Expectations

Christopher D. Carroll

Johns Hopkins University ccarroll@jhu.edu

Keynote Address Federal Reserve Bank of St Louis Conference on Household Balance Sheets February 2013

(日) (四) (문) (문) (문)

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

• America is rich

- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

• America is rich

- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

• America is rich

- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

• America is rich

Chris Carroll is American

Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

The 'Fallacy of Division'

In Aristotle's (350 BC) list of common human logical errors: Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is aggregate net worth

Advantage: Representative Agent models are *simple* Of course, as always, some annoying dissenters from the gospel

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is aggregate net worth

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is *aggregate* net worth

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is aggregate net worth

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is aggregate net worth

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is aggregate net worth

Macroeconomics Is A Primitive Discipline

Before 2008, "Representative Agent" models dominant:

Argument:

- Debt is *owed* to someone
- One person's debt is another person's asset
- All that matters is aggregate net worth

Prelude

With Apologies to L. Frank Baum The Role of Expectations What Have We Learned? Conclusions References

Don't Worry, Be Happy?

Carroll

HHNW-over-DPI-FullSample

ト 目 のへ

Prelude

With Apologies to L. Frank Baum The Role of Expectations What Have We Learned? Conclusions References

Debt Worrywarts \approx Believers in Mayan Apocalypse

Carroll

э

We're Not in Kanasas Anymore

Countries, States, Households: Debt Runup Mattered

If *i* had greater debt runup than *j* before crisis, then (in the crisis) *i* suffered worse decline than *j*, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

We're Not in Kanasas Anymore

Countries, States, Households: Debt Runup Mattered

If i had greater debt runup than j before crisis, then (in the crisis) i suffered worse decline than j, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

We're Not in Kanasas Anymore

Countries, States, Households: Debt Runup Mattered

If *i* had greater debt runup than *j* before crisis, then (in the crisis) *i* suffered worse decline than *j*, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

We're Not in Kanasas Anymore

Countries, States, Households: Debt Runup Mattered

If *i* had greater debt runup than *j* before crisis, then (in the crisis) *i* suffered worse decline than *j*, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

We're Not in Kanasas Anymore

Countries, States, Households: Debt Runup Mattered

If *i* had greater debt runup than *j* before crisis, then (in the crisis) *i* suffered worse decline than *j*, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

We're Not in Kanasas Anymore

Countries, States, Households: Debt Runup Mattered

If *i* had greater debt runup than *j* before crisis, then (in the crisis) *i* suffered worse decline than *j*, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

We're Not in Kanasas Anymore

IMF World Economic Outlook 2012, Chapter 3

The Great Recession was particularly severe in economies that experienced a larger run-up in household debt prior to the crisis.

Carroll Expectations

We're Not in Kanasas Anymore

Minimal Requirements of a Useful Story

Imperfect Foresight

Simplest Model: Imperfect Unemployment Insurance
 People Differ in *Something* Other Than Employment
 Otherwise All Balance Sheets Will Be Identical!

We're Not in Kanasas Anymore

Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
- People Differ in *Something* Other Than Employment
 Otherwise All Balance Sheets Will Be Identical!

We're Not in Kanasas Anymore

Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
- People Differ in Something Other Than Employment
 - Otherwise All Balance Sheets Will Be Identical!

We're Not in Kanasas Anymore

Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
- People Differ in Something Other Than Employment
 - Otherwise All Balance Sheets Will Be Identical!

 μ

G

We're Not in Kanasas Anymore

Ingredients

Standard elements: Time-separable CRRA utility, optimization, etc

Elements to highlight:

- β Time Discount Factor
 - Expected Unemployment Risk
 - Expected Income Growth Rate
- κ Expected Credit Availability

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)
We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

We're Not in Kanasas Anymore

There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn't Matter (much)!

My Choice: Time preference rate (patient vs impatient)

• Equal % of Aggregate Income to Patient and to Impatient

• All debt *d* belongs to one type, *d*^{poor}

Cynamon and Fazzari (2013)

Debt rise concentrated in bottom 95 %.

