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Abstract

This paper describes the implementation of the ‘Logiweb’ system with emphasis
on measures taken to support classical reasoning about programs.

Logiweb is a system for authoring, storing, distributing, indexing, checking, and
rendering of ‘Logiweb pages’. Logiweb pages may contain mathematical definitions,
conjectures, lemmas, proofs, disproofs, theories, journal papers, computer programs,
and proof checkers.

Reading Logiweb pages merely requires access to the World Wide Web. Two
example pages are available on http://yoa.dk/. Writing, checking, and publishing
Logiweb pages requires Logiweb to be downloaded and installed.

Logiweb comes with a hierarchy of features: Lemmas and proofs are stated in
a theory named ‘Map Theory’, Map Theory is implemented on top of a calculus
named ‘Logiweb sequent calculus’, and Logiweb sequent calculus is implemented
on top of the ‘Logiweb reduction system’ (a version of λ-calculus). The Logiweb
reduction system is implemented in the Logiweb core software which is currently
implemented in Common Lisp.

The levels above the Logiweb core software are defined on Logiweb pages, al-
lowing users to use the features as they are or to define and publish new ones on
new Logiweb pages. As an example, a user may want to use ZFC in place of Map
Theory, in which case the easiest approach is to publish a Logiweb page that defines
ZFC in Logiweb sequent calculus and proceed from there.

The ‘base’ page on http://yoa.dk/, which is 180 pages long when printed
out, was checked in 40 seconds. This is non-trivial to achieve for a proof checker
implemented in lamdba calculus.

The Logiweb sequent calculus is defined on the base page mentioned above. A
user who wants to define e.g. ZFC set theory on top of that may publish a new
page, call it ‘zfc’, and let the ‘zfc’ page reference the ‘base’ page. That makes all
definitions on the ‘base’ page available to the ‘zfc’ page. After that, another user
may state and prove lemmas about e.g. real numbers on a third page, call it ‘real’,
which references the ‘zfc’ page. When the proofs on the ‘real’ page are checked,
Logiweb will arrange that the ‘zfc’ and ‘base’ pages are available in a predigested
form suitable for proof checking.

Seen from the point of view of proof checking and publication, the World Wide
Web has the drawback that once submitted pages can be modified after submission.
In the example above, modification of the ‘base’ page could ruin the correctness of
the ‘real’ page.

To avoid problems with pages being modified, Logiweb implements its own ref-
erencing system which forces immutability upon once submitted pages. Once a
Logiweb page is submitted, it cannot be changed, just like papers cannot change
after publication.
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When a Logiweb page is submitted, a unique Logiweb ‘reference’ is computed
from its contents. The Logiweb system allows to look up a Logiweb page given its
reference.

Once a Logiweb page is submitted, it may be moved and duplicated such that
its http url may change and such that a page may be available many places in the
world under different urls, but the Logiweb reference remains constant. One of the
tasks of Logiweb is to keep track of the relation between the fixed references and
the associated, fluctuating set of http urls.

1 Introduction

Logiweb is a web-like system that allows mathematicians and computer scientists to
web-publish pages with high typographic quality and high human readability which
are also machine verifiable. Among other, Logiweb allows pages to contain definitions
of formal theories, definitions of new constructs, programs, lemmas, conjectures, and
proofs. Furthermore, Logiweb allows pages to refer to each other across the Internet,
and allows proof checking of proofs that span several pages that reside different places
in the world. As an example, a lemma on one page may refer to a construct which is
defined on another page situated elsewhere, in which case the proof checker must access
both pages to establish the correctness of the proof.

Logiweb is accumulative and provides a medium for archived mathematics. In con-
trast, the World Wide Web, which supports mathematics through MathML and OMDoc
[Koh03, MS01], is a medium suited for information in flux.

Like the Internet and the WWW, Logiweb is a robust, ‘anarchistic’ system that runs
without any central authority; it has been designed in the hope that such a system is
the missing piece of software for widespread usage of automated reasoning.

Currently, Logiweb is used as it is, but it also has the potential to run silently and
transparently underneath other systems like Mizar [Muz93, TB85]. Support for other
systems requires substantial effort, but the hooks for doing so in many different ways
are available in Logiweb.

Logiweb gives complete notational freedom to its users as well as complete freedom
to choose any axiomatic theory (e.g. ZFC) as basis for their work. Logiweb also allows
different notational systems and theories to co-exist and interact smoothly.

Logiweb was originally designed to support Map Theory [BG97, Gru92, Ska02, Val03]
which has the same power as ZFC but relies on very different foundations in that, e.g.,
it relies on λ-calculus instead of first order predicate calculus. However, Logiweb has
been designed such that it supports all axiomatic theories equally well so the ability to
support Map Theory should be seen as a widening rather than a narrowing of the scope.

Logiweb puts no restrictions on what logic is used in the sense that it can support
any theory for which one can program a mechanical proof checker. The ease with which
Logiweb supports highly distinct theories like ZFC and Map Theory indicates that use
of arbitrary logic is not only possible but also feasible. Logiweb supports classical as
well as intuitionistic logic, it supports theories built on first order predicate calculus as
well as other brands of theories, and it supports theories (such as Map Theory) which
admits general recursive definitions.

The absence of restrictions on the choice of logic of course makes it impossible to
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supply a code-from-theorems extraction facility like term of of Nuprl [CAB+86], but
functions for manipulation of theorems and proofs of individual theories are expressible
in the programming language of Logiweb.

One goal of Logiweb was to design a simple proof system which allows to cope with
the complexity of mathematical textbooks. To ensure that the system can cope with
the complexity of a full, mathematical textbook in a human readable style, two books
[Gru01, Gru02] have been developed 1992-2002 to test the system.

