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Abstract—Effectively showing the relationships between objects in a dataset is one of the main tasks in information visualization.
Typically there is a well-defined notion of distance between pairs of objects, and traditional approaches such as principal component
analysis or multi-dimensional scaling are used to place the objects as points in 2D space, so that similar objects are close to each
other. In another typical setting, the dataset is visualized as a network graph, where related nodes are connected by links. More
recently, datasets are also visualized as maps, where in addition to nodes and links, there is an explicit representation of groups and
clusters. We consider these three Techniques, characterized by a progressive increase of the amount of encoded information: node
diagrams, node-link diagrams and node-link-group diagrams. We assess these three types of diagrams with a controlled experiment
that covers nine different tasks falling broadly in three categories: node-based tasks, network-based tasks and group-based tasks. Our
findings indicate that adding links, or links and group representations, does not negatively impact performance (time and accuracy)
of node-based tasks. Similarly, adding group representations does not negatively impact the performance of network-based tasks.
Node-link-group diagrams outperform the others on group-based tasks. These conclusions contradict results in other studies, in
similar but subtly different settings. Taken together, however, such results can have significant implications for the design of standard
and domain specific visualizations tools.

Index Terms—graphs, networks, maps, scatter plots

1 INTRODUCTION

Information spatialization combines techniques from cartography,
statistics, and perception psychology to visualize non-spatial data. Ob-
jects in non-spatial data do not have a strong connection with a position
in space, either because they are purely abstract, or because they do not
have a real spatial dimension or an established convention about their
placement.

Spatialization methods place these objects in 2D or 3D space so
that the first law of geography (closer things are more similar) [33]
is respected. Since this requires a predefined concept of similarity,
the data to be spatialized often comes with, or is subsequently divided
in, clusters of similar objects. Therefore, the results often resemble
geographical maps, with groups of related nodes as countries.

Scatter plots are a very traditional spatialization, frequently used in
the natural sciences to find patterns and groups in empirical bivariate
data. Scatter plots date back to as early as 1833, when the mathemati-
cian and astronomer J. Herschel studied the relationship between mag-
nitude and spectral classes of stars. According to Tufte [47] “the rela-
tional graphic—in its barest form, the scatterplot and its variants—is
the greatest of all graphical designs.” With the success of dimension-
ality reduction techniques such as principal component analysis and
multi-dimensional scaling, scatter plots and point cloud visualizations
are a powerful tool in the statistical visualization toolbox.

Node-link diagrams date back to the 18th century and the “seven
bridges of Königsberg” problem, modeled by L. Euler with nodes (for
the different parts of the city) and links (for the bridges between them).
Such relational datasets are typically characterized by a set of objects
(e.g., webpages) and relationships between them (e.g., links between
pages). Graph drawing algorithms, or network layout methods, are
another standard tool in the visualization toolbox in many fields from
software engineering, bioinformatics, to social network analysis.
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Figure 1: Examples of diagrams considered in this study.

Map-based visualizations are among the oldest visualizations [8, 7],
and placing imagined places on imagined maps has a long history, e.g.,
the 1930s Map of Middle Earth by Tolkien. While most such maps are
generated in an ad hoc manner and are not strictly based on underlying
data, they are often very visually appealing. The map metaphor is a
particularly popular approach in the context of text visualization [48],
and recently a number of fully automated tools were developed to gen-
erate such map-like visualizations for non-spatial data.

In this paper we consider these three visualizations, commonly em-
ployed in spatialization, which for the purpose of uniformity we call
node diagrams (N diagrams), node-link diagrams (NL diagrams) and
node-link-groups diagrams (NLG diagrams). Each of these diagrams
extends the previous one by making more explicit a characteristic of
the input data.

In N diagrams, a set of objects is depicted as points in a two or three
dimensional space; see Figure 1a. Clusters are typically depicted by
painting each node with a color that is unique for each group. Such
diagrams are very common in natural sciences and are generated by
principal component analysis (PCA) [27] or multi-dimensional scaling
(MDS) [29]. Such visualizations are often referred to as scatter plots,
scatter diagrams, and point clouds [36].

In NL diagrams, the visualization is enriched with connections that
make explicit a close relation between two elements; see Figure 1b. As
before, colors are typically used to indicate group membership. Node-
link diagrams are often referred to as graphs drawings, or network
layouts and are the standard way of representing relational data [6, 20].

In NLG diagrams, the visualization is further enriched by enclosing
the elements that belong to the same set into a region; see Figure 1c.
This is the output of several recent InfoVis techniques which visualize
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sets, groups, and clusters [12, 21, 32, 14].
N diagrams offer an effective way to show clear partitions of the

data. However, PCA, MDS and similar techniques might obscure
some details. By explicitly drawing a link between closely related
objects, NL diagrams can show a related pair of objects, even when
the objects are not nearby. Enclosing the elements of the same group
in a region in NLG diagrams makes grouping explicit, provides a high-
level structural overview, and alleviates potential problems with color
ambiguities.

In this paper, we consider the effectiveness of these three types of
visualizations (Techniques) on node-based tasks, network-based tasks
and group-based tasks, with a controlled experiment.

2 RELATED WORK

There are various approaches to data spatialization in different disci-
plines: scatterplots in statistics and the natural sciences [27, 29, 18],
abstract maps in cartography [44, 45] and in visual arts [7, 22], node-
link diagrams in graph drawing [4, 9] and Euler/Venn diagrams in set
visualization [19, 43].

A great deal of related work evaluates the general concepts of spa-
tialization and specific spatialization techniques.

