Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative variables

Yuanzhe Zhou ${ }^{\text {a }}$, Vasile Cirtoaje ${ }^{\text {b,* }}$
${ }^{a}$ The School of Physics and Technology at Wuhan University, China.
${ }^{b}$ Department of Automatic Control and Computers, University of Ploiesti, Ploiesti, Romania.
Dedicated to the memory of Professor Viorel Radu
Communicated by Adrian Petrusel

Abstract

We establish some strong sufficient conditions that the inequality $f_{4}(x, y, z) \geq 0$ holds for all nonnegative real numbers x, y, z, where $f_{4}(x, y, z)$ is a cyclic homogeneous polynomial of degree four. In addition, in the case $f_{4}(1,1,1)=0$ and also in the case when the inequality $f_{4}(x, y, z) \geq 0$ does not hold for all real numbers x, y, z, we conjecture that the proposed sufficient conditions are also necessary that $f_{4}(x, y, z) \geq 0$ for all nonnegative real numbers x, y, z. Several applications are given to show the effectiveness of the proposed methods.

Keywords: Cyclic homogeneous polynomial; strong sufficient conditions; necessary and sufficient conditions; nonnegative real variables.
2010 MSC: Primary 26D05.

1. Introduction

Consider first the third degree cyclic homogeneous polynomial

$$
f_{3}(x, y, z)=\sum x^{3}+B x y z+C \sum x^{2} y+D \sum x y^{2},
$$

where B, C, D are real constants, and \sum denotes a cyclic sum over x, y and z. In [6, Pham Kim Hung gives the necessary and sufficient conditions that $f_{3}(x, y, z) \geq 0$ for any nonnegative real numbers x, y, z.

[^0]Theorem 1.1. The cyclic inequality $f_{3}(x, y, z) \geq 0$ holds for all nonnegative real numbers x, y, z if and only if

$$
f_{3}(1,1,1) \geq 0
$$

and

$$
f_{3}(x, 1,0) \geq 0
$$

for all nonnegative real x.
Consider now the fourth degree cyclic homogeneous polynomial

$$
f_{4}(x, y, z)=\sum x^{4}+A \sum x^{2} y^{2}+B x y z \sum x+C \sum x^{3} y+D \sum x y^{3}
$$

where A, B, C, D are real constants.
The following two theorems in [4] express the necessary and sufficient conditions that $f_{4}(x, y, z) \geq 0$ for any real numbers x, y, z.

Theorem 1.2. The cyclic inequality $f_{4}(x, y, z) \geq 0$ holds for all real numbers x, y, z if and only if

$$
f_{4}(t+k, k+1, k t+1) \geq 0
$$

for all real t, where $k \in[0,1]$ is a root of the equation

$$
(C-D) k^{3}+(2 A-B-C+2 D-4) k^{2}-(2 A-B+2 C-D-4) k+C-D=0
$$

Theorem 1.3. The cyclic inequality

$$
f_{4}(x, y, z) \geq 0
$$

holds for all real numbers x, y, z if and only if $g_{4}(t) \geq 0$ for all $t \geq 0$, where

$$
\begin{gathered}
g_{4}(t)=3(2+A-C-D) t^{4}-F t^{3}+3(4-B+C+D) t^{2}+1+A+B+C+D \\
F=\sqrt{27(C-D)^{2}+E^{2}}, \quad E=8-4 A+2 B-C-D
\end{gathered}
$$

In the particular case $f_{4}(1,1,1)=0$, from Theorem 1.3 we get the following corollary (see [1] and [3]):
Corollary 1.4. If

$$
1+A+B+C+D=0
$$

then the cyclic inequality $f_{4}(x, y, z) \geq 0$ holds for all real numbers x, y, z if and only if

$$
3(1+A) \geq C^{2}+C D+D^{2}
$$

The following propositions in [4] give the equality cases of the inequality $f_{4}(x, y, z) \geq 0$ in Theorem 1.2 and Theorem 1.3 , respectively.

