

A NEW POLICY FOR THE SERVICE REQUEST ASSIGNMENT PROBLEM
WITH MULTIPLE SEVERITY LEVEL, DUE DATE AND SLA PENALTY SERVICE REQUESTS

Anshul Sheopuri
Sai Zeng

Chitra Dorai

IBM T.J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532, U.S.A.

ABSTRACT

We study the problem of assigning multiple severity level
service requests to agents in an agent pool. Each severity
level is associated with a due date and a penalty, which is
incurred if the service request is not resolved by the due
date. Motivated by Van Meighem (2003), who shows the
asymptotic optimality of the Generalized Longest Queue
policy for the problem of minimizing the due date depend-
ent expected delay costs when there is a single agent, we
develop a class of Index-based policies that is a generaliza-
tion of the Priority First-Come-First-Serve, Weighted
Shortest Expected Processing Time and Generalized Long-
est Queue policy. In our simulation study of an assignment
system of a large technology firm, the Index-based policy
shows an improvement of 0-20 % over the Priority First-
Come-First-Serve policy depending upon the load condi-
tions.

1 INTRODUCTION

Several large companies employ Service Request Assign-
ment Systems (SS) to support hardware and software is-
sues faced by users. Such services are typically outsourced
to IT service providers. The performance of the system is
governed by a mutually agreed contract between the buyer
and the service provider.
 In our setting, the penalties espoused in the contract
are as follows: If the request is not resolved by its due date,
a (fixed) Service Level Agreement (SLA) penalty cost is
incurred. Otherwise, no cost is incurred. The due date and
penalty cost for a service request are determined by the se-
verity level assigned to the request by a Subject Matter Ex-
pert (SME), who reviews it prior to the assignment deci-
sion.

We model the problem of service request assignment
as a continuous time optimization problem. Since the prob-
lem is intractable, we develop near-optimal policies. Spe-
cifically, the policy answers the following two questions
dynamically.

• If at least one agent is free and there are multiple

service requests waiting to be served, which re-
quest should be assigned to one of the free agents?

• If all agents are busy and there is a waiting service
request, which service request that is being served
should be preempted, if at all?

 The remainder of the section is organized as follows.
Section 1.1 discusses the relevant literature. We then intro-
duce the notation and formulate the problem in Section 1.2.
In Section 1.3, we summarize our main results.

1.1 Literature Survey

The literature on modeling the performance of (SS) has
mainly focused on addressing two questions: (1) staffing,
i.e., how many agents should be staffed on a particular
shift, and, (2) assignment, i.e., what policy should be fol-
lowed to assign service requests to agents? Several re-
searchers have addressed the question of staffing and as-
signment jointly (for example, (Gurvich et al. 2007), and
(Bassamboo et al. 2004)). However, oftentimes, staffing
decisions are tactical and cannot be implemented simulta-
neously with assignment decisions. Consequently, the bulk
of the literature examines the staffing and assignment deci-
sions independently. For example, a well-cited rule for
staffing is the “Square root safety rule”, which suggests
keeping a square root of workload safety stock of agents,
analogous to classical inventory models (Tijms 2003). Be-
low, we focus on the literature related to assignment only
as it is most relevant to our work.

1661 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24061044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sheopuri, Zeng, and Dorai

 Among the policies suggested for assignment, the
First-Come-First-Serve (FCFS) is most common. This in-
tuitive policy suggests that requests be assigned in the or-
der in which they are received. In systems with service re-
quests of multiple severity levels, Priority FCFS is a
natural extension to the FCFS policy. In this policy, re-
quests are assigned in the order that they are received, but
with strict preference given to higher severity requests. In
the sequel, we use FCFS and Priority FCFS interchangea-
bly to mean severity level preference based assignment.
 While the FCFS policy is intuitive, it does not con-
sider the penalty costs, due dates, etc. that are seen in prac-
tice. Recently, researchers have developed policies with
the objective of minimizing the costs stipulated in the con-
tract. Van Meighem (1994) shows the asymptotic optimal-
ity of the Generalized cμ rule for convex delay costs and a
single agent. According to this policy, service requests are
assigned dynamically based on the product of the service
rate and marginal cost at the age (or time in system) of ser-
vice request.
 Van Meighem (2003) studies costs which are a func-
tion of whether the job has resided in the system longer
than its due date. He observes that this cost structure is in-
tractable, and thus considers a sequence of continuous cost
functions, which is discontinuous in the limit. He uses the
Generalized cμ rule analysis to show that the Generalized
Longest Queue (GLQ) policy is asymptotically optimal for
this cost structure when there is a single agent. We will re-
view this policy in more detail in the Section 2.
 The literature on scheduling is related to our problem.
For a review of the literature on scheduling, we refer the
readers to Pinedo (1995). Here, we state one result that we
will refer to later in the paper. For the problem of schedul-
ing requests to minimize the weighted flow time with a
single agent, Smith (1959) shows the optimality of the
Weighted Shortest Processing Time (WSPT) policy. Ac-
cording to this policy, each service request is assigned a
number, given by the product of the weight assigned to the
request and the inverse of the processing time. The re-
quests are then scheduled for service in descending order
of the numbers assigned to them. An extension to this pol-
icy which schedules requests in the product of the weights
and inverse of mean processing times (Weighted Shortest
Expected Processing Times (WSEPT)) is known to be the
optimal for the case of stochastic processing times for a
single agent (Rothkopf 1966).