Reference [Gru01] is a discrete math book for first year university students and is
of interest here because it has been possible to test the human readability of the book
in practice. The associated course has been given ten times with a total of more than
a thousand students. The course has been a success and runs as the first course on the
computer science curriculum at DIKU in parallel with a course on ML.

Reference [Gru02] is a treatise on Map Theory and is of interest here because it
contains a substantial proof (a proof of the consistency of ZFC expressed in Map Theory)
that can stress test Logiweb. To allow comparison with other proof systems and to
ensure correctness, [Gru02] has been ported by hand to Isabelle [Pau98a, Pau98b, Ska02].

At the time of writing, Logiweb is used on a graduate course in logic (c.f. http:
//www.diku.dk/~grue/logiweb/20050502/home/index.html) and Logiweb is being
adapted according to user requests. After that, it is the intension to run first [Gru02] and
then [Gru01] through the system. Running those two books through Logiweb requires
adaption of the books to the current syntax of the Logiweb compiler plus programming
of a number of proof tactics that are described but not formally defined in the books.
Running [Gru02] through Logiweb will also allow a comparison with Isabelle.

Map Theory essentially is the Logiweb programming language extended with a quan-
tifier. As a long term goal, this makes it interesting to use Map Theory to reason about
Logiweb, possibly leading to a situation where one can solve the academic exercise to
let a proof checker prove its own correctness. A more immediate application is to use
Map Theory to reason about code fragments expressed in the Logiweb programming
language as is done in [Gru01].

1.1 Overview of the paper

Logiweb is a simple system with a simple programming language, a simple macro ex-
pansion facility, a simple proof checking facility, a simple protocol for exchange of doc-
uments, a simple format for storing Logiweb pages and so on. While each feature is
simple in itself, the sum of features may make Logiweb look complex at first sight. For
a comprehensive introduction to Logiweb, consult Logiweb itself at http://yoa.dk/
and read the ‘base’ page.

The present paper gives an overview of the system from an implementation perspec-
tive in Section 1.2 and from a user perspective in Section 2. Then Section 3 describes
how Logiweb pursues its goal to allow classical reasoning about programs without sacri-
ficing generality and efficiency of computation. Section 4 describes the data structures
used for representing terms, lemmas, proofs, pages, and so on. Section 5 describes the
proof checking algorithm and Section 6 summarizes.
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1.2 System overview

A user may use the World Wide Web as shown in Figure 1. In the figure, the user may
use the text editor to construct an html page and store it in the file system within reach
of the http server. Then the user (or another user) may use the html browser to request
the html page from the http server which in turn retrieves the html page from the file
system.

Internet

User

text
editor

file
system

http
server

html
browser

Figure 1: World Wide Web

Figure 2 shows how a user may use Logiweb. To write a Logiweb page, the user
prepares a source text and invokes the Logiweb compiler on it. This is similar to running
TEX on a TEX source [Knu83]. Actually, much of a Logiweb source consists of TEX source
code.

When and if the compiler succeeds in interpreting the source, it translates it to a
compressed format, checks its mathematical correctness, and stores it back in the file
system in the format of a Logiweb page within reach of the http server. The compiler
also renders the page in PDF so that users without a genuine Logiweb browser can view
it. After that, any user that knows the url of the page can retrieve it using an html
browser.

When the compiler succeeds in translating a Logiweb page, it also computes the
Logiweb reference of the page and notifies the Logiweb server (c.f. Figure 2). The
Logiweb server keeps track of the relationship between http urls and Logiweb references
and makes the relationship available via the Internet using the Logiweb protocol. The
Logiweb protocol allows Logiweb servers to cooperate on indexing pages such that each
server merely has to keep track of local pages plus some information about which other
Logiweb servers to refer non-local requests to.

A Logiweb reference contains a RIPEMD-160 [DBP96] hash key and a time stamp.
The RIPEMD-160 hash key is computed on basis of the bytes of the associated page.
As long as RIPEMD-160 stands up against collision attacks, not even a malicious user
can get away modifying as much as a single byte of a Logiweb page without getting
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Figure 2: Logiweb

caught by a RIPEMD-160 check.
When the compiler translates a Logiweb page that references other Logiweb pages

(which is the normal case), it uses the Logiweb server to locate the references and then
transitively loads the referenced pages so that all definitions on transitively referenced
pages are available.

When referencing a Logiweb page from the World Wide Web, one may construct
an http url from the Logiweb reference by expressing the reference in hexadecimal and
prepending it with the url of a Logiweb relay (c.f. Figure 2). A Logiweb relay is a CGI-
program which, given a reference, contacts the nearest Logiweb server, translates the
reference to an ordinary url, and returns an html indirection to that url. This instructs
the html browser of the user to fetch the associated page. The net experience for the
user is that clicking a Logiweb reference in an html document makes the html browser
navigate to the referenced Logiweb page.

Referencing from Logiweb pages to html pages is trivial but not necessarily advisable
since the immutability of Logiweb pages makes it impossible to repair broken links.

In addition to the Logiweb server, compiler, and relay mentioned above, the cur-
rent implementation of Logiweb includes an ‘lgwping’ program which allows to ping a
Logiweb server to see if it is responding.

For more details on Logiweb see http://yoa.dk/ or [Gru04].

2 A Logiweb tutorial

2.1 Hello world

To give an overview of the system from a user perspective, we now follow the first steps
of a new user. The steps are close to the steps actually followed by the current users
(c.f. http://www.diku.dk/~grue/logiweb/20050502/home/index.html).
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Previous versions of Logiweb offered a WYSIWYG authoring tool, but that has been
abandoned until further and replaced by a lean and mean compiler that offers high speed
and reasonably intelligible error messages, but no help beyond that. In other words, our
new user is in a situation that resembles the situation of the first time user of a new
programming language.

