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ABSTRACT 
In this paper, we discuss the unsteady hydro magnetic flow of an electrically conducting Maxwell fluid in a 

parallel plate channel bounded by porous medium under the influence of a uniform magnetic field of strength 

Ho inclined at an angle of inclination with the normal to the boundaries. The perturbations are created by a 

constant pressure gradient along the plates. The time required for the transient state to decay and the ultimate 

steady state solution are discussed in detail. The exact solutions for the velocity of the Maxwell fluid consists of 

steady state are analytically derived, its behaviour computationally discussed with reference to the various 

governing parameters with the help of graphs. The shear stresses on the boundaries are also obtained 

analytically and their behaviour is computationally discussed in detail. 

KEYWORDS:  Maxwell fluids, unsteady flows, porous medium, parallel plate channels, MHD flows  

I. INTRODUCTION 

Several fluids including butter, cosmetics and toiletries, paints, lubricants, certain oils, blood, mud, 

jams, jellies, shampoo, soaps, soups, and marmalades have rheological characteristics and are referred 

to as the non-Newtonian fluids. The rheological properties of all these fluids cannot be explained by 

using a single constitutive relationship between stress and shear rate which is quite different than the 

viscous fluids [1, 2]. Such understanding of the non-Newtonian fluids forced researchers to propose 

more models of non-Newtonian fluids. In general, the classification of the non-Newtonian fluid 

models is given under three categories which are called the differential, the rate, and the integral types 

[3]. Out of these, the differential and rate types have been studied in more detail. In the present 

analysis we discuss the Maxwell fluid which is the subclass of rate-type fluids which take the 

relaxation phenomenon into consideration. It was employed to study various problems due to its 

relatively simple structure. Moreover, one can reasonably hope to obtain exact solutions from 

Maxwell fluid. This motivates us to choose the Maxwell model in this study. The exact solutions are 

important as these provide standard reference for checking the accuracy of many approximate 

solutions which can be numerical or empirical in nature. They can also be used as tests for verifying 

numerical schemes that are being developed for studying more complex flow problems [4–9]. On the 

other hand, these equations in the non-Newtonian fluids offer exciting challenges to mathematical 

physicists for their exact solutions. The equations become more problematic, when a non-Newtonian 

fluid is discussed in the presence of MHD and porous medium. Despite this fact, various researchers 

are still making their interesting contributions in the field (e.g., see some recent studies [1–15]). Few 

investigations which provide the examination of non-Newtonian fluids in a rotating frame are also 
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presented [1–19]. Recently Faisal Salah [20] discussed two explicit examples of acceleration subject 

to a rigid plate are taken into account. Constitutive equations of a Maxwell fluid are used and 

modified Darcy’s law has been utilized. The exact solutions to the resulting problem are developed by 

Fourier sine transform. With respect to physical applications, the graphs are plotted in order to 

illustrate the variations of embedded flow parameters. The mathematical results of many existing 

situations are shown as the special cases of that study. Such studies have special relevance in 

meteorology, geophysics, and astrophysics. Hayat et.al [21] investigated to analyze the MHD rotating 

flow of a Maxwell fluid through a porous medium in parallel plate channel. M.V. Krishna [22] 

discussed analytical solution for the unsteady MHD flow is constructed in a rotating non-Newtonian 

fluid through a porous medium taking hall current into account. In this paper, we examine the MHD 

flow of Maxwell fluid through a porous medium in a parallel plate channel with inclined magnetic 

field, the perturbations in the flow are created by a constant pressure gradient along the plates. The 

time required for the transient effects to decay and the ultimate steady state solution are discussed in 

detail. The exact solutions of the velocity in the Maxwell fluid consists of steady state are analytically 

derived, its behaviour computationally discussed with reference to the various governing parameters 

with the help of graphs. The shear stresses on the boundaries are also obtained analytically and their 

behaviour is computationally discussed.   

II. FORMULATION AND SOLUTION OF THE PROBLEM 

We consider the unsteady flow of an electrically conducting Maxwell fluid through porous medium in 

a parallel plate channel subjected to a uniform transverse magnetic field of strength Ho inclined at an 

angle of inclination  normal to the channel walls. The boundary plates are assumed to be parallel to 

xy-plane and the magnetic field to the z-axis in the transverse xz-plane. The component along z-

direction induces a secondary flow in that direction while its x-components changes perturbation to 

the axial flow. At  0t  the fluid is driven by a prescribed pressure gradient parallel to the channel 

walls. We choose a Cartesian system O(x, y, z) such that the boundary walls are at 0z  and lz  , 

since the plates extends to infinity along x and y directions, all the physical quantities except the 

pressure depend on z and t alone. The unsteady hydro magnetic equations governing the electrically 

conducting Maxwell fluid under the influence of transverse magnetic field with reference to a frame 

are 
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Where, J is the current density, B is the total magnetic field, E is the total electric field, m   is the 

magnetic permeability, V = (u, v, w) is the velocity field, T is the Cauchy stress tensor, B is the total 