• Aggregate net worth is $a = 0.5(a^{\text{rich}} - d^{\text{poor}})$

We're Not in Kanasas Anymore

- Equal % of Aggregate Income to Patient and to Impatient
- All debt *d* belongs to one type, *d*^{poor}
 - Cynamon and Fazzari (2013)

Debt rise concentrated in bottom 95 %

• Aggregate net worth is $a = 0.5(a^{\text{rich}} - d^{\text{poor}})$

- Equal % of Aggregate Income to Patient and to Impatient
- All debt *d* belongs to one type, *d*^{poor}
 - Cynamon and Fazzari (2013)

• Debt rise concentrated in bottom 95 %

• Aggregate net worth is $a = 0.5(a^{\text{rich}} - d^{\text{poor}})$

- Equal % of Aggregate Income to Patient and to Impatient
- All debt *d* belongs to one type, *d*^{poor}
 - Cynamon and Fazzari (2013)
 - $\bullet\,$ Debt rise concentrated in bottom 95 $\%\,$

• Aggregate net worth is $a = 0.5(a^{\text{rich}} - d^{\text{poor}})$

We're Not in Kanasas Anymore

- Equal % of Aggregate Income to Patient and to Impatient
- All debt *d* belongs to one type, *d*^{poor}
 - Cynamon and Fazzari (2013)
 - $\bullet\,$ Debt rise concentrated in bottom 95 $\%\,$
- Aggregate net worth is $a = 0.5(a^{\text{rich}} d^{\text{poor}})$

We're Not in Kanasas Anymore

Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in "patience" of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

We're Not in Kanasas Anymore

Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in "patience" of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

We're Not in Kanasas Anymore

Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in "patience" of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

We're Not in Kanasas Anymore

Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in "patience" of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

We're Not in Kanasas Anymore

Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in "patience" of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

We're Not in Kanasas Anymore

Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in "patience" of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

Construct three experiments all of which satisfy:

- d went from $d_{2001} pprox 1$ to $d_{2007} pprox 1.3$
 - So, *d^{poor}* increased from 2 to 2.6
- Expectation reverts to 2001 value in 2008

ExperimentDetails

э

Construct three experiments all of which satisfy:

- d went from $d_{2001} pprox 1$ to $d_{2007} pprox 1.3$
 - So, d^{poor} increased from 2 to 2.6
- Expectation reverts to 2001 value in 2008

ExperimentDetails

э

Construct three experiments all of which satisfy:

- d went from $d_{2001} pprox 1$ to $d_{2007} pprox 1.3$
 - So, *d^{poor}* increased from 2 to 2.6
- Expectation reverts to 2001 value in 2008

ExperimentDetails

э

Three Experiments

Belief in a Credit Boom

- Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

Belief in a Credit Boom

- Ø Belief that Unemployment Risk Has Declined
- 8 Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth
- In my experiments, none of these beliefs is true:
 - Unemployment Remains Constant
 - Growth Remains Constant
 - Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth
- In my experiments, none of these beliefs is true:
 - Unemployment Remains Constant
 - Growth Remains Constant
 - Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

Three Experiments

- Belief in a Credit Boom
- Ø Belief that Unemployment Risk Has Declined
- Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

• Find linear increase in ς such that $d_{2007} = 1.3$

② Assume abrupt reversal of credit easing: $\varsigma_{2008} = \varsigma_{2001}$

- Find linear increase in ς such that $d_{2007} = 1.3$
- **2** Assume abrupt reversal of credit easing: $\varsigma_{2008} = \varsigma_{2001}$

Belief in Gradual Expansion of Credit Availability

Carroll Expectations

Believed Unemployment Risk Declines in 2001

Carroll Expectations

Beliefs About Aggregate Growth Improve in 2001

Aggregate Saving in the Three Expectations Cycles

Actual Saving Path

Carroll Expectations

Expectations Drive Outcomes

In all three experiments:

- $\bullet\,$ In Short Run, Agg Dynamics Are Driven by Changes in $\mathbb E\,$
- Big diffs Across Groups in response to expectations changes
Expectations Drive Outcomes