So a reasonable way to get started is to copy the source text of a “hello world”
Logiweb page and try to compile that. The source of a “hello world” page is available
at http://www.diku.dk/~grue/logiweb/20050502/home/grue/hello-world/fixed/
source/source.pyk. The essential lines read

\begin{document}
"[ math pyk define hello world as "hello world" end define end math ]"
\end{document}

which requires quite a lot of explanation to make sense. Instead of looking for an
explanation, our new user stores the source text in the file “page.pyk” and runs the
compiler by issuing a command like the following:

> pyk pyk=page url=http://my.domain/my/directory level=all

After that, our user starts an html browser and looks up http://my.domain/my/
directory/hello-world/fixed, then clicks “body”, and then clicks “PDF” to see the
following:

[hello world
pyk
= “hello world”]

2.2 A minor update

Our new user, encouraged by seeing output from the system, modifies the source:

\begin{document}
The definition "[ math pyk define hello world as "hello world" end
define end math ]" defines the name of {\em my} page.
\end{document}

Then the user reruns the compiler and asks the html browser to reload the page to get

The definition [hello world
pyk
= “hello world”] defines the name of my page.

A key feature of Logiweb is that pages are immutable, so it may seem peculiar how
easily the user changed http://my.domain/my/directory/hello-world/fixed above.
To Logiweb, however, the two pages have different Logiweb references and the first
“hello world” page was immutable as long as it existed. Immutability means that,
given a Logiweb reference, one can locate the associate page (if it exists anymore) and,
furthermore, one can check whether or not anybody has tampered with the page.

Our user invoked the compiler with a “level=all” argument. That indicates that the
backend of the compiler should render not only the page itself but also a lot of additional
material. A “level=submit” is equivalent to “level=all”, but in addition requests the
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compiler to notify the nearest Logiweb server about the submission and to store the page
as http://my.domain/my/directory/hello-world/TIME where TIME is the date and
time of submission. This is useful for versions of a page that are expected to exist for
more than a debug round trip.

2.3 Guarding against haphazardness

Now our hopeful user is ready for doing some proof checking. However, suppose the
source text of the “hello world” page contains something like

BIBLIOGRAPHY
base: "http://yoa.dk/logiweb/page/base/fixed/vector/page.lgw"

These lines tell the compiler that the “hello world” page references whatever Logiweb
page happens to be at that particular URL at the moment the “hello world” page is
translated. The .lgw file is the real Logiweb page in a standardized, binary format. If
the referenced page is overwritten, and no copies of the page exists anymore, then the
“hello world” page will be ruined. So to guard against this, the user issues the following
command:

> pyk lgw=http://yoa.dk/logiweb/page/base/fixed/vector/page.lgw \
> url=http://my.domain/my/directory level=submit

That makes the compiler make a local copy of the given Logiweb page. The local copy
will have exactly the same reference as the original, and the local copy ensures that the
Logiweb page will remain in existence even if the original instance of the page ceases
to exist. Then the user may look up the raw Logiweb reference at http://yoa.dk/
logiweb/page/base/fixed/reference/kana.html and insert that in the bibliography:

BIBLIOGRAPHY
base:nani
nuse siti sete tiku kata sana susu siku kitu naku
kake sisu suni nusa tini tesa kika sutu siku neke
saku kesa keke seke kine suki sise nasa natu

This ensures that the “hello world” page will reference the same Logiweb page each time
the user re-translates the “hello world” page.

2.4 Defining a theory

Having guarded against the haphazardness of the external world, our user may write

Propositional calculus "[ intro prop pyk "prop" tex "L_p" end
intro ]" as defined in \cite{mendelson} is defined thus:
"[ math theory prop end theory end math ]", "[ math in theory
prop rule a one says all meta a indeed all meta b indeed meta
a imply meta b imply meta a end rule end math ]", ...
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to get

Propositional calculus [Lp] as defined in [Men87] is defined thus: [Theory
Lp], [Lp rule A1:∀A: ∀B:A ⇒ B ⇒ A], [Lp rule A2:∀A: ∀B: ∀C: (A ⇒ B ⇒
C) ⇒ (A ⇒ B) ⇒ A ⇒ C], [Lp rule A3:∀A: ∀B: (¬B ⇒ ¬A) ⇒ (¬B ⇒
A) ⇒ B], and [Lp rule MP:∀A: ∀B:A ` A ⇒ B ` B].

For a less cramped and more complete example see Section 1.6 of the body of http:
//yoa.dk/logiweb/page/check/fixed/.

The "[ intro prop pyk "prop" tex "L_p" end intro ]" in the source above
says that the construct named “prop” should be rendered as “L_p” in TEX and can
be referred to as “prop” on pages referencing the page. Normally, a construct should
have the same name on the page and on pages referencing the page, so the latter piece
of information is a bit redundant.