magnetic field so that B=B0 Sin + b, where B0 is the applied magnetic field parallel to the z-axis and 

b is the induced magnetic field. The induced magnetic field is negligible so that the total magnetic 

field B = (0, 0, B0 Sin ), the Lorentz force VSinBBJ  22

0
 ,  is the electrical conductivity 

of the fluid, ρ is the density of the fluid, and 
Dt

D
 is the material derivative and R is the Darcy 

resistance. The extra tensor S for a Maxwell fluid is   
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where I p   is the stress due to constraint of the impermeability, here p is the static fluid pressure, I 

is the identity tensor, μ  is the viscosity of the fluid, λ   is the material time constants referred to as 

relaxation time, it is assumed that  0 . The first Rivlin-Ericksen tensor A1 is defined as  

A1 = (grad V) + (grad V)T                                                                                                       (2.8)       

It should be noted that this model includes the viscous Navier-Stokes fluid as a special case for 0
. Let us indicate the stress tensor and the velocity component as  

V(z, t) = (u, 0, w)                                   (2.9)  

According to Tan and Masuoka [4] Darcy’s resistance in an Oldroyd-B fluid satisfies the following 

expression: 
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where 𝜆𝑟 is the retardation time,   is the porosity (0< <1), and 𝑘 is the permeability of the porous 

medium. For Maxwell fluid 𝜆𝑟= 0, and hence, 
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Making use of the equations (2.6), (2.7) and (2.8), the equation (2.1) reduces to 
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Where 𝑅𝑥 and 𝑅z are 𝑥 and z-components of Darcy’s resistance 𝑅;  
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The equations (2.12) and (2.13) reduces to 
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Let   iwuq  Combining equations (2.15) and (2.16), we obtain  
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Substituting the equation (2.18) in the equation (2.17), we obtain the equation for the governing the 

flow through a porous medium with respect to the rotating frame is given by 
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The boundary and initial conditions are  
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Using non dimensional variables the governing equations are (dropping asterisks in all forms) 
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 Taking Laplace transforms of equations (2.23) and (2.27) using initial conditions (2.26) the 

governing equations in terms of the transformed variable reduces to
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Solving equation (2.28) subjected to the conditions (2.24) and (2.25), we obtain 
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   (Where the constants are mentioned in the appendix) 

The shear stresses on the upper and lower plate are given by 
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III. RESULTS AND DISCUSSION 

We discuss the unsteady flow of an electrically conducting Maxwell fluid through a porous medium 

in parallel plate channel subjected to uniform magnetic field. In unperturbed state the perturbation are 

created by performing to imposition of constant pressure gradient along the axis (OX) of the channel 

walls the velocity component along the imposed pressure gradient and normal to it. Under the 

boundary layer assumptions these velocity components are to functions of z and t alone, where z 

corresponds to the direction of axis of the channel. The transverse magnetic field once arising give 

rise to Lorentz forces resisting the flow along normal to the channel wall.  

The constitutive equations relating the stress and rate of strain are chosen to depict the Maxwell fluid. 

The Brinkman’s model has been chosen to analyses the flow through a porous medium. The equation 

governing the velocity components and with reference to frame ultimately can be combined into a 

single equation by defining the complex velocity iwuq   The expression for the components of 

the stresses are manipulated from the stress and strain relationships. Under these assumptions the 

ultimate governing equations for the unsteady flow through a porous medium with reference to frame 

is formulated the corresponding boundary and initial conditions. This boundary value problem has 

been solved using non-dimensional variables making use of Laplace transform technique. 

The solution for the combined velocity q consists of two kinds of terms 1. Steady state 2. The 

transient terms involving exponentially varying time dependence.  The analysis of transient terms 

indicates that this transient velocity decay exponentially in dimensionless time to of order i.e., 
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β1, M and D-1 . When these transient terms decay the ultimate velocity consists of steady and 

oscillatory components.  
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The flow governed by the non-dimensional parameters namely viz. M the magnetic field parameter 

(the Hartmann number), D-1 the inverse Darcy parameter, 
1  is the material time parameter referred 

as relaxation time. The computational analysis has been carried out to discuss the behaviour of 

velocity components u and w on the flow in the rotating parallel plate channel and the lower plate 

executes non-torsional oscillations in its own plane with reference to variations in the governing 

parameters may be analyzed from figures (1-3) and (4-6) respectively (P0=P1=10, t =0.1, 

3/,4/
1

  ). 