1.2 Notation and Problem Definition

Let the service requests comprise n levels of severity, de-
noted by 1, 2, …, n. We will use k to denote the severity
level of a generic service request. Let μk be the average
service rate, i.e., the inverse of the mean processing time of
a severity k request. Let Dk be the due date of severity k
service requests. Let ck be the penalty cost incurred if a

service request is not resolved within its due date Dk, i.e.,
the penalty cost incurred is zero if a severity k request is
resolved in time Dk and ck if it takes longer to resolve the
request.
 The contract between the buyer and service provider
stipulate higher SLA cost penalties for the more important
severity levels. Requests with higher penalty costs are also
more difficult to solve and their mean service rates are thus
lower. Consequently, without loss of generality, we assume
that the penalty costs and service rates are ordered in sever-
ity levels as follows:

nccc >>> ...21 and nμμμ <<< ...21 .

 Before we formulate the problem, we formally define
what we mean by a policy. A policy π is a dynamic deci-
sion rule to determine which service requests to assign to
agents and which service requests to preempt, given the
state of the system. In order to write the objective function,
we need some additional notation. Let Sk be the set of se-
verity k service requests. Let ikτ be the sojourn time of the
ith request in the set Sk. The problem is to find the policy π
that minimizes the penalty cost, i.e.,

{ }
∑ ∑

∈ ∈

>
nk Si

ikkk
k

Dc
,...,2,1

}{1 τ .

1.3 Our Main Results

We develop a class of policies, which we call Index-based
policies that is a generalization of three well-know poli-
cies: First-Come-First-Serve, Weighted Shortest Expected
Processing Time and Generalized Longest Queue policy.
Each of these polices is either optimal for a special case of
our problem or a related problem.

We benchmark the performance of our policies through
a simulation study. We simulate the service request as-
signment process of a large technology firm to evaluate the
performance of our policies. The main insights of our study
are:

• The cost of the best Index-based policy, within the

class of index-based policies compared to the
FCFS policy shows an improvement of 0-20% for
the base case of problem instances in the dataset.

• Allowing preemption can add significant value to
the business process. However, for certain load re-
gimes, preempting service requests without consid-
ering elapsed service time can lead to poorer per-
formance.

• The best Index-based policy perform better than
the FCFS policy on a customer satisfaction metric
that we develop.

1662

Sheopuri, Zeng, and Dorai

The remainder of the paper is structured as follows. In Sec-
tion 2, we derive our policy class, which we refer to as In-
dex-based policies. In Section 3, we perform an extensive
numerical investigation. We briefly discuss the implemen-
tation in Section 4 and discuss the scope for future research
in Section 5.

2 INDEX-BASED POLICIES

Recall that any policy answers the following two questions
dynamically.

• If at least one agent is free and there are multiple

service requests waiting to be served, which re-
quest should be assigned to one of the free agents?

• If all agents are busy and there is a waiting service
request, which service request that is being served
should be preempted, if at all?