N diagrams: The readability of node diagrams has been studied
for nodes and groups of nodes. There is evidence that the distance
between pairs of nodes is related to the perceived similarity between
them [17], but it known that this can be significantly altered by other
factors, including boundaries used to group nodes [16]. The relative
position and arrangement of nodes also influence the perceived im-
portance of the nodes. Central nodes are generally perceived as more
important, while regular node arrangements, such as placing the nodes
around a circle, tend to suggest that the nodes involved are equally
important [31, 13]. Node spacing is particularly important in the per-
ceived clustering, as changes in node proximity induce the users to
detect different number of clusters and of nodes that act as bridges
between one group and another [31]. Finally, several studies have
considered how to depict the group boundaries, defining patterns that
should and should not be present, as well as evaluating their impact on
the diagram comprehension [5, 40].

NL diagrams: The readability of graph and network layouts has
also been studied. In graphs, the placement of the nodes and links
can result in desirable (e.g., display of symmetries) or undesirable re-
sults (e.g., edge crossings). The impact of such aesthetic criteria has
been evaluated [37, 39], showing that some have a significant impact
on readability (e.g. the number of edge crossings), while others have
statistically insignificant effects. Metrics have been developed to for-
mally evaluate some of these aesthetic criteria [38]. In the latest study,
Alper et al. [2] compared node-link diagrams with matrix represen-
tations, using a controlled experiment to assess which representation
best support weighted graph comparison tasks.

NLG diagrams: There is less work on evaluating node-link-
group diagrams, as these are fairly new. Very recently, Jianu et al.
[26] evaluated four techniques for displaying group or cluster infor-
mation overlaid on node-link diagrams: node coloring, GMap [21],
BubbleSets [12], and LineSets [3]. The focus of the study is to match
specific tasks to specific visualizations. BubbleSets were found to out-
perform the other visualizations in tasks that involve group perception
and understanding.

Tory et al. [46] compared the performance of search and point-
estimation tasks on N diagrams and 2D/3D landscapes, that closely
resemble NLG diagrams, but do not have links. Their results show that
N diagrams outperform landscapes, and that using the third dimension
is detrimental for these drawings. However, this does not directly an-
swer the questions posed in our paper for a couple of reasons. First,
in [46] the focus is on points and their metric values, whereas we also
study the relations between the objects and between groups of objects.
Second, groups are identified by splitting the range of a metric into
different intervals and creating groups that collect all nodes in that in-
terval. Thus colors are not only used to identify the groups, but also
to provide quantitative information about the value of the metric. It is
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Figure 2: Multi-level typology of abstract visualization tasks. The
typology spans WHY, HOW and WHAT. Figure from [10] used with
permission.

therefore necessary to find a balance between two conflicting needs:
providing a color scale that facilitates the estimation of the metric
(e.g., increasing color saturation) versus providing a color scale that
provides good distinctions between the groups (e.g., rainbow scale).
We do not have such a conflict in our setting.

2.1 Group Visualization
The most related prior work is that of Jianu et al. [26]. There are
several factors that impact the conclusions in that study: contiguity,
clutter, and features. We briefly discuss these below:

Contiguity: BubbleSets and LineSets produce contiguous re-
gions, whereas GMap produces fragmented regions. As pointed out
in [26], for some tasks such as “asking users to see whether two nodes
are located in the same group or not”, the user performance highly
depends on how the two nodes are selected. If the two highlighted
nodes are located in the same fragment, then user performance may not
change in both BubbleSet and GMap, while if both highlighted nodes
are in spatially scattered fragments that belong to the same group, then
GMap cannot compete with BubbleSets. We avoid this problem by us-
ing only contiguous regions in our NLG diagrams.

Clutter: There are different types of visual clutter introduced by
the visualizations studied in [26] which affect the results. GMap in-
troduces clutter by displaying group labels over distinctive sets. As
pointed out by the authors, such group labels in GMap caused invalid
results in some of the tasks. For example, the task of “Estimating the
degree of a highlighted node”, is impossible when the group label is
located on the top of neighbors of the node. Similarly, BubbleSets in-
troduces clutter in areas where multiple groups overlap. We avoid this
problem by eliminating all types of clutter in our three visualizations.

Features: There are several features of the input data that cer-
tainly have an impact on the results (e.g., the number of objects, the
density of the network, etc.) In [26] only one dataset with fixed Size
and Density is used. We use several datasets and vary Size and Density
as advocated by [42, 25].

In summary, many earlier studies successfully assess either differ-
ent aspects of a particular type of visualization, or different types of
visualizations. But several big and important questions remain open.
We are particularly interested in the effect of adding more information
(from nodes only to nodes and links, from nodes and links to nodes and
links and groups) on various tasks. Is it harder to perform node-based
tasks in an NL or NLG diagrams (compared with an N diagram)? Is it
harder to perform network tasks in a NLG diagram (compared with an
NL diagram). What is the impact of Size and Density on the different
types of diagrams?

2.2 Task Taxonomies
The results of some of the earlier evaluation studies are difficult to
compare. Seemingly non-influential decisions, such as the choice or



phrasing of the tasks, may have a significant impact on the results. In
an attempt to mitigate this problem, visual data analysis tasks are orga-
nized and categorized in taxonomies and the literature is rich in such
taxonomies. Brehmer and Munzner [10] organized the vast previous
work highlighting advantages and disadvantages. They point out as the
major shortcoming of most approaches, the lack of a global view of the
task: high-level categories often ignore how the tasks are performed,
while low level categories often ignore why the tasks are performed. In
order to close this gap, they develop a multi-level typology that helps
create a complete description of a task.