Proposition 1.5. The cyclic inequality $f_{4}(x, y, z) \geq 0$ in Theorem 1.2 becomes an equality if

$$
\frac{x}{t+k}=\frac{y}{k+1}=\frac{z}{k t+1}
$$

(or any cyclic permutation), where $k \in(0,1]$ is a root of the equation

$$
(C-D) k^{3}+(2 A-B-C+2 D-4) k^{2}-(2 A-B+2 C-D-4) k+C-D=0
$$

and $t \in \mathbb{R}$ is a root of the equation

$$
f_{4}(t+k, k+1, k t+1)=0
$$

Proposition 1.6. For $F>0$, the cyclic inequality $f_{4}(x, y, z) \geq 0$ in Theorem 1.3 becomes an equality if and only if x, y, z satisfy

$$
(C-D)(x+y+z)(x-y)(y-z)(z-x) \geq 0
$$

and are proportional to the real roots w_{1}, w_{2} and w_{3} of the equation

$$
w^{3}-3 w^{2}+3\left(1-t^{2}\right) w+\frac{2 E}{F} t^{3}+3 t^{2}-1=0
$$

where t is any double nonnegative real root of the polynomial $g_{4}(t)$.
The following theorem in [5] expresses some strong sufficient conditions that the inequality $f_{4}(x, y, z) \geq 0$ holds for any real numbers x, y, z.

Theorem 1.7. Let

$$
\begin{gathered}
G=\sqrt{1+A+B+C+D} \\
H=2+2 A-B-C-D-C^{2}-C D-D^{2}
\end{gathered}
$$

The cyclic inequality $f_{4}(x, y, z) \geq 0$ holds for all real numbers x, y, z if the following two conditions are satisfied:
(a) $1+A+B+C+D \geq 0$;
(b) there exists a real number $t \in(-\sqrt{3}, \sqrt{3})$ such that $f(t) \geq 0$, where

$$
f(t)=2 G t^{3}-(6+2 A+B+3 C+3 D) t^{2}+2(1+C+D) G t+H
$$

In this paper, we will establish some very strong sufficient conditions that the inequality

$$
f_{4}(x, y, z) \geq 0
$$

holds for all nonnegative real numbers x, y, z.

2. Main Results

The main result of this paper is given by the following two theorems.
Theorem 2.1. The inequality $f_{4}(x, y, z) \geq 0$ holds for all nonnegative real numbers x, y, z if

$$
1+A+B+C+D \geq 0
$$

and one of the following two conditions is fulfilled:
(a) $3(1+A) \geq C^{2}+C D+D^{2}$;
(b) $3(1+A)<C^{2}+C D+D^{2}, \quad 5+A+2 C+2 D \geq 0, \quad f_{4}(x, 1,0) \geq 0, \quad h_{3}(x) \geq 0$ for all $x \geq 0$, where

$$
h_{3}(x)=(4+C+D)\left(x^{3}+1\right)+(A+2 C-D-1) x^{2}+(A-C+2 D-1) x
$$

Theorem 2.2. The inequality $f_{4}(x, y, z) \geq 0$ holds for all nonnegative real numbers x, y, z if

$$
1+A+B+C+D \geq 0
$$

and one of the following two conditions is fulfilled:
(a) $3(1+A) \geq C^{2}+C D+D^{2}$;
(b) $3(1+A)<C^{2}+C D+D^{2}$, and there is $t \geq 0$ such that

$$
(C+2 D) t^{2}+6 t+2 C+D \geq 2 \sqrt{\left(t^{4}+t^{2}+1\right)\left(C^{2}+C D+D^{2}-3-3 A\right)}
$$

Remark 2.3. If the sufficient conditions in Theorem 2.1 or Theorem 2.2 are fulfilled, then the following sharper inequality holds for all $x, y, z \geq 0$:

$$
f_{4}(x, y, z) \geq(1+A+B+C+D) x y z \sum x
$$

This claim is true because $B \geq-1-A-C-D$ and, on the other hand, Theorems 2.1 and 2.2 remain valid by replacing B with $-1-A-C-D$. Therefore, if

$$
1+A+B+C+D>0
$$

and the other sufficient conditions in Theorem 2.1 or Theorem 2.2 are fulfilled, then the inequality $f_{4}(x, y, z) \geq$ 0 becomes an equality only when one of x, y, z is zero; that is, for $x=\beta y$ and $z=0$ (or any cyclic permutation), where β is a double positive root of the polynomial $f_{4}(x, 1,0)$ (see the proof of Theorem 2.1) or

$$
h_{4}(t)=\left[(C+2 D) t^{2}+6 t+2 C+D\right]^{2}-4\left(t^{4}+t^{2}+1\right)\left(C^{2}+C D+D^{2}-3-3 A\right)
$$

(see the proof of Theorem 2.2).
Remark 2.4. Consider the main case when

$$
1+A+B+C+D=0
$$

In the case (a) of Theorem 2.1 and Theorem 2.2 , the inequality $f_{4}(x, y, z) \geq 0$ holds for all real numbers x, y, z, and the equality conditions (including the case $x=y=z$) are given by Proposition 1.5 and Proposition 1.6 .