 In the sequel, we propose a class of index-based poli-
cies to make the assignment decision. We then discuss the
various preemption schemes that we consider.
 To motivate our class of index-based policies, we first
examine Van Meghem (2003) in detail. As stated earlier,
he considers a (SS) with requests of multiple severity lev-
els, due dates, SLA penalty costs and a single agent. Using
results from Van Meighem (1994), he shows that a dy-
namic priority rule, which he refers to as the Generalized
Longest Queue (GLQ) policy, is asymptotically optimal.
The GLQ policy is FCFS within severity level and priori-
tizes the severity level with highest index at time t, defined
as

kk

k
k D

tNtI
λ

)()(= ,

 where Nk(t) is the number of severity k requests in the
system at time t.
 While the GLQ policy proposed by Van Meighem
(2003) is asymptotically optimal for the case of a single
agent, our setting is of multiple agents. We propose a new
policy class with two parameters, x and y, which we call
the index-based class of policies. For a given x and y, the
policy is a modification of the GLQ policy with a SLA pe-
nalty cost and service rate term considered multiplica-
tively:

kk

ky
k

x
kk D

tN
ctIn

λ
μ

)(
)()()(= .

 We use π(x,y) to denote an Index-based policy with
parameters x and y. The index based policy is sensitive to
SLA penalty costs and service rates, which allows us to

show that this class encompasses the FCFS policy, the
WSEPT policy and the GLQ policy. We state this result
rigorously next.

Theorem 1 Suppose that the number of arrivals in [0, T] is
bounded above by M(T) < ∞. Then, for the class of Index-
based policies π(x,y) operated during [0,T], the following
statements hold:

1) For a given y, there exists m1(T) < ∞ such that for x >
m1(T) , π(x,y) is FCFS.
2) There exists m2(T) < ∞ such that for x = y > m2(T) ,
π(x,y) is WSEPT.
3) For x = y = 0, π(x,y) is GLQ.

Proof: Omitted.

 The best policy, within the class of Index-based poli-
cies, is computed by means of a search over the parameters
x and y. We refer to this as the best Index-based policy.
Since the index-based policy class contains the FCFS pol-
icy, the cost of the best Index-based policy is guaranteed to
be better than the FCFS policy.
 We next address the question of when to preempt a
service request in case all agents are busy. We consider
three preemption rules:

(P1) No preemption: Never preempt requests being ser-
viced.
(P2) Partial preemption: Preempt the lowest index service
request that is being served that has been served for less
than the mean of the service time of its severity level if a
higher index service request is waiting.
(P3) Full preemption: Preempt the lowest index service re-
quest that is being served if a higher index service request
is waiting.

 In case of preemption, we allow for work-saving, i.e.,
if a service request is preempted, an agent who is assigned
this request later learns about the prior resolution attempts.
This assumption is not unreasonable as agents document
solutions that have been attempted. However, note that the
insights of our results carry over to the no work-saving
case as well.

3 COMPUTATIONAL RESULTS

To simulate a (SS), we used data from a large service pro-
vider. The dataset contains information about arrival times,
service times, severity levels and due dates regarding 297
service requests. Since we do not know the optimal policy
or the optimal cost, we benchmark the performance of our
policy against the FCFS policy.
 We first make an interesting observation. A histogram
of the empirical distribution of the inter-arrival times of

1663

Sheopuri, Zeng, and Dorai

Severity 1 level tickets clearly shows that the tail is long
(histogram excluded for confidentiality reasons). Conse-
quently, we tested whether the distribution of the inter-
arrival times is sub-exponential Weibull using a chi-
squared test. The null hypothesis that the distribution is
Weibull with parameters k = 0.74 and λ = 54.61 was not
rejected at 95 % statistical significance. The reader may
note that this observation is in contrast with the assumption
of Poisson arrivals that is common in the queueing litera-
ture. This underscores the value of a simulation-based ap-
proach to our problem.
 In out computational experiments, we compare the
best Index-based policy with the FCFS policy. The reader
may note that the optimal value of the parameters x and y
is computed by means of search. Further, as stated before,
since the FCFS policy belongs to the Index-based policy
class, the best Index-based policy is guaranteed to perform
better than the FCFS policy on an expect cost penalty
measure. Of course, evaluating the best Index-based policy
through a search on the parameter space of x and y means
that the best Index-based policy is computationally more
intensive than the FCFS policy. However, it is worth add-
ing that the computational effort required to determine the
best Index-based policy may be controlled through coarse-
ness of the search over the parameter space.
 The remainder of the section is structured as follows.
We first discuss the performance of the Index-based class
of policies for the base-case of parameters in the dataset
(The parameters have been normalized due to confidential-
ity concerns) in Section 3.1. We then discuss the value of
preemption in the business process in Section 3.2. Section
3.3 discusses sensitivity analysis with respect to the service
rates and the penalty costs. Finally, in Section 3.4, we dis-
cuss the performance of our policies on a Customer Satis-
faction score that we develop.