2.5 Proving something

Our user may now state a lemma and a proof:

[Lp lemma I:∀A:A ⇒ A]

Lp proof of I:
L01: Arbitrary À A ;
L02: A1 À A⇒ (A ⇒ A) ⇒ A ;
L03: A1 À A⇒ A⇒ A ;
L04: A2 À (A ⇒ (A ⇒ A) ⇒ A) ⇒

(A ⇒ A ⇒ A) ⇒ A⇒ A ;
L05: MP ¤ L02 ¤ L04 À (A ⇒ A ⇒ A) ⇒ A⇒ A ;
L06: MP ¤ L03 ¤ L05 À A⇒ A 2

2.6 How the page is verified

Logiweb pages are verified by the Logiweb core software. That software would fit nat-
urally into a Logiweb browser. But, at present, there is no such Logiweb browser since
Logiweb piggybacks the World Wide Web, and the core software actually resides in the
compiler, sandwiched between a frontend and a backend. When the “hello world” page
is translated, the compiler does as follows:

The frontend reads the source file and loads all Logiweb pages transitively referenced
by the page. During this process, all transitively referenced pages are processed and
verified by the core software unless they already reside in the cache of the compiler
(which may be saved to disk).

Then the compiler reads declarations of associativity and priority of all constructs
used and parses the source. The output from this process is a list of bytes called a
“Logiweb vector” in the format used for storing and transmitting Logiweb pages.

At this point, the compiler could store the vector and halt. Instead, the compiler
invokes the core software on the vector. The core software unpacks the vector into a
“body”, a “bibliography”, and a “dictionary”. The body essentially is one, big Lisp
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S-expression, the bibliography is a list of pages directly referenced by the page, and the
dictionary contains the arities of all constructs introduced on the page.

Then the compiler invokes a macro engine. That engine is defined on the first, direct
reference of the page, i.e. on the “base” page in the case of “hello world”. The macro
engine on the base page happens to implement an outside-in macro expansion strategy
which supports but does not enforce recursive macro expansion. Among other, the base
page contains a macro defined by [(x)=̈x] which says that parentheses disappear during
macro expansion.

After macro expansion, the compiler “harvests” the page, i.e. collects all definitions
present on the page (including macro definitions). After harvesting, new macro def-
initions may affect how the page should have been expanded, so the compiler macro
expands the page once more from scratch. The compiler then alternates between ex-
pansion and harvesting until a fixed point is reached (if ever) or until the user kills the
compiler. The output from this process (if any) is a “codex” which contains all the
definitions and an “expansion” which is the macro expanded version of the page.

Then the compiler invokes a verifier. That verifier is also defined on the first direct
reference of the page. The verifier on the base page happens to be the conjunction of
two verifiers, one that verifies test cases like [2 + 3 = 5] and one that verifies proofs.

Since definitions is what Logiweb collects, anything interesting should be expressed
as definitions. As an example, [Lp lemma I: ∀A:A ⇒ A] macro expands into a defini-
tion that says that the “statement aspect” of [I] equals [Lp ` ∀A:A ⇒ A]. [Theory
Lp] is particularly complicated; it macro expands into a definition that says the the
statement aspect of [Lp] equals the intuitionistic conjunction of the four rules of [Lp].
The [Theory] macro finds the rules of [Lp] by scanning the codex of the page.

The proof of [I] above macro expands into a definition of the “proof aspect” of [I].
The right hand side of that definition comprises a “proof engine” applied to a quoted
version of the macro expanded proof. The proof verifier evaluates the right hand side
so that control is passed to the proof engine which in turn evaluates all constructs for
which a “tactic aspect” is defined. When all proof tactics are evaluated, the proof verifier
returns a term expressed in Logiweb sequent calculus to the proof verifier which then
evaluates that according to the rules of that calculus to see if the proof is correct and
proves what it is supposed to prove. The proof above uses a unification tactic [A À B]
which instantiates A to fit B.

After verification, regardless of whether the page is correct or not, the compiler
invokes the backend to render the body, bibliography, dictionary, codex, expansion,
diagnose (in case of errors), reference and vector of the page in a number of different
formats.

3 Classical reasoning about programs

Logiweb has been designed with the goal to support classical reasoning about programs.
At the same time, however, Logiweb has been designed to be as neutral as possible
with respect to choice of logic and notation. In other words, the requirement to support
classical reasoning about programs should be seen as a widening of the scope compared to
systems which focus on constructive reasoning or which focus on classical mathematics.
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Constructive reasoning often leads to unnecessary complications. On the other hand,
classical reasoning about programs is non-trivial because general recursion and infinite
looping is cumbersome to deal with in classical theories like ZFC set theory. As an
example, if [n! .= if(n = 0, 1, n · (n−1)!)] then it is trivial that [(−1)!] loops indefinitely,
but that is non-trivial to express and prove in ZFC.

In Logiweb, the chosen solution to that problem is to base all computable definitions
on a version of λ-calculus that allows classical reasoning, and to ensure that Logiweb is
able to support such classical reasoning.

This is non-trivial for two reasons. Firstly, λ-calculus programs are inefficient com-
pared to programs expressed in other languages unless special measures are taken. Sec-
ondly, it is much easier to develop first order predicate calculus in lamdba calculus than
the other way round, so Logiweb must support classical logic that is not based on first
order predicate calculus (we consider a theory “classical” if it allows proof by cases such
as use of the law of excluded middle; the theory we shall arrive at also allows to use the
axiom of choice).

In the following we first introduce a version of λ-calculus which is suited to classical
reasoning and then deal with the efficiency problem.

3.1 λ-calculus for classical reasoning

Pure λ-calculus [Chu41] is inherently syntactic of nature and cumbersome to handle in
classical theories like ZFC. In contrast, impure λ-calculi do support classical reasoning
and have models that are classical of nature [BG97].

As an example, λ-calculus to which one adds integers is suited for classical reasoning.
λ-calculus enriched with truth values T and F also supports classical reasoning.

Hence, λ-calculus enriched with two or countably many new values is suited to
classical reasoning. Actually, λ-calculus enriched with any number of new values from
one and up are equally suited to classical reasoning.