In the case (b) of Theorem 2.1 and Theorem 2.2 , the inequality $f_{4}(x, y, z) \geq 0$ holds for all nonnegative real numbers x, y, z, but does not hold for all real numbers x, y, z. Equality holds for $x=y=z$, and for $x=\beta y$ and $z=0$ (or any cyclic permutation), where β is a double positive root of the polynomial $f_{4}(x, 1,0)$ (see the proof of Theorem 2.1) or $h_{4}(t)$ (see the proof of Theorem 2.2).
Conjecture 2.5. If $1+A+B+C+D=0$, then the conditions in Theorem 2.1 and Theorem 2.2 are necessary and sufficient to have $f_{4}(x, y, z) \geq 0$ for all $x, y, z \geq 0$.

Conjecture 2.6. If the inequality $f_{4}(x, y, z) \geq 0$ does not hold for all real numbers x, y, z, then the conditions in Theorem 2.1 and Theorem 2.2 are necessary and sufficient to have $f_{4}(x, y, z) \geq 0$ for all $x, y, z \geq 0$.

3. Proof of Theorem 2.1

Let us define

$$
\bar{f}_{4}(x, y, z)=\sum x^{4}+A \sum x^{2} y^{2}-(1+A+B+C+D) x y z \sum x+C \sum x^{3} y+D \sum x y^{3} .
$$

Since

$$
f_{4}(x, y, z) \geq \bar{f}_{4}(x, y, z)
$$

for all $x, y, z \geq 0$, it suffices to prove that $\bar{f}_{4}(x, y, z) \geq 0$. Assume that $x=\min \{x, y, z\}$, and use the substitution $y=x+p, z=x+q$, where $p, q \geq 0$. From

$$
\begin{gathered}
\sum x^{4}=3 x^{4}+4(p+q) x^{3}+6\left(p^{2}+q^{2}\right) x^{2}+4\left(p^{3}+q^{3}\right) x+p^{4}+q^{4} \\
\sum x^{2} y^{2}=3 x^{4}+4(p+q) x^{3}+2(p+q)^{2} x^{2}+2 p q(p+q) x+p^{2} q^{2} \\
x y z \sum x=3 x^{4}+4(p+q) x^{3}+\left(p^{2}+5 p q+q^{2}\right) x^{2}+p q(p+q) x \\
\sum x^{3} y=3 x^{4}+4(p+q) x^{3}+3\left(p^{2}+p q+q^{2}\right) x^{2}+\left(p^{3}+3 p^{2} q+q^{3}\right) x+p^{3} q
\end{gathered}
$$

$$
\sum x y^{3}=3 x^{4}+4(p+q) x^{3}+3\left(p^{2}+p q+q^{2}\right) x^{2}+\left(p^{3}+3 p q^{2}+q^{3}\right) x+p q^{3},
$$

we get

$$
\bar{f}_{4}(x, y, z)=A_{1}(p, q) x^{2}+B_{1}(p, q) x+C_{1}(p, q):=h(x),
$$

where

$$
\begin{gathered}
A_{1}(p, q)=(5+A+2 C+2 D)\left(p^{2}-p q+q^{2}\right) \\
B_{1}(p, q)=(4+C+D)\left(p^{3}+q^{3}\right)+(A+2 C-D-1) p^{2} q+(A-C+2 D-1) p q^{2} \\
C_{1}(p, q)=p^{4}+C p^{3} q+A p^{2} q^{2}+D q^{3}+q^{4}
\end{gathered}
$$

As we have shown in [3], the inequality $h(x) \geq 0$ holds for all real x and all $p, q \geq 0$ if $3(1+A) \geq C^{2}+C D+D^{2}$. Assume now that $3(1+A)<C^{2}+C D+D^{2}$. Clearly, the inequality $h(x) \geq 0$ holds for all nonnegative real x if $A_{1}(p, q) \geq 0, B_{1}(p, q) \geq 0$ and $C_{1}(p, q) \geq 0$ for all $p, q \geq 0$. Clearly, these inequality are respectively equivalent to $5+A+2 C+2 D \geq 0, h_{3}(x) \geq 0$ for all $x \geq 0$ and $f_{4}(x, 1,0) \geq 0$ for all $x \geq 0$.