3.1 Performance of Policies

We first test the performance of our policy for the problem
instances of SLA penalty costs and mean service times in
the data for various load conditions (or number of agents).
The values of penalty costs and service rates for the base
case are 1,2,5,100 4321 ==== cccc (USD) and

5,1000,4000,16000 4321 ==== μμμμ (in ser-
vice requests / min). We benchmark the performance of
our policy by comparing the cost that can be “affected”
with that of the FCFS policy. We define this formally next.
 Define the Sunk cost as the cost of service request vio-
lations corresponding to requests whose service time ex-
ceeds the due date. Intuitively, this cost corresponds to
SLA penalty violations which are unavoidable, i.e., the
cost incurred irrespective of the number of the agents that
are staffed.

 Since any policy that we propose cannot affect the
sunk cost associated with SLA penalty violations, we com-
pute the difference of the cost of SLA penalty violations
and Sunk cost as the metric of performance of a policy. We
define this to be the Operating cost of the policy. To
benchmark the performance of the index policy, we com-
pute the percentage improvement of the Operating cost of
the index policy over the Operating cost of the FCFS pol-
icy.
 We first summarize our results. For each problem in-
stance of the number of agents, we compare the cost of the
best preemption scheme with the Index-based policy and
the best preemption scheme with the FCFS policy. We note
that the percentage improvement is 0-20% depending upon
the number of agents. The detailed results are provided in
Table 1 in the Appendix.
 Next, we discuss the performance of our policy com-
pared to the FCFS policy as the number of agents is varied.
We first note that the performance of both policies is simi-
lar when the number of agents is either small or large. The
intuition behind this observation is as follows: When the
number of agents is small, both policies primarily target
reductions in severity 1 service requests. When the number
of agents is large, some agents are “always free” and thus
the policy need not be intelligent. This can be seen in Fig-
ure 1, which shows the percentage improvement in Operat-
ing Cost of the Index based policy against the FCFS policy
as the number of agents is varied. Thus, we recommend us-
ing Index-based policies in medium load conditions.

0.0

5.0

10.0

15.0

20.0

25.0

0 5 10 15

Number of Agents

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Percentage
Improvement

Figure 1: Comparison of Index-based policy with the FCFS
policy

3.2 Value of Preemption

We now investigate the value of preemption in the busi-
ness process. We compare the performance of the three
preemption schemes that we consider: (1) No preemption,
(2) Partial preemption and (3) Full preemption.
 We make the following observations from Figure 2,
which shows the performance of the Index-based policies
for the three cases of preemption. Our first observation is
that none of the policies dominate the other two for all load

1664

Sheopuri, Zeng, and Dorai

conditions. Secondly, when the number of agents is large,
the performance under the three preemption schemes is
identical.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

Number of Agents

C
os

t Preemption
No Preemption
Partial Preemption

Figure 2: Value of preemption for Index-based policies

 We summarize our recommendations of the preemp-
tion scheme that performs well for Index-based policies for
different number of agents (see Table 2). The entries in the
table may be interpreted as follows: A “X” in the ith row
and jth column denotes that the jth preemption scheme per-
forms well for the ith load condition.

Table 2 Recommendation for the different preemption
schemes

Agents No Partial Full
Low X X
Medium X
High X X
Very High X X X

3.3 Sensitivity Analysis

Next, we consider the performance of the best Index-based
policy against the FCFS policy when the penalty costs and
service rates are varied. We expect that greater benefit can
be derived from using the Index-based policy against the
FCFS policy if the penalty costs are “similar” or the ser-
vice rates are “dissimilar” across different severity levels,
because in either case, there is a greater incentive to give
assignment preference to a lower severity level. We make
this notion rigorous below.

Let xi, i = 1, 2, 3 be n-dimensional vectors and let

xi =),...,,(21
i
n

ii xxx .

Definition: Let .2 nk ≤≤
Let }{ knjxx jj \,...,3,2,121 ∈∀= . We say that the com-
ponents of x2 are less similar than those of x1 (the compo-
nents of x1 are more similar than those of x2) if

 |||| 2
1

21
1

1
++ −≤− kkkk xxxx

 The similarity of the components of a vector, when on-
ly component k is varied, is defined with respect to com-
ponent k+1 since the Index-based policy would outperform
the FCFS only by reducing the number of lower severity
level violations. This intuition that the benefit from Index-
based policies is higher when the SLA penalty costs are
more similar is confirmed in the figure below (see Figure
3). A similar result may be obtained for less similar service
rates (see Figure 4). Both Figures 3 and 4 are for the case
of Full preemption, keeping all other parameters of the
base case fixed.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Number of Agents

