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ABSTRACT
We propose an adaptive Memetic Particle Swarm Optimiza-
tion algorithm where local search is selected from a pool of
different algorithms. The choice of local search is based on a
probabilistic strategy that uses a simple metric to score the
efficiency of local search. Our study investigates whether
the pool size affects the memetic algorithm’s performance,
as well as the possible benefit of using the adaptive strat-
egy against a baseline static one. For this purpose, we em-
ployed the memetic algorithms framework provided in the
recent MEMPSODE optimization software, and tested the
proposed algorithms on the Benchmarking Black Box Opti-
mization (BBOB 2012) test suite. The obtained results lead
to a series of useful conclusions.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization; G.4 [Mathematical Software]

Keywords
Global optimization, memetic algorithms, hybrid algorithms,
black-box optimization, local search

1. INTRODUCTION
Over the past 20 years, Evolutionary Algorithms (EAs)

and Swarm Intelligence (SI) approaches have been estab-
lished as powerful optimization tools for solving global opti-
mization problems [1, 2, 3]. Torn and Zilinskas [4] proposed
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that two major and competing goals govern the design of a
global search strategy: exploration ensures that every part
of the domain will be covered and exploitation concentrates
the effort in a close neighborhood of the best detected posi-
tions.

Modern optimization algorithms achieve these two goals
by combining a global and a local optimization component.
Such hybrid schemes that are defined within the broad fam-
ily of EAs, are called memetic algorithms (MAs), follow-
ing [5] that defines “a memetic algorithm as an evolutionary
algorithm that includes one or more local search within its
evolutionary cycle”. Naturally, this definition can be ex-
tended to include SI methods such as Particle Swarm Opti-
mization (PSO).

Preliminary MAs were defined by a single combination of
a global and a local strategy. However, there is an increasing
recent trend to consider more than one local search strate-
gies during the search. For this purpose, a pool of local
search methods is usually defined and the MA selects one
among them to exploit a current best position. The selection
can be performed in various ways by using scoring mecha-
nisms and probability distributions [6, 5, 7, 8]. In relevant
literature, these methods are also known as hyperheuristic
MAs, multi-memes, and meta-Lamarckian learning methods
and they were originally designed to accompany standard
GA operators.

Using a pool of local search algorithms with a clever se-
lection mechanism, an MA can be effective in various prob-
lem instances. Indeed, consider the case where the objective
function is discontinuous or has large plateaus. A single local
search algorithm that uses derivatives and line search, would
probably fail to significantly improve a local best point. On
the other hand, the same algorithm could achieve high con-
vergence rate and accuracy when applied on a sufficiently
smooth function.

MAs that adaptively select from a pool of local search al-
gorithms, are usually called Adaptive MAs [6]. Algorithms
of this category can be divided according to the adaptation
type as static, adaptive and self-adaptive. An algorithm is
called static when no form of feedback is considered dur-
ing the search. On the other hand, it is called adaptive
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if feedback of the overall search governs the choice of local
optimization algorithms. Self-adaptive approaches usually
apply evolutionary operators to co-evolve the local searches.

Besides the aforementioned classification, the adaptation
may be qualitative if each local optimization algorithm can
be simply characterized as good or bad. On the other hand,
it can be quantitative if the exact value of the feedback is im-
portant to score the local optimization algorithm. According
to their adaptation level, MAs can be further characterized
as external if a problem-specific knowledge from past expe-
rience of the practitioner is exploited, local when only a part
of the trace of the algorithm is used to adapt the decision,
and global when the complete knowledge of the run is used.

The present work extends the MAs proposed in [9] and im-
plemented in the MEMPSODE optimization software [10].
These hybrid approaches are based on the Unified Particle
Swarm Optimization (UPSO) [11, 12] algorithm, combined
with local search algorithms provided by the Merlin opti-
mization environment [13]. The purpose of our study was
twofold. Firstly, we aim at investigating the impact of the
local search pool to the overall algorithm, even in the case of
the simplest static scheme where all local search algorithms
have equal probability of appearance. A similar study ap-
pears in [14] providing many interesting results, although for
a limited number of test functions.

Secondly, we introduce a simple scoring and selection mech-
anism that adaptively selects an appropriate local search
from the pool. Based on the categorization presented above,
our variant belongs to the category of quantitative and local
adaptive MAs. Extensive testing showed that the proposed
scheme outperforms the simple static one regardless of the
local search pool size, while increasing the pool size also
increases the overall efficiency of the method.

The rest of the paper is organized as follows: in Section 2
we describe in detail our adaptive MA scheme. In Section 3,
we present experimental results on a popular test set, and
Section 4 exposes conclusive remarks and possible future
research extensions.

2. PROPOSED APPROACH
The proposed algorithmic schemes are presented in the

following section, along with the necessary background in-
formation. The new algorithm is based on [9, 10] with the
extension of adding multiple local searches that are stochas-
tically selected following either a uniform random distribu-
tion (Static Random scheme) or an adaptive one, based on
local search scoring (Adaptive Random scheme).