4. Proof of Theorem 2.2

(a) By Corollary 1.4, if

$$
3(1+A) \geq C^{2}+C D+D^{2}
$$

and

$$
B=-1-A-C-D,
$$

then $f_{4}(x, y, z) \geq 0$ for all real numbers x, y, z, so the more for all nonnegative real numbers x, y, z. Since the polynomial f_{4} is increasing in B, the inequality $f_{4}(x, y, z) \geq 0$ holds also for all $B \geq-1-A-C-D$.
(b) The main idea is to find a sharper cyclic homogeneous inequality of degree four

$$
\sum x^{4}+A_{1} \sum x^{2} y^{2}+B_{1} x y z \sum x+C_{1} \sum x^{3} y+D_{1} \sum x y^{3} \geq 0
$$

such that

$$
1+A_{1}+B_{1}+C_{1}+D_{1}=0
$$

Let us define

$$
\bar{f}_{4}(x, y, z)=f_{4}(x, y, z)-g(x, y, z),
$$

where

$$
g(x, y, z)=y z(p x+q y-q t z)^{2}+z x(p y+q z-q t x)^{2}+x y(p z+q x-q t y)^{2},
$$

with

$$
\begin{gathered}
t \geq 0 \\
q=\sqrt[4]{\frac{C^{2}+C D+D^{2}-3-3 A}{t^{4}+t^{2}+1}}>0, \\
p=q(t-1)+\sqrt{1+A+B+C+D}
\end{gathered}
$$

Since $g(x, y, z) \geq 0$, it suffices to prove that $\bar{f}_{4}(x, y, z) \geq 0$. We can write $\bar{f}_{4}(x, y, z)$ in the form

$$
\bar{f}_{4}(x, y, z)=\sum x^{4}+A_{1} \sum x^{2} y^{2}+B_{1} x y z \sum x+C_{1} \sum x^{3} y+D_{1} \sum x y^{3},
$$

where

$$
\begin{gathered}
A_{1}=A+2 q^{2} t, \quad B_{1}=B-p(p+2 q-2 q t), \\
C_{1}=C-q^{2}, \quad D_{1}=D-q^{2} t^{2} .
\end{gathered}
$$

Since

$$
1+A_{1}+B_{1}+C_{1}+D_{1}=1+A+B+C+D-(p+q-q t)^{2}=0
$$

according to Corollary 1.4 , it suffices to show that $3\left(1+A_{1}\right) \geq C_{1}^{2}+C_{1} D_{1}+D_{1}^{2}$. Write this inequality as

$$
\begin{aligned}
& (C+2 D) t^{2}+6 t+2 C+D \geq q^{2}\left(t^{4}+t^{2}+1\right)+\frac{1}{q^{2}}\left(C^{2}+C D+D^{2}-3-3 A\right) \\
& (C+2 D) t^{2}+6 t+2 C+D \geq 2 \sqrt{\left(t^{4}+t^{2}+1\right)\left(C^{2}+C D+D^{2}-3-3 A\right)}
\end{aligned}
$$

By the hypothesis in (b), there is $t \geq 0$ such that the last inequality is true. Thus, the proof is completed.

5. Applications

Application 5.1. Let x, y, z be nonnegative real numbers. If $k \geq 0$, then ([2] and [7])

$$
\sum x^{4}+\left(k^{2}-2\right) \sum x^{2} y^{2}+\left(1-k^{2}\right) x y z \sum x \geq 2 k\left(\sum x^{3} y-\sum x y^{3}\right)
$$

Proof. Write the inequality as $f_{4}(x, y, z) \geq 0$, where

$$
A=k^{2}-2, \quad B=1-k^{2}, \quad C=-2 k, \quad D=2 k, \quad 1+A+B+C+D=0
$$

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=k^{2}+3>0
$$

and

$$
5+A+2 C+2 D=k^{2}+3>0
$$

we only need to show that $f_{4}(x, 1,0) \geq 0$ and $h_{3}(x) \geq 0$ for all $x \geq 0$. We have

$$
\begin{gathered}
f_{4}(x, 1,0)=x^{4}-2 k x^{3}+\left(k^{2}-2\right) x^{2}+2 k x+1=\left(x^{2}-k x-1\right)^{2} \geq 0 \\
h_{3}(x)=4\left(x^{3}+1\right)+\left(k^{2}-6 k-3\right) x^{2}+\left(k^{2}+6 k-3\right) x
\end{gathered}
$$