This multi-level typology encompasses three main questions: WHY,
HOW and WHAT. The WHY part of the typology allows us to describe
why a task is performed, includes multiple levels of specificity, and
a narrowing of scope from high-level (consume vs. produce) to mid-
level (search) to low-level (query); see Fig. 2a. The HOW part of the
typology allows us to describe how a task is performed, and this part
includes three classes of methods: those for encoding data, those for
manipulating existing elements in a visualization, and those for intro-
ducing new elements into a visualization; see Fig. 2b. Finally, the
WHAT part of the typology allows us to describe what are the inputs
and outputs for a given task; see Fig. 2c. This definition is purely
abstract and enables the translation of any type of relevant task into
the why/how/what framework, making it clear and almost ready for
implementation.

The work of Brehmer and Munzner, however, is not meant to re-
place model-oriented taxonomies, but rather to “encompass and com-
plement these specific classification systems”. Instead, they provide
the tools to put these low level tasks in context, guiding the evaluation
designer in providing information, such as user expertise and motiva-
tion. We make extensive use of this multi-level typology in our study.

3 CONTROLLED STUDY

In this study we investigates the effectiveness (accuracy, task comple-
tion time) of the described N, NL and NLG diagrams. Our aim is
to assess how the three Techniques scale with changing Sizes (chang-
ing number of nodes) and Densities (changing number of links) across
different comparison tasks, to inform designs that would utilize these
Techniques.

The total number of questions in the main experiment is
#Questions = #Sizes×#Densities×#Tasks. In order to make the con-
trolled experiment of reasonable length, we need to limit the number
of different values of these factors. For Sizes and Densities, we use
three different values, as the minimum requirement needed to provide
an estimate of the variation trend. We select values in a geometric pro-
gression in order to provide a larger range of considered values. These
values are referred to as N, 2N and 4N for Sizes, and L, 2L and 4L for
Densities.

For Tasks, we use nine tasks in total, with three tasks per category.
This provides the minimum requirement to see variations within a task
category.

3.1 Tasks
We first considered user interactions with visualization systems such
as BubbleSets [12], LineSets [3], and GMap [21]. We also considered
existing task taxonomies for graph visualization [30], and interviewing
several experts in the field. The result was a list of over 80 different
tasks, which we divided into three categories according to the infor-
mation required to solve them.

• Node-Based Tasks: Tasks in this category can be performed by
considering only nodes, so that no other information is required.
For example: Given node ”X”, what is its background color?

• Network-Based Tasks: Tasks in this category can be performed
by considering only nodes and links. For example: Find a node
with the highest degree.

• Group-based Tasks: Tasks in this category can be performed by
considering nodes, links, and groups. For example: Given a group
X, find all groups neighboring group X.

Figure 3: The software guides participants through the experiment by
providing task instructions and recording time and accuracy.

We looked for simple tasks, tasks used in previous taxonomies and
evaluations, and tasks that can be performed in a reasonable amount
of time. Included are simple “visual search” type tasks, which al-
though seemingly obsolete in standard visualization systems, are still
common in other situations. For example, we may search for our desti-
nation subway station which starts with letter R on a map installed in a
subways station (where stations are nodes and the paths between them
are links). Similarly, visual search tasks are still common in static vi-
sualizations included in research papers, posters, and newspapers still
require dealing with such tasks. We validated the selected tasks us-
ing Brehmer and Munzers multilevel typology. Most of the tasks in
the first two categories are listed under “Attribute-Based Tasks” and
“Topology-Based Tasks” in the work done by Lee et al. [30]. Most of
the tasks in the third category are “Group-Based Tasks” in [41]. Task
descriptions and details about the selected nine representative tasks,
T1 to T9, with three tasks in each category, are provided in Table 1.

3.2 Size and Density
We chose a minimum and maximum number of nodes so that the aver-
age response time for a single task is in the range from 5 to 30 seconds.
We carried out a second pilot study with six different participants to
determine these values.

For two different datasets, we generated all three Techniques with
the number of nodes ranging from 50 to 350, in increments of 50
nodes. For each of these drawings (42 in total), we asked six par-
ticipants to perform the following tasks “How many nodes belong to a
specific group?” and “Find node X .” We measured the time required
to provide an answer, obtaining times ranging from 7.3 seconds for 50
nodes, to 40.2 seconds for 350 nodes. We finally determined N = 50
nodes as minimum (7.3 seconds), 4N = 200 nodes as maximum (24.3
seconds), and 2N = 100 nodes as an intermediate value.

Determining a good range for Density (number of links divided by
number of nodes) is a difficult problem. We chose L = N (tree-like
networks) for the sparsest setting, then doubled the density to 2L, and
doubled in again to 4L in keeping with the geometric growth for Size.

3.3 Datasets
We use three real-world relational datasets for our evaluation, in or-
der to minimize potential bias introduced by just one dataset. The
Recipe-ingredients dataset contains 350 unique cooking ingredients
extracted from 50,000 cooking recipes [1]. Links are weighted based
on co-occurrence of the ingredients in the recipes. The World-trade
dataset contains trade relationships between 200 countries [21]. Links
are weighted based on normalized combined import/exported between
pairs of countries. The Colors dataset contains 500 uniquely named
colors with links defined by the distance in RGB space between corre-
sponding pairs [34].