2.1 Unified Particle Swarm Optimization
Let the n-dimensional continuous optimization problem:

min
x∈X⊂Rn

f(x), (1)

where the search space X is an orthogonal hyperbox defined
as:

X ≡ [l1, r1]× [l2, r2]× · · · × [ln, rn] ⊂ Rn.

Also, let the index set:

I = {1, 2, . . . , N}.

A swarm of N particles is defined as a set of search points:

S = {x1, x2, . . . , xN} ,

where each particle is an n-dimensional vector:

xi = (xi1, xi2, . . . , xin)> ∈ X, i ∈ I.

The particles move by assuming an adaptable position shift,
called velocity, denoted as:

vi = (vi1, vi2, . . . , vin)> , i ∈ I,

and they store the best position they have found,

pi = (pi1, pi2, . . . , pin)> ∈ X, i ∈ I.

in memory. If t denotes the iteration counter, the parti-
cles’ positions and velocities are updated at each iteration
as follows [15]:

v
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[
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ij + c1R1
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(t)
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ij

)
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(
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gij
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, (2)

x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij , (3)

where i ∈ I and j = 1, 2, . . . , n. This is the constriction
coefficient variant of PSO, named after the parameter χ in
Eq. (2), which is used to restrict the magnitude of the ve-
locities and it was derived through the stability analysis of
PSO [15]. The rest of the parameters are the positive con-
stants c1 and c2, also called cognitive and social parameter,
respectively; and R1, R2, which are random numbers that
differ for each i and j, drawn from a uniform distribution in
the range [0, 1].

The parameter gi controls the information-sharing be-
tween the i-th particle and the rest. A neighborhood of the
i-th particle is defined in the form of a set of indices of other
particles. This set is determined according to user-defined
communication schemes, also called neighborhood topologies,
among the particles. A very popular neighborhood topology
is the ring where the particles assume a circular communi-
cation scheme with each one communicating only with the
particles with neighboring indices. Thus, for the i-th parti-
cle, the ring topology defines neighborhoods of the form:

Ni = {i−m, . . . , i− 1, i, i+ 1, . . . , i+m} ,

with the indices recycling at the end, i.e., index 1 follows
exactly after N . The parameter m controls the neighbor-
hood’s size and it is often called neighborhood radius. Thus,
the parameter gi is defined as:

gi = arg min
j∈Ni

f(pj).

Obviously, the topologies influence the flow of information
among the particles and, hence, may affect the algorithm’s
efficiency and effectiveness. The special case where Ni ≡ I
for all i ∈ I, is called the gbest (global) PSO model, while
all other cases with Ni ⊂ I define lbest (local) PSO models.

The best position of each particle is updated at each iter-
ation as follows:

p
(t+1)
i =

 x
(t+1)
i , if f

(
x
(t+1)
i

)
< f

(
p
(t)
i

)
,

p
(t)
i , otherwise.

(4)

The stability analysis of Clerc and Kennedy [15] revealed
a trade-off between PSO’s parameters, in order to achieve
satisfactory convergence properties. Based on this analysis,



Table 1: Memetic strategies of the MPSO algorithm.
Scheme Point of local search application

Scheme 1 pg (overall best position)
Scheme 2 Each pi, i ∈ I, with fixed probability ρ ∈ (0, 1]
Scheme 3 pg and some randomly selected pi, i ∈ I

the following parameter values are frequently used as default
choices:

χ = 0.729, c1 = c2 = 2.05,

although alternative successful setups have also been re-
ported for common test problems [16].

The Unified PSO (UPSO) algorithm generalizes the orig-
inal PSO model by combining lbest and gbest velocity up-
dates. UPSO stemmed from the speculation (supported
by experimental evidence) that harnessing search directions
with different exploration / exploitation properties can pro-
duce more efficient schemes. Let:
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denote the velocity update of xi in the gbest and lbest PSO
model, respectively, where g is the index of the overall best
particle, i.e.:

g = arg min
j∈I

f(pj).

Then, UPSO’s update equations are defined as [11, 12]:

U (t+1)
ij = uG(t+1)

ij + (1− u)L(t+1)
ij , (5)

x
(t+1)
ij = x

(t)
ij + U (t+1)

ij , (6)

where i ∈ I and j = 1, 2, . . . , n. The parameter u ∈ [0, 1] is
called unification factor and it balances the influence (trade-
off) of the gbest and lbest velocity update. Obviously, the
lbest PSO model is retrieved from Eq. (5) for u = 0, while
u = 1 stands for the gbest PSO model. All intermediate
values in the range (0, 1) produce combinations with diverse
convergence properties.

2.2 Memetic Strategy
There is a number of parameters to determine when de-

signing MAs. These parameters refer to essential features of
the algorithm regarding the point and frequency of applica-
tion of the local search. Although additional information on
the objective function may offer some guidance, in the gen-
eral case these parameters are empirically determined based
on a trial-and-error procedure.

For example, the Memetic PSO (MPSO) proposed in [9]
was based on the fundamental schemes, called memetic strate-
gies, reported in Table 1. These schemes can be applied
either at each iteration or whenever a specific number of
consecutive iterations has been completed. Obviously, local
search is applied on a best position only if it has not been
previously selected for local search or it has changed from
the last application of local search.