To make matters as simple as possible, Logiweb is based on λ-calculus enriched with
just one new value plus an operation which makes the new value useful. We shall refer
to the new value as T. In terms of the C programming language, a lambda construct
corresponds to a pointer to a function and T corresponds to the NULL pointer. Among
many things, we shall use T to represent truth, which explains the choice of name.

The λ-calculus used by Logiweb is defined by the Logiweb reduction system λT:

(λx.y)z → 〈y|x:=z〉
Tz → T
if(T, y, z) → y
if(λu.v, y, z) → z

3.2 Equality of lambda terms

In pure λ-calculus, two terms are considered “equal” or “beta-equivalent” if they reduce
to the same term; this is what makes λ-calculus syntactic of nature and cumbersome to
deal with classically. In λT, equality is defined semantically as follows:

Define λT‖ as the system above extended with a new, binary operator x ‖ y and the
following reduction rules:
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T ‖ x → T
x ‖ T → T
λu.v ‖ λx.y → λz.T

We say that a term t of λT‖ is a “true” term if it reduces to T, a “function” term
if it reduces to a term of form λx.y, and a “bottom” term if it is neither a true nor
a function term. We say that two terms s and t are “root equivalent”, written s ∼ t,
if they are both true, both function, or both bottom terms. We say that s and t are
“equal”, written s = t, if fs ∼ ft for all terms f of λT‖. Terms of λT are considered
equal if they are equal in λT‖.

Classical equality s = t is undecidable (since otherwise s = ⊥ could decide the
halting problem where ⊥ .= (λx.xx)(λx.xx)). Furthermore, s = t differs from βη-
equivalence s =η t. Actually, neither of the two relations imply the other. As an
example, (λx.λy.xy)T → λy.Ty whereas (λx.x)T → T so λx.λy.xy 6= λx.x even though
λx.λy.xy =η λx.x. As another example, Yλf.λx.λx.f = Yλf.λx.λx.λx.f (they both
equal λx.λx.λx. · · ·) but the two terms are not βη-equivalent. β-equivalence does imply
classical equality.

3.3 Classical reasoning about λT

In λT, any term f satisfies f = T or f = λx.fx or f = ⊥, there is no fourth possibility.
This ‘quartum non datur’ (QND) rule makes λT classical because it allows proof by
cases. A two-valued logic like ordinary propositional calculus satisfies a ‘tertium non
datur’ rule whereas a three valued logic like λT satisfies a ‘quartum non datur’ rule like
the one above. The proof-theoretic strength is the same.

As an example, if we define F
.= λx.T and x ∧ y

.= if(x, if(y, T, F), if(y, F,F)) then
QND allows to prove x ∧ y = y ∧ x. If x ∨ y

.= if(x, if(y, T, T), if(y, T, F)) and ¬x
.=

if(x,F,T) then x ∨ ¬x = T fails (counterexample: x = ⊥) but QND allows to prove
x ∨ ¬x = !x where !x .= if(x,T,T). In general, QND allows to translate lemmas and
proofs of classical propositional calculus to λT.

The QND-inference belongs to Map Theory. In Logiweb, Map Theory has four
connections to λT. Firstly, Map Theory allows to reason about λT. Secondly, the
reduction rules of λT are axioms of Map Theory. Thirdly, any λT program like x! .=
if(x = 0, 1, n · (n − 1)!) (where integers and = and · on integers is defined suitably)
automatically becomes a definition that can be used in Map Theory proofs. Fourthly,
the proof checker for Map Theory is implemented in λT.

3.4 Stress test of Map Theory

The ultimate test for a theory is to prove the consistency of ZFC set theory within
it. The result itself is not important since ZFC set theory is generally accepted to be
consistent, but proving the consistency of ZFC in a theory proves that that theory is as
powerful as ZFC theory which in turn is known to be sufficiently powerful to express all
of classical and most of modern mathematics.

For Map Theory, [Gru02] contains a formal proof of the consistency of ZFC within
Map Theory. Among other, [Gru02] was written to develop the language of Logiweb, so
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[Gru02] was expressed in the language of Logiweb before Logiweb was implemented. The
correctness of [Gru02] has been established in Isabelle as reported in [Ska02]. Adaption
of [Gru02] to the final version of the Logiweb language and proof-checking in that
framework is the next, major task in the Logiweb project and will allow comparison
with the Isabelle implementation.

Note: If SI denotes the assumption that there exists a strongly inaccessible ordinal
then ZFC+SI can prove the consistency of Map Theory [BG97, Gru92] which in turn can
prove the consistency of ZFC [Gru92, Gru02]. This supports a claim that Map Theory
has strength between ZFC and ZFC+SI. But “strength” is defined on basis of Gödels
1931 paper [Göd31] which only considers theories that build on first order predicate
calculus so, for technical reasons, the “strength” of Map Theory is not defined. The
claim in Section 1 that Map theory has the “same” power as ZFC is imprecise but close
to the truth.

3.5 Efficiency of λT

The core software of Logiweb supports λT and no other programming language. Since
classical reasoning about λT is possible and rather straightforward ([Gru02], Chapter
6), this ensures the possibility to reason classically about any program expressed in
Logiweb.

This leaves two problems: How to handle programs expressed in other languages,
and how to ensure efficiency?

The first problem is trivial in principle. To handle e.g. C programs, define a compiler
from C to λT in λT. Such a compiler is typically referred to as a ‘semantics’ of C.

The second problem is non-trivial, and typical implementations of λ-calculus are
inefficient to a degree where a compiler from C to λT would be of little practical use.

Logiweb has a rather simple solution to the efficiency problem which is described in
the following.