The nodes in the datasets are labeled with familiar words: cooking
ingredients, country names, color names. We were concerned that re-
ferring to cluster colors and node colors might be confusing (for the



Colors dataset), but no participants mentioned this as a problem.
From each dataset, we selected 200, 100 and 50 nodes by itera-

tive (random) filtering. For each dataset and each size (Size), we con-
structed a graph for each Density with 4, 2 and 1 times as many links
as nodes, by selecting the links with highest weights.

The graphs are embedded with an MDS [29] algorithm and clus-
tered using Modularity Clustering [35], with the link weight as sim-
ilarity between connected nodes. For both algorithms, we used the
implementations provided in GRAPHVIZ [15].

To generate instances of NLG diagrams we use GMap. Since the
original GMap implementation [21] generates fragmented countries,
which can be confusing [26], we use a new and improved version of
GMap, which is guaranteed to generate contiguous regions [28]. From
the NLG diagrams, we obtain the NL diagrams by removing the group
regions, and the N diagrams by further removing the links.

In this study, all layouts generated with the Recipe-ingredients
dataset have 4 clusters; all layouts generated with the Colors dataset
have 5 clusters and all layouts generated with the World-trade dataset
have 7 clusters. Since the number of clusters is associated with the par-
ticular dataset, we distributed the datasets uniformly over the different
settings for Size and Density. In particular, each dataset is utilized
exactly once for each setting of Size and Density; see Figure 4.

50 Nodes 
(N)

50 Links (L) Color (5 Clusters)

100 Links (2L) Recipes (4 Clusters)

200 Links (4L) World-trade (7 Clusters)

100 Nodes 
(2N)

100 Links (L)

Color (5 Clusters)200 Links (2L)

Recipes (4 Clusters)400 Links (4L)

World-trade (7 Clusters)

200 Nodes 
(4N)

200 Links (L)

Color (5 Clusters)

400 Links (2L)

Recipes (4 Clusters)

800 Links (4L)

World-trade (7 Clusters)

Figure 4: Distribution of datasets over different Sizes and Densities.

3.4 Color Selection
Since the user study required colors to be identified by their names,
we ran a pilot study to verify that the colors we use can be quickly and
uniformly named by most people. This is particularly important in our
case since most of the participants were not native English speakers.

We selected our colors using ColorBrewer [11]. We considered
map-friendly, qualitative color schemes with enough different colors
to cover the maximum number of data classes present in our dataset
(seven), and among those we selected the one with colors that are eas-
iest to name (see the seven colors in Figure 5). Then, we presented the
colors to six participants and asked them name each color. We found
a full consensus for the colors red, orange, yellow, green, blue, pur-
ple, and a slight variation on brown (called “yellowish brown” by a
participant).

For the Recipe-ingredients dataset (with 4 clusters) we used red,
blue, green and purple colors. For the Colors dataset (5 clusters) we
used red, blue, green, purple and orange colors. Finally, for the World-
trade dataset we used all seven colors.

3.5 Participants and Setting
We recruited 36 participants (23 male, 13 female) aged 21–32 years
with normal vision (not color blind). Participants were undergradu-
ate and graduate science and engineering students, familiar with plots,
graphs and networks. We divided the participants into three groups: 12
participants (8 male, 4 female) to perform tasks using N diagrams, 12
participants (7 male, 5 female) to perform tasks using NL diagrams,
and 12 participants (8 male, 4 female) to perform tasks using NLG
diagrams. The study was conducted on a computer with i7 CPU 860

@ 2.80GHz processor and 24 inch screen with 1600x900 pixel resolu-
tion. Participants interacted with mouse to complete the tasks.

3.6 Experimental procedure
We used a full factorial between-subjects design. For each Technique
(N, NL, NLG), we had 3 Sizes, 3 Densities and 9 Tasks. Each partici-
pant performed 3 Size × 3 Density × 9 Tasks = 81 tasks.

Before the controlled experiment, participants were briefed about
the purpose of the study, data, and Technique used. Although all par-
ticipants were familiar with graphs, we explained all technical defini-
tions (e.g., node, links, adjacency, groups, paths). We then asked them
to complete 9 training tasks as quickly and accurately as possible. The
participants were encouraged to ask questions during this stage (we do
not record the time and accuracy for trials).

The main experiment consisted of 81 tasks for a specific Technique
(N, NL, or NLG). The tasks were presented in a reduced Latin square
to counterbalance learning and order effects (to prevent participants
from extrapolating new judgments from previous ones). The partici-
pants were able to zoom and pan the diagram on the screen (if needed)
and were required to select one of the provided multiple choices. We
recorded time and accuracy for each task. The participants were in-
structed to take breaks if needed when they saw a blank screen. A
screenshot of software for the experiment is shown in Figure 3.

3.7 Hypotheses
Since the three Techniques show information that can be either relevant
or detrimental in a particular analysis scenario, we expect that each
Technique will have its advantages and disadvantages. We collected
these expectations in the following hypothesis:

• H1: For Node-Based tasks there will be no significant differ-
ences between the three Techniques, as nodes are represented in
all diagrams with the same characteristics. However, NL and
NLG diagrams could be penalized when the Density increases,
since a large number of links might obstruct the detection of the
nodes [25].

• H2-a: For Network-Based tasks, unlike in [26], we believe there
will be no significant differences between NL and NLG dia-
grams. Although is has been shown that performance improves
for NLG diagrams compared with NL diagrams for revisitation
tasks [23], we believe that for accessibility and connectivity tasks
the results will be comparable, as nodes and links have the same
characteristics in NL and NLG diagrams (node positions, link
positions, and font size).

