arbit-
rary non-negative function and let 0 ≤ fn ↗ f , where fn are simple functions. Using property
3. of conditional expectations we have E[ f (Xt)|σ(Y0:t)] = limn→∞ E[ fn(Xt)|σ(Y0:t)], P-a.s.
but since η̂t is a probability measure for all ω ∈ Ω we also have by the Monotone convergence
theorem E[ f (Xt)|σ(Y0:t)] = limn→∞ E[ fn(Xt)|σ(Y0:t)] = limn→∞ η̂t( fn) = η̂t( f ). Hence the
identity holds for non-negative measurable functions. The general case is now proved by
representing f as f = f + − f−. �

Let ξ, τ be F -measurable functions Since E[ξ|τ] is a σ(τ)-measurable random variable, there
exists a function m = m(y) : R→ R such that m(τ) = E[ξ|τ] We denote m(y) by E[ξ|τ = y] and
call it the conditional expectation of ξ with respect to the event {τ = y}. Then, via the change of
variable formula, we have, for all A ∈ B(R),∫

{ω:τ∈A}
ξ(ω)P(dω) =

∫
{ω:τ∈A}

m(τ(ω))P(dω) =
∫

A
m(y)Pτ(dy), (A.2)

where Pτ is the probability distribution of τ. We can use (A.2) as the defining formula conditional
expectation of ξ with respect to the event {τ = y}. That is , E[ξ|τ = y] is the B(R)- measurable
random variable such that ∫

{ω:τ∈A}
ξdP =

∫
A

E[ξ|τ = y]Pτ(dy)

holds true for all A ∈ B(R). Again this is Pτ-almost surely unique. If we know E[ξ|τ = y], then
we can deduce E[ξ|τ] and vice verse. The expectation E[ξ|τ] satisfies the following identity Pτ-
a.s.

E[ξ f (τ)|τ = y] = f (y)E[ξ|τ = y]

for all f ∈ B(R). Moreover if ξ and τ are independent and g ∈ B (R), then Pτ-a.s.

E[ξ|τ = y] = E[ξ]

E[g(ξ, τ)|τ = y] = E[g(ξ, y)]. (A.3)

104



The conditional probability of the event given by A ∈ F under the condition that {τ = y}
(P(A|τ = y)) is defined as E[IA|τ = y]. P(A|τ = y) is the B(R)-measurable random variable such
that

P(A ∩ {τ = y}) =
∫

B
P(A|τ = y)Pτ(dy) (A.4)

for all B ∈ B(R).
Now if η̂t is the regular conditional distribution of Xt with respect to Y0:t, then, for all A ∈ B

(
Rd)

η̂t(A) is Y0:t measurable. Hence, there exists a function m = m(a, Y0:t) : B
(
Rd)× Im(Y0:t) → R

such that, pointwise
η̂t(A)(ω) = m(A, Y0:t(ω)).

Since for all ω ∈ Ω, η̂t(·)(ω) is a probability measure, it follows that for all y0:t ∈ Im(Y0:t),
m(·, y0:t) is a probability measure on B

(
Rd). Then, as above, we assign to η̂

y0:t
t (A) the value

m(A, y0:t) and we have that η̂
y0:t
t is a probability measure and η̂

y0:t
t ( f ) = E[ f (Xt)|Y0:t = y0:t] for all

f ∈ B
(
Rd).

A.2 The recurrence formula for the conditional distribution of the signal

We will now prove the formula in lemma 4.1, but first we need the following lemma.

Lemma A.2

Let PYs:t ∈ P
(

Rq(t−s+1
)

be the probability distribution of Ys:t and λ the Lebesgue measure

on
(

Rq(t−s+1),B
(

Rq(t−s+1)
))

. Then for all 0 < s ≤ t < ∞, PYs:t is absolutely continuous with
respect to λ and its Radon-Nikodym derivative is

dPYs:t

dλ
(ys:t) = Υ(ys:t) ,

∫
Rd(t−s+1)

t

∏
i=s

gi(yi − h(i, xi))Ps:t(dxs:t).

Proof: Let Cs:t = Cs × · · · × Ct, where Cr are arbitrary Borel sets, Cr ∈ B (Rq) for all s ≤ r ≤ t.
We need to prove that

PYs:t(Cs:t) = P({Ys:t ∈ Cs:t}) =
∫

Cs:t

Υ(ys:t) dys . . . dyt. (A.5)

By the vector analogue of (A.4)

P({Ys:t ∈ Cs:t}) =
∫

Rd(t−s+1)
P(Ys:t ∈ Cs:t|Xs:t = xs:t)PXs:t(dxs:t), (A.6)
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and using the fact that Xi and Wi are independent and the fact that Ws, · · · , Wt are independ-
ent, we have from (A.3)

P(Ys:t ∈ Cs:t|Xs:t = xs:t) = E

[
t

∏
i=s

I{Ci} ((hi(Xi) + Wi)) |Xs:t = xs:t

]

= E

[
t

∏
i=s

I{Ci} (hi(xi + Wi))

]

=
t

∏
i=s

E
[
I{Ci} (hi(xi) + Wi)

]
=

t

∏
i=s

∫
Ci

gi(yi − hi(xi)) dyi.