For $0 \leq x<1$, we get

$$
\begin{gathered}
h_{3}(x)=4\left(x^{3}+1\right)+\left(k^{2}-3\right) x(1+x)+6 k x(1-x) \geq 4\left(x^{3}+1\right)+\left(k^{2}-3\right) x(1+x) \\
\geq 4\left(x^{3}+1\right)-4 x(1+x)=4(x+1)(x-1)^{2}>0
\end{gathered}
$$

Also, for $x \geq 1$, we get

$$
\begin{gathered}
h_{3}(x)=4(x-1)^{3}+(k-3)^{2} x^{2}+\left(k^{2}+6 k-15\right) x+8 \\
=4(x-1)^{3}+(k-3)^{2}(x-1)^{2}+3(k-1)^{2} x-k^{2}+6 k-1 \\
=4(x-1)^{3}+(k-3)^{2}(x-1)^{2}+3(k-1)^{2}(x-1)+2\left(k^{2}+1\right)>0
\end{gathered}
$$

The polynomial $f_{4}(x, 1,0)$ has the double positive real root $\beta=\frac{k+\sqrt{k^{2}+4}}{2}$. Therefore, according to Remark 2.4. equality holds for $x=y=z$, and also for $x=0$ and $\frac{y}{z}=\frac{k+\sqrt{k^{2}+4}}{2}$ (or any cyclic permutation).
Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=k^{2}+3>0
$$

we only need to show that there exists $t \geq 0$ such that

$$
k t^{2}+3 t-k \geq \sqrt{\left(k^{2}+3\right)\left(t^{4}+t^{2}+1\right)}
$$

This is true if

$$
k t^{2}+3 t-k \geq 0
$$

and $h_{4}(t) \geq 0$, where

$$
h_{4}(t)=\left(k t^{2}+3 t-k\right)^{2}-\left(k^{2}+3\right)\left(t^{4}+t^{2}+1\right)=-\left(t^{2}-k t-1\right)^{2} .
$$

Clearly, for

$$
t=\frac{k+\sqrt{k^{2}+4}}{2}
$$

we have $h_{4}(t)=0$ and

$$
k t^{2}+3 t-k=k(k t+1)+3 t-k=\left(k^{2}+3\right) t>0
$$

Since the polynomial $h_{4}(t)$ has the double positive real root $\beta=\frac{k+\sqrt{k^{2}+4}}{2}$, according to Remark 2.4 , equality holds for $x=y=z$, and also for $x=0$ and $\frac{y}{z}=\frac{k+\sqrt{k^{2}+4}}{2}$ (or any cyclic permutation).
Remark. For $k=1$, we get the inequality

$$
x^{4}+y^{4}+z^{4}-x^{2} y^{2}-y^{2} z^{2}-z^{2} x^{2} \geq 2\left(x^{3} y+y^{3} z+z^{3} x-x y^{3}-y z^{3}-z x^{3}\right)
$$

with equality for $x=y=z$, and for $x=0$ and $\frac{y}{z}=\frac{1+\sqrt{5}}{2}$ (or any cyclic permutation).
Also, for $k=\sqrt{2}$, we get the inequality

$$
x^{4}+y^{4}+z^{4}-x y z(x+y+z) \geq 2 \sqrt{2}\left(x^{3} y+y^{3} z+z^{3} x-x y^{3}-y z^{3}-z x^{3}\right)
$$

with equality for $x=y=z$, and for $x=0$ and $\frac{y}{z}=\frac{\sqrt{2}+\sqrt{6}}{2}$ (or any cyclic permutation).

Application 5.2. If x, y, z are nonnegative real numbers, then ([2])

$$
x^{4}+y^{4}+z^{4}+5\left(x^{3} y+y^{3} z+z^{3} x\right) \geq 6\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)
$$

Proof. Write the inequality as $f_{4}(x, y, z) \geq 0$, where

$$
A=-6, \quad B=0, \quad C=5, \quad D=0, \quad 1+A+B+C+D=0
$$

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=40
$$

and $5+A+2 C+2 D=9$, we only need to show that $f_{4}(x, 1,0) \geq 0$ and $h_{3}(x) \geq 0$ for all $x \geq 0$. We have

$$
f_{4}(x, 1,0)=x^{4}+5 x^{3}-6 x^{2}+1=(x-1)^{4}+x(3 x-2)^{2}>0
$$

and

$$
h_{3}(x)=3\left(3 x^{3}+x^{2}-4 x+3\right) .
$$

For $0 \leq x<1$, we get

$$
3 x^{3}+x^{2}-4 x+3 \geq(x-1)(x-3)>0
$$

and for $x \geq 1$, we get

$$
3 x^{3}+x^{2}-4 x+3 \geq 4 x(x-1)+3>0
$$

Since the polynomial $f_{4}(x, 1,0)$ has no double positive real root, equality holds only for $x=y=z$ (see Remark 2.4.
Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=40
$$

