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ON THE DYNAMICS OF THE RECURSIVE SEQUENCE

xn+1 =
αxn−1

β+γ
t∑

k=1
xpn−2k

t∏
k=1

xqn−2k

∗

Abstract. In this paper, we investigate the global behavior of
the difference equation

xn+1 =
αxn−1

β + γ
t∑

k=1

xpn−2k

t∏
k=1

xqn−2k

, n = 0, 1, . . . ,

where β is a positive parameter and α, γ are non-negative param-
eters and non-negative initial conditions.
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1. Introduction

Consider the higher-order difference equation

(1) xn+1 =
αxn−1

β + γ
t∑

k=1

xpn−2k

t∏
k=1

xqn−2k

, n = 0, 1, ...

where the parameters, β is positive and α, γ are non-negative real numbers
and the initial conditions x−2t, ..., x−2, x−1 and x0 are non-negative real
numbers such that

0 < β + γ

t∑
k=1

xpn−2k

t∏
k=1

xqn−2k, n = 0, 1, . . . .

and if α = 0 the equation xn+1 = 0 is trivial, if γ = 0 the equation xn+1 =
α
βxn−1 is linear. We assume that all parameters in equations are positive.
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We investigate the global asymptotic behavior and the periodic character
of the solutions of the difference (1), by generalizing the results due to
El-Owaidy et al. [1] corresponding to the difference equation

xn+1 =
αxn−1

β + γxpn−2
, n = 0, 1, . . . .

where the parameters α, β and γ are positive real numbers and the initial
conditions x−2, x−1 and x0 are arbitrary non-negative real numbers. Similar
recursive sequences were studied previously; for example, see Refs. [1-22].

We need the following definitions and theorem [23]:

Definition 1. Let I be an interval of the real numbers and let f :
I2t+1 −→ I be a continuously differantiable function. Consider the difference
equation

(2) xn+1 = f (xn, xn−1, xn−2, ..., xn−2t) , n = 0, 1, . . . .

with x−i for i = 0, 1, ..., 2t ∈ I. Let x be the equilibrium point of (2). The
linearized equation of (2) about the equilibrium point x is

(3) yn+1 = c1yn + c2yn−1 + ...+ c2t+1yn−2t, n = 0, 1, . . .

where

c1 =
∂f

∂xn
(x, x, ..., x) ,

c2 =
∂f

∂xn−1
(x, x, ..., x) ,

...

c2t+1 =
∂f

∂xn−2t
(x, x, ..., x) .

The characteristic equation of (3) is

(4) λ2t+1 − c1λ2t − . . .− c2t−1λ2 − c2tλ− c2t+1 = 0

Definition 2. Let x be an equilibrium point of (2).
(a) The equilibrium x is called locally stable if for every ε > 0, there

exists δ > 0 such that if x0, . . . , x−2t ∈ I and |x0 − x|+ · · ·+ |x−2t − x| < δ,
then |xn − x| < ε, for all n ≥ −2t.

(b) The equilibrium x is called locally asymptotically stable if it is locally
stable and if there exists γ > 0 such that if x0, . . . , x−2t ∈ I and |x0 − x|+
· · ·+ |x−2t − x| < γ, then lim

n→∞
xn = x.
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(c) The equilibrium x is called global attractor if for every x0, . . . , x−2t ∈
I we have lim

n→∞
xn = x.

(d) The equilibrium x is called globally asymptotically stable if it is lo-
cally stable and is a global attractor.

Definition 3. A positive semicycle of {xn}∞n=−2t of (2) consists of a
’string’ of terms {xl, xl+1, . . . , xm}, all greater than or equal to x, with l ≥
−2t and m <∞ and such that either l = −2t or l > −2t and xl−1 < x and
either m =∞ or m <∞ and xm+1 < x.

A negative semicycle of {xn}∞n=−2t of (2) consists of a ’string’ of terms
{xl, xl+1, . . . , xm} all less than x, with l ≥ −2t and m < ∞ and such that
either l = −2t or l > −2t and xl−1 ≥ x and either m = ∞ or m < ∞ and
xm+1 ≥ x.

Definition 4. A solution {xn}∞n=−2t of (2) is called nonoscillatory if
there exists N ≥ −2t such that either

xn > x or xn < x for ∀n ≥ N

and it is called oscillatory if it is not nonoscillatory.