Alternative memetic strategies may be dictated from spe-
cific features of the objective function. In general, local
search can provide crucial improvements of the detected so-
lutions, yet increasing the computational cost of the algo-
rithm. For this reason, its frequency of application shall be

kept low. In practice, MPSO uses only a small fraction of
the swarm as initial points for local search [17].

2.3 Pool of Local Search Algorithms
In MEMPSODE [10] the UPSO variant draws local opti-

mization methods from the robust Merlin optimization en-
vironment [13]. Up to its current implementation, Merlin
includes 11 local search algorithms and provides a rich va-
riety of controlling options. In this work we chose a subset
of 4 diverse local searches, and we also included a random
search module via the plugin mechanism (see [13]).

Merlin also provides scripting capabilities that verify if a
point is a local minimizer so that unnecessary local search
applications can be avoided. In the remaining we briefly
present the local optimization algorithms that constitute our
pool. Henceforth, a local search approach will be denoted
as LS, and we assume that it returns the approximation of
the minimizer, its function value, and the required number
of function evaluations.

2.3.1 BFGS
BFGS is a well-known quasi-Newton method with line search

[18]. At the start of k-th iteration, a point x(k), the gradi-

ent (or a finite-difference approximation) g(k), and an ap-

proximation B(k) of the Hessian matrix, are available. The
method continues by performing a line search [18] to a direc-

tion s(k) defined as B(k)s(k) = −g(k), and an update from
B(k) to B(k+1), using the BFGS update formula [19]. A
careful selection of line search, in addition to the powerful
local properties of the Hessian approximation, results in one
of the most robust and effective optimization algorithms.
The line search algorithm uses a maximum of 30 function
evaluations with parameters set at ρ = 0.0001 and λ = 0.9.

2.3.2 SIMPLEX
This method belongs to the class of direct search methods

for nonlinear optimization. It was designed by Nelder and
Mead [20]. The algorithm is based on the concept of simplex
(or polytope) in Rn, which is a volume element defined by
(n+1) vertices. The input of the algorithm is an initial sim-
plex. The SIMPLEX algorithm then moves the initial simplex
towards the minimum by adapting its geometry and finally
shrinks it to a small volume element around the minimizer.
The procedure is derivative-free and proceeds towards the
minimum using a set of n + 1 points. Thus, it is expected
to be tolerant to ill-conditioned cases. The transformation
rules include reflection, expansion, and contraction of the
initial simplex. The initial simplex was constructed so as to
occupy 20% of the initial search space. The reflection factor
was set to 1, the contraction factor was set to 0.5, and the
expansion factor to 2.0.

2.3.3 ROLL
This method belongs to the class of pattern search meth-

ods. It proceeds by taking proper steps along each coordi-
nate direction, in turn. Then, the method performs an one-
dimensional search on a properly formed direction, in order
to tackle possible correlations among the variables. User in-
puts the initial point and a user-defined exploration factor
which was set to 3 in our experiments. The one-dimensional
search tolerance was set to 0.001 and uses a maximum of 30
function evaluations.



Algorithm 1: Pseudocode of MPSO.

Input: Objective function, f : X ⊂ Rn → R; swarm size: N ;
unification factor: UF; probability for local search: ρ;

Local search pool: L = {LS(1), LS(2), . . . , LS(k)} ;
Phase period : K; Adaptive flag: adaptive

Output: Best detected solution: x∗, f (x∗).

// Initialization

1 for i = 1, 2, . . . , N do
2 Initialize xi and ui
3 Set pi ← xi // Initialize best position
4 fi ← f (xi) // Evaluate particle
5 fpi ← fi // Best position value

6 acti ← 0// By default all particles perform FEs

7 end
8 for i = 1, 2, . . . , k do

9 c(i) ← 0; S(i) ← 0; P(i) ← 1
k // Initialize

10 end

// Main Iteration Loop

11 Set t← 0 ls← 0
12 while (termination criterion) do

// Determine which particles will apply LS on their best
position

13 for i = 1, 2, . . . , N do
14 if rand() < ρ then
15 acti ← 1 // The i-th particles will perform LSs
16 end

17 end
// Update Best Indices

18 Calculate global best index g1 and local best index g2

// Update Swarm/Population
19 for i = 1, 2, . . . , N do
20 Calculate lbest velocity update, Li, using g2
21 Calculate gbest velocity update, Gi, using g1
22 ui ← UFLi + (1− UF)Gi // Unified PSO
23 xi = xi + ui // Update particle’s position

24 end

// Update Best Positions/Individuals
25 for i = 1, 2, . . . , N do
26 if fi < fpi then
27 pi ← xi
28 fpi ← fi
29 end

30 end

// Evaluate Population or Apply Local search
31 for i = 1, 2, . . . , N do
32 if acti = 0 then
33 fi ← f (xi) // Perform FE
34 else
35 j ← RouletteSelection(P)