• H2-b: For Network-Based tasks, the increase of Density (links)
and Size (nodes) will result in a decrease in the performances in
NL and NLG diagrams.

• H3: Earlier work indicates no significant difference between NL
and NLG diagrams for group-based tasks [26]. However, we
hypothesize that for group-based tasks, NLG diagrams will out-
perform NL diagrams, given that the NLG diagrams have con-
tiguous regions. We base this hypothesis on research that shows
that NLG diagrams have two desirable features: explicit group-
ing and explicit group boundaries such as in [12, 21], and the
observation that people tend to create layouts that distinctively
group clusters in non-overlapping spatial regions [24].

4 RESULTS

We first describe the methods used to analyze the data gathered from
the user experiment. We then provide an overview of our results, with
more detailed quantitative results listed and described in Figures 6, 7
and 8. We excluded about 26% incorrect trials for N diagrams (mostly
network-based tasks), 11% for NL diagrams and 10% for NLG dia-
grams. Accuracy is measured using the number of correct trials di-
vided by the total number of trials, thus showing a percentage. Time
is measured in seconds.
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Figure 5: Representation of 50 nodes and 200 links with N, NL and NLG diagrams; underlying data from the World-trade dataset.

4.1 Data Analysis

We evaluate the performance of different types of tasks with differ-
ent Techniques using 2×3 between-subjects ANOVA with Technique
(N, NL and NLG) and Task (node-based, network-based and group-
based tasks) as factors. The main effect of Technique indicates which
Technique produces the best performance, regardless of the task. The
main effect of Task indicates which task is performed well, regardless
of visualization method. The Task x Technique interaction indicated
whether a particular Technique works better with a particular task.

In order to investigate the effects of Density (number of links) on
user performance, we conducted 2×3 between-subjects ANOVA with
Density (L, 2L and 4L) and Task (node-based, network-based and
group-based task) as factors. We conducted this test for NL and NLG
diagrams independently. (N diagrams are not considered in the Den-
sity analysis, as they are not affected by a change in the number of
links.)

Finally, for assessing the effect of Size (number of nodes) on user
performance, we conducted 2×3 between-subjects ANOVA with Size
(N, 2N and 4N) and Task (node-based, network-based and group-
based task) as factors. This test was performed independently for each
Technique.

4.2 Result Overview

Assessing the effect of a Technique on performance revealed that NLG
diagrams are about 8% more accurate than NL diagrams, and 22%
more accurate than N diagrams across all tasks. We found that tasks
were performed 15% faster when using NL and NLG diagrams, com-
pared to N diagrams, across all tasks. More details are shown in Fig-
ure 6.

Density affected accuracy in different ways for different tasks. Re-
sults on network-based tasks indicates significant difference in accu-
racy (when comparing Density L with Density 4L) for NL and NLG
diagrams. However, for node-based tasks and group-based tasks, de-
spite a slightly decreased accuracy with increased Density, there were
no statistically significant differences. Density affected time perfor-
mance differently as well. Both node-based and network-based tasks
were significantly slower (when comparing Density L with Density 4L)
for NL and NLG diagrams. However, group-based tasks again were
mostly unaffected. More details are shown in Figure 7.

Size affected accuracy only for network-based tasks. More specifi-
cally, network-based tasks show significant decrease in accuracy with
NL and NLG diagrams and only when the Size is quadrupled (when
comparing Size N with Size 4N). Size had much greater impact on time
performance across all types of tasks and all types of diagrams. Node-
based tasks were significantly slower (when comparing Density L with
Density 4L) for N, NL, and NLG diagrams. Network-based tasks were
significantly slower (when comparing Density L with Density 4L) for
NL, and NLG diagrams. Group-based tasks were significantly slower
(when comparing Density L with Density 4L) only for NL diagrams.
More details are shown in Figure 8.

5 DISCUSSION

In our experiments we attempted to control several variables that typ-
ically impact such studies. In particular, for a given dataset, we fixed
the location of the nodes in the N, NL, and NLG diagrams. We also
fixed the links in the NL and NLG diagrams. Finally, we used the same
font size and the same colors to indicate groups in all diagrams. This
allows us to focus on the impact of varying Size and Density, across
the different diagrams.

There is little change in performance of node-based tasks across the
three different types of diagrams, which supports hypothesis H1; see
Fig. 6. Moreover, we note that high link Density penalizes node-based
task time performance in both NL and NLG diagrams, confirming the
second part of H1; see Fig. 7(c,d). We believe that this happens be-
cause links are only a distraction for node-based tasks, but their nega-
tive effect is mitigated by the fact that they are drawn behind the nodes
in our drawings.

Similarly, network-based tasks are performed as accurately with NL
as with NLG diagrams, which supports hypothesis H2-a; see Fig. 6(a);
moreover, network-based tasks are performed significantly faster with
NLG diagrams than with NL diagrams; see Fig. 6(b). This contradicts
results in Jianu et al. [26], where a NL diagrams (called “node color-
ing”) performed better than NLG diagrams (GMap and BubbleSets)
for network-based tasks. We believe that this is due to the absence of
fragmentation and the better choice of colors in our NLG diagrams, as
well as the absence of group labels (which obscured important infor-
mation in their experiments).