we only need to show that there is $t \geq 0$ such that

$$
10 t^{2}+6 t+5 \geq 2 \sqrt{40\left(t^{4}+t^{2}+1\right)}
$$

Indeed, for $t=3 / 2$, we get

$$
10 t^{2}+6 t+5-\sqrt{40\left(t^{4}+t^{2}+1\right)}=\frac{73}{2}-\sqrt{1330}=\frac{9}{2(73+2 \sqrt{1330}}>0
$$

According to Remark 2.4, equality holds for $x=y=z$.

Application 5.3. If x, y, z are nonnegative real numbers, then

$$
3\left(x^{4}+y^{4}+z^{4}\right)+4\left(x y^{3}+y z^{3}+z x^{3}\right) \geq 7\left(x^{3} y+y^{3} z+z^{3} x\right)
$$

Proof. Write the inequality as $f_{4}(x, y, z) \geq 0$, where

$$
A=0, \quad B=0, \quad C=-\frac{7}{3}, \quad D=\frac{4}{3}, \quad 1+A+B+C+D=0
$$

First Solution. We will prove that the condition (b) in Theorem 2.1 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=\frac{10}{9}
$$

and $5+A+2 C+2 D=2$, we only need to show that $f_{4}(x, 1,0) \geq 0$ and $h_{3}(x) \geq 0$ for all $x \geq 0$. We have

$$
f_{4}(x, 1,0)=x(x+1)(3 x-5)^{2}+5\left(x-\frac{13}{10}\right)^{2}+\frac{11}{20}>0
$$

and

$$
h_{3}(x)=3 x^{3}-7 x^{2}+4 x+3
$$

For $0 \leq x \leq 1$ and $x \geq \frac{4}{3}$, we get

$$
3 x^{3}-7 x^{2}+4 x+3>3 x^{3}-7 x^{2}+4 x=x(x-1)(3 x-4) \geq 0
$$

and for $1 \leq x \leq \frac{3}{2}$, we get

$$
3 x^{3}-7 x^{2}+4 x+3 \geq-4 x^{2}+4 x+3=(2 x+1)(3-2 x) \geq 0
$$

Since the polynomial $f_{4}(x, 1,0)$ has no double positive real root, equality holds only for $x=y=z$ (see Remark 2.4.

Second Solution. We will prove that the condition (b) in Theorem 2.2 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=\frac{10}{9}
$$

we only need to show that there exists $t \geq 0$ such that

$$
t^{2}+18 t-10 \geq 2 \sqrt{10\left(t^{4}+t^{2}+1\right)}
$$

Indeed, for $t=2$, we get

$$
t^{2}+18 t-10-\sqrt{10\left(t^{4}+t^{2}+1\right)}=30-2 \sqrt{210}=\frac{609}{30+2 \sqrt{210}}>0
$$

According to Remark 2.4, equality holds for $x=y=z$.

Application 5.4. If x, y, z are nonnegative real numbers, then ([1])

$$
x^{4}+y^{4}+z^{4}+\left(\frac{4}{\sqrt[4]{27}}-1\right) x y z(x+y+z) \geq \frac{4}{\sqrt[4]{27}}\left(x^{3} y+y^{3} z+z^{3} x\right)
$$

Proof. Write the inequality as $f_{4}(x, y, z) \geq 0$, where

$$
A=0, \quad B=\frac{4}{\sqrt[4]{27}}-1, \quad C=-\frac{4}{\sqrt[4]{27}}, \quad D=0, \quad 1+A+B+C+D=0
$$

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=\frac{16}{3 \sqrt{3}}-3>0
$$

and

$$
5+A+2 C+2 D=5-\frac{8}{\sqrt[4]{27}}>0
$$

we only need to show that $f_{4}(x, 1,0) \geq 0$ and $h_{3}(x) \geq 0$ for all $x \geq 0$. We have

$$
f_{4}(x, 1,0)=x^{4}-\frac{4}{\sqrt[4]{27}} x^{3}+1=(x-\sqrt[4]{3})^{2}\left(x^{2}+\frac{2}{\sqrt[4]{27}} x+\frac{1}{\sqrt{3}}\right) \geq 0
$$

and

$$
h_{3}(x)=4 x^{3}-x^{2}-x+4-\frac{4}{\sqrt[4]{27}}\left(x^{3}+2 x^{2}-x+1\right)
$$