36 [p+i , f
+
pi
, fevals]← LS(j)(pi) // Perform LS

37 if adaptive = 1 then

38 score(j) ←
∣∣∣fpi−f+pi

∣∣∣/∣∣∣f+pi
∣∣∣

fevals

39 ls← ls+ 1;
40 if train = 1 and mod(ls,K) = 0 then

// Entering adaptive phase
41 train← 0

42 else if train = 0 and mod(ls, 3 ∗ K) = 0 then
// Entering training phase

43 train← 1
// Average scores and probabilities are

reset
44 for κ = 1, 2, . . . , k do

45 c(κ) ← 0; S(κ) ← 0; P(κ) ← 1
k

46 end

47 end
48 UpdateProb(j, score,S,P, train)

49 end

50 end

51 end

52 end

2.3.4 AUTO
AUTO is a hyper-local search procedure that tries to auto-

matically select the best LS algorithm. The methods BFGS,
ROLL, SIMPLEX and TRUST are invoked one after the other.
For each one, a rate is calculated by dividing the relative
achieved reduction of the function’s value by the number
of function calls spent. The method with the highest rate
is then invoked again and the procedure is repeated. If all
rates assume vanishing values, then all the method toler-
ances are set to zero and the methods are applied in the
following order: ROLL, TRUST, BFGS, SIMPLEX.

2.3.5 RAND
We added a random search component to our arsenal of lo-

cal searches in order to tackle highly discontinuous problems
with low or no structure. In every iteration a random step
is taken from a uniform distribution inside a predefined box.
If the step leads to a smaller function value, it is accepted.
Subsequent rejections reduce the sampling box size, hence
leading to smaller random steps. In our case, we start with
random step inside a box of magnitude up to 5, reduced
by 10% every 50 consecutive rejections. The method was
integrated with the Merlin environment through the plugin
mechanism.

2.4 Adaptive Selection Strategy
As previously mentioned, we introduce a new adaptive se-

lection strategy based on local search improvement scores.
The core of our selection algorithm is roulette wheel selec-
tion [6, 14] where the probabilities can either be static and
equal (Static Random scheme) or dynamically change dur-
ing the algorithm’s execution (Adaptive Random scheme).
The probabilities are used in global context, in the sense
that they are identical for all particles. Alternatively, each
particle could individually update the probabilities for each
local search.

Roulette selection seems a natural choice since it ensures
that the number of applications of a specific local search is
stochastic and proportional to a probability. In this context,
we assume a local search pool:

L = {LS(1), LS(2), . . . , LS(k)},

where local search LS(i) is applied with probability P(i), i =
1, . . . , k. The probability is based on a scoring mechanism
that is updated after the application of the local search. Let
us assume that, at a specific point of the global search, each
local search is applied c(i) time, i = 1, . . . , k. In the j−th

application of the local search LS(i), we define the score
(i)
j

as:

score
(i)
j =

∣∣∣f̃(i)j −f̂(i)j ∣∣∣∣∣∣f̂(i)j ∣∣∣
#fevals

(i)
j

, j = 1, . . . , c(i), i = 1, . . . , k,

where f̃
(i)
j is the objective function value before the applica-

tion of LS(i), f̂
(i)
j is the approximation of the local minimum

and #fevals
(i)
j is the number of function evaluations spent.

Then, the average score, S(i), is defined as:

S(i) =

∑c(i)

j=1 score
(i)
j

c(i)
, i = 1, . . . , k,



Procedure UpdateProb(j, score,S,P, train)

Input: Selected index: i ; Score for the selected:
score(i); Score array: S, Probability array: P,
Phase flag: train

Output: New score: S, New probability: P; New
count: c

1 S(i) ← c(i)S(i) + score

c(i) + 1
// Update mean S(i)

2 c(i) ← c(i) + 1 // Update count c(i)

// If we are not in training phase update the

probabilities

3 if train = 0 then
4 for κ = 1, 2, . . . , k do

5 P(κ) ← S(κ)∑k S(κ)

6 end

7 end

and the probability P(i) for LS(i) is calculated as:

P(i) =
S(i)∑k
i=1 S(i)

, i = 1, . . . , k,

The above probability is assigned during the adaptive ran-
dom scheme.

In the case of the static random scheme we have:

P(i) =
1

k
, i = 1, . . . , k.

From the probability calculation in the adaptive case, we
deduce the following:

(a) The average score for a local search LS(i) is formed using
information from the first iteration up to the current.
This may be restrictive since not all search areas of an
objective function have the same morphology.

(b) If a local search does not perform well in early stages,
then it may be assigned a low score and probability. In
this case we may prematurely cutoff a local search from
the pool without properly assessing its behaviour.

In order to address these deficiencies, we decided to split
the adaptive random process into two phases, which are in-
terchangeably repeated. During the first phase, called train-
ing phase, the algorithm collects information (average score)
for the local searches and uses roulette selection with static
and equal probabilities. After the training phase comes the
adaptive phase, where the probabilities are adapted to the
average score and also updated after every local search.

In the current scheme, the training phase takes place for K
local searches and the adaptive phase for an integer multiple
of K. When the adaptive phase ends, all counters are reset,
probabilities are equalized, and information is gathered from
the start during a fresh new training phase. With this two-
phases scheme, we manage to include a short memory in
our adaptation, since very old information is now excluded.
In addition, all local searches are given a fair participation
share to collect their statistics.