The increase of Density and Size result in a decrease in the network-
task performance (both time and accuracy), supporting hypothesis H2-
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Significance
Technique (F(2,99) = 25.2, p < .001)
Task (F(2,99) = 18.34, p < .001)
Task x Technique (F(4,99) = 14.52, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Network-based tasks N vs. NL (p < .001)

N vs. NLG (p < .001)
Group-based tasks N vs. NLG (p < .05)

NL vs. NLG (p < .05)

Result Explanation
Accuracy for node-based tasks does not change significantly in the three Tech-
niques. We also found that accuracy for network-based tasks in NLG (Mean =

83.33%) and NL (Mean = 79.5%) diagrams is significantly better than in N di-
agrams (Mean = 12.17%). Accuracy for network-based tasks is very low in N
diagrams, most likely due to the absence of links. Accuracy for group-based tasks
is the highest in NLG diagrams (Mean = 94.83%).

(a)

Significance
Technique(F(2,99) = 31.5, p < .001)
Task (F(2,99) = 125.4, p < .001)
Task x Technique (F(4,99) = 16.5, p < .05)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Network-based tasks N vs. NL (p < .05)

N vs. NLG (p < .05)
Group-based tasks N vs. NLG (p < .05)

Result Explanation
Time for node-based tasks does not change significantly in the three Techniques.
Time for network-based tasks is significantly better in NLG (Mean = 24.3s) and
NL (Mean= 23.8s) diagrams, than in N diagrams (Mean= 32.5s). Time for group-
based tasks is significantly better in NLG (Mean = 10.8s) diagrams than in NL
(Mean = 13.4s) and N (Mean = 14.6s) diagrams.

(b)

Figure 6: (a) Mean accuracy (in percentage) for three different categories of tasks in different diagrams, (b) Mean completion time (in seconds)
for three different categories of tasks in different diagrams. Error bars represent +/-2 standard deviation.

b; see Fig. 7-8. This confirms results in the study of Alper et al. [2].
However, our initial expectations of a drastic performance reduction
for the maximum link Density were not confirmed by our experi-
ment, most likely because our maximum parameters were not very
high (quadrupling Size and Density).

We found statistically significant improvements in both accuracy
and speed for group-based tasks using NLG diagrams, when com-
pared to NL diagrams; see Fig. 6. This supports hypothesis H3 and
contradicts the results in Jianu et al. [26], but is likely explained with
use of fragmented NLG diagrams in their study and contiguous NLG
diagrams in ours.

Finally, across all diagrams, Size and Density do not seem to influ-
ence the performance of group-based tasks (except there is a negative
effect of Size on the performance time of group-based tasks in NL di-
agrams); see Fig. 8(e). This is likely due to the fact that increasing
Density and Size does not correlate with an increase in the number
of groups. Note that the number of groups varies from 4 to 7 in the
three different datasets, but this was not a formal parameter in this
experiment. Further analysis show that the number of groups had no
significant impact on performance, but this could be due to the small
variation considered.

While the variations between tasks in the same category were gen-
erally not very large, T9 (Given a group X, find the group neighbors
of group X) in the third category was an exception. Specifically, the
average performance time and accuracy for T9 with N and NL dia-
grams are significantly worse than with NLG diagrams. This is the
main reason why NLG diagrams outperform N and NL diagrams in
the group-based category. We believe that this could be explained with
the explicit presence of boundaries for the groups in NLG diagrams,

which are absent in N and NL diagrams.

Implication for design: One of the main findings in our study is
that NLG diagrams perform well across all tasks. While it is not very
surprising that NLG diagrams perform well for group-based tasks, it
is somewhat unexpected that NLG diagrams outperform NL diagrams,
and offer the same performance for node-based tasks, in our setting.
An important feature, and one that likely had an impact on the NLG
diagram results, is the guaranteed contiguity of regions. Note, how-
ever, that in order to ensure contiguous regions either the clustering or
the embedding might need to be modified [28].

6 CONCLUSIONS AND FUTURE WORK

We provide all material online: the three datasets used in our exper-
iment, the software for running the experiment, the results (accuracy
and time) of the 2,916 individual trials, and high-resolution figures; see
https://sites.google.com/site/infovispaper. We
consider this the first in a series of controlled studies to evaluate the ad-
vantages and disadvantages of node, node-link, and node-link-diagram
visualizations. In this experiment we considered the impact of Size and
Density on standard node, network, and group tasks using the three vi-
sualizations. We did not address more sophisticated issues, such as
knowledge discovery, knowledge retention, engagement, enjoyment,
and interaction. We anticipate that NLG diagrams will outperform N
and NL diagrams, but this remains to be studied. As there are different
node-link-group visualizations, more work is also needed to evaluate
different NLG diagram generation methods such as Bubblesets, Line-
sets, Kelp diagrams, and GMap.

https://sites.google.com/site/infovispaper


Table 1: List of tasks used in the evaluation.

WHY WHAT HOW

Node-based Tasks

T1. Given node ”X”,
what is its background
color?

The purpose of the task is to discover the background color of node X.
Search target is given (node X) but the node location is not given. Once
the participant finds the node they need to identify its background color.
(DISCOVER+ LOCATE+ IDENTIFY)

The input for the task is name of
a node. The output is the back-
ground color of the node.
Input: Node X
Output: Background color

Participants need to be able
to tell the background color
of the node.
(DERIVE + SELECT)

T2. Find all nodes which
start with specific alpha-
bet letter in the specific
group.