We may note that the effect of the magnetic field on the flow from figures (1 and 4). The magnitude 

of the velocity component u reduces and the velocity component w increases with increase in the 

Hartmann number M. However, the resultant velocity reduces throughout the fluid region with 

increase in the intensity of the magnetic field (the Hartmann number M). The figures (2 and 5) 

represent the velocity profiles with different variation in the inverse Darcy parameter D-1. We find that 

the magnitude of u reduces with decrease in the permeability of the porous medium, while the 

magnitude of w experiences a slight enhancement with increase in the inverse Darcy parameter D-1. It 

is interesting to note that lesser the permeability of the porous medium lower the magnitude of the 

resultant velocity. i.e., the resultant velocity reduces throughout the fluid region with increase in the 

inverse Darcy parameter D-1. Both the velocity components u and w enhances with increase in the 

relaxation time entire fluid region. These displayed in the figures (3 and 6). The resultant velocity 

enhances throughout the fluid region with increase in the relaxation time. The shear stresses on the 

upper and lower plates have been calculated with reference to variations in the governing parameters 

and are tabulated in the tables (I-IV). On the upper plate the magnitude of the stresses x   enhances 

with increase in M  and 
1 , while it reduces with increase in the inverse Darcy parameter D-1. The 

magnitude of the stresses 
y

   enhances with increase in for all governing parameters M, D-1and 
1  

(tables. I-II). On the lower plate the magnitude of the stresses x and 
y

   enhances with increase in M 

and 1 , while these reduces with increase in the inverse Darcy parameter D-1 (tables. III-IV).  

IV. CONCLUSIONS 

1. The resultant velocity reduces throughout the fluid region with increase in the intensity of the 

magnetic field (the Hartmann number M).  

2. Lesser the permeability of the porous medium lower the magnitude of the resultant velocity. i.e., 

the resultant velocity reduces throughout the fluid region with increase in the inverse Darcy 

parameter D-1.   

3. Both the velocity components u and w and the resultant velocity enhances with increase in the 

relaxation time in the entire fluid region.   

4. On the upper plate the magnitude of the stresses x   enhances with increase in M and
1

 , while it 

reduces with increase in the inverse Darcy parameter D-1.  

5. The magnitude of the stresses 
y

   enhances with increase in for all governing parameters M, D-1 

and 1 . On the lower plate the magnitude of the stresses x and 
y

   enhances with increase in 

M, and 1 , while these reduces with increase in the inverse Darcy parameter   D-1.  
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V. GRAPHS AND TABLES 

 

 

Fig. 1: The velocity profile for u with M. 
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Fig. 2: The velocity profile for u with D-1. 
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Fig. 3: The velocity profile for u with 1 . 
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Fig. 4: The velocity profile for w with M. 
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Fig. 5: The velocity profile for w with D-1. 
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Fig. 6: The velocity profile for w with 1 . 
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Table I: The shear stresses (
x

 ) on the upper plate 

P0 = P1 I II III IV V VI VII 

2 0.084673 0.156783 0.246352 0.062501 0.046782 0.107466 0.145336 

4 0.121453 0.186299 0.268751 0.116002 0.083146 0.144236 0.181673 

6 0.146755 0.208888 0.278752 0.118208 0.121482 0.180083 0.256335 

10 0.163752 0.408755 0.544799 0.127436 0.118442 0.207853 0.501652 

 
 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

     D
1

 2000 2000 2000 3000 4000 2000 2000 

1
  5 5 5 5 5 6 8 

Table II: The shear stresses (
y

 ) on the upper plate 

  P0 = P1 I II III IV V VI VII 

2 -0.01467 -0.02561 -0.03216 -0.01565 -0.01682 -0.01512 -0.01811 

4 -0.01814 -0.02848 -0.04821 -0.01255 -0.02845 -0.02147 -0.02533 

6 -0.02107 -0.03245 -0.04552 -0.02856 -0.03215 -0.02658 -0.03275 

10 -0.04251 -0.06837 -0.07550 -0.05478 -0.06253 -0.05865 -0.08314 

 
 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

     D
1

 2000 2000 2000 3000 4000 2000 2000 

1
  5 5 5 5 5 6 8 

Table III: The shear stresses (
x

 ) on the lower plate  

   P0 = P1 I II III IV V VI VII 

2 0.000048 0.000054 0.000064 0.000041 0.000032 0.000052 0.000084 

4 0.000066 0.000072 0.000084 0.000042 0.000035 0.000062 0.000098 

6 0.000072 0.000078 0.000089 0.000052 0.000042 0.000082 0.000099 

10 0.000084 0.000094 0.000132 0.000062 0.000048 0.000092 0.000147 

 

Table IV: The shear stresses (
y

 ) on the lower plate 

P0 = P1 I II III IV V VI VII 

2 -0.00467 -0.00599 -0.00653 -0.00321 -0.00301 -0.00546 -0.00675 

4 -0.00521 -0.00684 -0.00744 -0.00427 -0.00357 -0.00584 -0.00748 

6 -0.00633 -0.00744 -0.00831 -0.00524 -0.00427 -0.00752 -0.00846 

10 -0.00801 -0.00856 -0.00946 -0.00622 -0.00582 -0.00942 -0.00999 

 
 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

    D
1

 2000 2000 2000 3000 4000 2000 2000 

1
  5 5 5 5 5 6 8 

      

 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

     D
1

 2000 2000 2000 3000 4000 2000 2000 

1
  5 5 5 5 5 6 8 
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