3.6 Definitions

Logiweb allows Logiweb pages to contain definitions. As an example, consider the
following definitions:

x : : y .= λz.if(z, x, y)
xh .= xT
xt .= xF
F

.= λx.T

It is straightforward to prove (x : : y)h = x and (x : : y)t = y so x : : y is a pairing
construct and xh and xt are the associated ‘head’ and ‘tail’ operations.1

If the definitions above are stated on a Logiweb page P, then they will be available
in P as well as all pages referencing P. The definitions effectively extend the Logiweb
reduction system with new reduction rules like x : : y → λz.if(z, x, y).

1In Map Theory, which has inference rules of transitivity and substitution of equals and which has
all λT reduction rules and all valid λT definitions as axioms, a proof of (x : : y)h = x essentially reads
(x : : y)h = (x : : y)T = (λz.if(z, x, y))T = if(T, x, y) = x.
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Computation of e.g. (x : : y)h = x will not be particularly efficient, however. It is pos-
sible to implement the pairing operation much more efficiently than using λz.if(z, x, y).

To allow efficient implementation without affecting the ability of classical reasoning,
Logiweb has two definition constructs, which we shall refer to as .= and =́. Formally,

x : : y .= λz.if(z, x, y)

and

x : : y =́ λz.if(z, x, y)

mean exactly the same. Backstage, however, Logiweb has a finite list of ‘optimized
functions’ which Logiweb can compute efficiently. For each optimized function, Logiweb
stores both the efficient version of the function and the ‘semantics’ of the function. The
‘semantics’ of an optimized function is a definition of the function expressed in λT.
When Logiweb sees a definition like

x : : y =́ λz.if(z, x, y)

it searches its list of optimized functions for one whose ‘semantics’ is identical to

λz.if(z, x, y)

(except for naming of bound variables). If Logiweb finds a match, it translates x : : y
to the optimized function found. Otherwise, Logiweb treats =́ like .=. A “match”
must be exact (modulo naming). As an example, λz.if(z, (λx.x)x, y) does not match
λz.if(z, x, y).

The .= and =́ constructs are identical from the point of view of reasoning as long as
optimized functions behave exactly as specified by their semantics. It is the responsi-
bility of the implementer of the core software to ensure this correspondence.

Distinct implementations of Logiweb may have different lists of optimized functions;
that may affect the speed of a computation but not the result of a computation.

Actually, the current implementation of Logiweb has no optimized function for the
untagged pair construct x : : y above. Instead, that implementation has an optimized
function for a particular tagged pair construct, and also has optimized functions for
handling cardinals (i.e. non-negative integers). Finally, the current implementation of
Logiweb does some type inference and strictness analysis to make programs run fast (c.f.
Section 3.6 of the base page). All that is invisible from the point of view of reasoning
about programs.

3.7 Feasibility

The measures above and those mentioned in Section 4 have proven sufficient to make it
feasible to implement macro expansion and proof checking on top of λT. As mentioned
in the abstract, the ‘base’ page on http://yoa.dk/, which is 180 pages long when
printed out, was macro expanded and checked in 40 seconds.

Each time an efficiency enhancement was implemented, the efficiency gain was mea-
sured in a rather crude way (with a manual stop watch on an otherwise unloaded
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machine). The product of efficiency gains indicate a total speed-up around 109 with an
uncertainty of several orders of magnitude. If the 109 figure is correct, the base page
would take around 1200 years to macro expand and check without optimizations.

The 40 second measure is just a feasibility demonstration, not one suited for com-
parison with other systems. The measure shows that Logiweb can survive a 180 page
document with around 1500 definitions, 180 test cases, and 10 proof lines. The 40 sec-
onds are mainly spent on macro expanding the rather complex base page seven times
(for macro expansion iteration see Section 2.6). Applying Logiweb to longer proofs is
currently done by about ten students on a graduate course.

4 Data structures

In this section we describe the data structures Logiweb uses when verifying pages.
The choice of such data structures has proven to impact the efficiency of verification
considerably.

4.1 Terms

The current implementation of Logiweb has a pairing function and support for cardinals
(non-negative integers) among its optimized functions. We shall refer to the pairing
function as x : : y even though it differs from the particular pairing function defined in
Section 3.

The term is one of the most fundamental data structures of a system for formal
logic. Logiweb terms are data structures implemented using cardinals, x : : y, and T.

Logiweb terms are used for representing ordinary terms like 2 + 3. But they are also
used for representing formulas like ∀x: x + 1 = 1 + x. Furthermore, Logiweb terms are
used for representing lemmas and proofs. Actually, an entire Logiweb page is one big
term as seen from the point of view of Logiweb.

Logiweb terms are trees whose nodes are labeled by ‘Logiweb symbols’. A Logiweb
term with root r and subterms t1, . . . , tn is represented by

r : : t1 : : · · · : : tn : : T

This representation of terms is effectively the same as a Lisp S-expression [McC60].
The differences are (1) Logiweb symbols differ from Lisp symbols/Lisp atoms, (2) Logi-
web terms are terminated by T where Lisp S-expressions are terminated by NIL, and
(3) each Logiweb symbol has an arity which must match the n above.

As mentioned previously, each Logiweb page has a reference r. That reference is a
sequence of bytes when stored on disk or transmitted via a network, but when handled
inside Logiweb software, it is a cardinal.

Each Logiweb page declares a finite number of Logiweb symbols. Each Logiweb
page has a unique reference r and each symbol declared by a page has an identifier i
which is unique within the page, so a Logiweb symbol is uniquely determined by r and
i together.

A Logiweb symbol with reference r and identifier i is represented by a structure of
form r : : i : : d. The last item d in a Logiweb symbol comprises debugging information
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which is irrelevant to formal reasoning. The debugging information notes where the
term was located before macro expansion and thus allows to produce meaningful error
messages.