The complete algorithmic scheme of our memetic algo-
rithm is presented in Algorithm 1. The adaptation of the
probabilities is presented in Procedure UpdateProb.

3. EXPERIMENTAL RESULTS
We considered both static and adaptive MAs, taking ad-

vantage of the Merlin’s optimization software local minimiz-
ers. For every instance of our MA, we had to decide between
static and adaptive, as well as regarding the local searches
that comprised the pool. We henceforth denote the BFGS
as B, Simplex as S, Roll as R, AUTO as A, and Random as
N. A local search pool is then defined by its constituents.
For example, BRA stands for a search pool containing the
BFGS, Roll, and AUTO method. Since we limit our search
to search pools of size 5, we end up with(

5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)
= 31,

distinct MA instances for the static case and another 31 for
the adaptive case.

Both strategies were applied on the Black Box Optimiza-
tion Benchmark (BBOB) 2012 test set, which consists of 24
functions of six different dimensions, namely n = 2, 3, 5, 10,
20, 40. Each problem instance was tested 15 independent
times until either its target value was reached with accuracy
of 10−8 or a maximum number of 5× 105 ×n function eval-
uations was reached. If the solution is reached within the
predefined accuracy, the experiment is marked as success,
otherwise as failure. Results are then grouped by dimen-
sion.

3.1 Performance Measures
In order to rank the instances of our MAs, we used two

measures. The first measure is the Expected Running Time
(ERT) [21], which is defined as the expected number of func-
tion evaluations to reach a target function value for the first
time. The second measure is the success rate, i.e., the per-
centage of problems solved with precision 10−8 out of the
total number of problems. The results are first calculated
per function (15 trials/function) and then summed per di-
mension (15 × 24 = 360 trials/dimension). This grouping
is necessary for presentation purposes, due to space limita-
tions.

All 31 instances of various pool sizes, are then ranked
according to the achieved ERT and success rate. An instance
is ranked in place r with respect to ERT, if it is better
(smaller) than r other instances. In a similar manner, an
instance is ranked in place r with respect to its success rate,
if it is better (larger) than r other instances.

Tables 2, 3, and 4, expose the ERTs and success rates
(columns “ERT” and “Perc.”, respectively). Also, the rank-
ings (column “Rnk”) per dimension and instance of the MA
for the static random scheme, are reported. Similarly, Ta-
bles 5, 6, and 7, report the rankings for the adaptive random
scheme. The anticipated result implies that higher ranks
shall be associated with larger pool sizes.

3.2 Impact of Pool Size
One primary target of the present work, was to study the

impact of the local search algorithms’ pool size to the MAs
performance. In order to achieve this goal, for each MA in-
stance we summed its rankings for the different dimensions,
and calculated its overall ranking, both for ERT and success
rate.

In Figs. 1 and 2, we present bargraphs of the overall rank-
ing for the ERT metric. The bars are also grouped and



2-D 3-D

ERT Rnk Perc. Rnk ERT Rnk Perc. Rnk
B 17234.6 5 0.99 0 58883.5 5 0.99 10
R 33672.7 0 1.00 9 118739 0 0.97 0
S 7886.67 27 0.99 0 38366.2 18 0.99 12
A 12901.2 14 0.99 0 63104.3 4 0.99 4
N 18392.1 4 0.99 0 47209.4 12 1.00 13

BR 21902.8 1 0.99 0 78300.5 1 0.98 2
BS 9418.76 21 0.99 0 29149 27 1.00 13
BA 15261.2 9 1.00 9 74676.3 2 0.98 1
BN 10591.6 17 0.99 0 34527.8 24 1.00 13
RS 15983.8 7 1.00 9 56445.8 6 0.99 4
RA 18437.4 3 1.00 9 55119 9 0.99 10
RN 19786 2 1.00 9 69912.7 3 1.00 13
SA 13556.5 12 1.00 9 51387.2 10 0.98 2
SN 9738.48 19 0.99 0 28783.4 28 1.00 13
AN 9135.57 24 1.00 9 35004 21 1.00 23

BRS 11896.3 16 1.00 9 40378.7 15 1.00 13
BRA 16562.2 6 1.00 9 56120.6 7 0.99 7
BRN 12782.2 15 1.00 9 55572.5 8 0.99 7
BSA 15323.3 8 1.00 9 46474.1 13 0.99 4
BSN 9342.82 23 0.99 0 29997.3 26 1.00 13
BAN 7713.18 28 1.00 9 34977.2 22 1.00 23
RSA 10392 18 1.00 9 39214.2 17 1.00 13
RNA 13005.4 13 1.00 9 36116.2 20 1.00 23
RNS 14234.1 11 1.00 9 43137.2 14 1.00 13
SAN 6339.37 30 1.00 9 24750.9 29 1.00 23

BRSA 14272.4 10 1.00 9 47384.3 11 0.99 7
BRSN 9369.96 22 1.00 9 34621.3 23 1.00 13
BRNA 9421.92 20 1.00 9 31857.7 25 1.00 23
BSAN 7609.32 29 1.00 9 19154.3 30 1.00 23
RSAN 7946.71 26 1.00 9 37558.5 19 1.00 23