The purpose of the task is to provide list of all nodes which start with a
specific alphabet letter (e.g., Z/z). Search target is known since partici-
pants need to search for all nodes starting with the specific letter in the
specific group. Location of nodes is not given. Finally participants need
to produce a list of matching nodes.
(DISCOVER + LOCATE + SUMMARIZE)

The input for the task is a let-
ter. The output is the list of nodes
which start with that specific let-
ter.
Input: Specific alphabet letter
Output: List of nodes

Participants need to be able
to identify the nodes with
specific alphabet letter.
(SELECT)

T3. What is the num-
ber of nodes in a specific
group?

The purpose of the task is to count the nodes in a given group. The targets
are nodes in the group and the location is the whole group. Thus, both
targets and location are known.
Participants need to identify the nodes in the group and count them.
(DISCOVER + LOOK UP + SUMMARIZE)

The input for the task is a specific
group and nodes within it. The
output is the number of nodes in
that group.
Input: Nodes in a group
Output: Number of nodes

Participants need to count
number of nodes in the
group.
(DERIVE)

Network-based Tasks

T4. Given nodes X and Y,
find the shortest path be-
tween them.

The purpose of the task is to identify the shortest past between two given
nodes. Targets are given (nodes X and Y) but their location is not given.
After finding the nodes participants need to identify paths between nodes
X and Y, compare these paths, and find the shortest one.
(DISCOVER + LOCATE + COMPARE)

The input for the task are two
nodes. The output is the number
of links along the shortest path
between them.
Input : Node X and Y
Output: Shortest path length

Participants need to count
number of links in each
path between X and Y and
identify which path has the
fewest number of links.
(DERIVE + COMPARE +
SELECT)

T5. Find the set of nodes
adjacent to a given node.

Target is given (e.g., node X) but the location of the target is not given.
Participants need to produce a list of nodes directly connected to the given
node.
(DISCOVER+ LOCATE + SUMMARIZE)

The input is a specific node. The
output is list of nodes adjacent to
the given node.
Input: Specific Node
Output: List of nodes

Participants need to distin-
guish nodes directly con-
nected to the given node.
(SELECT)

T6. Find a node with
highest degree.

The purpose of the task is to discover a node with the most incident links.
Target is unknown and location is unknown. The participants need to com-
pare nodes with high degree and decide which has the highest degree.
(DISCOVER + EXPLORE + SUMMARIZE)

The input is the whole diagram
and the output is a node with
highest degree.
Input: Whole diagram
Output: Specific node

The participant needs to
count (and/or estimate) the
number of links incident to
each node and keep track of
the largest ones.
(DERIVE + SELECT)

Group-based Tasks

T7. Given nodes X and Y,
decide whether these two
nodes belong to the same
group.

The purpose of the task is to discover whether two given nodes belong to
the same group. The two nodes are given so the targets are given but their
location is not given. Once the participants find both nodes, they need to
identify whether they are in the same group or not.
(DISCOVER + LOCATE + IDENTIFY)

The input are nodes X and Y. The
output is Yes if the two nodes are
located in the same group, and
No otherwise.
Input: Nodes X and Y
Output: Yes/No

Participants need to dis-
tinguish whether the two
nodes are located in the
same group.
(SELECT)

T8. Find the path X—
Y—Z; are nodes X and Z
in the same group?

The purpose of the task is to discover whether two nodes connected by a
path are in the same group. The targets are known nodes X, Y and Z. The
location of the three nodes is unknown. Once the participants finds the
nodes, they need to determine whether they are in the same group or not.
(DISCOVER + LOOK UP + IDENTIFY)

The input for the task are nodes
X, Y, and Z. The output is Yes if
two nodes are in the same group
and No otherwise
Input: Nodes X, Y and Z
Output: Yes/No

Participants need to distin-
guish whether two nodes
are located in the same
group.
(SELECT)

T9. Given a group X,
find the group neighbors
of group X.

The purpose of the task is to discover groups that are adjacent to group X.
The targets are known (X is specified). The location of the group X is not
mentioned so the location is unknown. The participants need to produce
of list of groups which have common boundaries with the given group X.
(DISCOVER + EXPLORE + SUMMARIZE)

The input is a specific group. The
output is list of groups that are
neighbors of the given group.
Input: Group X
Output: List of groups

The participants need to
identify group X and the
groups which have com-
mon boundary with group
X.
(SELECT)
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Significance
Density(F(2,99) = 27.1, p < .05)
Task (F(2,99) = 20.4, p < .05)
Task x Density (F(4,99) = 9.52, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Network-based tasks Density L vs. 4L (p < .05)

Result Explanation
Accuracy for network-based tasks in NL diagram significantly decreases (from
86.4% to 75.5%) when Density quadruples. Increasing Density does not have sig-
nificant effect on accuracy of node-based and group-based tasks in NL diagrams.

(a)

Significance
Density(F(2,99) = 40.3, p < .001)
Task (F(2,99) = 23.2, p < .001)
Task x Density (F(4,99) = 16.01, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Network-based tasks Density L vs. 4L (p < .001)

Result Explanation
Accuracy of network-based tasks significantly decreases (from 85.24% to 80.17%)
when Density quadruples in NLG diagrams. However, changes in Density does not
have significant effect on accuracy for node-based and group-based tasks in NLG
diagrams.

(b)
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Significance
Density(F(2,99) = 27.2, p < .05)
Task (F(2,99) = 30.1, p < .001)
Task x Density (F(4,99) = 12.5, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Node-based tasks Density L vs. 4L (p < .001)
Network-based tasks Density L vs. 4L (p < .05)

Result Explanation
Time for node-based and network-based tasks significantly increases (33% and
25%) when Density quadruples in NL diagrams. Changes in Density do not have a
significant effect on time for group-based tasks in NL diagrams.