(A.7)

By combining (A.6) and (A.7) and applying Fubini, we get (A.5). �

Proposition A.3

The conditional distribution of the signal (given the observations y0:t)
satisfies the following recurrence relations, for t ≥ 0:η̂Y0:t

t (dx) = =
gYt

t (x)
ηtgYt

t

ηY0:t
t (dx)

ηt+1 = η̂tQt

η̂t(dx) =
gyt

t (x)
ηtg

yt
t

ηt(dx)

ηt+1 = η̂tQt,

where gy0:t
t , g(yt − ht(·)) and the recurrence is satisfied PY0:t -almost surely, or equivalent,

λ-almost surely.

Proof: We first prove the second identity since it is the simplest of the two. For all f ∈ B
(
Rd),

we have, using the Markov property of X, E[ f (Xt+1)|FX
t ] = E[ f (Xt+1)|Xt] = Qt f (Xt). Then

using property 6. of conditional expectations, and the fact that W0:t is independent of X0:t+1,

E
[

f (Xt+1)|FX
t ∨ FW

t )
]

= E
[

f (Xt+1)|FX
t

]
.

Hence, using property 4. of conditional expectations

ηt+1( f ) = E [ f (Xt+1)|Y0:t]

= E
[
E[ f (Xt+1)|FX

t ∨ FW
t )]|FY

t

]
= E

[
Qt f (Xt)|FY

t

]
= η̂tQt f ,
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which implies that η
y0:t
t+1 = η̂

y0:t
t Qt. We will now prove the first identity. Let C0:t = C0× · · · ×Ct,

where Cr are arbitrary Borel sets, Cr ∈ B (Rq) for all 0 ≤ r ≤ t. We need to prove that

∫
C0:t

η̂
y0:t
t (A)PY0:t =

∫
C0:t

∫
A gyt

t (xt)η
y0:t−1
t (dxt)∫

Rd gyt
t (xt)η

y0:t−1
t (dxt)

PY0:t(dy0:t). (A.8)

By (A.4), the left hand side of (A.8) is equal to P({Xt ∈ A} ∩ {Y0:t ∈ C0:t}), so we need to
prove that this is true also for the right hand side of (A.8). Since σ(X0:t, W0:t) ⊃ σ(Xt, Y0:t) we
obtain, using property 4. of then conditional expectations

P(Yt ∈ At|Xt, Y0:t−1) = P (P(Yt ∈ At|X0:t, W0:t−1)|Xt, Y0:t−1) , (A.9)

and using property 6. of conditional expectations

P(Yt ∈ At|X0:t, W0:t−1) = P(Yt ∈ At|X0:t)

= P(Y0:t ∈ (Rq)× At|X0:t)

=
∫

At

gt(yt − ht(Xt)) dyt.

(A.10)

From (A.9) and (A.10) we get P(Yt ∈ At|Xt, Y0:t−1) =
∫

At
gt(yt − ht(Xt)) dyt which gives us

P(Yt ∈ At|Xt = xt, Y0:t−1 = y0:t−1) =
∫

At

gyt
t (xt) dyt, (A.11)

hence

PY0:t(A0:t) = P({Yt ∈ At} ∩ {Xt ∈ Rd} ∩ {Y0:t−1 ∈ A0:t−1})

=
∫
{Rd×A0:t−1}

∫
At

gyt
t (xt)η

y0:t−1
t (dxt)PY0:t−1(dy0:t−1)

=
∫

A0:t

∫
Rdgyt

t (xt)η
y0:t−1
t (dxt) dytPY0:t−1(dy0:t−1),

(A.12)

where we have used the identity

PXt,Y0:t−1(dxt, dy0:t−1) = η
y0:t−1
t (dxt)PY0:t−1(dy0:t−1), (A.13)

which is a consequence of the vector analogue of (A.4). From (A.12) we see that

PY0:t(dy0:t) =
∫

Rd
gyt

t (xt)η
y0:t
t (dxt) dytPY0:t−1(dy0:t−1).

Hence, the right hand side (A.8) is equal to

Γ ,
∫

C0:t

∫
A

gyt
t (xt)η

y0:t−1
t (dxt)PY0:t−1(dy0:t−1),
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which, in turn, using (A.11) and (A.13)

Γ =
∫

A×C0:t−1

(∫
Ct

gyt
t (xt) dyt

)
η

y0:t−1(dxt)
t PY0:t−1(dy0:t−1)

=
∫

A×C0:t−1

P(Yt ∈ Ct|Xt = xt, Y0:t−1 = y0:t−1)PXt,Y0:t−1(dxt, dy0:t−1)

= P({Xt ∈ A} ∩ {Y0:t ∈ C0:t}),

and the proof is complete. �
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