BRSAN 8401.99 25 1.00 9 39635.6 16 1.00 23

Table 2: Static random (2D-3D)

5-D 10-D

ERT Rnk Perc. Rnk ERT Rnk Perc. Rnk
B 439302 1 0.89 1 2.19E+06 9 0.72 6
R 543979 0 0.87 0 2.37E+06 3 0.73 7
S 241755 25 0.96 20 2.20E+06 8 0.73 13
A 297670 7 0.94 5 2.21E+06 7 0.73 7
N 359369 4 0.94 4 2.90E+06 0 0.68 0

BR 424510 2 0.91 2 2.00E+06 29 0.74 25
BS 193982 29 0.97 29 2.00E+06 27 0.75 28
BA 267565 15 0.95 12 2.05E+06 25 0.74 20
BN 263960 16 0.96 27 2.32E+06 4 0.71 2
RS 268297 14 0.95 12 2.13E+06 17 0.74 17
RA 303987 6 0.95 10 2.08E+06 21 0.74 20
RN 414635 3 0.93 3 2.52E+06 1 0.71 2
SA 284650 10 0.94 7 2.00E+06 30 0.76 30
SN 236075 27 0.96 20 2.39E+06 2 0.71 1
AN 275795 12 0.95 10 2.10E+06 19 0.74 20

BRS 247268 24 0.96 25 2.05E+06 24 0.74 25
BRA 288568 9 0.95 16 2.04E+06 26 0.75 27
BRN 306707 5 0.94 7 2.16E+06 15 0.73 13
BSA 260685 19 0.95 16 2.07E+06 23 0.74 20
BSN 193238 30 0.97 30 2.11E+06 18 0.74 20
BAN 236523 26 0.96 25 2.24E+06 6 0.72 4
RSA 255395 21 0.96 20 2.08E+06 22 0.74 17
RNA 290491 8 0.94 7 2.14E+06 16 0.73 11
RNS 271492 13 0.95 16 2.28E+06 5 0.72 4
SAN 258621 20 0.95 16 2.19E+06 10 0.73 13

BRSA 251199 22 0.96 20 2.00E+06 28 0.75 28
BRSN 263464 17 0.95 12 2.17E+06 12 0.73 11
BRNA 281258 11 0.94 5 2.17E+06 13 0.74 16
BSAN 218502 28 0.96 27 2.17E+06 14 0.73 7
RSAN 261205 18 0.95 12 2.10E+06 20 0.74 17

BRSAN 248934 23 0.96 24 2.19E+06 11 0.73 10

Table 3: Static random (5D-10D)

assume different color per pool size. A first reading of the
graphs offers an apparent ascertainment: on average, in-
creasing the local search pool size implies an increase of the
MAs performance. This is confirmed also in the adaptive
case, as depicted in Fig. 2 where the BRSAN instance (all
available local searches) scores the best rank.

The same results are confirmed with respect to the success
rate in Figs. 3 and 4. Again, the BRSAN instance scores the
best rank. Preliminary experiments with larger pool sizes
(|L| = 6 and |L| = 9) have shown even better performance,
especially in higher dimensions.

3.3 Adaptive vs Static Scheme
The secondary target of our study, was the comparison of

the adaptive scheme against the static one. Excluding the
5 instances with only one local search algorithm, there were
26 (instances) × 6 (dimensions) = 156 distinct comparisons
for all the reported experiments.

Regarding ERT, the adaptive scheme outperforms the static

20-D 40-D

ERT Rnk Perc. Rnk ERT Rnk Perc. Rnk
B 1.15E+07 6 0.48 4 3.26E+07 9 0.39 9
R 1.18E+07 4 0.49 5 49459579 3 0.30 1
S 1.25E+07 3 0.48 3 5.01E+07 2 0.30 3
A 8.03E+06 21 0.60 26 3.35E+07 7 0.38 6
N 2.04E+07 0 0.35 0 6.36E+07 0 0.25 0

BR 9.69E+06 10 0.52 8 2.68E+07 20 0.45 20
BS 9.55E+06 11 0.55 12 2.87E+07 19 0.43 18
BA 7.58E+06 27 0.60 26 2.45E+07 26 0.47 26
BN 1.13E+07 7 0.49 5 3.18E+07 13 0.40 12
RS 1.07E+07 8 0.52 8 3.66E+07 5 0.37 5
RA 7.91E+06 24 0.59 20 3.31E+07 8 0.39 8
RN 1.31E+07 2 0.46 2 3.82E+07 4 0.36 4
SA 7.95E+06 23 0.60 23 3.01E+07 15 0.42 16
SN 1.43E+07 1 0.44 1 5.09E+07 1 0.30 1
AN 8.15E+06 19 0.59 18 2.92E+07 17 0.43 18

