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ON THE DYNAMICS OF THE RECURSIVE SEQUENCE
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ABSTRACT. In this paper, we investigate the global behavior of
the difference equation
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where (3 is a positive parameter and «, y are non-negative param-
eters and non-negative initial conditions.
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1. Introduction

Consider the higher-order difference equation
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(1) Tptl = , n=0,1,..

where the parameters, 3 is positive and «, v are non-negative real numbers
and the initial conditions x_9¢,...,x_2,2_1 and zy are non-negative real
numbers such that

t t
0 <ﬂ+”yzxﬁ_2knx2_2k, n=0,1,....
k=1 k=1
and if a = 0 the equation z,11 = 0 is trivial, if v = 0 the equation z,11 =
%xn_l is linear. We assume that all parameters in equations are positive.

* This article based upon data gathered for the author’s master’s thesis prepared
under the direction of Professor Cengiz CINAR at the Selcuk University and this paper
is in final form and no version of it will be submitted for publication elsewhere.
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We investigate the global asymptotic behavior and the periodic character
of the solutions of the difference (1), by generalizing the results due to
El-Owaidy et al. [1] corresponding to the difference equation

Alp—1

X101,
B4y,

Tnt+1 =
where the parameters a, 8 and ~y are positive real numbers and the initial
conditions z_g, x_1 and xg are arbitrary non-negative real numbers. Similar

recursive sequences were studied previously; for example, see Refs. [1-22].
We need the following definitions and theorem [23]:

Definition 1. Let I be an interval of the real numbers and let [ :
I — T be a continuously differantiable function. Consider the difference
equation

(2) Tnt1 = [ (Tny Tp—1, -2y ooy Tn—2t), n=0,1,....

with x_; fori=0,1,...,2t € I. Let T be the equilibrium point of (2). The
linearized equation of (2) about the equilibrium point T is

(3) Yn+1 = C1Yn + C2Yn—1 + ... + C2441Yn—2t, n=0,1,...
where
of _ . _
¢ = — (7,7,...,T),
! 8a:n( )
co = of (z,Z,...,T)
2 — 8$n—1 gLy ey 5
c of (z,T,...,T)
2+1 = JTyeeey T) .
* 855'77,—215

The characteristic equation of (3) is
(4) )\2t+1 — Cl)\2t e — Cgt_l)\2 - Cgt)\ — C2t4+1 = 0

Definition 2. Let T be an equilibrium point of (2).

(a) The equilibrium T is called locally stable if for every e > 0, there
exists 0 > 0 such that if xo,...,x—9t € [ and |xog —T|+ -+ |zt — T| < 0,
then |x, — | < e, for alln > —2t.

(b) The equilibrium T is called locally asymptotically stable if it is locally
stable and if there exists v > 0 such that if xo,...,x_9 € I and |xg —T| +
co |z — T < 7, then T}Ln;oxn =7.
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(¢) The equilibrium T is called global attractor if for every xq,...,x_o €
I we have ILm Ty =T.

(d) The equilibrium T is called globally asymptotically stable if it is lo-
cally stable and is a global attractor.

Definition 3. A positive semicycle of {xn} 2 5, of (2) consists of a
'string’ of terms {x;, X111, ..., Tm}, all greater than or equal to T, with | >
—2t and m < oo and such that either | = —2t or l > —2t and r;_1 < T and
either m =00 or m < o0 and Tm4+1 < T.

A negative semicycle of {xn},- o, of (2) consists of a ’string’ of terms

{z1, 2141, ..., zm} all less than T, with | > —2t and m < oo and such that
either | = =2t orl > —2t and x;_1 > T and either m = oo or m < oo and
Tmt1 = T

Definition 4. A solution {z,},- o, of (2) is called nonoscillatory if
there exists N > —2t such that either

Ty >T 0T Ty <T for Yn> N
and it is called oscillatory if it is not nonoscillatory.

Theorem 1. (i) If all roots of (4) have absolute values less than one,
then the equilibrium point T of (2) is locally asymptotically stable.

(73) If at least one of the roots of (4) has absolute value greater than one,
then the equilibrium point T of (2) is unstable.

(7i1) The equilibrium point T of (2) is called saddle point if (4) has roots
both inside and outside the unit disk.

2. Dynamics of equation (1)

In this section, we investigate the dynamics of (1) under the assumptions
that all parameters in the equation are positive and the initial conditions
are non-negative.

The change of variables z,, = (8/7)" %Py, reduces (1) to the difference
equation

TYn—1
(5) Yn+1 =
R TR ST VRV o T A B R SO LY TP T

where r =a/8>0and n=0,1,... .

Note that 7; = 0 is always an equilibrium point of (5). When r > 1, (5) also
r—1 )1/ qt+p

possesses the unique positive equilibrium g, = ( 7

Theorem 2. The following statements are true.
(1) If r < 1, then the equilibrium point §, = 0 of (5) is locally asymptotically
stable.
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(i) If r > 1, then the equilibrium point 5, = 0 of (5) is a saddle point.
(i4i) When r > 1, then the positive equilibrium point o = (%)l/qtﬂ) of (5) is
unstable.