Since

$$
x^{3}+2 x^{2}-x+1 \geq x^{2}-x+1>0
$$

and

$$
\frac{4}{\sqrt[4]{27}}<\frac{9}{5}
$$

we get

$$
\begin{gathered}
5 h_{3}(x)>5\left(4 x^{3}-x^{2}-x+4\right)-9\left(x^{3}+2 x^{2}-x+1\right)=11 x^{3}-23 x^{2}+4 x+11 \\
=11 x\left(x-\frac{3}{2}\right)^{2}+10 x^{2}-\frac{83}{4} x+11 \geq 10 x^{2}-\frac{83}{4} x+11 \\
=10\left(x-\frac{83}{80}\right)^{2}+\frac{251}{640}>0
\end{gathered}
$$

The polynomial $f_{4}(x, 1,0)$ has the double positive real root $\beta=\sqrt[4]{3}$. Therefore, according to Remark 2.4 , equality holds for $x=y=z$, and also for $x=0$ and $\frac{y}{z}=\sqrt[4]{3}$ (or any cyclic permutation).

Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=\frac{16}{3 \sqrt{3}}-3>0
$$

we only need to show that there exists $t \geq 0$ such that

$$
-2 t^{2}+3 \sqrt[4]{27} t-4 \geq \sqrt{(16-9 \sqrt{3})\left(t^{4}+t^{2}+1\right)}
$$

This is true if

$$
-2 t^{2}+3 \sqrt[4]{27} t-4 \geq 0
$$

and $h_{4}(t) \geq 0$, where

$$
h_{4}(t)=\left(-2 t^{2}+3 \sqrt[4]{27} t-4\right)^{2}-(16-9 \sqrt{3})\left(t^{4}+t^{2}+1\right)
$$

Since

$$
h_{4}(t)=3(t-\sqrt[4]{3})^{2}\left[(3 \sqrt{3}-4) t^{2}-2 \sqrt[4]{3}(4-\sqrt{3}) t+3\right]
$$

we have $h_{4}(t)=0$ for $t=\sqrt[4]{3}$, when

$$
-2 t^{2}+3 \sqrt[4]{27} t-4=5-2 \sqrt{3}>0
$$

The polynomial $h_{4}(t)$ has the double positive real root $\beta=\sqrt[4]{3}$. Therefore, according to Remark 2.4, equality holds for $x=y=z$, and also for $x=0$ and $\frac{y}{z}=\sqrt[4]{3}$ (or any cyclic permutation).

Application 5.5. If x, y, z are nonnegative real numbers, then ([7])

$$
x^{4}+y^{4}+z^{4}+15\left(x^{3} y+y^{3} z+z^{3} x\right) \geq \frac{47}{4}\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)
$$

Proof. Write the inequality as $f_{4}(x, y, z) \geq 0$, where

$$
A=\frac{-47}{4}, \quad B=0, \quad C=15, \quad D=0, \quad 1+A+B+C+D=\frac{17}{4}
$$

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=\frac{1029}{4}
$$

and

$$
5+A+2 C+2 D=\frac{93}{4}
$$

we only need to show that $f_{4}(x, 1,0) \geq 0$ and $h_{3}(x) \geq 0$ for all $x \geq 0$. We have

$$
f_{4}(x, 1,0)=x^{4}+15 x^{3}-\frac{47}{4} x^{2}+1=\frac{1}{4}(2 x-1)^{2}\left(x^{2}+16 x+4\right) \geq 0
$$

and

$$
h_{3}(x)=19\left(x^{3}+1\right)+\frac{69}{4} x^{2}-\frac{111}{4} x>14+14 x^{2}-28 x=14(x-1)^{2} \geq 0
$$

According to Remark 2.3 , since the polynomial $f_{4}(x, 1,0)$ has the double nonnegative real root $\beta=\frac{1}{2}$, equality holds for $x=0$ and $2 y=z$ (or any cyclic permutation).

Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

$$
C^{2}+C D+D^{2}-3(1+A)=\frac{1029}{4}
$$

we only need to show that there is $t \geq 0$ such that

$$
15 t^{2}+6 t+30 \geq \sqrt{1029\left(t^{4}+t^{2}+1\right)}
$$

This is true if $h_{4}(t) \geq 0$, where

$$
h_{4}(t)=\left(15 t^{2}+6 t+30\right)^{2}-1029\left(t^{4}+t^{2}+1\right)
$$

Since

$$
h_{4}(t)=-3(2 t-1)^{2}\left(67 t^{2}+52 t+43\right)
$$

we have $h_{4}(t)=0$ for $t=\frac{1}{2}$.
According to Remark 2.3 , since the polynomial $h_{4}(t)$ has the double nonnegative real root $\beta=\frac{1}{2}$, equality holds for $x=0$ and $2 y=z$ (or any cyclic permutation).