BRS 8.64E+06 14 0.57 14 2.92E+07 16 0.42 15
BRA 8.00E+06 22 0.58 16 2.62E+07 21 0.45 20
BRN 9.50E+06 12 0.53 11 2.60E+07 23 0.46 22
BSA 7.53E+06 29 0.60 23 2.30E+07 30 0.49 29
BSN 1.02E+07 9 0.52 8 3.23E+07 10 0.40 10
BAN 8.20E+06 18 0.58 16 2.37E+07 28 0.48 28
RSA 8.08E+06 20 0.60 23 2.89E+07 18 0.43 17
RNA 8.38E+06 15 0.59 18 3.08E+07 14 0.41 14
RNS 1.16E+07 5 0.50 7 3.52E+07 6 0.38 6
SAN 7.81E+06 26 0.61 28 3.21E+07 11 0.40 10

BRSA 7.34E+06 30 0.61 30 2.51E+07 25 0.46 25
BRSN 8.91E+06 13 0.56 13 2.61E+07 22 0.46 22
BRNA 8.29E+06 16 0.58 15 2.53E+07 24 0.46 24
BSAN 7.84E+06 25 0.60 21 2.33E+07 29 0.49 29
RSAN 8.21E+06 17 0.60 21 3.19E+07 12 0.40 12

BRSAN 7.57E+06 28 0.61 28 2.41E+07 27 0.48 27

Table 4: Static random (20D-40D)

2-D 3-D

ERT Rnk Perc. Rnk ERT Rnk Perc. Rnk
B 17234.6 2 0.99 0 58883.5 5 0.99 5
R 33672.7 0 1.00 10 118739 0 0.97 0
S 7886.67 26 0.99 0 38366.2 15 0.99 7
A 12901.2 9 0.99 0 63104.3 4 0.99 3
N 18392.1 1 0.99 0 47209.4 8 1.00 10

BR 15142.4 5 0.99 0 69040.1 3 0.98 1
BS 11360.3 13 0.99 0 30275.8 22 1.00 10
BA 13281 7 1.00 10 79851.1 1 0.98 1
BN 10174.8 15 0.99 0 30264.3 23 1.00 10
RS 8370.56 22 1.00 10 36949.2 18 0.99 7
RA 16891.8 3 0.99 0 53754 6 0.99 3
RN 16628.4 4 1.00 10 71724.6 2 1.00 10
SA 7920.96 25 1.00 10 33665.7 19 1.00 22
SN 8807.72 21 0.99 0 26551.1 27 1.00 10
AN 10044.8 16 1.00 10 43025.8 11 1.00 22

BRS 10039 17 1.00 10 21891.8 28 1.00 22
BRA 13774.7 6 1.00 10 51796.7 7 0.99 5
BRN 12041.3 10 1.00 10 41782.8 12 1.00 10
BSA 11480.8 12 1.00 10 39016.1 14 0.99 7
BSN 9269.34 19 0.99 0 21463 29 1.00 10
BAN 6860.97 30 1.00 10 32457.4 20 1.00 10
RSA 10650 14 1.00 10 40177.9 13 1.00 10
RNA 13218.6 8 1.00 10 43182.8 10 1.00 22
RNS 11726.1 11 1.00 10 37378.6 16 1.00 10
SAN 7417.73 28 1.00 10 19911.3 30 1.00 22

BRSA 8218.18 24 1.00 10 43856 9 1.00 10
BRSN 9488.68 18 1.00 10 31387.7 21 1.00 10
BRNA 8995.34 20 1.00 10 37078.9 17 1.00 22
BSAN 6886.24 29 1.00 10 29498.5 25 1.00 22
RSAN 7669.77 27 1.00 10 28681 26 1.00 22

BRSAN 8351.6 23 1.00 10 29737.7 24 1.00 22

Table 5: Adaptive random (2D-3D)

one in 100 out of 156 cases (denoted as “wins”). For the suc-
cess rate, the adaptive scheme outperforms the static one on
63 instances, and scores exactly the same with the static on
another 52 instances. This can be easily inferred by compar-
ing the average lines in Figs. 1, 2, and Figs. 3, 4. Especially
for pool size equal to 4 and 5, the performance gain is obvi-
ous.

4. CONCLUSIONS
In the present paper, we considered an adaptive PSO-

based MA, and studied its behavior under various combina-
tions of local search algorithms. As a first outcome of our
study, the results support the claim that the efficiency of
the MA is increasing with the pool size. This is apparent in
the reported results but also verified in preliminary results
of larger pool sizes (6 or 9).

This outcome is aligned with and supports the general
feeling that many local searches increase the search diver-



Figure 1: Static Random ERT score.

Figure 2: Adaptive Random ERT score.

Figure 3: Static Random success percentage score.

Figure 4: Adaptive Random success rate score.