Proof. The linearized equation of (5) about the equilibrium point 7; = 0 is
Zn4l =T2n—1, n=0,1,...
so, the characteristic equation of (5) about the equilibrium point 7; = 0 is
/\2t+1 _ ,’,)\Qt—l — O

hence the proof of (i) and (i¢) follows Theorem 1.
For (iii) we assume that r > 1; then the linearized equation of (5) about the

equilibrium point y, = (T—;l)l/qtﬂ) has the form

_ (¢t +p) (r=1) (gt +p) (r—1)
Zn+l = Zn—1— Zn—2 — n—4
t r t r
t -1
N C )N Gt DU

t T
where n = 0,1,.... So the characteristic equation of (5) about the equilibrium
point 7, = (517 s
6) AZEHL  p2e-1 (¢t +p) (r—1) A2 (¢t +p) (r—1) —o.

t r t r

It is clear that (6) has a root in the interval (—oo, —1) and so §, = (%)thﬂ) is

an unstable equilibrium point. This completes the proof. |

Theorem 3. Assume that r > 1. Let {y,} - ,, be a solution of (5) such that

r—1 1/qt+p r—1 1/qt+p
(7) Y—2t, ---Yo > yQ = ( t ) s Y—241,---,Y-1 < 52 = ( t )

or

7 r—1 1/qt+p B r—1 1/qt+p
(8) Y—2ty ---Yo < Yo = ) Y—2t41y--+5Y—-1 Z Yo =

t t

Then {yn}, o o, oscillates about Ty = (T;—l)l/qtﬂ)

Proof. Assume that (7) holds. (The case where (8) holds is similar and will be
omitted.) Then,

with semicycle of length 1.

rYy—1
hr = T T
1+ oy 5Py o+ y oy P oy + oyt T
Ty ry _
2 = 2 = y27

1+l 14r—1
< ¥
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and
Ya = "o
= ¥ ¥ ¥
Ly Py syl w5y H oyt w5l
Yo P =

> = =

S lay Ler—1 %

> Yo
then the proof follows by induction. |

Theorem 4. Assume that r < 1; then the equilibrium point §, = 0 of (5) is
globally asymptotically stable.

Proof. We know by Theorem 2 that the equilibrium point 7; = 0 of (5) is
locally asymptotically stable. So let {y,} — o, be a solution of (5). It suffices to
show that

lim y, =0
n—oo
Since

TYn—1

Yn+1 =
R TR 4TI TSP S TP il SO0 TSP o VRPN VAR IO T AR

Yon—1 < r"y—1 and Yo, <r"yo

we have
lim y, = 0.
n—oo

This completes the proof. |

Theorem 5. Assume thatr = 1; then (5) possesses the prime period 2 solutions
(9) SRS 3 /20> 30/

with ® > 0. Furthermore, every solution of (5) converges to a period 2 solution (9)
with ® > 0.

Proof. Let
U (TR /> 0 /SR

be a period two solution of (5). Then

rd
R R e S T B T s TR T TR T
and
v r¥
T 14 ®etPPe. . DI+ PIPItP . DI+ PIPe .. HatP’
So

_ (-9 -1
v = Pat+p—1 _ Hat+p—1 =0,
which implies that r — 1 < 0.
If r < 1, then this implies that ® < 0 or ¥ < 0, which is impossible, so r = 1.
If » > 1, then this implies that ® = ¥ = (%)thﬂ) # 0, which contradicts that
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® # U, sor = 1. To complete the proof, assume that r = 1 and let {y, },- _,, be
a solution of (5); then

Yn+1 — Yn—1

q+p, q q q q+p q q q q+p
_ TYn1Yn2Yn—a---Yn—2t " Yn—1Yn_2oYn—a---sYn—2t — Yn—-1Yn_2Yn—q---Yn—_2¢

q+p,q q q q+p q q q q+p
1+ Yn—2Yn—a---Yn—2t + Yn—2Yn—4-->Yn—2¢ + Yn—2Yn—a---Yn—2¢

Ynt+1 — Yn—1 < 0.

So, the even terms of this solution decrease to a limit (say ® > 0) and the odd
terms decrease to a limit (say ¥ > 0). Thus

)
¢ = 14 Watpwa, P9 4 Wagatr . W9 4 Pawa . Patp

and
\\J

T 1+ 3atrda . D4+ BIPITP . D 4 DD .. patp’
which implies that

v

tOWIHP = 0 and t¥PUTP = (.
This completes the proof. |

Theorem 6. Assume that r > 1; then (5) possesses an unbounded solution.

Proof. From Theorem 3, we can assume without loss of generality that the
solution {y, },— ,, of (5) is such that

B r—1 1/qt+p B r—1 1/qt+p
Yon—1 < Yy = t and Yon > Yo = t ;

for n > 0. Then

Yon+2
_ TYon
- qtp g q q q+p q q q q+p
L+ 92, 1Y2n—3-Yon—2t+1 T Y2n—1Y2n-3 - - - Y2n—2t41 T Y2n—1Y2n—3 - - - Yop—2141
TYon _
Yan+2 > m = Yon
and
Yonts = TY2n+1
n - q+p, q q q ,q9+p q q ,4q q+p
T4+ 92, Yan—o- - Yon—2t+2 T Y2nY2n—2 - - - Yon—2t42 T YonY2n—2 - - - Yap—242
TY2n+1
- < —_— =
Yon+3 T (r — 1) Yon+1

from which it follows that
limn — coys, =00 and lim yo,4+1 = 0.
n—oo

Then, the proof is complete. |
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