Application 5.6. If x, y, z are nonnegative real numbers such that

$$
x^{2}+y^{2}+z^{2}=\frac{5}{2}(x y+y z+z x)
$$

then

$$
x^{4}+y^{4}+z^{4} \geq \frac{17}{8}\left(x^{3} y+y^{3} z+z^{3} x\right)
$$

Proof. We see that equality holds for $x=0, y=2, z=1$ (or any cyclic permutation). Since

$$
\begin{aligned}
x^{4}+y^{4}+z^{4} & \geq\left(x^{2}+y^{2}+z^{2}\right)^{2}-2(x y+y z+z x)^{2} \\
& =\frac{17}{4}(x y+y z+z x)^{2}
\end{aligned}
$$

it suffices to show that

$$
2(x y+y z+z x)^{2} \geq x^{3} y+y^{3} z+z^{3} x
$$

In addition, since

$$
36(x y+y z+z x)^{2}=\left[6(x y+y z+z x)^{2}=\left[2\left(x^{2}+y^{2}+z^{2}\right)+x y+y z+z x\right]^{2}\right.
$$

it suffices to show that

$$
\left[2\left(x^{2}+y^{2}+z^{2}\right)+x y+y z+z x\right]^{2} \geq 18\left(x^{3} y+y^{3} z+z^{3} x\right)
$$

which is equivalent to

$$
4 \sum x^{4}+9 \sum x^{2} y^{2}+6 x y z \sum x+4 \sum x y^{3} \geq 14 \sum x^{3} y
$$

It suffices to show that $f_{4}(x, y, z) \geq 0$, where

$$
f_{4}(x, y, z)=4 \sum x^{4}+9 \sum x^{2} y^{2}-3 x y z \sum x-14 \sum x^{3} y+4 \sum x y^{3}
$$

with

$$
A=\frac{9}{4}, \quad B=\frac{-3}{4}, \quad C=\frac{-7}{2}, \quad D=1, \quad 1+A+B+C+D=\frac{9}{4}
$$

Since

$$
3(1+A)-C^{2}-C D-D^{2}=0
$$

the condition (a) in Theorem 2.1 and Theorem 2.2 is fulfilled.

References

[1] T. Ando, Some Homogeneous Cyclic Inequalities of Three Variable of Degree Three and Four, The Australian Journal of Mathematical Analysis and Applications, vol. 7, issue 2, art. 12, 2011. [ONLINE http://ajmaa.org/ cgi-bin/paper.pl?string=v7n2/V7I2P11.tex 15.4
[2] V. Cirtoaje, Algebraic Inequalities-Old and New Methods, GIL Publishing House, 2006. 5.1 5.2
[3] V. Cirtoaje, On the Cyclic Homogeneous Polynomial Inequalities of Degree Four, Journal of Inequalities in Pure and Applied Mathematics, vol. 10, issue 3, art. 67, 2009. [ONLINE http://www.emis.de/journals/JIPAM/ article1123.html 1 3
[4] V. Cirtoaje, Y. Zhou, Necessary and Sufficient Conditions for Cyclic Homogeneous Polynomial Inequalities of Degree Four in Real Variables, The Australian Journal of Mathematical Analysis and Applications, vol. 9, issue 1, art. 15, 2012. [ONLINEhttp://ajmaa.org/cgi-bin/paper.pl?string=v9n1/V9I1P15.tex 11
[5] V. Cirtoaje, Y. Zhou, Some Strong Sufficient Conditions for Cyclic Homogeneous Polynomial Inequalities of Degree Four in Real Variables, Journal of Nonlinear Analysis and Applications, vol. 2012, art. 151, 2012. [ONLINE/http://www.ispacs.com/jnaa/?p=jnaa_articles 1
[6] P. K. Hung, Secrets in Inequalities, vol. 2, GIL Publishing House, 2008. 11
[7] Art of Problem Solving, November, 2011. [ONLINE|http://www.artofproblemsolving.com/Forum/viewtopic. php? $=448153,4986085.15$

[^0]: *Corresponding author
 Email address: vcirtoaje@upg-ploiesti.ro (Vasile Cirtoaje)