Theorem 1. (i) If all roots of (4) have absolute values less than one,
then the equilibrium point x of (2) is locally asymptotically stable.

(ii) If at least one of the roots of (4) has absolute value greater than one,
then the equilibrium point x of (2) is unstable.

(iii) The equilibrium point x of (2) is called saddle point if (4) has roots
both inside and outside the unit disk.

2. Dynamics of equation (1)

In this section, we investigate the dynamics of (1) under the assumptions
that all parameters in the equation are positive and the initial conditions
are non-negative.

The change of variables xn = (β/γ)1/qt+p yn reduces (1) to the difference
equation

(5) yn+1 =
ryn−1

1 + yq+pn−2y
q
n−4...y

q
n−2t + yqn−2y

q+p
n−4...y

q
n−2t + ...+ yqn−2y

q
n−4...y

q+p
n−2t

where r = α/β > 0 and n = 0, 1, . . . .
Note that y1 = 0 is always an equilibrium point of (5). When r > 1, (5) also

possesses the unique positive equilibrium y2 =
(
r−1
t

)1/qt+p
.

Theorem 2. The following statements are true.
(i) If r < 1, then the equilibrium point y1 = 0 of (5) is locally asymptotically

stable.



62 M. Emre Erdogan and Cengiz Cinar

(ii) If r > 1, then the equilibrium point y1 = 0 of (5) is a saddle point.

(iii) When r > 1, then the positive equilibrium point y2 =
(
r−1
t

)1/qt+p
of (5) is

unstable.

Proof. The linearized equation of (5) about the equilibrium point y1 = 0 is

zn+1 = rzn−1, n = 0, 1, . . .

so, the characteristic equation of (5) about the equilibrium point y1 = 0 is

λ2t+1 − rλ2t−1 = 0

hence the proof of (i) and (ii) follows Theorem 1.
For (iii) we assume that r > 1; then the linearized equation of (5) about the

equilibrium point y2 =
(
r−1
t

)1/qt+p
has the form

zn+1 = zn−1 −
(qt+ p)

t

(r − 1)

r
zn−2 −

(qt+ p)

t

(r − 1)

r
zn−4

− . . .− (qt+ p)

t

(r − 1)

r
zn−2t = 0

where n = 0, 1, . . .. So the characteristic equation of (5) about the equilibrium

point y2 =
(
r−1
t

)1/qt+p
is

(6) λ2t+1 − λ2t−1 +
(qt+ p)

t

(r − 1)

r
λ2t−2 + ...+

(qt+ p)

t

(r − 1)

r
= 0.

It is clear that (6) has a root in the interval (−∞,−1) and so y2 =
(
r−1
t

)1/qt+p
is

an unstable equilibrium point. This completes the proof. �

Theorem 3. Assume that r > 1. Let {yn}∞n=−2t be a solution of (5) such that

(7) y−2t, ...y0 ≥ y2 =

(
r − 1

t

)1/qt+p

, y−2t+1, . . . , y−1 < y2 =

(
r − 1

t

)1/qt+p

or

(8) y−2t, ...y0 < y2 =

(
r − 1

t

)1/qt+p

, y−2t+1, . . . , y−1 ≥ y2 =

(
r − 1

t

)1/qt+p

Then {yn}∞n=−2t oscillates about y2 =
(
r−1
t

)1/qt+p
with semicycle of length 1.

Proof. Assume that (7) holds. (The case where (8) holds is similar and will be
omitted.) Then,

y1 =
ry−1

1 + yq+p−2 y
q
−4...y

q
−2t + yq−2y

q+p
−4 . . . yq−2t + yq−2y

q
−4...y

q+p
−2t

<
ry2

1 + tyqt+p2

=
ry2

1 + r − 1
= y2,

< y2
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and

y2 =
ry0

1 + yq+p−1 y
q
−3 . . . y

q
−2t+1 + yq−1y

q+p
−3 . . . yq−2t+1 + yq−1y

q
−3 . . . y

q+p
−2t+1

≥ ry2
1 + tyqt+p2

=
ry2

1 + r − 1
= y2,

≥ y2

then the proof follows by induction. �

Theorem 4. Assume that r < 1; then the equilibrium point y1 = 0 of (5) is
globally asymptotically stable.