In all three experiments:

- ullet In Short Run, Agg Dynamics Are Driven by Changes in ${\mathbb E}$
- Big diffs Across Groups in *response* to expectations changes

• It matters whose expectations change

- Debtors more responsive to credit, unemployment fears
- Creditors much more responsive to growth expectations

- It matters whose expectations change
- Debtors more responsive to credit, unemployment fears
- Creditors much more responsive to growth expectations

- It matters whose expectations change
- Debtors more responsive to credit, unemployment fears
- Creditors much more responsive to growth expectations

For Data Collection

Balance Sheet Surveys:

- Ask Questions About Expectations!
- We Really Need to Measure Saving Rates By Group!

For Data Collection

- Balance Sheet Surveys:
 - Ask Questions About Expectations!
- We Really Need to Measure Saving Rates By Group!

For Data Collection

- Balance Sheet Surveys:
 - Ask Questions About Expectations!
- We Really Need to Measure Saving Rates By Group!

References |

- CARROLL, CHRISTOPHER D., AND PATRICK TOCHE (2009): "A Tractable Model of Buffer Stock Saving," NBER Working Paper Number 15265, http://econ.jhu.edu/people/ccarroll/papers/ctDiscrete.
- CYNAMON, BARRY Z., AND STEVEN M. FAZZARI (2013): "Inequality and Household Finance During the Consumer Age," Working Paper, Washington University in St Louis.
- DYNAN, KAREN E. (2012): "Is Household Debt Overhang Holding Back Consumption?," Brookings Papers on Economic Activity, http://www.brookings.edu/~/media/Files/Programs/ES/BPEA/2012_spring_bpea_papers/2012_spri.
- INTERNATIONAL MONETARY FUND (2012): World Economic Outlook, 2012chap. 3. International Monetary Fund, Available at http://www.imf.org/external/pubs/ft/weo/2012/01/pdf/text.pdf.
- MIAN, ATIF, KAMALESH RAO, AND AMIR SUFI (2011): "Household Balance Sheets, Consumption, and the Economic Slump," *Manuscript, University of California at Berkeley.*

Experiment Overview

Write the consumption function contingent on the parameter values prevailing in year t as, for example, $c_t^{\text{poor}}(m_t^{\text{poor}}), c_t^{\text{rich}}(m_t^{\text{rich}})$, and so on. We want to assume a smooth change in the ς parameter over time: ς parameter of $\varsigma_{2002} = \varsigma_{2001} + \eta$, $\varsigma_{2003} = \varsigma_{2001} + 2\eta$ and so on through 2007. Given this path of ς we have the sequence of consumption functions $c_{2002}^{poor}, c_{2003}^{poor}$, and so on. Then, for example, starting from the steady-state $a^{\text{poor}} = -d^{\text{poor}}_{2001}$ values found in the calibration exercise above, we have a path of values of a_{2002} , a_{2003} and so on from the dynamic budget constraint and from the series of c^{poor} functions. The idea, then, is just to find the η such that $a_{2007}^{poor} = -2.6$.

(ロ) (同) (ヨ) (ヨ)

Unless otherwise indicated, parameter values match those used in Carroll and Toche (2009) Given these calibrations, we find the combination of assumptions about β^{poor} and β^{rich} such that the steady state of the model predicts that $a = a_{2001}$ and $a^{\text{poor}} = -2$ (which is the same as d = 1 and $d^{\text{poor}} = 2$).

so

$$a^{\rm rich} = 2a + d^{\rm poor} \tag{1}$$

<ロ> <同> <同> < 回> < 回>

æ

Baseline calibration to 2001:

$$a_{2001} \approx 5$$

 $d_{2001} \approx 1$
 $\Rightarrow d_{2001}^{\text{poor}} \approx 2$

▶ Back

 $\Rightarrow a_{2001}^{\rm rich} = 12$

Including Post-2007 Data

HHNW-over-DPI

Carroll Expectations

■▶ ■ のへ(

Prelude With Apologies to L. Frank Baum What Have We Learned? References

Including Post-2007 Data

Carroll

æ