The term that makes up a Logiweb page can only contain symbols from the page
itself and pages directly referenced by the page. After macro expansion, the term can
contain symbols from the page itself and pages transitively referenced by the page.

Large parts of a Logiweb page typically consists of ordinary text. Ordinary text
is encoded as terms inside the Logiweb software. When stored on disk or transmitted
over a network, care has been taken to encode text efficiently. In particular, Unicode
characters below 128 (i.e. ASCII characters) take up one byte each. Ordinary text of
Logiweb pages is expressed as TEX source text.

4.2 Arrays

Concerning efficiency, the main drawback of pure functional programming is the lack of
constant time array access. Logiweb is based on λT which certainly is a pure functional
programming language, and constant time array access is not tenable. Fortunately, it
is not important whether or not array access is constant in time. It is more important
that array access is fast.

Apart from terms, the main data structures of Logiweb are based on ‘Logiweb arrays’.
A Logiweb array a represents a function f from cardinals to arbitrary data which has
the property that f(n) 6= T holds for at most finitely many cardinals n.

We shall refer to the value associated to the cardinal n by the array a as a[n] and
to the set {n|a[n] 6= T} as the ‘domain’ of a.

A Logiweb array a is represented as a binary tree whose leafs have form n : : x where
x 6= T. A leaf of form n : : x represents the information that a[n] = x.

A leaf of form n : : x is placed at a location in a which depends on the index n and
on what other indices are stored in the array. As an example, consider a leaf of form
6 : : F which indicates that a[6] = F. The binary expansion of 6, written with the least
significant bit first, reads 01100000 · · ·. The address at which the leaf 6 : : F is placed in
a is the shortest prefix of 01100000 · · · which distinguishes 6 from all other indices of
the array a.

As a result, the access time of an array a with a contiguous domain depends on the
logarithm of the size of the domain. The access time of a sparse array with randomly
distributed indices also depends on the logarithm of the size of the domain.

The arrays used in Logiweb are typically accessed either by small cardinals (e.g.
identifiers of Logiweb symbols) or by randomly distributed cardinals (e.g. references of
Logiweb symbols).

4.3 Logiweb codices

A definition like F
.= λx.T defines the value of F, and a system for mathematical reason-

ing certainly must keep track of such definitions. Logiweb collects all definitions present
on a Logiweb page in a data structure which we shall refer to as a Logiweb codex, c.f.
Section 2.6.

A value definition like F
.= λx.T is what one normally thinks of as a definition. But

a computational system must handle many other kinds of definitions: definitions of how
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constructs macro expand, how they should be rendered, how a user should input them
via a keyboard, and many other things.

Logiweb handles different kinds of definitions by the introduction of Logiweb ‘as-
pects’. Each definition in Logiweb consists of a left hand side, a right hand side, and an
aspect. As an example, definition of three aspects of F could read

F
val= λx.T

F
tex= “\mathsf{F}”

F
pyk
= “false”

The first definition defines the value aspect of F. Or, stated in a more straightforward
way, it defines the value of F. The second definition defines how F should be rendered and
the third definition states what a user should type on a keyboard or say in a microphone
to enter an F to an authoring tool. On traditional, site based proof checkers one typically
stores “pyk”- and “tex”-like information separately, but when sending pages around on
the internet, each page must be a capsule containing all information needed to e.g.
render the page. The latter two definitions above form a convenient way to include
information that is normally hidden away. The “intro” construct in Section 2.4 macro
expands into pyk and tex definitions (see the base page for a precise definition).

The macro facility allows to keep the de Bruijn factor2 low. The macro facility
allows authors to write pages in a style that is appealing to the human reader but still
macro-reduces into a more machine understandable form. The author of a page can
define a construct to be a macro by defining its macro aspect.

In Logiweb, aspects are represented by symbols. Definitions contain a left hand side
(which may contain parameters), an aspect (which may also contain parameters), and
a right hand side. When Logiweb “codifies” a Logiweb page, it macro expands it and
collects definitions from it, leading to a “codex” and a macro expanded version of the
page. The macro expanded version is a term whereas the codex is an array c with the
property that

c[rs][is][ra][ia]

is the definition of the aspect with reference ra and identifier ia for the symbol with
reference rs and identifier is.

The codex allows fast access to any aspect of any symbol during verification.

4.4 Logiweb racks

We shall refer to an array that contains heterogeneous data as a ‘rack’ and to each index
of a rack as a ‘hook’.

Logiweb assigns a rack r to each Logiweb page. The hooks of the rack are various
cardinals that represent various concepts. As an example, Logiweb hangs the codex
c of a page on the ‘codex’ hook, meaning that a particular cardinal c′ represents the
concept of a codex and meaning that r[c′] = c. The hooks of a Logiweb rack include
the following:

2the ratio by which formalization increases the length of a text [dB80]
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vector The list of bytes that makes up the Logiweb page when it is stored on disk
or transmitted over a network.

bibliography The list of pages directly referenced by the present page. Reference
number zero (the first reference) is the reference of the page itself.

cache Explained later.
dictionary Symbol declarations of the page, represented as an array d. A symbol

with identifier i ‘exists’ if d[i] 6= T in which case d[i] is the arity of the symbol.
body The term that makes up the page.
codex The codex of the page as explained previously.
expansion The macro expanded version of the body.
diagnose Logiweb hangs T on this hook if the page passes verification. Otherwise,

the diagnose will be a term which, when typeset, is supposed be be a meaningful error
message.

code A compiled version of the codex (for an example of use see the base page,
Section 4.4.1)

4.5 Logiweb caches

As explained previously, there is a one-to-one correspondence between Logiweb refer-
ences and immutable Logiweb pages. The correctness of a Logiweb page only depends
on the contents of the page, which is immutable, and the contents of transitively refer-
enced pages, which are also immutable. For that reason, each Logiweb page only needs
to be verified once. The current implementation of the compiler verifies each page the
first time it is referenced within a session.