Proof. We know by Theorem 2 that the equilibrium point y1 = 0 of (5) is
locally asymptotically stable. So let {yn}∞n=−2t be a solution of (5). It suffices to
show that

lim
n→∞

yn = 0

Since

yn+1 =
ryn−1

1 + yq+pn−2y
q
n−4...y

q
n−2t + yqn−2y

q+p
n−4...y

q
n−2t + yqn−2y

q
n−4...y

q+p
n−2t

y2n−1 < rny−1 and y2n < rny0

we have
lim
n→∞

yn = 0.

This completes the proof. �

Theorem 5. Assume that r = 1; then (5) possesses the prime period 2 solutions

(9) . . . ,Φ,Ψ,Φ,Ψ, . . .

with Φ > 0. Furthermore, every solution of (5) converges to a period 2 solution (9)
with Φ ≥ 0.

Proof. Let
. . . ,Φ,Ψ,Φ,Ψ, . . .

be a period two solution of (5). Then

Φ =
rΦ

1 + Ψq+pΨq . . .Ψq + ΨqΨq+p . . .Ψq + ΨqΨq . . .Ψq+p

and

Ψ =
rΨ

1 + Φq+pΦq . . .Φq + ΦqΦq+p . . .Φq + ΦqΦq . . .Φq+p
.

So

tΦΨ =
(Φ−Ψ) (r − 1)

Ψqt+p−1 − Φqt+p−1
≥ 0,

which implies that r − 1 ≤ 0.
If r < 1, then this implies that Φ < 0 or Ψ < 0, which is impossible, so r = 1.

If r > 1, then this implies that Φ = Ψ =
(
r−1
t

)1/qt+p 6= 0, which contradicts that
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Φ 6= Ψ, so r = 1. To complete the proof, assume that r = 1 and let {yn}∞n=−2t be
a solution of (5); then

yn+1 − yn−1

=
−yn−1yq+pn−2y

q
n−4 . . . y

q
n−2t − yn−1y

q
n−2y

q+p
n−4 . . . , y

q
n−2t − yn−1y

q
n−2y

q
n−4 . . . y

q+p
n−2t

1 + yq+pn−2y
q
n−4 . . . y

q
n−2t + yqn−2y

q+p
n−4 . . . , y

q
n−2t + yqn−2y

q
n−4 . . . y

q+p
n−2t

yn+1 − yn−1 ≤ 0.

So, the even terms of this solution decrease to a limit (say Φ ≥ 0) and the odd
terms decrease to a limit (say Ψ ≥ 0). Thus

Φ =
Φ

1 + Ψq+pΨq...Ψq + ΨqΨq+p . . .Ψq + ΨqΨq . . .Ψq+p

and

Ψ =
Ψ

1 + Φq+pΦq . . .Φq + ΦqΦq+p . . .Φq + ΦqΦq . . .Φq+p
,

which implies that
tΦΨqt+p = 0 and tΨΦqt+p = 0.

This completes the proof. �

Theorem 6. Assume that r > 1; then (5) possesses an unbounded solution.

Proof. From Theorem 3, we can assume without loss of generality that the
solution {yn}∞n=−2t of (5) is such that

y2n−1 < y2 =

(
r − 1

t

)1/qt+p

and y2n > y2 =

(
r − 1

t

)1/qt+p

,

for n ≥ 0. Then

y2n+2

=
ry2n

1 + yq+p2n−1y
q
2n−3...y

q
2n−2t+1 + yq2n−1y

q+p
2n−3 . . . y

q
2n−2t+1 + yq2n−1y

q
2n−3 . . . y

q+p
2n−2t+1

y2n+2 >
ry2n

1 + (r − 1)
= y2n

and

y2n+3 =
ry2n+1

1 + yq+p2n yq2n−2 . . . y
q
2n−2t+2 + yq2ny

q+p
2n−2 . . . y

q
2n−2t+2 + yq2ny

q
2n−2 . . . y

q+p
2n−2t+2

y2n+3 <
ry2n+1

1 + (r − 1)
= y2n+1

from which it follows that

limn→∞y2n =∞ and lim
n→∞

y2n+1 = 0.

Then, the proof is complete. �
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