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

c_1 = 8
c_1 = 100

Figure 3: Sensitivity with Penalty Cost

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Number of Agents

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

mu_2 = 8000
mu_2 = 4000

Figure 4: Sensitivity with Service Rates

3.4 Customer Satisfaction

The reader may note that the structure of the penalty func-
tion results in the following intuitive property of an opti-
mal policy: “If a service request is not resolved by its due-
date, it is optimal to never resolve it”. This is a conse-
quence of the fact that the contract does not penalize non-
resolution of service requests. However, in several practi-
cal scenarios, there is a good-will cost associated with ei-
ther not resolving a request or resolving it too late. Conse-
quently, our policy does not have this property. Instead, we

1665

Sheopuri, Zeng, and Dorai

measure the impact of the goodwill cost by evaluating a
customer-satisfaction metric.
 We use the following Customer Satisfaction metric,

{ }
∑ ∑

∈ ∈

>+
nk Si

ikkk
k

Dc
,...,2,1

})1{(1 τβ ,

 the total cost of SLA violations when the due date of
each request is extended by a factor of β > 0. Clearly, one
can develop other customer satisfaction metrics as well.
 Our results show that the best Index-based policy has a
significantly greater customer satisfaction metric that the
FCFS policy for any number of agents for the case of β =
0.25 (see Figure 5). Consequently, we conclude that the
Index-based policies do not result in a poorer customer sat-
isfaction than the FCFS policy.

0.0

5.0

10.0

15.0

20.0

25.0

0 5 10 15

Number of Agents

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Percentage
Improvement

Figure 5: Customer Satisfaction of Index-based policy ver-
sus FCFS policy

4 IMPLEMENTATION

We now discuss an implementation of (SS). The imple-
mentation has two modules. The first module performs
batch or static analysis to compute the optimal parameters
of the Index-based policy at the end of every review pe-
riod, say everyday. The second module takes these parame-
ters as input from the static module to enable the dynamic
real-time assignment decision during the next period, for
example, the next day.
 We now examine the implementation in detail. The
historical service request information is maintained in the
Operational Database 1, from where is extracted periodi-
cally using SQL scripts 2 (say everyday) to determine the
optimal policy, within the class of index-based policies.
The optimal values of the parameters x and y are fed into
the assignment system 7, which is used to assign requests
extracted using SQL scripts 6 extracted from the database
5 which is populated with daily arrivals at every small time
increment. The assignment decision is then fed into data-
base 8, which is then extracted by the agents (see Figure
6).

Determining optimal x and y
within Index-based policy class

x*, y*

Dispatching
System

TicketsDYNAMIC,
at every

small time
increment

STATIC, at
the end of
every day

1

2

3

4
5

6

SQL
scripts

7

8

SQL
scripts

Operational
DB

Daily
Request DB

Operational
DB

Figure 6: An illustrative implementation.

5 CONCLUSION AND FUTURE RESEARCH

In this paper, we propose an algorithm to assign service re-
quests to agents. The class of policies that we propose,
which we refer to as index-based policies, is motivated by
the GLQ policy proposed by Van Meighem (2003). The
policy class contains the FCFS, WSEPT and GLQ policy.
The average improvement of the Index-based policy over
the FCFS policy is 0-20%, depending upon the load condi-
tion.
 One drawback of our analysis is that we are unable to
offer guidance on the optimality gap of our policies. Un-
derstanding the optimality gap would enable us to deter-
mine the scope for improvement from using more sophisti-
cated policies than those proposed in this paper.
 Though our model captures several dimensions of
(SS), it has certain limitations as well. In particular, it
would be interesting to capture the skill level of agents and
use this information in the decision of assigning service re-
quests to agents. Developing new policies that incorporate
this information would definitely enrich the model and be
of practical interest.

ACKNOWLEDGEMENTS

The authors would like to thank Vijay Iyengar and Abhijit
Bose, IBM T.J. Watson Research Center for several help-
ful suggestions relating to benchmarking and process in-
sights respectively.

1666

Sheopuri, Zeng, and Dorai

APPENDIX

Table 1

REFERENCES

Basamboo J.M. Harrison and A. Zeevi 2004. Design and
control of a large call center: Asymptotic analysis of
an LP-based method" . Working Paper.

Gurvich I, Armony M., Mandelbaum A. 2008. Service
Level Differentiation in Call Centers with Fully Flexi-
ble Servers. Management Science, forthcoming.