Independently of any caches maintained by Logiweb software for efficiency reasons,
Logiweb also defines a “Logiweb cache” for each Logiweb page. The cache of a page
collects information about a page and all its transitively referenced pages.

The cache of a Logiweb page is an array c for which c[r] is the rack of the page with
Logiweb reference r. The domain of the cache c comprises the references of the page
itself and pages transitively referenced by the page. As a dirty trick, c[0] contains the
reference of the page itself so that e.g. c[c[0]] is the rack of the page.

Racks and caches are defined mutually recursively. A cache is an array that maps
references to racks. A rack maps the previously mentioned ‘cache’ hook to an array
which maps references of transitively referenced pages to their caches. The resulting
structure is a non-cyclic one with considerable sharing which gives efficient access to all
data needed during verification and during all other activities undertaken by Logiweb.

5 Verification

5.1 Page symbols

Each Logiweb page implicitly declares a symbol whose identifier is zero, and the arity
of that symbol is forced to be zero. We shall refer to that symbol as the ‘page symbol’
of the page. The reference of a page symbol equals the reference of the page so there is
a one-to-one correspondence between pages and page symbols, c.f. Section 4.1.
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Each Logiweb definition assigns an aspect to a symbol. Aspects assigned to a page
symbol, however, should be interpreted as aspects of the page. As an example, the name
of a page symbol effectively becomes the name of the page.

5.2 Verification

From the point of view of the Logiweb core software, verification of a Logiweb page is
trivial. The core software just codifies the page, looks up the ‘claim’ aspect of the page
symbol (which, if defined, is a term), applies that term to the cache of the page, and
considers the page correct if the result is T. Otherwise, Logiweb hangs the result of the
computation on the ‘diagnose’ hook of the page. The diagnose is supposed to be a term
which, when typeset, is supposed to explain what went wrong. Supplying meaningful
diagnoses is the responsibility of programmers of claims, proof tactics, etc.

If a page makes no claim (i.e. if no claim aspect is defined for its page symbol)
then Logiweb uses the claim of reference number one of the page, and if that reference
makes no claim either, then the page is considered trivially correct. In the “hello world”
example in Section 2.6, the “hello world” page makes no claim but reference number
one (the base page) does make a claim.

The claim made by the base page is a substantial one. It scans the codex of the
page for all proof definitions, invokes proof compilers which in turn invoke proof tactics,
verifies the proofs, checks for cyclic references between proofs, and checks that the proofs
prove the statement aspects they are supposed to prove.

It is an important feature of Logiweb that a complex beast like a proof checker is
not included in the core software. Firstly, it reduces the complexity of the core software.
Secondly, at gives the users of the system the flexibility to use the proof checker that
comes with logiweb (simply by referencing the ‘base’ page as reference number one) or
to define another one.

To establish confidence in the formal correctness of a Logiweb page, a human reader
can check that it has been verified by a proof checker that the reader trusts. That can
be done by inspecting the claim aspect of the relevant page symbol.

Proof checkers are faced with the same problem as the human reader. The proof
checker that comes with Logiweb is ‘arrogant’ in the sense that it only trusts lemmas
that it has checked itself. When a proof being checked references a lemma on another
page, the proof checker looks up the claim of the other page, which is supposed to
be a conjunction, and then checks that the proof checker itself is a member of that
conjunction. The proof checker also checks that the diagnose of referenced pages equals
T. Hence, the proof checker that comes with Logiweb only trusts itself but is willing to
coexist with other checkers. On the base page, the proof checker coexists with a test
case verifier, c.f. Section 2.6.

One can easily adapt any TEX source to the format of Logiweb and get it accepted
as a trivially correct page, simply because TEX sources make no claims that Logiweb
can understand. That is useful for communication to readers but of course such trivially
correct pages are of no formal use.

Macro expansion is just as simple as verification from the point of view of the Logiweb
core software. Logiweb pages are macro expanded by applying the macro aspect of the
page symbol of a page to the body of the page and hanging the result on the ‘expansion’
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hook of the page, c.f. Section 2.6..

6 Status

Logiweb allows users to publish, verify, retrieve, and read pages that contain formal
mathematics.

The Logiweb core software comprises about 900 kilobyte of source code (including
comments). It implements the features described in the present paper. It also imple-
ments many other features like features for rendering. The core software is kept simple
by moving essential features like the definition of the proof checker from the core software
to Logiweb pages.

In particular, the measures taken to allow λ-calculus programs to be efficient have
been implemented with success. Also, the data structures of codices, racks, and caches
have proven to support proof checking well.

At the time of writing, Logiweb allows referencing within a single site covered by a
single Logiweb server. The Logiweb protocol allows cooperation among Logiweb servers.
When that is implemented, the web-part of the system will allow a single formal devel-
opment to consist of papers that reside different places in the world. Until then, users
are forced to copy referenced papers to their own site. Section 2.3 describes copying as
a convenient possibility, but until further copying is a necessity.

At the time of writing, 600 kilobyte of Logiweb source text has been verified by
Logiweb. Those 600 kilobyte define the computing machinery, the macro expansion
facility, and the proof checker, and verify the feasibility of the system (c.f. Section 3.7).
800 kilobyte of formal proofs [Gru02] await verification.
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