5-D 10-D

ERT Rnk Perc. Rnk ERT Rnk Perc. Rnk
B 439302 1 0.89 1 2.19E+06 9 0.72 3
R 543979 0 0.87 0 2.37E+06 3 0.73 4
S 241755 20 0.96 17 2.20E+06 7 0.73 11
A 297670 6 0.94 8 2.21E+06 6 0.73 4
N 359369 4 0.94 7 2.90E+06 0 0.68 0

BR 391152 3 0.91 2 1.99E+06 24 0.75 21
BS 158731 30 0.97 30 2.00E+06 22 0.76 27
BA 252067 15 0.96 17 2.06E+06 17 0.74 16
BN 258361 14 0.96 17 2.18E+06 10 0.73 8
RS 231336 23 0.96 24 2.18E+06 11 0.74 14
RA 288191 10 0.94 9 2.17E+06 12 0.73 10
RN 406288 2 0.92 3 2.44E+06 1 0.72 2
SA 214927 28 0.97 29 2.04E+06 19 0.75 20
SN 242007 19 0.95 11 2.28E+06 4 0.73 4
AN 280515 11 0.95 11 2.38E+06 2 0.70 1

BRS 216680 27 0.97 28 2.00E+06 21 0.75 21
BRA 316240 5 0.93 4 1.94E+06 29 0.76 27
BRN 290660 9 0.95 11 2.11E+06 15 0.74 13
BSA 245343 17 0.96 17 2.00E+06 23 0.74 18
BSN 227881 25 0.95 15 2.06E+06 18 0.74 18
BAN 245487 16 0.96 17 1.99E+06 26 0.76 25
RSA 295044 8 0.94 5 1.98E+06 27 0.76 30
RNA 296843 7 0.94 5 2.20E+06 8 0.74 14
RNS 236878 22 0.96 24 2.09E+06 16 0.75 23
SAN 245265 18 0.94 9 2.23E+06 5 0.73 4

BRSA 230483 24 0.96 17 1.92E+06 30 0.76 25
BRSN 206475 29 0.96 27 2.02E+06 20 0.74 16
BRNA 260272 13 0.95 15 1.99E+06 25 0.75 23
BSAN 227108 26 0.96 24 2.11E+06 14 0.73 11
RSAN 264623 12 0.96 17 2.16E+06 13 0.73 8

BRSAN 237495 21 0.95 11 1.95E+06 28 0.76 29

Table 6: Adaptive random (5D-10D)

20-D 40-D

ERT Rnk Perc. Rnk ERT Rnk Perc. Rnk
B 1.15E+07 5 0.48 4 3.26E+07 9 0.39 9
R 1.18E+07 4 0.49 5 49459579 3 0.30 1
S 1.25E+07 2 0.48 3 5.01E+07 2 0.30 2
A 8.03E+06 19 0.60 24 3.35E+07 7 0.38 6
N 2.04E+07 0 0.35 0 6.36E+07 0 0.25 0

BR 9.23E+06 11 0.54 11 2.68E+07 22 0.44 22
BS 9.15E+06 12 0.55 12 2.96E+07 16 0.43 16
BA 7.68E+06 25 0.60 19 2.44E+07 27 0.47 25
BN 1.13E+07 6 0.49 5 3.19E+07 10 0.40 10
RS 1.03E+07 9 0.53 10 3.84E+07 4 0.36 4
RA 8.06E+06 17 0.59 17 3.33E+07 8 0.39 8
RN 1.24E+07 3 0.47 2 3.60E+07 5 0.38 5
SA 7.78E+06 22 0.60 19 3.07E+07 13 0.42 13
SN 1.46E+07 1 0.44 1 5.03E+07 1 0.30 2
AN 8.27E+06 15 0.59 16 2.89E+07 17 0.43 18

BRS 8.66E+06 14 0.57 13 2.84E+07 19 0.43 16
BRA 7.59E+06 27 0.60 19 2.53E+07 24 0.46 24
BRN 9.57E+06 10 0.53 9 2.72E+07 21 0.44 20
BSA 7.71E+06 23 0.60 19 2.30E+07 30 0.49 30
BSN 1.04E+07 8 0.51 8 3.01E+07 15 0.42 14
BAN 7.61E+06 26 0.61 27 2.63E+07 23 0.45 23
RSA 7.69E+06 24 0.61 28 3.09E+07 12 0.41 12
RNA 8.05E+06 18 0.59 18 3.06E+07 14 0.42 14
RNS 1.13E+07 7 0.50 7 3.42E+07 6 0.39 7
SAN 7.96E+06 21 0.60 19 2.88E+07 18 0.43 19

BRSA 7.42E+06 30 0.61 26 2.38E+07 29 0.48 29
BRSN 8.71E+06 13 0.57 13 2.73E+07 20 0.44 21
BRNA 8.10E+06 16 0.58 15 2.41E+07 28 0.47 28
BSAN 7.45E+06 29 0.62 30 2.47E+07 26 0.47 25
RSAN 8.00E+06 20 0.60 24 3.10E+07 11 0.41 11

BRSAN 7.47E+06 28 0.61 28 2.48E+07 25 0.47 25

Table 7: Adaptive random (20D-40D)

sity of the population, which has been stated and experi-
mentally verified in previous research works. Future work
will include experimentation to investigate the diversity of
the ending points of local searches when they start from the
same initial point, and how it is possibly connected to the
MAs performance. We have also put some effort in ana-
lyzing which local searches are giving the best improvement
in an attempt to analyze the composition and not only the
cardinality of the local search pool.

Another interesting conclusion was the superiority of the
adaptive against the static scheme. Our results suggest
that even larger pool sizes will further benefit the adap-
tive scheme. Further research on alternative adaptation and
scoring schemes, will provide a better picture of the MAs
performance and potential.
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