Van Meighem, J 1994. Dynamic scheduling with Convex
delay Costs: The Generalized cm rule. The Annals of
Applied Probability. 5(3) 808-833.

Van Meighem, J. 2003. Due date Scheduling: Asymptotic
Optimality of Generalized Longest Queue and Gener-
alized Largest Delay Rules. Operations Research
51(1) 113-122.

Pinedo, M. 1995. Scheduling Theory, Algorithms and Sys-
tems. Prentice Hall.

Rothkopf, M. 1966. Scheduling with random service times.
Management Science 12 703-713.

Smith, W.E. 1956. Various Optimizers for Single Stage
Production. Naval Research Logistics Quarterly 3 59-
66.

Henk C. Tijms. 2003. A First Course in Stochastic Models.

AUTHOR BIOGRAPHIES

ANSHUL SHEOPURI is a Research Scientist with the
Business Insight group at the IBM T.J. Watson Research
Center. He is also an Assistant Adjunct Professor at the
Leonard N. Stern School of Business, New York Univer-
sity. He has authored papers in conferences and journals
such as M&SOM, Interfaces, etc. His current research in-
terests include process optimization, inventory manage-
ment and queueing theory. He received his PhD from the
Leonard N. Stern School of Business, New York Univer-
sity in Operations Management and a B.Tech. in Mechani-
cal and Industrial Engineering from the Indian Institute of
Technology, Madras.

SAI ZENG is a Research Scientist at the IBM T.J. Watson
Research Center. Her research interest is in Business In-
sight Generation, Product Quality Management, Systems
Engineering, Product Lifecycle Management, Computer
Aided Design and Computer Aided Engineering. More
specifically, her expertise is focused on process improve-
ment for Supplier Quality management, Process and Sys-
tem Collaboration and Integration Technologies, Predictive
Analysis for Finance and Banking industry and associated
Business Consulting Services offerings. Her research inter-
ests and past experience are also in reliability analysis
modeling for product design, and product design-analysis
integration. She has 20 journal/conference publications and
8 pending patents. She received the PhD degree in Me-
chanical Engineering, MS degree in Electrical and Com-
puter Engineering from the Georgia Institute of Technol-

Cost of Index-based Policy Cost of FCFS Policy # Agents No Partial Full No Partial Full Savings %
Savings

1 5186 4618 4618 5227 5127 4627 9 0.3
2 4912 4608 4608 4917 5117 4617 9 0.3
3 4561 3478 3503 4562 4464 3504 26 1.4
4 4153 3478 3073 4453 4464 3074 1 0.1
5 3723 3653 3057 3753 3653 3057 0 0.0
6 2851 2799 2967 3351 2851 3059 52 4.5
7 2512 2464 2662 2664 2464 3059 0 0.0
8 2153 2177 2432 2288 2178 3059 25 4.8
9 1974 1917 2432 2027 1917 2468 0 0.0

10 1754 1757 1762 1773 1765 1762 8 6.6
11 1642 1648 1667 1644 1765 1762 2 20.0
12 1632 1646 1667 1632 1646 1668 0 0.0
13 1632 1632 1632 1632 1632 1632 0 0.0
14 1632 1632 1632 1632 1632 1632 0 0.0

1667

Sheopuri, Zeng, and Dorai

ogy, MS and BS degrees in Mechanical Engineering from
Huazhong University of Science and Technology, China.

CHITRA DORAI is a Senior Research Manager at the
IBM T.J. Watson Research Center in New York. Her re-
search interests are in the areas of cloud computing, dis-
tributed stream processing systems, e-learning media man-
agement, mobile imaging, multimedia content analysis,
computer vision, pattern recognition, and machine learn-
ing. Chitra Dorai has published over 85 technical papers in
premier IEEE and ACM conferences and journals, and has
been granted multiple patents. She was the Editor of a
book on Media Computing: Computational Media Aesthet-
ics in 2002 and has contributed chapters to various books
and edited collections in multimedia. She also served as the
Associate Editor of IEEE Transactions on Multimedia and
the Associate Editor of the Pattern Recognition Letters
journal. She received the B. Tech. degree in Electrical En-
gineering from the Indian Institute of Technology, Madras,
M.S. degree in Electrical Engineering from the Indian In-
stitute of Science, Bangalore, and her Ph.D. from the De-
partment of Computer Science at Michigan State Univer-
sity, with the Distinguished Academic Achievement
Award. She is a senior member of the IEEE and a member
of the ACM.

1668

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