(c)

Significance
Density(F(2,99) = 22.83, p < .001)
Task (F(2,99) = 14.7, p < .001)
Task x Density (F(4,99) = 10.4, p < .05)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Node-based tasks Density L vs. 4L (p < .001)
Network-based tasks Density L vs. 4L (p < .001)

Result Explanation
Time for node-based and network-based tasks performance time significantly in-
creases (30% and 22%) when Density quadruples. However, changes in Density do
not have a significant effect on time for group-based performance in NLG diagrams.

(d)

Figure 7: Performance and Time accuracy for three different categories of tasks with different densities (L, 2L and 4L). Top: mean completion
time (in seconds) for three different categories of tasks for NL and NLG diagrams, Bottom: mean accuracy (in percentage) for three different
categories of tasks. We exclude N diagrams from Density analysis since changes in number of links does not have any effect on N diagrams.



Network-based Group-basedNode-based

 0

 20

 40

 60

 80

 100

N 2N 4N

M
e

a
n

 A
cc

u
ra

cy

Size

N Diagram

 0

 20

 40

 60

 80

 100

N 2N 4N

M
e

a
n

 A
cc

u
ra

cy

Size

NL Diagram

 0

 20

 40

 60

 80

 100

N 2N 4N

M
e

a
n

 A
cc

u
ra

cy

Size

NLG Diagram

Significance
Size(F(2,99) = 13.1, p > .05)
Task (F(2,99) = 23.2, p < .001)
Task x Size (F(4,99) = 8.02, p > .05)

Pairwise Comparisons (Posthoc Tukey’s HSD)

Result Explanation
We could not find significant effect of Size or interac-
tion Task x Size in N diagrams. Network-based tasks
have very low accuracy in N diagram, as it is diffi-
cult for participants to guess links, when they are not
explicitly drawn.

(a)

Significance
Size(F(2,99) = 21.4, p < .001)
Task (F(2,99) = 18.1, p < .05)
Task x Size (F(4,99) = 7.8, p < .05)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Network-based tasks Size N vs. 4N (p < .05)

Result Explanation
Accuracy for network-based tasks significantly de-
creases (8%) when the Size is quadrupled (4N).
Changing Size does not have significant effect on the
accuracy of node-based and group-based tasks in NL
diagrams.

(b)

Significance
Size(F(2,99) = 31.5, p < .001)
Task (F(2,99) = 20.01, p < .05)
Task x Size (F(4,99) = 13.24, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Network-based tasks Size N vs. 4N (p < .001)

Result Explanation
Accuracy for network-based tasks significantly
decreases (12%) when the Size quadruples in
NLG diagrams. However, changes in Size do not
significantly affect accuracy of node-based and
group-based tasks in NLG diagrams.

(c)
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Significance
Size(F(2,99) = 37.2, p < .05)
Task (F(2,99) = 21.01, p < .05)
Task x Size (F(4,99) = 17.03, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Node-based tasks Size N vs. 2N (p < .05)

Size N vs. 4N (p < .05)

Result Explanation
Time for node-based tasks significantly increases
(27% and 40%) when the Size doubles and quadru-
ples. However, time for network-based and group-
based tasks does not change significantly with change
of Size in N diagrams.

(d)

Significance
Size(F(2,99) = 24.5, p < .001)
Task (F(2,99) = 12.45, p < .001)
Task x Size (F(4,99) = 17.03, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Node-based tasks Size N vs. 4N (p < .001)
Network-based tasks Size N vs. 4N (p < .001)
Group-based tasks Size N vs. 4N (p < .05)

Result Explanation
Time for network-based tasks significantly increases
(50%), time for node-based tasks significantly in-
creases (33%) when the Sizes quadruples. Time for
group-based tasks significantly increases (23%) when
the Size quadruples.

(e)

Significance
Size(F(2,99) = 41.3, p < .001)
Task (F(2,99) = 29.5, p < .001)
Task x Size (F(4,99) = 12.1, p < .001)

Pairwise Comparisons (Posthoc Tukey’s HSD)
Node-based tasks Size N vs. 4N (p < .05)
Network-based tasks Size N vs. 4N (p < .001)

Result Explanation
Time for network-based tasks significantly increases
(54%) and time for node-based tasks increases (24%)
when Size quadruples. However, Size changes do not
significantly affect group-based tasks performance
time in NLG diagrams.

(f)

Figure 8: Performance and Time accuracy for three different categories of tasks with different Sizes (N, 2N and 4N). Top: Mean completion
time (in seconds) for three different categories of tasks for N, NL and NLG diagrams. Bottom: Mean accuracy (in percentage) for three different
categories of tasks.
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alization of Small World Networks. In Symp. Information Visualization
(InfoVis), 3:75–81, 2003.

[5] F. Benoy and P. Rodgers. Evaluating the Comprehension of Euler Dia-
grams. In E. Banissi, R. A. Burkhard, G. Grinstein, et al., editors, Inter-
national Conference on Information Visualisation (IV07), pages 771–780.
IEEE Computer Society, 2007.

[6] S. P. Borgatti, M. G. Everett, and J. C. Johnson. Analyzing Social Net-
works. SAGE Publications, 2013.

[7] K. Börner. Atlas of science. MIT Press, 2010.
[8] K. Börner, C. Chen, and K. W. Boyack. Visualizing Knowledge Do-

mains. Annual review of information science and technology, 37(1):179–
255, 2003.

[9] U. Brandes and D. Wagner. Analysis and Visualization of Social Net-
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